Liquid Density of n-Pentene, n-Hexene, and n-Heptene at

As the important industrial raw materials, n-pentene, n-hexene, and n-heptene are widely used as gasoline additives to improve the combustion characte...
0 downloads 0 Views 2MB Size
Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

pubs.acs.org/jced

Liquid Density of n‑Pentene, n‑Hexene, and n‑Heptene at Temperatures from 283.15 to 363.15 K and Pressures up to 100 MPa Jian Yang, Xianyang Meng,* and Jiangtao Wu Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China S Supporting Information *

ABSTRACT: As the important industrial raw materials, n-pentene, n-hexene, and n-heptene are widely used as gasoline additives to improve the combustion characteristics of gasoline and polymerized monomer to synthesize many important polymer compounds. Therefore, reliable density data are significant for these fluids to apply in industry. In this work, new experimental densities of n-pentene, n-hexene, and n-heptene have been measured at pressures up to 100 MPa along nine isotherms between 283 and 363 K by using a high pressure vibrating-tube densimeter. The experimental system was calibrated using water and a vacuum and was tested with R134a over the entire temperature and pressure ranges. The combined expanded uncertainties of the temperature, pressure, and density with a level of confidence of 0.95 (k = 2) are estimated to be 16 mK, 0.062 MPa (p ≤ 60 MPa), 0.192 MPa (60 MPa < p < 100 MPa), and up to 0.6 kg·m−3 depending on the temperature and pressure ranges. The density data were correlated with the Tait-like equation, and the average absolute deviations are 0.06, 0.04, and 0.05%. Furthermore, the isothermal compressibility and the isobaric thermal expansivity were derived from the Tait-like equation over the experimental temperature and pressure ranges.

1. INTRODUCTION As significant industrial linear alpha olefins, n-pentene, n-hexene, and n-heptene are not only widely used as gasoline additives to improve the octane number and the combustion characteristics of gasoline but also the raw materials to synthesize many important polymer compounds.1,2 The accurate density data of these fluids in a wide range of temperature and pressure are extremely important for flow simulation, system design and optimization, etc. Furthermore, measuring the density of these fluids accurately is necessary for scientific interest, such as to develop accurate equations of state and accurate theoretical predictive models for deeply understanding the physical and chemical nature of the processes occurring in fluids at high temperature and high pressure. However, to the best of our knowledge, limited data sources for the density of n-pentene, n-hexene, and n-heptene were found in the literature with high temperature and high pressure.3−11 The literature search was based on the TRC/NIST archive12 and our own search. For n-pentene, only two density data sources were reported by Day and Felsing3 and Wolfe et al.4 measured by using the volume measurements technique. The data of Day and Felsing3 were measured over the temperature range from 352 to 448 K and at pressures up to 32 MPa. For the data of Wolfe et al.,4 the temperature range is between 293 and 465 K, but the pressures are limited (only from 0.6 to 3.6 MPa). For n-hexene, ́ except for the data by Torin-Ollarves et al.8 and Vega-Maza 9 et al. measured between 273 and 333 K by using a vibratingtube densimeter, almost all previous reported data at high © XXXX American Chemical Society

temperature and high pressure were measured by using the hydrostatic weight method. Furthermore, there are large differences between these data sets. For n-heptene, there are two reported data sources measured at high pressures. Both were measured by using the hydrostatic weight method by Guseinov et al.11 and Sagdeev et al.10 The literature survey reveals that there are not enough high temperature and high pressure experimental data for n-pentene, n-hexene, and n-heptene. In order to develop accurate equations of state, the precise knowledge of the densities over wide ranges of temperature and pressure is extremely necessary. In this work, the new reliable experimental density data of n-pentene, n-hexene, and n-heptene measured by using a high pressure vibrating-tube densimeter at temperatures from 283 to 363 K and at pressures up to 100 MPa were presented.

2. EXPERIMENTAL SECTION 2.1. Samples. R134a (1,1,1,2-tetrafluoroethane) was supplied by Sinochem Modern Environmental Protection Chemicals with a declared purity of 0.999 mass fraction. n-Pentene was supplied by TCI (Shanghai) Development Co., Ltd., with a declared purity of greater than 0.98 mass fraction. n-Hexene was supplied by Aladdin Industrial Corporation with a declared purity of 0.99 mass fraction. n-Heptene was supplied by Xiya Received: March 22, 2018 Accepted: May 7, 2018

A

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Reagent with a declared purity of 0.99 mass fraction. In order to remove noncondensable gases, R134a was degassed with several cycles of freezing, pumping, and thawing. However, other samples were used as supplied. The specifications of chemical samples were summarized in Table 1.

and at pressures up to 100 MPa. Before the experiment, the reference fluids of vacuum and water were used to calibrate the vibrating-tube densimeter over the entire temperature and pressure ranges. The experimental system, calibration procedure, and uncertainty estimation were already described in our previous work.13−19 The combined expanded uncertainties Uc (k = 2, level of confidence = 0.95) are estimated to be Uc(T) = 16 mK, Uc(p) = 0.062 MPa (p ≤ 60 MPa), Uc(p) = 0.192 MPa (60 MPa < p < 140 MPa), and Uc(ρ) = 0.6 kg·m−3, respectively. In order to confirm the reliability of the experimental system, the density of R134a was measured over the entire temperature and pressure ranges and compared with the values calculated by the equation of state of R134a developed by Tillner-Roth and Baehr.20 The equation of state is valid for temperatures from 170 to 455 K and pressures up to 70 MPa. In the region of validity, the uncertainty in the density of the equation of state is 0.05%. The experimental density data and the calculated values are listed in Table 2, and the relative deviations are presented in Figure 1. As shown in Figure 1, the maximum relative deviation

Table 1. Specification of Chemical Samples chemical name

CAS reg. no.

