49 Low-Temperature Calorimetric Study of Methane in Linde 5A Sieve Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 27, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch049
H. J. F. STROUD and N. G. PARSONAGE Imperial College, London, S.W. 7, England
Heat
capacities
measured taining
have
been
for empty 5A sieve and for the same sample
over the range
con
2 different
are more reliable
amounts
20°
of CH . 4
than previous
to 300°Κ These
calorimetric
measurements results for
tion systems
in that the calorimeter
is not connected
metal
tube
at room
filling
Sorption
to the
isotherms
on the same sample 300°K. model, tions.
A Monte assuming
apparatus
and isosteric
have been determined
Carlo evaluation Lennard-Jones
The isotherm
temperature.
heats of CH , C H , 4
sorp by a
2
6
from
and Kr 194°
has been made of a potentials
and qst predictions
for all for CH
4
interac are
but the Cs v s . Τ curve fails to show the large "hump" 150°Κ
which is the main feature
of the experimental
T i J " e a s u r e m e n t of Cp of the s o r b e d phase (C ) s
A
to
"cell" good, near
results.
p r o v i d e s a v e r y sensitive
test of theories b o t h because of t h e w i d e r a n g e of temperature
w h i c h c a n b e c o v e r e d a n d because of t h e nature of the q u a n t i t y itself. C a l o r i m e t r i c Cp measurements of s o r p t i o n systems a l w a y s h a v e b e e n c a r r i e d o u t w i t h a tube c o n n e c t i n g t h e s a m p l e to t h e r o o m - t e m p e r a t u r e parts of the apparatus ( 7 ). T h i s leads to large heat leaks a l o n g the t u b e a n d to u n c e r t a i n t y a b o u t t h e t e m p e r a t u r e w h i c h is to b e assumed f o r the gas w h i c h is d e s o r b e d f r o m the s a m p l e d u r i n g the experiment.
Studies
h a v e b e e n m a d e of the latter p o i n t ( 7 ), b u t i n the present w o r k w e h a v e a v o i d e d b o t h t h e leak a n d t h e a m b i g u i t i e s b y m a k i n g the s a m p l e c o n tainer a c l o s e d system, a l t h o u g h this leads to v e r y c o n s i d e r a b l e e x p e r i m e n t a l difficulties. C o r r e c t i o n f o r t h e heat associated w i t h d e s o r p t i o n i n t o t h e s m a l l a m o u n t of dead-space i n t h e s a m p l e container w a s m a d e u s i n g s o r p t i o n isotherms d e t e r m i n e d f o r the same s a m p l e of zeolite. F o r the t h e o r e t i c a l treatment of the system, w e h a v e u s e d M o n t e C a r l o ( M C ) m e t h o d s , w h i c h h a v e b e e n v e r y successful f o r t h e m a n y -
138
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
49.
Methane in Linde 5A Sieve
STROUD A N D PARSONAGE
139
b o d y p r o b l e m s of fluids ( 9 ) . T h e present p a p e r contains, as f a r as w e are a w a r e , t h e first a p p l i c a t i o n o f s u c h a t e c h n i q u e to a s o r b e d phase. Low—Temperature
Calorimetry
M e a s u r e m e n t s w e r e m a d e f r o m 2 0 ° to 3 0 0 ° Κ u s i n g a n a d i a b a t i c
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 27, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch049
calorimeter.
Before each
filling
of t h e container, t h e zeolite w a s b a k e d
out f o r at least 1 w e e k w h i l e p u m p i n g o n t h e system.
T h e amount of
sorbate sealed into t h e p l a t i n u m - i r i d i u m s a m p l e container w a s deter m i n e d gasometricalry, a n d a s m a l l k n o w n a m o u n t of H e also w a s a d d e d to f a c i l i t a t e t h e r m a l e q u i l i b r i u m as is n o r m a l p r a c t i c e i n l o w - t e m p e r a t u r e c a l o r i m e t r y . Since t h e s a m p l e c o n t a i n e r was b a k e d at Τ > 300 ° C , i t w a s necessary to use glass-coated w i r e s a n d p y r o m e l l i t i m i d e v a r n i s h f o r t h e heater o f t h e s a m p l e container.
