Liquid Water- and Heat-Resistant Hybrid ... - ACS Publications

Nov 9, 2016 - unencapsulated inverted devices exhibit a stable operation over at least 10 h when subjected to ... alongside the corresponding band dia...
0 downloads 0 Views 592KB Size
Full text access provided via ACS AuthorChoice

Communication

Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design In Soo Kim, Duyen H. Cao, D. Bruce Buchholz, Jonathan D. Emery, Omar K. Farha, Joseph T. Hupp, Mercouri G. Kanatzidis, and Alex B. F. Martinson Nano Lett., Just Accepted Manuscript • DOI: 10.1021/acs.nanolett.6b03989 • Publication Date (Web): 09 Nov 2016 Downloaded from http://pubs.acs.org on November 13, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Nano Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design In Soo Kim,ab Duyen H. Cao,bc D. Bruce Buchholz,d Jonathan D. Emery,d Omar K. Farha,bc Joseph T. Hupp,abc Mercouri G. Kanatzidis,abc and Alex B. F. Martinsonab* a

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United

States b

c

Argonne-Northwestern Solar Energy Research Center, Evanston, Illinois 60208, United States

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

d

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois

60208, United States KEYWORDS. hybrid perovskites, photovoltaics, stability, atomic layer deposition, inverted design

ABSTRACT. Despite rapid advances in conversion efficiency (> 22%), the environmental stability of perovskite solar cells remains a substantial barrier to commercialization. Here, we show a significant improvement in the stability of inverted perovskite solar cells against liquid

ACS Paragon Plus Environment

1

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 14

water and high operating temperature (100 °C) by integrating an ultrathin amorphous oxide electron transport layer via atomic layer deposition (ALD). These unencapsulated inverted devices exhibit stable operation over at least 10 hours when subjected to high thermal stress (100 °C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation.

Hybrid perovskites exhibit nearly ideal photo-physical characteristics for applications in solar energy conversion including a direct and tunable bandgap of 1.2 – 2.0 eV,1-3 weak exciton binding energy,4, 5 long carrier diffusion lengths.6, 7 Moreover, the feasibility of large-area processing with short energy payback time8 clearly distinguishes hybrid perovskites as an impactful alternative to other PV technologies. While hybrid perovskite based solar cells have surpassed conversion efficiencies of ~22%,9-12 no devices have been reported to pass the damp heat test – 85 °C and 85% relative humidity (RH) for 1000 hours – owing largely to the modest stability of hybrid perovskite photoabsorbers against high temperature and moisture. The relatively fragile photoabsorber further limits the device architectures, materials, and processing methods that may be applied to new device designs. Among various attempts to improve operational stability,13 the most successful of which demonstrate resistance to continuous stress of at least 50 °C or 50 % RH operation, include carbon contact based encapsulation,14, nanotube (CNT) embedded in polymer matrix,16

15

single walled carbon

solution-processed metal oxide

overlayers,17 sputtered ITO on a nanoparticle buffer overlayer,18 and layered twodimensional perovskites.19

ACS Paragon Plus Environment

2

Page 3 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

In this letter, we demonstrate a simple route to liquid water and temperature resistant hybrid perovskite devices utilizing an inverted hybrid perovskite architecture with several improvements. First, a compact NiOx hole extraction layer (~13 nm) is deposited over the transparent electrode to replace the hygroscopic organic hole extraction material, PEDOT:PSS. Second, phenyl-C61-butyric acid methyl ester (PC61BM) is employed as an organic buffer layer which enables the atomic layer deposition (ALD) of amorphous TiO2 (a-TiO2) over a common perovskite photoabsorber at a substrate temperature of 100 °C to form a hybrid electron extraction layer. Third, an apparently pinhole-free ultrathin a-TiO2 layer (~10 nm) is utilized to minimize series resistance while preventing device short circuiting. The final improvement over a traditional inverted device design is the stabilization of evaporated Al electrodes by a secondary metal (Au) to prevent oxidation and delamination of Al upon exposure to liquid water. While pinhole-free, amorphous, ultrathin metal oxides (e.g. Al2O3, TiO2) have previously been shown to exhibit excellent diffusion barrier properties when utilized as encapsulation layers for polymers and organic electronics,20-23 amorphous oxides have only recently been considered as capable charge extraction layers.24,