R134a

811-97-2

n-pentene n-hexene

109-67-1 592-41-6

n-heptene

592-76-7

molecular formula

source

CH2FCF3 Sinochem Modern Environmental Protection Chemicals C5H10 TCI (Shanghai) C6H12 Aladdin Industrial Corporation Xiya Reagent C7H14

initial mass fraction purity 0.999

>0.98 0.99 0.99

2.2. Apparatus. The liquid densities of n-pentene, n-hexene, and n-heptene were measured with an Anton Paar DMA HPM vibrating-tube densitometer at temperatures from 283 to 363 K Table 2. Experimental Densities, ρ, of R134a at Various Temperatures, T, and Pressures, pa T (K)

p (MPa)

ρexp (kg·m−3)

ρcalb (kg·m−3)

deviationc (%)

283.58 283.57 283.57 283.56 283.55 283.55 283.55 303.39 303.39 303.39 303.39 303.39 303.40 303.39 322.89 322.91 322.91 322.93 322.93 322.93 322.94 342.75 342.75 342.76 342.77 342.77 342.78 342.78 362.57 362.57 362.58 362.59 362.59 362.59

1.00 5.00 10.00 20.00 40.00 60.00 80.00 1.00 5.00 10.00 20.00 40.00 60.00 80.00 3.00 5.00 10.00 20.00 40.00 60.00 80.00 3.00 5.00 10.00 20.00 40.00 60.00 80.00 5.00 10.00 20.00 40.00 60.00 80.00

1262.4 1279.4 1297.9 1328.7 1376.3 1413.1 1443.2 1188.5 1212.5 1237.0 1275.9 1332.1 1373.9 1407.4 1120.9 1137.8 1172.0 1221.5 1288.4 1335.8 1372.8 1017.4 1047.5 1098.8 1164.1 1243.6 1297.3 1338.2 924.9 1015.4 1103.4 1198.4 1258.8 1303.8

1262.2 1279.2 1297.8 1328.9 1376.9 1414.3 1445.3 1188.0 1212.1 1236.8 1275.7 1332.3 1374.6 1409.0 1120.4 1137.4 1171.7 1221.3 1288.2 1335.9 1373.8 1016.2 1046.4 1098.3 1163.6 1243.2 1297.1 1338.7 923.2 1014.3 1102.9 1198.1 1258.6 1304.3

0.02 0.02 0.01 −0.02 −0.04 −0.08 −0.15 0.04 0.03 0.02 0.02 −0.02 −0.05 −0.11 0.04 0.04 0.03 0.02 0.02 −0.01 −0.07 0.12 0.11 0.05 0.04 0.03 0.02 −0.04 0.18 0.11 0.05 0.03 0.02 −0.04

Figure 1. Relative deviations of the experimental densities for R134a vs the temperature. Black ■, 1 MPa; red ●, 3 MPa; blue ▲, 5 MPa; pink ▼, 10 MPa; green ◆, 20 MPa; navy ◀, 40 MPa; purple ▶, 60 MPa; violet ⬣, 80 MPa.

is 0.18% and the average relative deviation is 0.01%. Thus, the result of testing is reasonably acceptable. It is also shown that the experimental system is reliable.

3. RESULTS AND DISCUSSION 3.1. Experimental Data. The measured densities and expanded uncertainties of n-pentene, n-hexene, and n-heptene along nine isotherms between 283 and 363 K at pressures up to 100 MPa are given in Tables 3−5. The densities vs pressure are plotted in Figure 2. As shown in Figure 2, the measured values of the density of n-pentene, n-hexene, and n-heptene smoothly increase with pressure increasing for each measured isotherm and decrease with temperature increasing for each measured isobar. 3.2. Comparison with Literature Data. In order to compare the new measurements of this work with literature data, we correlated the density values of Tables 3−5 for n-pentene, n-hexene, and n-heptene over entire temperature and pressure ranges. The following Tait-like equation was used, which has been widely used in several previous works21−24 ρ ( T , p) =

a

The combined expanded uncertainties, Uc(k = 2), are Uc(T) = 16 mK, Uc(p) = 0.062 MPa (p ≤ 60 MPa), Uc(p) = 0.192 MPa (60 MPa < p < 140 MPa), and Uc(ρ) = 0.6 kg·m−3 with a confidence level of 0.95. bρcal is the density calculated with the EOS of TillnerRoth and Baehr.20 cDeviation = 100(ρexp − ρcal)/ρexp.

ρ0 (T ) 1 − C ln((B(T ) + p)/(B(T ) + 0.1 MPa)) (1)

where ρ0(T) represents the density of fluid at reference pressure p0 = 0.1 MPa, which is the function of temperature only. B

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Experimental Densities, ρ, of n-Pentene at Various Temperatures, T, and Pressures, pa T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

283.48 283.48 283.48 283.48 283.49 283.49 283.49 283.49 283.49 283.49 283.49 283.49 283.49 283.49 283.49 283.49 283.48 283.48 283.49 283.49 293.42 293.42 293.42 293.42 293.42 293.42 293.43 293.43 293.43 293.44 293.43 293.42 293.43 293.43 293.42 293.42 293.42 293.42 293.42 293.42 303.33 303.33 303.33 303.34

0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 1.00 3.00 5.00

650.3 650.8 651.6 654.0 656.3 661.8 666.9 671.7 676.2 680.4 684.5 688.4 692.1 695.7 699.1 702.5 708.8 714.8 720.4 725.7 640.1 640.7 641.4 644.0 646.5 652.4 657.9 663.0 667.8 672.3 676.7 680.8 684.7 688.4 692.0 695.5 702.2 708.3 714.1 719.6 629.8 631.1 634.0 636.7

323.19 323.19 323.19 323.19 323.19 323.19 323.19 323.19 323.19 323.19 333.04 333.04 333.04 333.04 333.04 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.06 333.06 333.05 342.94 342.94 342.95 342.95 342.95 342.96 342.96 342.96 342.96 342.96 342.96 342.96 342.96 342.96 342.96

35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00

653.1 657.9 662.4 666.7 670.8 674.7 682.2 689.1 695.4 701.5 597.2 598.1 601.9 605.6 613.9 621.4 628.1 634.3 640.0 645.3 650.4 655.1 659.6 663.9 668.0 675.8 683.0 689.6 695.8 585.8 586.8 591.2 595.3 604.4 612.5 619.8 626.3 632.4 638.1 643.4 648.4 653.0 657.5 661.8