T h e zeolite w a s a s a m p l e o f 5 A sieve
g i v e n b y U n i o n C a r b i d e C o r p . a n d h a d t h e c o m p o s i t i o n : 0.23 N a 0 , 2
0.77 C a O , A 1 0 , 1.89 S i 0 . 2
3
2
Results R u n A : d e h y d r a t e d zeolite = He = +
23.4338 grams, C H
4
=
0.02597 m o l e ,
0.00026 m o l e . C o n t r i b u t i o n of sorbate t o heat c a p a c i t y o f sorbent
sorbate w a s 7 . 7 % at 5 0 ° K a n d 4 . 7 % at 2 5 0 ° K .
zeolite =
23.4338 grams, C H = 4
0.01283 m o l e , H e =
R u n B : dehydrated 0.00026 m o l e . T h e
average n u m b e r o f C H m o l e c u l e s p e r large c a v i t y ( < n > ) w a s 1.808 i n 4
Figure 1. Molar heat capacity of the sorbed CH ( C ) vs. temperature. Experimental results for = 1.808: Exp A (+). Experimental results for = 0.8933: Exp Β (Ο). Corresponding calculated results from the spherical cell model: IA and IB (for 6-12 potential), HA and IIB (for 6-18 potential). h
s
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
140
M O L E C U L A R
SIEVE
ZEOLITES
II
R u n A a n d 0.8933 i n R u n B . A r u n w i t h t h e same a m o u n t of zeolite a n d He
also w a s c a r r i e d o u t . O n s u b t r a c t i n g t h e latter results f r o m those
f r o m R u n s A a n d Β a n d d i v i d i n g b y t h e n u m b e r of moles of m e t h a n e , C , t h e m o l a r heat c a p a c i t y o f s o r b e d m e t h a n e f o r t h e 2 samples, w a s s
f o u n d ( F i g u r e 1, E x p . A , E x p . B ) . T h e above C values are d e r i v e d f r o m measurements f o r w h i c h t h e s
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 27, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch049
i n i t i a l c o o l i n g w a s s l o w ( f r o m r o o m t e m p e r a t u r e to 8 0 ° K i n — 4 0 h o u r s ) . For
l o w e r temperatures the f u r t h e r c o o l i n g w a s faster, e.g., 8 0 ° to 5 0 °
or 2 0 ° K over 100 m i n u t e s . I n one set of experiments of R u n A ( n o t i n c l u d e d i n F i g u r e 1 ), the s a m p l e was " q u e n c h e d " d e l i b e r a t e l y f r o m , ~ 3 0 0 ° to — 8 0 ° K i n ^ 3 0 minutes.
Cp measurements
were then n o r m a l until
~ 9 8 ° K , a b o v e w h i c h large, w a r m i n g drifts w e r e o b s e r v e d ( ^ - 0 . 0 0 1 5 d e g minute" ).
A t 1 1 2 . 6 ° K , t h e d r i f t r e m a i n e d a p p a r e n t l y constant over 2
1
hours. T h i s b e h a v i o r is s i m i l a r to that f o u n d w h e n a system is " f r o z e n " first
i n t o a metastable
state, f r o m w h i c h i t escapes w i t h e v o l u t i o n of
energy w h e n t h e r m a l excitations b e c o m e sufficiently large to p e r m i t i t . A n estimate of the a m o u n t of f r o z e n - i n energy w a s m a d e b y h e a t i n g a q u e n c h e d s a m p l e f r o m 9 6 . 6 ° K , b e l o w t h e t e m p e r a t u r e at w h i c h a n n e a l i n g occurs, to 1 2 3 . 9 ° K , at w h i c h r a p i d e q u i l i b r a t i o n occurs. T h e a m o u n t of heat r e q u i r e d w a s c o m p a r e d w i t h the a m o u n t c a l c u l a t e d f r o m t h e true Cp c u r v e . T h i s gave ^ 5 . 4 0 K J ( m o l e C H ) 4
f o r the f r o z e n - i n heat.