25

Moreover, the

integration of any metal oxide subsequent to hybrid perovskite deposition without damage is challenging due to the tendency of hybrid perovskites to deteriorate upon exposure to modest temperatures (~125 °C) and oxidants (H2O, O3, H2O2). To address these processing barriers, we have previously demonstrated the ability to stabilize hybrid perovskite photoabsorbers via a non-hydrolytic, acetic acid based ALD process that deposits pinhole-free ultrathin oxides directly on the perovskite halide absorber.26 However, inconsistent nucleation and sluggish charge extraction prevent the use of these

ACS Paragon Plus Environment

3

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 14

layers in efficient photovoltaics. Most recently, we have demonstrated that low temperature (< 120 °C) ALD processing of amorphous a-TiO2 compact electron transport underlayers via traditional ALD chemistries may allow for acceptable performance.27 Building on these advances, we fabricate an inverted hybrid perovskite device with striking resistance to water and temperature with reasonable unoptimized efficiency (average of 8.8 %).

An idealized device architecture (layer thickness to scale) and corresponding false color SEM image is illustrated in Figure 1, alongside the corresponding band diagram with energy levels from literature. The desired charge carrier cascade is set up by sandwiching the perovskite absorber between nearly all-oxide charge extraction layers, with the exception of the thin carbon-based PC61BM layer. The hole extraction layer, NiOx, selectively transports photogenerated holes from the photoabsorber to the indium tin oxide (ITO) transparent conductive electrode while a PC61BM/a-TiO2 electron extraction layer selectively shuttles electrons to the metal electrode. The pinhole-free a-TiO2 (which may extend into the PC61BM layer due to the nature of ALD) doubly serves as a robust (inward and outward) diffusion barrier as will be discussed below.

ACS Paragon Plus Environment

4

Page 5 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

Figure 1. A representative (a) device architecture and (b) false color SEM image of the inverted perovskite photovoltaic device (scale bar 500 nm). (c) Idealized energy level diagram of the corresponding device architecture. The performance of these unoptimized inverted devices are comparable to an analogous noninverted planar hybrid perovskite devices utilizing a similar device architecture but with spiroOMeTAD and ALD derived a-TiO2 as hole and electron extraction layers, respectively (Figure S1, Supporting Information). A representative current-voltage (J-V) curve for the inverted perovskite devices is shown in Figure 2 with detailed device parameters extracted in Table 1. The average short circuit current density (Jsc) of 19.7 mA cm-2 suggests efficient extraction and transport of both photogenerated electrons and holes through hybrid PC61BM/a-TiO2 and NiOx, respectively. The J-V curve of the inverted device with hybrid electron extraction layer exhibits improved shunt and series resistances extracted from the standard photovoltaic diode equation28 compared to our best control non-inverted planar hybrid perovskite devices. We attribute a twofold increase in the extracted shunt resistance to the presence of the interfacial PC61BM layer, which limits the photogenerated holes direct access to defect levels in otherwise defective and “leaky” a-TiO2,29,

30

significantly reducing the probability of charge recombination at this

interface.

ACS Paragon Plus Environment

5

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 14

Figure 2. The current density-voltage (J-V) characteristics of a passivated inverted perovskite PV device. Black and blue solid lines represent dark and illumination under simulated AM 1.5G irradiation with 100 mW/cm2, respectively. Table 1. Device characteristics of inverted perovskite photovoltaic devices fabricated from organic-inorganic hybrid electron transport layers. The results are an average of at least 12 devices. Device

Jsc (mA/cm2)

Voc (V)

FF (%)

η (%)

Rs (Ω cm2)

Rsh (Ω cm2)