303.34 303.34 303.34 303.34 303.34 303.33 303.34 303.34 303.34 303.35 303.35 303.35 303.34 303.34 303.35 313.27 313.28 313.27 313.27 313.27 313.28 313.28 313.28 313.28 313.29 313.29 313.28 313.28 313.29 313.29 313.28 313.29 313.29 313.29 323.18 323.18 323.18 323.18 323.19 323.19 323.19 323.19 323.19

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00

643.1 649.0 654.5 659.6 664.4 668.9 673.2 677.3 681.2 685.0 688.6 695.6 702.0 707.9 713.6 620.4 621.3 624.5 627.5 634.4 640.8 646.7 652.1 657.2 661.9 666.6 670.8 674.9 678.8 682.6 689.9 696.4 702.6 708.4 608.6 609.3 612.8 616.1 623.7 630.6 636.9 642.7 648.1

342.95 342.95 342.94 342.95 352.82 352.82 352.82 352.82 352.82 352.83 352.83 352.83 352.83 352.83 352.83 352.83 352.83 352.83 352.84 352.83 352.83 352.83 352.83 362.67 362.67 362.67 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.68 362.67 362.68 362.67

70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00

669.9 677.2 684.0 690.4 574.2 575.6 580.5 585.1 595.2 603.9 611.7 618.7 625.2 631.2 636.7 641.9 646.9 651.5 655.9 664.3 671.9 679.0 685.6 560.5 561.8 567.4 572.6 583.8 593.3 601.7 609.2 616.1 622.4 628.2 633.7 638.9 643.7 648.3 657.1 664.9 672.2 679.0

The combined expanded uncertainties, Uc(k = 2), are Uc(T) = 16 mK, Uc(p) = 0.062 MPa (p ≤ 60 MPa), Uc(p) = 0.192 MPa (60 MPa < p < 140 MPa), and Uc(ρ) = 0.6 kg·m−3 with a confidence level of 0.95.

a

follows are given in Table 6 for n-pentene, n-hexene, and n-heptene, respectively,

B(T) and C are adjusted parameters. It is assumed that B(T) is dependent on temperature and C is independent of temperature. Therefore, the optimal structures of the temperature functions ρ0(T) and B(T) are described by the polynomial ρ0 (T ) = A 0 + A1T + A 2 T 2 + A3T 3

(2)

BT = B0 + B1T + B2 T 2

(3)

Average absolute deviation: AAD (%) =

⎛ ρexp − ρcal ⎞ N 1 j j ⎟ ∑ 100⎜⎜ exp ⎟ ρ N − z j=1 j ⎝ ⎠

(4)

Bias:

where Ai and Bi are obtained by correlating the experimental density data. The Tait-correlation parameters and some statistical deviations that were desirable to evaluate the density correlation as

Bias (%) =

C

⎛ ρexp − ρcal ⎞⎤ N ⎡ 1 j ⎟⎥ ⎢100⎜ j ∑ ρjexp ⎟⎠⎥ N j = 1 ⎢ ⎜⎝ ⎣ ⎦

(5)

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Experimental Densities, ρ, of n-Hexene at Various Temperatures, T, and Pressures, pa T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

283.59 283.58 283.57 283.57 283.57 283.57 283.57 283.57 283.57 283.57 283.57 283.58 283.57 283.58 283.58 283.58 283.58 283.58 283.59 283.59 293.51 293.51 293.50 293.51 293.51 293.51 293.52 293.51 293.51 293.51 293.51 293.52 293.52 293.52 293.51 293.51 293.51 293.51 293.51 293.51 303.41 303.40 303.40 303.41

0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00

682.2 682.6 683.2 685.2 687.2 691.9 696.4 700.6 704.7 708.5 712.2 714.7 719.1 722.4 725.5 728.6 734.4 739.9 745.2 750.1 673.1 673.5 674.1 676.3 678.4 683.5 688.3 692.8 697.0 701.1 704.9 708.6 712.5 715.6 718.9 722.1 728.2 733.8 739.3 744.4 663.5 664.1 664.6 667.0

323.21 323.20 323.20 323.20 323.21 323.19 323.19 323.18 323.20 323.20 323.20 323.20 333.08 333.08 333.08 333.08 333.08 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 333.09 342.96 342.96 342.97 342.97 342.97 342.97 342.97 342.97 342.97 342.97 342.97 342.97 342.97

25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

673.8 678.6 683.4 687.3 691.8 695.2 699.3 702.5 709.4 715.7 721.6 727.2 635.3 636.0 639.1 642.0 648.8 655.0 660.8 666.1 671.1 676.4 680.2 685.1 688.5 693.0 696.1 703.3 709.8 715.9 721.7 625.6 626.4 629.8 633.0 640.3 647.0 653.2 658.8 664.1 669.6 673.8 678.8 682.3

303.41 303.41 303.41 303.41 303.41 303.42 303.42 303.42 303.42 303.42 303.42 303.42 303.42 303.42 303.42 303.42 313.34 313.35 313.35 313.35 313.35 313.35 313.35 313.34 313.35 313.35 313.35 313.35 313.35 313.35 313.35 313.35 313.36 313.35 313.35 313.35 323.18 323.19 323.19 323.19 323.19 323.19 323.20 323.20

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00

669.3 674.8 679.9 684.7 689.2 693.5 698.2 701.5 705.8 708.8 712.8 715.5 721.8 727.7 733.2 738.5 654.1 654.2 655.3 657.9 660.3 666.1 671.6 676.6 681.4 685.9 690.2 694.3 698.3 701.9 705.7 709.0 715.9 721.9 727.6 733.2 644.5 644.9 645.8 648.6 651.3 657.6 663.4 668.8

342.97 342.97 342.97 342.97 342.97 342.97 352.85 352.85 352.85 352.85 352.86 352.85 352.86 352.86 352.86 352.86 352.86 352.86 352.86 352.86 352.86 352.86 352.86 352.86 352.86 362.70 362.70 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.71 362.70

55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00

687.0 690.4 697.6 704.3 710.7 716.6 615.7 617.0 620.7 624.2 632.2 639.4 645.7 651.7 657.4 662.8 667.4 672.4 676.6 680.9 684.8 692.4 699.4 705.9 712.0 604.1 605.5 609.5 613.3 622.0 629.7 636.7 643.0 648.9 654.7 659.6 664.8 669.0 673.7 677.6 685.4 692.6 699.3 705.7

