31 Luminescence Kinetics of Microcrystalline Adenine Following Pulse Irradiation
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
E. M. FIELDEN and S. C. LILLICRAP Physics Department, Institute of Cancer Research, Clifton Avenue, Sutton, Surrey, England
The spectra and decay kinetics of the luminescence of microcrystalline adenine following irradiation by 4.3 Mev. elec trons are reported over a temperature range from 93° to 540°K. At the lowest temperatures the emission is followed from 5 µsec. to 5 min. after a 1.6 µsec. electron pulse, and over this time scale the emission intensity decreases by a factor of 10 . A first order phosphorescence decay com ponent is observed below 130°K. between 5 msec. and 8 sec. The residual non-exponential decay components can be explained by a trapping model possessing a uniform distri bution of traps from 0-0.22 e.v. deep with frequency factors ~10 sec. . An alternative explanation of the initial decay in terms of a cluster ("spur" type ) model that is consistent with the data is also discussed. 7
9
-1
b s o r p t i o n of energy f r o m i o n i z i n g r a d i a t i o n leads to direct excitation as w e l l as i o n i z a t i o n of t h e a b s o r b i n g m e d i u m . A d d i t i o n a l excited states m a y b e p r o d u c e d b y i o n r e c o m b i n a t i o n f o l l o w i n g the i n i t i a l i o n i z a t i o n events. T h e resultant e x c i t e d molecules m a y lose t h e i r excess energy b y c o l l i s i o n a l d e a c t i v a t i o n o r b y fission of t h e m o l e c u l e to g i v e r a d i c a l s either
spontaneously o r b y interactions
with
other
molecules,
or b y
emission of a p h o t o n . T h e fission processes w i l l b e r a p i d , o c c u r r i n g over a t i m e scale of t h e order of the m o l e c u l a r r e l a x a t i o n time, a l t h o u g h i t m a y r e q u i r e crossover f r o m the o r i g i n a l to a dissociative e x c i t e d state. I n a d d i t i o n to t h e e x c i t a t i o n of single molecules F a n o ( 9 ) has p r o p o s e d a c o l l e c t i v e e x c i t a t i o n effect to e x p l a i n t h e energy loss spectra of electrons i n s o l i d films. T h i s process i n v o l v e s the d e p o s i t i o n of 10 to 20 e.v. i n a v o l u m e of a b o u t ( 1 0 0 A . ) . T h i s energy m a y b e s u b s e q u e n t l y l o c a l i z e d 3
444 Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N A N D LILLICRAP
Luminescence
445
Kinetics
b y r u p t u r e of a c h e m i c a l b o n d o r m a y b e d e l o c a l i z e d b y d i f f u s i o n o r transfer of e x c i t a t i o n energy. T h e r a d i a t i v e l i f e t i m e o f a n excited state d e p e n d s o n t h e s p i n selec t i o n rules a n d is t y p i c a l l y of t h e o r d e r of 10" sec. f o r a s p i n a l l o w e d 8
t r a n s i t i o n a n d u p to 1 0 times longer f o r a s p i n f o r b i d d e n t r a n s i t i o n . 9
O p t i c a l excitation g e n e r a l l y p r o d u c e s excited singlet states f o l l o w e d b y extremely r a p i d radiationless energy loss, l e a v i n g t h e e x c i t e d m o l e c u l e s i n t h e first singlet state Si. T h e r a p i d fluorescence process Si - » S is i n G
c o m p e t i t i o n w i t h t h e intersystem crossing process g i v i n g triplets Si -> T V E x c i t a t i o n b y s l o w electrons, h o w e v e r , does n o t obey a l l t h e o p t i c a l s p i n selection rules a n d n o r m a l l y f o r b i d d e n transitions s u c h as S —» T Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
G
a h i g h e r p r o b a b i l i t y of o c c u r r i n g d i r e c t l y (8, 14, 17).
t
have
T h u s , t h e absorp
t i o n of i o n i z i n g r a d i a t i o n m a y l e a d to t h e p r o d u c t i o n of triplets as a p r i m a r y step g i v i n g a h i g h e r y i e l d of triplets t h a n w o u l d have
been
p r o d u c e d i f t h e p r i m a r y e x c i t a t i o n was to singlet states o n l y . It has b e e n suggested (20)
w i t h some e x p e r i m e n t a l e v i d e n c e (2)
that e x c i t a t i o n to
h i g h singlet levels b y t h e faster electrons leads to e n h a n c e d intersystem crossing t o t r i p l e t states. E m i s s i o n spectroscopy
is a c o n v e n i e n t
method
of f o l l o w i n g t h e
b e h a v i o r of excited states, possessing m a n y advantages over a b s o r p t i o n spectroscopy, e s p e c i a l l y i n t h e s o l i d state. T h e l o w t e m p e r a t u r e t h e r m o l u m i n e s c e n c e spectra of o r g a n i c mate rials h a v e also b e e n i n v e s t i g a t e d (3, 15, 22, 25), a n d i t is f o u n d that most of t h e g l o w peaks l i e b e t w e e n 1 0 0 ° a n d 170 ° K .