Control

21.8 ± 2.9

0.88 ± 0.03

41.8 ± 1.5

8.1 ± 1.4

13.6 ± 2.0

349 ± 43

PCBM/TiO2

19.7 ± 0.7

0.93 ± 0.01

47.7 ± 2.7

8.8 ± 0.4

22.5 ± 3.2

175 ± 20

An open circuit voltage (Voc) of 0.93 V (slightly higher than even UV-O3 treated non-inverted a-TiO2 based hybrid perovskite devices)27 further supports this hypothesis. The devices exhibit an unexceptional fill factor (FF) of 47.7 % as a result of relatively high series resistance to electron transport through the low temperature a-TiO2 compact layer27 as well as the NiOx layer. Based on the rough morphology of NiOx/perovskite layers (Figure 1), poor wettability of the perovskite solution on NiOx film may also contribute to the subpar fill factor.31 While the devices exhibit Jsc and Voc comparable to many planar devices, the modest fill factor results in a moderate average efficiency (η) of 8.8%. Although we expect device optimization efforts may lead to improvements in the fill factor, and thus device efficiency, the focus of this work is to

ACS Paragon Plus Environment

6

Page 7 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

understand the potential of the novel device design utilizing nanoscale barriers to stabilize operation under strong environmental stressors. In order to quantify the improvement in thermal stability of these devices, we performed time dependent high temperature (100 °C) X-ray diffraction (XRD) measurements in air, Figure 3. For control devices, formation of PbI2 is observed within 2 hours at 100 °C, consistent with previous reports.18, 32, 33 For inverted ALD oxide devices, however, the formation of PbI2 is not observed for more than 24 hours at 100 °C. While decomposition of MAPbI3 into its constituents, methylammonium iodide (MAI) and PbI2 is well-known at elevated temperature,32, 34-36

we hypothesize that the ALD oxide electron extraction layer serves as a barrier not only to

the ingress of moisture and/or oxygen, but also impedes the egress of organic species that results from the decomposition of the halide perovskite.26

Figure 3. Time dependent X-ray diffraction spectra of a) standard planar perovskite device and b) inverted perovskite device before and after thermal soaking at 100 °C. We further performed I-V measurements of the devices while thermal cycling at 100 °C (Figure 4). The efficiency of standard cell exhibits a significant reduction (35 % initial efficiency) just after 5 minutes, which is in qualitative agreement with previous reports.16, 18 The

ACS Paragon Plus Environment

7

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 14

rate of degradation in device performance exceeds that of the structural degradation of the halide perovskite photoabsorber alone observed using XRD. This may be due to a nonlinear correlation between structure and function as well as the additional electric field and photo-induced degradation pathways of devices under measurement conditions.37-40 A concurrent degradation of the hygroscopic organic hole extraction material (spiro-OMeTAD) upon thermal cycling further contributes to the performance as Li doping in spiro-OMeTAD has previously been shown to aggravate moisture penetration in hybrid perovskite devices.16, 41 The inverted perovskite device, on the other hand, endures thermal soaking at 100 °C in ambient air for more than 10 hours with a stable normalized device efficiency of ~91 % on average throughout the measurement. At 100 °C, we also observe a continuous decrease in efficiency in the initial 60 minutes with short (5 minute) measurement intervals, which is recovered in the following measurements with longer (1 hour) measurement intervals. We hypothesize that the slow reduction in photocurrent may arise from the formation of light activated metastable deep level trap states42 owing to an almost continuous light soaking for the initial 60 minutes. These light activated trap states are known to annihilate if the device is rested in the dark, resulting in a nearly full self-recovery of the device. The recovery of efficiency in the subsequent measurements with long measurement (or light soaking) intervals is also consistent with the dissipation of light activated deep level trap states. Based on the drastic difference in stabilities between conventional and inverted perovskite devices, we believe that potentially pinhole-free ultrathin a-TiO2 ALD films not only serve as an efficient moisture/oxygen barrier, but also suppresses egress of MAI upon thermal degradation (Figure S3, Supporting Information), ultimately stabilizing halide perovskite photoabsorbers against thermal stress. Moreover, the conformal growth afforded by the ALD layer ensures a complete and continuous coverage of a-TiO2 over the most complex absorber topologies. This is

ACS Paragon Plus Environment

8

Page 9 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

a clear advantage compared to sputtering which is subject to line-of-sight limitations that may result in pinholes in the presence even the smallest surface contamination/dust.