The combined expanded uncertainties, Uc(k = 2), are Uc(T) = 16 mK, Uc(p) = 0.062 MPa (p ≤ 60 MPa), Uc(p) = 0.192 MPa (60 MPa < p < 140 MPa), and Uc(ρ) = 0.6 kg·m−3 with a confidence level of 0.95.

a

for the density of these fluids were compared with the values calculated from the equations of this work. Due to the differences in measurement temperature and pressure, comparisons are only conducted in the range of this work to avoid any extrapolation. The deviations of the experimental results and the data reported in the literature from the correlation of this work are shown in Figures 3−5. n-Pentene. As shown in Figure 3, although two experimental data sources for the density of n-pentene measured by Day and Felsing3 and Wolfe et al.4 at high temperature and pressure were reported, limited density data of n-pentene at elevated temperatures and pressures were available. For the data by Day and Felsing,3 only one set of isothermal experimental data is

Standard deviation: ⎛ ⎜ 1 SDV (%) = ⎜ ⎜N − z ⎝

⎡ ⎛ ρexp − ρcal ⎞⎤2 ⎞ j j ⎟⎥ ⎟ ∑ ⎢⎢100⎜⎜ exp ⎟⎥ ⎟⎟ ρ j j=1 ⎣ ⎝ ⎠⎦ ⎠

1/2

N

(6)

where N is the number of experimental data points used to correlate the Tait-like equations and z is the number of parameters (in this work z = 8). ρexp and ρcal are the experimental density and the calculated density, respectively. To the best of the authors’ knowledge, the information on the experimental density measurements of n-pentene, n-hexene, and n-heptene was summarized in Table 7. The reported data D

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. Experimental Densities, ρ, of n-Heptene at Various Temperatures, T, and Pressures, pa T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

T (K)

p (MPa)

ρexp (kg·m−3)

283.53 283.53 283.53 283.53 283.53 283.53 283.52 283.52 283.52 283.52 283.52 283.52 283.53 283.53 283.52 283.53 283.54 283.53 283.53 283.54 293.45 293.45 293.45 293.46 293.45 293.46 293.46 293.45 293.45 293.45 293.45 293.46 293.46 293.46 293.45 293.45 293.45 293.45 293.45 293.45 303.37 303.37 303.38 303.38 303.38

0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00

705.5 705.9 706.4 708.2 710.0 714.3 718.3 722.2 725.9 729.4 732.9 736.1 739.3 742.4 745.3 748.2 753.8 759.0 763.9 768.7 697.0 697.4 697.9 699.9 701.8 706.4 710.7 714.8 718.7 722.4 726.0 729.4 732.8 736.0 739.0 742.0 747.8 753.2 758.3 763.1 688.4 688.9 689.5 691.6 693.6

323.18 323.18 323.18 323.18 323.18 323.18 323.18 323.18 323.19 323.19 333.04 333.04 333.04 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 333.05 342.91 342.91 342.91 342.91 342.92 342.92 342.91 342.92 342.92 342.91 342.91 342.92 342.92 342.92 342.92

35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00

705.0 708.9 712.7 716.3 719.7 723.1 729.6 735.5 741.1 746.4 661.5 662.0 662.7 665.3 667.9 673.8 679.3 684.5 689.3 693.8 698.1 702.2 706.2 709.9 713.5 717.0 723.7 729.9 735.7 741.1 652.7 653.3 654.0 656.9 659.6 666.0 671.8 677.4 682.4 687.1 691.7 696.0 700.1 703.9 707.7

303.38 303.38 303.38 303.38 303.38 303.38 303.38 303.38 303.38 303.37 303.38 303.38 303.38 303.38 303.37 313.29 313.30 313.31 313.31 313.30 313.31 313.31 313.30 313.30 313.30 313.30 313.30 313.30 313.30 313.30 313.30 313.30 313.30 313.30 313.30 323.18 323.18 323.18 323.18 323.19 323.18 323.19 323.19 323.18 323.18

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00

698.5 703.1 707.4 711.5 715.4 719.2 722.8 726.2 729.5 732.8 735.9 741.8 747.4 752.6 757.7 680.6 681.1 681.8 684.0 686.2 691.3 696.3 700.9 705.2 709.3 713.3 717.0 720.6 724.0 727.4 730.6 736.8 742.6 748.0 753.1 670.5 671.0 671.6 674.1 676.4 682.0 687.1 692.0 696.6 700.9

342.92 342.92 342.92 342.92 342.92 352.80 352.80 352.81 352.81 352.81 352.81 352.81 352.81 352.81 352.81 352.81 352.80 352.80 352.80 352.81 352.81 352.80 352.80 352.80 352.80 362.68 362.68 362.69 362.69 362.69 362.70 362.70 362.69 362.70 362.69 362.69 362.69 362.69 362.69 362.69 362.69 362.69 362.69 362.69 362.68

60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 0.10 0.50 1.00 3.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00

711.3 718.3 724.6 730.6 736.2 644.3 644.9 645.7 648.8 651.6 658.4 664.7 670.5 675.8 680.9 685.6 690.0 694.3 698.4 702.3 706.0 713.2 719.7 725.9 731.7 633.6 634.3 635.0 638.5 641.7 649.1 655.8 661.9 667.6 672.8 677.8 682.5 687.0 691.2 695.2 699.1 706.6 713.4 719.7 725.7

The combined expanded uncertainties, Uc(k = 2), are Uc(T) = 16 mK, Uc(p) = 0.062 MPa (p ≤ 60 MPa), Uc(p) = 0.192 MPa (60 MPa < p < 140 MPa), and Uc(ρ) = 0.6 kg·m−3 with a confidence level of 0.95.

a

Wright36 have the average absolute deviations from our correlation of 0.4 and 0.33% and the maximum absolute deviations of 0.62 and 0.35%, and these values are higher than this work. For the work of Kerimov and Apaev5 and Guseinov and Galandatov,7 the deviations of both data are smaller than our results, and the average absolute deviations from the correlation of this work are 0.29 and 0.71%. For the other data sources measured by Torín-Ollarves et al.8 and Vega-Maza et al.9 using a vibrating-tube densimeter, the average absolute deviations from the correlation of this work are 0.2 and 0.12%. Furthermore, the experimental data of Burkat and Richard6 with the average absolute deviation of 0.025% are in good agreement with our correlation.