_ 1
T h e t r i v i a l e x p l a n a t i o n that t h e " q u e n c h i n g " p h e n o m e n a
can be
a s c r i b e d to s p a t i a l i n h o m o g e n e i t y of t h e C H , i n d u c e d b y the t e m p e r a 4
ture g r a d i e n t d u r i n g c o o l i n g , a n d subsequent r e l a x a t i o n c a n b e d i s m i s s e d o n t h e f o l l o w i n g g r o u n d s . F o r this e x p l a n a t i o n to b e possible, i t w o u l d b e necessary f o r t h e g r a p h of q
st
vs. < n >
to b e s h a r p l y concave to t h e
axis. I n fact, o u r measurements s h o w e d that q
st
was independent
of c o m p o s i t i o n over t h e range of o u r i s o t h e r m measurements. even if q
st
vs. < n >
Indeed,
w a s as c u r v e d as i t is f o r C H , i t w o u l d b e v i r t u a l l y 2
6
i m p o s s i b l e to e x p l a i n the m a g n i t u d e of o u r observations i n this w a y . In
n o r m a l experiments, u s i n g the s l o w - c o o l i n g m e t h o d , 2 regions
w e r e f o u n d f o r w h i c h t h e rate of e q u i l i b r a t i o n after heat i n p u t w a s u n u s u a l l y l o n g . T h e s e w e r e near 3 0 ° K (^~50 m i n u t e s ; n o r m a l , ~ 1 0 m i n u t e s ) a n d at 1 5 5 ° ~ 2 0 0 ° K ( ^ 5 0 m i n u t e s ; n o r m a l , — 1 5 m i n u t e s ) .
I n the
latter r e g i o n , this caused a scatter i n the total Cp of u p to 0 . 4 % . Sorption Isotherm
Results
F o r < n > b e t w e e n 0.2 a n d 3, q w a s 17.76 a n d 22.36 K J m o l e " f o r K r a n d C H , r e s p e c t i v e l y , these results b e i n g i n d e p e n d e n t of c o m p o s i t i o n a n d t e m p e r a t u r e . F o r C H , o n the other h a n d , t h e b e h a v i o r w a s m o r e c o m p l e x . T h u s , b e t w e e n 2 3 0 ° a n d 2 8 0 ° K , i t w a s 25.19, 29.37, 32.26, a n d 34.10 K J m o l e " at < n > = 1, 2, 3, a n d 4, r e s p e c t i v e l y . st
4
2
6
1
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1
49.
Methane in Linde 5A Sieve
STROUD AND PARSONAGE
141
Discussion B a k a e v ( I ) has s h o w n h o w t h e G r a n d P a r t i t i o n F u n c t i o n f o r t h e s o r b e d phase m a y b e expressed i n terms o f the C a n o n i c a l P a r t i t i o n F u n c tions f o r single cavities c o n t a i n i n g 1,2,3 . . . , n m o l e c u l e s .
T h e o n l y as
s u m p t i o n necessary is that there is n o i n t e r a c t i o n b e t w e e n particles i n
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 27, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch049
different cavities.