Figure 4. Stability of control and inverted perovskite devices without additional encapsulation upon thermal soaking at 100 °C extracted from I-V measurements. The inverted ALD oxide perovskite devices were further tested under the extreme conditions of direct liquid water exposure without further encapsulation. A drop of water was placed that spanned the exposed gold electrode and a-TiO2 coating (electrode-free area) of an inverted perovskite device prior to I-V measurement and remained on the device for the duration of measurement – dark and illuminated I-V measurements (Video S4, Supporting Information). Strikingly, the inverted devices exhibit stable operation during the entire 3 minute measurement despite the presence of liquid water. Analogous devices were rinsed under running water for 10 seconds without any visual signs of degradation nor subsequent performance loss (Video S5, Supporting Information). To the best of our knowledge this is the first report of an oxide based nanoscale integrated barrier that operates during or after exposure to liquid water.

An inverted ALD oxide design utilizing nanoscale barriers provides a simple and integrated approach to assembling hybrid perovskite solar cells that are more resistant to the environmental

ACS Paragon Plus Environment

9

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 14

stress of high temperature and liquid water. The conformal, amorphous oxide overlayer serves a dual role as both effective diffusion barrier and efficient charge transport layer. The device design is expected to be further transferable to a wide range of even more stable and efficient perovskite halide absorber materials and films morphologies. Device resistance to liquid water further positions these absorbers for the once implausible prospect of direct integration into a photoelectrochemical cell for solar fuel generation.

ASSOCIATED CONTENT Supporting Information. Device fabrication procedure and architecture of control devices. Videos of wet device operation and faucet test for inverted perovskite devices. This material is available free of charge via the Internet at http://pubs.acs.org. AUTHOR INFORMATION Corresponding Author *E-mail: [email protected] Author Contributions The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ACKNOWLEDGMENT This work was supported as part of the Argonne Northwestern Solar Energy Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science,

ACS Paragon Plus Environment

10

Page 11 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

Basic Energy Sciences under Award #DE-SC0001059. This work made use of Pulsed Laser Deposition Shared Facility at the Materials Research Center at Northwestern University supported by the National Science Foundation’s MRSEC program (DMR-1121262). REFERENCES 1. Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628-5641. 2. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 17641769. 3. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982-988. 4. Ponseca, C. S.; Savenije, T. J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A.; Wolf, J.-P.; Sundström, V. J. Am. Chem. Soc. 2014, 136, 5189-5192. 5. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Nat. Phys. 2015, 11, 582-587. 6. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341-344. 7. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344-347. 8. Gong, J.; Darling, S. B.; You, F. Energy Environ. Sci. 2015, 8, 1953-1968. 9. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234-1237. 10. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M. Energy Environ. Sci. 2016, 9, 1989-1997. 11. Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M. K. Nat. Energy 2016, 1, 15017. 12. NREL Record Cell Efficiencies. www.nrel.gov (September 16), 13. Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J. Energy Environ. Sci. 2016, 9, 323-356. 14. Gholipour, S.; Correa-Baena, J.-P.; Domanski, K.; Matsui, T.; Steier, L.; Giordano, F.; Tajabadi, F.; Tress, W.; Saliba, M.; Abate, A.; Morteza Ali, A.; Taghavinia, N.; Grätzel, M.; Hagfeldt, A. Adv. Energy Mater. 2016, 1601116. 15. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Grätzel, M.; Han, H. Science 2014, 345, 295-298. 16. Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Nano Lett. 2014, 14, 5561-5568. 17. You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.; Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; De Marco, N.; Yang, Y. Nat. Nanotechnol. 2016, 11, 75-81. 18. Bush, K. A.; Bailie, C. D.; Chen, Y.; Bowring, A. R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M. D. Adv. Mater. 2016, 28, 3937-3943.