within the temperature and pressure ranges of this work. These data are smaller than our measured density values, and their absolute deviations from our correlation are 0.17−0.46%. For the data by Wolfe et al.,4 four experimental data are available to compare with our correlation and the average absolute deviation is 0.46%. In addition, the absolute deviations of experimental data at atmospheric pressure by Dykstra et al.25 and Ewell and Hardy28 are 0.73 and 0.37%. The remaining experimental data at atmospheric pressure are in satisfactory agreement with the experimental results of this work. n-Hexene. Figure 4 shows the fractional differences between the reported data and the correlated equation of this work. The experimental data sets measured by Sagdeev et al.10 and E

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 2. Experimental densities of n-pentene (a), n-hexene (b), and n-heptene (c) vs the pressure. Black ■, 283 K; red ●, 293 K; blue ▲, 303 K; pink ▼, 313 K; green ◆, 323 K; navy ◀, 333 K; purple ▶, 343 K; violet ⬣, 353 K; maroon ★, 363 K.

Table 6. Obtained Parameters and Deviations for Density Correlation by Using eqs 1−6 parameters

n-pentene

n-hexene

n-heptene

A0 (g·cm−3) A1 (g·cm−3·K−1) A2 (g·cm−3·K−2) A3 (g·cm−3·K−3) B0 (MPa) B1 (MPa·K−1) B2 (MPa·K−2) C AAD (%) bias (%) SDV (%)

1.0634 −2.59 × 10−3 6.43 × 10−6 −8.6126 × 10−9 302.7909 −1.2806 1.366 × 10−3 9.379 × 10−2 0.06 −3.38 × 10−5 0.069

1.2562 −4.03 × 10−3 1.04 × 10−5 −1.1624 × 10−9 326.2078 −1.3290 1.391 × 10−3 9.346 × 10−2 0.04 −1.91 × 10−5 0.047

0.7723 6.10 × 10−3 −3.88 × 10−6 3.1566 × 10−9 335.70152 −1.3091 1.320 × 10−3 9.315 × 10−2 0.05 −3.98 × 10−5 0.067

Table 7. Summary of Density Data for n-Pentene, n-Hexene, and n-Heptene first author

year

methoda

Dykstra25 Carr26 Sherrill27 Ewell28 Gerding29 Foehr30 Forziati31 Weissler32 Day3 Éidus33 Wolfe4

1930 1936 1936 1941 1946 1949 1950 1950 1951 1970 1983

na na na na na na DB PYC VM na VM

Jeffery34 Forziati31 Mears35 Weissler32 Wright36 Kerimov5 Letcher37 Burkat6 Guseinov7 Wang38 8 ́ Torin-Ollarves Vega-Maza9 Sagdeev10

1948 1950 1950 1950 1961 1972 1974 1975 1982 2004 2013 2013 2014

na DB na PYC PYC HWM PYC REF HWM VTD VTD VTD HWM

Wibaut39 Lagemann40 Forziati31 Hill41

1946 1948 1950 1958

na na DB na

T (K) n-Pentene 293.14 293.14 293.14 293.14 293.14 293.14 293.14 293.14 353.12−448.14 293.15 293.20−465.06 n-Hexene 293.14−313.13 293.14−303.13 293.14−298.14 293.14−303.13 293.14−333.12 283.14−533.11 308.14−323.14 293.15−298.14 146.01−293.50 298.15 273.15−333.15 273.15−333.15 298.15−472.02 n-Heptene 293.14−298.14 293.14−303.13 293.14−303.13 293.14 F

p (MPa)

AADb (%)

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.57−31.59 0.1 0.55−3.55

0.76 0.07 0.07 0.37 0.07 −0.08 −0.02 0.80 −0.46 0.01 1.95

0.1 0.1 0.1 0.1 0.1 0.101−68.75 0.1 0.10−10.00 5.00−50.00 0.1 0.10−70.00 0.10−70.00 0.98−245.16

1.09 −0.02 −0.02 0.06 0.34 0.77 0.04 0.06 1.10 0.33 0.44 0.34 0.62

0.1 0.1 0.1 0.1

−0.04 0.31 −0.10 1.24 DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. continued first author Guseinov11 Domanska42 Domanska43 Sagdeev10

year

methoda

1981 1997 2000 2014

HWM VTD VTD HWM

T (K)

AADb (%)

p (MPa)

n-Heptene 293.15−523.11 298.15−303.15 298.15−303.15 298.15−473.70

0.10−50.00 0.1 0.1 0.98−245.16

1.42 0.07 0.07 0.98

a

Methods used for density measuring: VM, volume measurements; DB, density balance; HWM, hydrostatic weight method; VTD, vibrating-tube densimeter; PYC, pycnometer; REF, from refractometry measurements. bAAD is only calculated in the experimental range from eqs 1−4 of this work.

Figure 3. Relative deviations of the experimental results and the data reported in the literature from the correlation of this work for n-pentene. Pink ○, Dykstra et al.;25 olive △, Carr and Walter;26 pink ▽, Sherrill and Walter;27 black ◇, Ewell and Hardy;28 teal ◁, Gerding and Van der vet;29 red ▷, Foehr and Fenske;30 pink ∗, Forziatiet al.;31 light blue ×, Weissler and Del Grosso;32 green +, Day and Felsing;3 red ⊗, ́ Eidus et al.;33 violet □ with × inside, Wolfe et al.;4 royal blue ☆, this work.