T h e p r o b l e m reduces itself to that o f e v a l u a t i n g t h e
c o n f i g u r a t i o n integrals, Z Spherically
Symmetric
M
= f
e~ / d.T . u kT
n
Model
B e c a u s e o f the h i g h s y m m e t r y o f the m a i n cavities o f sieve A , i t m i g h t seem reasonable, i n t h e s p i r i t o f the c e l l t h e o r y of l i q u i d s ( 5 ) , to assume that t h e v a r i o u s c h a r g e d species o f t h e zeolite a r e d i s t r i b u t e d w i t h c o m plete s p h e r i c a l s y m m e t r y a b o u t the center o f e a c h c a v i t y . T h i s , of course, leads t o zero electric field t h r o u g h o u t t h e c a v i t y a n d h e n c e t o zero c o n t r i b u t i o n f r o m i o n - i n d u c e d d i p o l e a n d s i m i l a r forces.
T h e remaining
terms, d i s p e r s i o n a n d r e p u l s i o n , are a s s u m e d to b e o f t h e L e n n a r d - J o n e s f o r m a n d a r e t a k e n to b e a d d i t i v e . T h i s t h e o r y t h e n becomes essentially the same as t h e c e l l t h e o r y o f l i q u i d s , except that w e p e r m i t several m o l e c u l e s p e r c e l l . T h e t o t a l P . E . is g i v e n as U
= Χφ(η) +
LJ
i
2 ti(r ), i ;
i>j
w h e r e φ(τι) is t h e P . E . f o r t h e i t h m o l e c u l e - w a l l i n t e r a c t i o n w h e n t h e m o l e c u l e is r f r o m t h e center a n d u(rij) is t h e P . E . f o r t h e i n t e r a c t i o n {
b e t w e e n t h e i t h a n d ; t h particles. T h e d i f f i c u l t process n o w is to evaluate the Z . T h e I m p o r t a n c e S a m p l i n g M o n t e C a r l o M e t h o d (6,9) is r e l e v a n t n
to this p r o b l e m , b u t i t c a n y i e l d values o n l y f o r average quantities s u c h as < X > = fx
exp ( - U j / k T ) d r / f L
n
exp ( —U j/kT)dr ; L
n
i t does n o t
give, i n p a r t i c u l a r , a v a l u e f o r t h e d e n o m i n a t o r itself. T o o v e r c o m e this, w e h a v e u s e d a c o u p l i n g p a r a m e t e r m e t h o d ( 3 ) . W e i n t r o d u c e cut-offs i n t o the p o t e n t i a l s u c h that i f either a n y 2 particles a r e less t h a n r apart 0
or a n y p a r t i c l e is less t h a n r ' f r o m the w a l l , t h e n P . E . = 0
P . E . as C7(£) — UHS + éULJ, w h e r e UH8 = 0 i f a l l r ^ ro b u t U
H8
Zn(()
=f
fu
L J
4i
^ r0 a n d ( a - n )
oo o t h e r w i s e , w e are interested i n U(l); o r , p u t t i n g
exp (-UU)/kT)dr ,
that l n Z ( l ) w
=
oo. W r i t i n g t h e
n
= lnZ (0) H
exp {-U{è)/kT)drJ/exp
- f*
w e require Z ( l ) . n
LJ
It can be shown
d£/kT w h e r e
è
LJ
(-U(é)/kT)dr
n
è
—
· Ζ „ ( 0 ) , w h i c h re
fers t o t h e f r a c t i o n o f a l l configurations o f t h e h a r d spheres w h i c h are allowed, was evaluated numerically.
ç, LJ
was evaluated b y the
a b o v e M o n t e C a r l o m e t h o d f o r a b o u t 10 values of ξ b e t w e e n 0 a n d 1, t h e n u m b e r o f t r i a l moves r a n g i n g f r o m 98,000 f o r 5 particles t o 46,000 f o r 8 particles. F o r cells w i t h 4 o r less particles, the f u n c t i o n s w e r e e v a l u a t e d
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
142
M O L E C U L A R SIEVE
ZEOLITES
d i r e c t l y b y a s i m p l e M C m e t h o d . T h e p o t e n t i a l parameters f o r C H - C H 4
Π
4
w e r e those of Ref. 4. F o r C H - 0 , the attractive p o t e n t i a l w a s c a l c u l a t e d 4
b y the S l a t e r - K i r k w o o d e q u a t i o n ( 8 ) , a n d the r e p u l s i v e coefficient was c h o s e n so as to m a k e the p o t e n t i a l m i n i m u m o c c u r at the v a n d e r W a a l s ' distance.