ACS Paragon Plus Environment

11

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 14

19. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. Nature 2016, 536, 312-316. 20. Groner, M. D.; George, S. M.; McLean, R. S.; Carcia, P. F. Appl. Phys. Lett. 2006, 88, 051907. 21. Carcia, P. F.; McLean, R. S.; Groner, M. D.; Dameron, A. A.; George, S. M. J. Appl. Phys. 2009, 106, 023533. 22. Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.-H.; Riedl, T.; Kowalsky, W. Appl. Phys. Lett. 2009, 94, 233305. 23. Ferrari, S.; Perissinotti, F.; Peron, E.; Fumagalli, L.; Natali, D.; Sampietro, M. Org. Electron. 2007, 8, 407-414. 24. Zhou, N.; Kim, M.-G.; Loser, S.; Smith, J.; Yoshida, H.; Guo, X.; Song, C.; Jin, H.; Chen, Z.; Yoon, S. M.; Freeman, A. J.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7897-7902. 25. Pachoumi, O.; Li, C.; Vaynzof, Y.; Banger, K. K.; Sirringhaus, H. Adv. Energy Mater. 2013, 3, 1428-1436. 26. Kim, I. S.; Martinson, A. B. F. J. Mater. Chem. A 2015, 3, 20092-20096. 27. Kim, I. S.; Haasch, R. T.; Cao, D. H.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G.; Martinson, A. B. F. ACS Appl. Mater. Interfaces 2016, 8, 24310-24314. 28. Sze, S. M.; Ng, K. K., Physics of semiconductor devices. John wiley & sons: 2006. 29. Scheuermann, A. G.; Prange, J. D.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Energy Environ. Sci. 2013, 6, 2487-2496. 30. Henderson, M. A.; Epling, W. S.; Peden, C. H. F.; Perkins, C. L. J. Phys. Chem. B 2003, 107, 534-545. 31. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4. 32. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Adv. Funct. Mater. 2014, 24, 3250-3258. 33. Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. ACS Nano 2014, 8, 4730-4739. 34. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Chem. Mater. 2014, 26, 6160-6164. 35. Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. ACS Nano 2015, 9, 1955-1963. 36. Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970-8980. 37. Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Energy Environ. Sci. 2016, 9, 1655-1660. 38. Wei, D.; Wang, T.; Ji, J.; Li, M.; Cui, P.; Li, Y.; Li, G.; Mbengue, J. M.; Song, D. J. Mater. Chem. A 2016, 4, 1991-1998. 39. Bae, S.; Kim, S.; Lee, S.-W.; Cho, K. J.; Park, S.; Lee, S.; Kang, Y.; Lee, H.-S.; Kim, D. J. Phys. Chem. Lett. 2016, 7, 3091-3096. 40. Yuan, H.; Debroye, E.; Janssen, K.; Naiki, H.; Steuwe, C.; Lu, G.; Moris, M.; Orgiu, E.; Uji-i, H.; De Schryver, F.; Samorì, P.; Hofkens, J.; Roeffaers, M. J. Phys. Chem. Lett. 2016, 7, 561-566. 41. Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. Energy Environ. Sci. 2014, 7, 2963-2967.

ACS Paragon Plus Environment

12

Page 13 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Nano Letters

42. Nie, W.; Blancon, J.-C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J.; Tretiak, S.; Crochet, J. J.; Gupta, G.; Mohite, A. D. Nat. Commun. 2016, 7, 11574.

ACS Paragon Plus Environment

13

Nano Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 14

Table of Contents Graphic and Synopsis A significant improvement in the stability of inverted perovskite solar cells against liquid water and high operating temperature (100 °C) was achieved by integrating an ultrathin amorphous oxide electron transport layer via atomic layer deposition (ALD). The devices exhibit stable operation under high thermal stress (100 °C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation.

ACS Paragon Plus Environment

14