Figure 5. Relative deviations of the experimental results and the data reported in the literature from the correlation of this work for n-heptene. Red □ with × inside, Sagdeevet al.;10 teal ⊗, Domanska and Lachwa;43 violet ◇, Hill et al.;41 black □, Wibaut and Geldof;39 pink △, Lagemannet al.;40 olive ▽, Forziatiet al.;31 pink ◁, Guseinovet al.;11 olive ▷, Domanska;42 blue ☆, this work.

atmospheric pressure are mostly consistent with our work. It reveals that the experimental results of this work are reasonable. In addition, we also compared the new experimental data with the correlations of n-pentene, n-hexene, and n-heptene proposed by Cibulka and Takagi.44 These correlations are of the Tait equation form, and parameters were obtained by correlating the experimental data. For n-pentene, the density data measured over the temperature range from 352 to 448 K and at pressures up to 32 MPa were used to correlate. Within the experimental data of Day and Felsing,3 the absolute deviations of the new experimental data from the correlation are from −0.23 to 0.39%. For n-hexene, the parameters of the correlation were given at pressures up to 69 MPa between 146 and 503 K. In the range of the experimental data of Kerimov and Apaev,5 Burkat and Richard,6 and Guseinov and Galandatov,7 the absolute deviations of the new experimental data from the correlation are from −0.04 to 0.59%. For n-heptene, only one data set measured at temperatures from 293 to 523 K and at pressures up to 50 MPa was used to fit. Within the experimental data of Guseinov et al.,11 the average absolute deviation and the maximum absolute deviation of the new experimental data are 0.15 and 1.41%. Due to the limited experimental data used to fit these correlations, we think that the deviations between the experimental data in this work and the correlations are reasonable. 3.3. Derived Thermodynamic Properties. As the important properties, isothermal compressibility and isobaric expansivity can be derived from the experimental densities. On the basis of the Tait-like equation, the isothermal compressibility, κT, can describe the effect of pressure on the density as follows:

Figure 4. Relative deviations of the experimental results and the data reported in the literature from the correlation of this work for n-hexene. Black □, Jeffery and Vogel;34 pink △, Foriziatiet al.;31 red ▽, Mears et al.;35 purple ◇, Weissler and Del Grosso;32 green ◁, Wright;36 pink ▷, Kerimov and Apaev;5 light blue □ with × inside, Letcher and Marsicano;37 maroon ⊗, Burkat and Richard;6 olive ○, Guseinov and Galandatov;7 olive ∗, Wang et al.;38 olive ×, Torin-Ollarveset al.;8 teal ◐, Vega-mazaet al.;9 red ◑, Sagdeevet al.;10 royal blue ☆, this work.

n-Heptene. As shown in Figure 5, the reported data are distributed evenly on both sides of the experimental density values of this work. The data of Sagdeev et al.,10 measured by the hydrostatic weight method, are higher than our experimental values, and the absolute deviations from the correlation of this work are from 0.07 to 0.99%. Three experimental data of Lagemann et al.40 also have a positive deviation, and the absolute deviations from our correlation are from 0.15 to 0.31%. For the data of Guseinov et al.,11 measured by the same method as Sagdeev et al.,10 these density values are smaller than our results, and the absolute deviations from our correlation are from 0.11 to 1.42%. In addition, the rest of the experimental data sets measured at

κT =

G

1 ⎛ ∂ρ ⎞ C ⎜ ⎟ = ⎝ ⎠ ⎡ ρ ∂P T (B(T ) + p)⎢⎣1 − C ln

(

B(T ) + p B(T ) + 0.1 MPa

)⎤⎥⎦

(7)

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 6. Isothermal compressibility, κT, for n-pentene (a), n-hexene (b), and n-heptene (c) vs the pressure. Black ■, 283 K; red ▲, 293 K; blue ▼, 303 K; pink ◆, 313 K; green ◀, 323 K; navy ▶, 333 K; purple ×, 343 K; violet ∗, 353 K; maroon ●, 363 K.

Figure 7. Isobaric expansivity, αp, for n-pentene (a), n-hexene (b), and n-heptene (c) vs the pressure. Black ■, 0.1 MPa; red □, 0.5 MPa; blue ●, 1 MPa; pink ○, 3 MPa; green ▲, 5 MPa; navy △, 10 MPa; purple ▼, 15 MPa; violet ▽, 20 MPa; maroon ◆, 25 MPa; olive ◇, 30 MPa; light blue ◀, 35 MPa; teal ◁, 40 MPa; orange ▶, 45 MPa; green ▷, 50 MPa; pink ★, 55 MPa; teal ☆, 60 MPa; navy ⬟, 70 MPa; light green ⬠, 80 MPa; gray ×, 90 MPa; maroon ∗, 100 MPa.

Similarly, the isobaric thermal expansivity, αp, could also be obtained analytically by differentiating eq 1 taking into account the temperature dependence of ρ0 and B(T). αp = −

1 ⎛ ∂ρ ⎞ ⎜ ⎟ ρ ⎝ ∂T ⎠ p

The experimental densities were correlated with a Tait-type equation, and the average absolute deviations are 0.06, 0.04, and 0.05%. Compared with the published data sources, the results are in good agreement with the literature values. In addition, the isobaric thermal expansivity, αp, and the isothermal compressibility, κT, were calculated over the same temperature and pressure ranges.

(8)



As some authors have recommended,45,46 the estimated isobaric thermal expansivity depends on the form of the functions B(T) and ρ0(T). In this work, we suppose that ρp(T) = a0 + a1T + a2T2 + a3T3 and consequently (∂ρ/∂T)p = a1 + 2a2T + 3a3T2, so the isobaric thermal expansivity can be derived αp = −

a1 + 2a 2T + 3a3T

* Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.8b00229. The values of isothermal compressibility, κT, and isobaric expansivity, αp, calculated by eqs 7 and 9 (Tables S1 and S2) (PDF)

2

a0 + a1T + a 2T 2 + a3T 3

ASSOCIATED CONTENT

S

(9)

The values of isothermal compressibility, κT, and isobaric expansivity, αp, calculated by eqs 7 and 9 are reported in Tables S1 and S2 (provided as Supporting Information) and presented in Figures 6 and 7 for various temperatures and pressures, respectively. As recently reported in a similar highpressure density study with similar methods, the estimated uncertainty is 1% for the isothermal compressibility and 3% for the isobaric thermal expansivity.21,23,47,48



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Fax: +86-29-82663737. ORCID

Xianyang Meng: 0000-0002-9327-2720 Jiangtao Wu: 0000-0003-1123-4307

4. CONCLUSIONS With the high-pressure vibrating tube densimeter system, we present new experimental density data for the compressed liquid n-pentene, n-hexene, and n-heptene along the nine isotherms between 283.15 and 363.15 K with pressures up to 100 MPa. The presented experimental data in this work have an expanded uncertainty within 0.05−0.09% at a 95% confidence level.