F o r the c o m p o s i t i o n s of R u n s A a n d B , q
st
to 20.33 K J m o l e " over the range 1 0 0 ° to 3 0 0 ° K . Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 27, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch049
AH
are
1.6 a n d ^ 2 . 0
decreases f r o m 21.01 T h e errors i n AG a n d
1
K J m o l e " , r e s p e c t i v e l y , at 3 0 0 ° K . 1
satisfactory, as w e h a v e not u s e d a n y adjustable parameters. c u l a t e d curves of C vs. Τ f o r < n >
=
s
1.808 a n d 0.8933 ( F i g u r e
T h i s is The cal Ι,ΙΑ,ΙΒ)
are, h o w e v e r , c l e a r l y of the w r o n g f o r m . T h e peaks p r e d i c t e d near 6 0 ° Κ m a r k d i s p r o p o r t i o n a t i o n l e a d i n g to a m i x t u r e of e m p t y a n d f u l l cells. E v e n i f this process is t h e r m o d y n a m i c a l l y f a v o r e d , i t w o u l d be u n l i k e l y to o c c u r at s u c h l o w temperatures w i t h i n a reasonable t i m e . A l s o s h o w n are the curves a s s u m i n g a 6 - 1 8 p o t e n t i a l f o r C H - C H 4
( 2 ) , a n d corre
4
s p o n d i n g 6 - 1 5 potentials f o r C H w i t h the w a l l ( F i g u r e
Ι,ΙΙΑ,ΙΙΒ).
4
T h e S p h e r i c a l l y S y m m e t r i c M o d e l is c l e a r l y unsatisfactory f o r p r e dicting C
s
values. C a l c u l a t i o n s are n o w i n progress w i t h the N a , C a , O ,
S i , a n d A l atoms treated as c h a r g e d p o i n t centers of force. T h e s m a l l h u m p s near 6 0 ° Κ i n the e x p e r i m e n t a l C
s
vs. Τ curves m a y
result f r o m escape of H e f r o m s o l u t i o n i n the s o r b e d C H . T h e r u n w i t h 4
e m p t y zeolite s h o w e d a s i m i l a r h u m p near 30 ° K , w h i c h w e a s c r i b e d to d e s o r p t i o n of h e l i u m . Literature (1) (2) (3) (4) (5) (6) (7) (8) (9)
Cited
Bakaev, V. Α., Dokl. Akad. Nauk SSSR 1966, 167, 369. Byrne, Μ. Α., Jones, M. R., Staveley, L. A . K . , Trans. Faraday Soc. 1968, 64, 1747. H i l l , T . L., "Statistical Mechanics," p . 180, M c G r a w - H i l l , N e w York, 1956. Hirschfelder, J. O . , Curtiss, C. F., B y r d , R. B., "Molecular Theory of Gases and L i q u i d s , " p. 1110, W i l e y , N e w York, 1954. Lennard-Jones, J. E., Devonshire, A . F., Proc. Roy. Soc., Ser. A 1937, 163, 53. Metropolis, N., Rosenbluth, A . W . , Rosenbluth, M. N., Teller, A . H., Teller, E., J. Chem. Phys. 1953, 21, 1087. Pace, E . L., "The Solid-Gas Interface," E . A . F l o o d , Ed., V o l . 1, C h . 4, Dekker, N e w York, 1966. Pitzer, K . S., Advan. Chem. Phys. 1959, 2, 59. W o o d , W . W . , "The Physics of Simple L i q u i d s , " Η. Ν. V . Temperley, J. S. Rowlinson, G . S. Rushbrooke, E d s . , C h . 5, N o r t h H o l l a n d , Amster dam, 1968.