Funding

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 51676159) and Key R&D Plan of Shaanxi Province (No. 2017KW-038). Notes

The authors declare no competing financial interest. H

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data



Article

(20) Tillner-Roth, R.; Baehr, H. D. An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures from 170 to 455 K and Pressures up to 70 MPa. J. Phys. Chem. Ref. Data 1994, 23, 657−729. (21) Alaoui, F. E. M.; Montero, E. A.; Bazile, J. P.; Aguilar, F.; Boned, C. Liquid density of biofuel additives: 1-butoxybutane at pressures up to 140 MPa and from (293.15 to 393.15). J. Chem. Eng. Data 2011, 56, 595−600. (22) Boned, C.; Baylaucq, A.; Bazile, J. P. Liquid density of 1pentanol at pressures up to 140 MPa and from 293.15 to 403.15 K. Fluid Phase Equilib. 2008, 270, 69−74. (23) Miyake, Y.; Baylaucq, A.; Plantier, F.; Bessieres, D.; Ushiki, H.; Boned, C. High-pressure (up to 140 MPa) density and derivative properties of some (pentyl-, hexyl-, and heptyl-) amines between (293.15 and 353.15) K. J. Chem. Thermodyn. 2008, 40, 836−845. (24) Srhiyer, A.; Muñoz-Rujas, N.; Aguilar, F.; Puras, J. J. S.; Montero, E. A. High pressure volumetric properties of the binary mixtures di-isopropyl ether + 2,2,4-trimethylpentane. J. Chem. Eng. Data 2017, 62, 3610−3619. (25) Dykstra, H. B.; Lewis, J. F.; Boord, C. E. A nuclear synthesis of unsaturated hydrocarbons. I. Alpha- olefins1,2. J. Am. Chem. Soc. 1930, 52, 3396−3404. (26) Carr, E. P.; Walter, G. F. The ultraviolet absorption spectra of simple hydrocarbons II. In liquid and solution phase. J. Chem. Phys. 1936, 4, 756−760. (27) Sherrill, M. L.; Walter, G. F. Preparation and physical constants of 2-methylbutene-1. J. Am. Chem. Soc. 1936, 58, 742−745. (28) Ewell, R. H.; Hardy, P. E. Isomerization equilibrium among the branched chain pentenes1. J. Am. Chem. Soc. 1941, 63, 3460−3465. (29) Gerding, H.; Van Der Vet, A. P. Raman spectra of the seven isomeric pentene and quantitative analysis of two mixtures by means of the raman effect. Recueil des Travaux Chimiques des Pays-Bas 1945, 64, 257−271. (30) Foehr, E. G.; Fenske, M. R. Magneto-optic rotation of hydrocarbons. Ind. Eng. Chem. 1949, 41, 1956−1966. (31) Forziati, A. F.; Camin, D. L.; Rossini, F. D. Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1alkene), six pentadiene, and two cyclomonoolefin hydrocarbons. J. Res. Natl. Bur. Stand. 1950, 45, 406−410. (32) Weissler, A.; Del Grosso, V. A. Ultrasonic investigation of liquids. VI. Acetylene derivatives. J. Am. Chem. Soc. 1950, 72, 4209− 4210. (33) Éidus, Y. T.; Nuzitskii, K. V.; Yung-ping, Y. Carbonylation of pentene-1 and 3-methylbutene-1 by carbon monoxide in the presence of hydrates of boron trifluoride. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1970, 19, 1585−1587. (34) Jeffery, G. H.; Vogel, A. I. Physical properties and chemical constitution. Part XVI. Ethylenic compounds. J. Chem. Soc. 1948, 658−673. (35) Mears, T. W.; Fookson, A.; Pomerantz, P.; Rich, E. H.; Dussinger, C. S.; Howard, F. L. Syntheses and properties of two olefins, six paraffins, and their intermediates. J. Res. Natl. Bur. Stand. 1950, 44 (3), 299−304. (36) Wright, F. J. Influence of temperature on viscosity of nonassociated liquids. J. Chem. Eng. Data 1961, 6, 454−456. (37) Letcher, T. M.; Marsicano, F. Thermodynamics of hydrocarbon mixtures using gas-liquid chromatography. The determination of activity coefficients of some unsaturated C5 and C6 unbranched hydrocarbons in n-octadecane, n-octadec-1-e. J. Chem. Thermodyn. 1974, 6, 501−507. (38) Wang, Z.; Benson, G. C.; Lu, C. Y. Excess enthalpies of binary mixtures of 1-hexene with some branched alkanes at the temperature 298.15 K. J. Chem. Thermodyn. 2004, 36, 45−47. (39) Wibaut, J. P.; Geldof, H. Accurate values of the specific gravities and the refractive indices of a series of alkenes with terminal double bond. Recueil des Travaux Chimiques des Pays-Bas 1946, 65, 125−126. (40) Lagemann, R. T., Jr; McMillan, D. R.; Woolsey, M. Ultrasonic velocity in a series of 1-olefins. J. Chem. Phys. 1948, 16, 247−249.