R E C E I V E D February 4,
1970.
Discussion K . K l i e r ( L e h i g h University, Bethlehem, Pa. 18015): The
authors
h a v e chosen the c e l l m e t h o d , w h i c h seems to b e q u i t e successful i n ex-
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
49.
STROUD A N D PARSONAGE
143
Methane in Linde 5A Sieve
p l a i n i n g p r o p e r t i e s of l i q u i d s i n the range of densities w h i c h a d s o r b i n g m o l e c u l e s a t t a i n i n the zeolite cavities. It w o u l d be i n t e r e s t i n g to k n o w w h e t h e r , c o m p l e m e n t a r y to the M o n t e C a r l o m e t h o d u s e d , a n a l y t i c a l solutions c o u l d be o b t a i n e d i n terms of p a r t i t i o n f u n c t i o n b e i n g a f u n c t i o n of average d e n s i t y of the sorbate. v a l u e of o b t a i n i n g t h e i s o t h e r m as ρ =
S u c h solutions w o u l d h a v e t h e —kT(d l o g [ p . f . ] / ô u ) . T h e m o d e l r
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 27, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch049
suggested here w o u l d b e to assign one c e l l to one m o l e c u l e w i t h i n the c a v i t y , n o t to the c a v i t y itself. N . G . Parsonage: I c a n see n o p o s s i b i l i t y of o b t a i n i n g a n a n a l y t i c a l expression f o r the p a r t i t i o n f u n c t i o n f o r cavities c o n t a i n i n g s e v e r a l m o l e cules.
F o r cells c o n t a i n i n g η m o l e c u l e s , w e w o u l d n e e d to integrate
c o m p l i c a t e d f u n c t i o n over ~ 3 n coordinates.
a
Lennard-Jones and D e v o n
shire c o n s i d e r e d o n l y the case of one m o l e c u l e p e r c e l l , a n d for this n e e d e d o n l y one c o o r d i n a t e , the r a d i a l distance.
E v e n so, t h e y h a d to
evaluate t h e i r integrals n u m e r i c a l l y . If one w e r e to redefine the " c e l l s " so that e a c h c o n t a i n e d o n l y one m o l e c u l e , t h e n one w o u l d find great d i f f i c u l t y since the n e w " c e l l s " w o u l d n o t c o r r e s p o n d w i t h the r e a l cavities. T h e a d v a n t a g e of the present treat ment, that the cells h a v e r e a l p h y s i c a l existence, w o u l d b e lost. H . A . Resing ( N a v a l R e s e a r c h L a b o r a t o r y , W a s h i n g t o n , D . C . 20390) : W h a t d o y o u r experiments s h o w a b o u t m o l e c u l a r rotation? N . G . Parsonage: T h e e x p e r i m e n t does not d i s t i n g u i s h b e t w e e n r o t a t i o n a l a n d other c o n t r i b u t i o n s to the heat c a p a c i t y .
Information on ro
t a t i o n a l f r e e d o m m u s t d e p e n d o n a t h e o r e t i c a l analysis of the d a t a .
In
o u r treatment, w e assume that r o t a t i o n is free over the w h o l e t e m p e r a t u r e range a n d so gives a c o n t r i b u t i o n of 3 / 2 R. T h i s m u s t be w r o n g at v e r y l o w temperatures, b u t the e v i d e n c e f r o m the rather s i m i l a r system m e t h a n e — q u i n o l clathrate, f o r w h i c h a g o o d analysis is a v a i l a b l e , is that the r o t a t i o n remains v i r t u a l l y free d o w n to 50 ° K .
A t this t e m p e r a t u r e , o u r
treatment w i l l a l r e a d y be f a i l i n g w i t h respect to other degrees of f r e e d o m because i t is classical a n d so does not s h o w the q u a n t u m fall-off of the heat c a p a c i t y .
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.