REFERENCES

(1) Chamorro, R. C.; Segovia, J. J.; Martin, M. C.; Villamanan, M. A. Thermodynamics of octane-enhancing additives in gasolines: vapor− liquid equilibrium of ternary mixtures containing di-isopropyl ether or cyclohexane and 1-hexene + benzene at 313.15 K. J. Chem. Eng. Data 2002, 47, 316−321. (2) Kendrick, J. A.; Roger, S. T.; Katzen, S. J.; Lin, Z.; Speca, A. N. Polymerization process: US, US 6921798 B2, 2005. (3) Day, H. O.; Felsing, W. A. The compresibility of 1-pentene. J. Am. Chem. Soc. 1951, 73, 4839−4840. (4) Wolfe, D.; Kay, W. B.; Teja, A. S. Phase equilibria in the npentene + pent-1-ene system 1. Critical states. J. Chem. Eng. Data 1983, 28, 319−322. (5) Kerimov, A. M.; Apaev, T. A. Experimental values of density for 1-hexene, 1-octene, cyclohexane, and methylcyclohexane in varying temperatures and pressures. Teplofiz. Svoistva Veshchestv Mater. 1972, 5, 26−46. (6) Burkat, R. K.; Richard, A. J. Low-pressure studies of the isothermal compressibilities and specific volumes of organic liquids. J. Chem. Thermodyn. 1975, 7, 271−277. (7) Guseinov, S. O.; Galandatov, Z. S. Density of 1-hexene at low temperatures and various pressures. Izv. Vyssh. Uchebn. Zaved., Neft Gaz 1982, 25, 66−78. (8) Torín-Ollarves, G. A.; Segovia, J. J.; Martín, M. C.; Villamañań , M. A. Density, viscosity, and isobaric heat capacity of the mixture (1butanol + 1-hexene). J. Chem. Eng. Data 2013, 58, 2717−2723. (9) Vega-Maza, D.; Trusler, J. P. M.; Martín, M. C.; Segovia, J. J. Heat capacities and densities of the binary mixtures containing ethanol, cyclohexane or 1-hexene at high pressures. J. Chem. Thermodyn. 2013, 57, 550−557. (10) Sagdeev, D. I.; Fomina, M. G.; Mukhamedzyanov, G. K.; Abdulagatov, I. M. Experimental study and correlation models of the density and viscosity of 1-hexene and 1-heptene at temperatures from (298 to 473) K and pressures up to 245 MPa. J. Chem. Eng. Data 2014, 59, 1105−1119. (11) Guseinov, S. O.; Naziev, Y. M.; Shakhverdiev, A. N. Density of 1-heptene at high temperatures and various pressures. Izv. Vyssh. Uchebn. Zaved., Neft Gaz 1981, 24, 62−64. (12) Frenkel, M.; Chirico, R.; Diky, V.; Muzny, C. D.; Kazakov, A.; Magee, J. W.; Abdulagatov, I. M.; Jeong, W. K. NIST ThermoData Engine, NIST standard reference database 103b- pure compound, binary mixtures, and chemical reactions, version 5.0; National Institute Standards and Technology: Boulder, CO; Gaithersburg, MD, 2010. (13) Qiu, G.; Meng, X.; Wu, J. Density measurements for 2,3,3,3tetrafluoroprop-1-ene (R1234yf) and Trans-1,3,3,3tetrafluoropropene(R1234ze(E)). J. Chem. Thermodyn. 2013, 60, 150−158. (14) Fang, D.; Li, Y.; Meng, X.; Wu, J. Liquid density of HFE7200and HFE-7500 from T = (283 to 363) K at pressures up to 100 MPa. J. Chem. Thermodyn. 2014, 69, 36−42. (15) Qi, H.; Fang, D.; Meng, X.; Wu, J. Liquid density of HFE7000and HFE-7100 from T = (283 to 363) K at pressures up to 100 MPa. J. Chem. Thermodyn. 2014, 77, 131−136. (16) Bi, S.; Jia, T.; Zhao, K.; Meng, X.; Wu, J. Liquid density of 2methoxyethyl acetate, 2-ethylhexyl acetate, and diethyl succinate at temperatures from 283.15 to 363.15 K and pressures up to 100 MPa. J. Chem. Eng. Data 2015, 60, 3532−3538. (17) Jia, T.; Bi, S.; Hu, X.; Meng, X.; Wu, J. Volumetric properties of binary mixtures of {difluoromethane (R32) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E))} at temperatures from 283.15 to 363.15 K and pressures up to 100 MPa. J. Chem. Thermodyn. 2016, 101, 54−63. (18) Qi, H.; Fang, D.; Gao, K.; Meng, X.; Wu, J. Compressed liquid densities and Helmholtz energy equation of state for fluoroethane (R161). Int. J. Thermophys. 2016, 37, 55. (19) Fang, D.; Meng, X.; Wu, J. Compressed liquid densities of binary mixtures of 1-butanol and diethylene glycol dimethyl ether from (283 to 363) K at pressures up to 100 MPa. J. Chem. Eng. Data 2017, 62, 2937−2943. I

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(41) Hill, C. M.; Haynes, L.; Simmons, D. E.; Hill, M. E. Grignard reagents and unsaturated ethers. VI. The cleavage of diallyl ethers by aliphatic and aromatic Grignard reagents. J. Am. Chem. Soc. 1958, 80, 3623−3625. (42) Domanska, U. The excess molar volumes of (hydrocarbon + branched chain ether) systems at 298.15 and 308.15 K, and the application of PFP theory. Fluid Phase Equilib. 1997, 130, 207−222. (43) Domanska, U.; Lachwa, J. Excess molar volumes of (hydrocarbon+ethyl 1,1-dimethylpropyl ether) at T = (298.15 and 308.15) K. J. Chem. Thermodyn. 2000, 32, 857−875. (44) Cibulka, I.; Takagi, T. p-ρ-T Data of liquids: summarization and evaluation. 6. Nonaromatic hydrocarbons (Cn, n ≥ 5) except n-Alkanes C5 to C16. J. Chem. Eng. Data 1999, 44, 1105−1128. (45) Cerdeirina, C. A.; Tovar, C. A.; Gonzalez-Salgado, D.; Carballo, E.; Romani, L. Isobaric thermal expansivity and thermophysical characterization of liquids and liquid mixtures. Phys. Chem. Chem. Phys. 2001, 3, 5230−5236. (46) Troncoso, J.; Bessieres, D.; Cerdeirina, C. A.; Carballo, E.; Romani, L. Automated measuring device of (p, ρ, T) data application to the 1-hexanol plus n-hexane system. Fluid Phase Equilib. 2003, 208, 141−154. (47) Alaoui, F. E. M.; Montero, E. A.; Bazile, J. P.; Aguilar, F.; Boned, C. Liquid density of biofuel mixtures: (Dibutyl ether+1-butanol) system at pressures up to 140 MPa and temperatures from (293.15 to 393.15) K. J. Chem. Thermodyn. 2011, 43, 1768−1774. (48) Milhet, M.; Baylaucq, A.; Boned, C. Volumetric properties of 1phenyldecane and 1-phenylundecane at pressures to 65 MPa and temperature between 293.15 and 353.15 K. J. Chem. Eng. Data 2005, 50, 1430−1433.

J

DOI: 10.1021/acs.jced.8b00229 J. Chem. Eng. Data XXXX, XXX, XXX−XXX