Lehman and Wallace
(15) h a v e l i s t e d t h e r m o l u m i n e s c e n c e spectra, g l o w curves, a n d e m i s s i o n spectra f o r a large n u m b e r of b i o l o g i c a l l y i m p o r t a n t molecules.
The
l u m i n e s c e n c e w a s r e c o r d e d d u r i n g , a n d several m i n u t e s after, i r r a d i a t i o n b y sources of a w i d e range of l i n e a r energy transfer
(LET).
These
authors also r e p o r t e d a n effect of gas pressure o n t h e l u m i n e s c e n c e y i e l d at l o w temperatures that w a s i n t e r p r e t e d as t h e effect of gas p e n e t r a t i o n i n t o t h e c r y s t a l lattice. O t h e r w o r k e r s ( 7 ) , h o w e v e r , h a v e d e m o n s t r a t e d s i m i l a r gas effects a n d s h o w n t h e m to b e o w i n g to t h e t e m p e r a t u r e differences c a u s e d b y restricted c o n v e c t i o n c o o l i n g of t h e p o w d e r s b y the s u r r o u n d i n g gas. T h e kinetics of t h e r a d i o l u m i n e s c e n c e of organic c o m p o u n d s h a v e not b e e n w i d e l y p u b l i s h e d .
Bollinger a n d Thomas
(6)
reported the
r o o m temperature d e c a y kinetics of t h e l o n g - l i v e d s c i n t i l l a t i o n c o m p o n e n t of trans-stilbene.
T h e d e c a y profile w a s n o n - e x p o n e n t i a l over t h e 100
jusec. t i m e scale c o v e r e d a n d , apart f r o m i n t e n s i t y differences, t h e d e c a y profile w a s i d e n t i c a l f o r y - r a y s , neutrons a n d a-particles.
However, the
d e c a y kinetics of several i n o r g a n i c p h o s p h o r s e x c i t e d b y l o w energy electrons—e.g., c a t h o d e (21).
r a y tube
T h e t h e o r e t i c a l treatment
phosphors—have
been
investigated
of t h e k i n e t i c s o f t h e emission f r o m
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
446
RADIATION CHEMISTRY
1
these i o n i c lattices has b e e n o n t h e basis of e l e c t r o n t r a p p i n g , a n d one of t h e earlier papers (18) points o u t h o w a p p a r e n t l y s i m p l e d e c a y k i n e t i c s c a n arise f r o m v a r i o u s d i s t r i b u t i o n s of t r a p depths. t r a p p i n g i n o r g a n i c crystals is c o n f i r m e d b y t h e i r
T h e existence
of
thermoluminescent
b e h a v i o r , a n d i t is l i k e l y that some of t h e spontaneous e m i s s i o n i n v o l v e s t r a p p i n g processes. Several k i n e t i c schemes h a v e b e e n p u t f o r w a r d ( 4 , 1 3 , 24) to e x p l a i n the kinetics of e x c i t e d states i n s o l i d solutions a n d p u r e a n d m i x e d crystals f o l l o w i n g o p t i c a l a n d i o n i z i n g - p a r t i c l e excitation. T h e s e schemes, as w e l l as t h e d i r e c t q u e n c h i n g reactions f o r singlets a n d triplets, i n c l u d e t r i p l e t Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
t r i p l e t a n n i h i l a t i o n reactions
a n d b i m o l e c u l a r t r i p l e t q u e n c h i n g reactions T
1
+ T,
T, + S
0
T h e first r e a c t i o n , b y p r o d u c i n g a singlet state, c a n l e a d to a singletg r o u n d state emission a n d is responsible f o r " d e l a y e d
fluorescence."
T h e present p r o g r a m is a i m e d at filling t h e g a p b e t w e e n t h e e m i s s i o n d u r i n g r a d i a t i o n a n d the e m i s s i o n f o u n d several m i n u t e s after i r r a d i a t i o n . B y a s t u d y of t h e kinetics a n d spectra of t h e e m i s s i o n it is h o p e d to g a i n m o r e k n o w l e d g e of t h e processes i n v o l v e d . Experimental Radiation Source. T h e source of r a d i a t i o n is a M u l l a r d 4.3 M e v . e l e c t r o n accelerator, M o d e l S L 46, w h i c h p r o d u c e s 1.6 /xsec. d u r a t i o n pulses at u p to 250 m A , w i t h r e p e t i t i o n rates v a r y i n g f r o m a single p u l s e to 400 pulses p e r second. Irradiation Assembly. T h e i r r a d i a t i o n assembly is s h o w n i n F i g u r e 1. It consists of a r e c t a n g u l a r P e r s p e x ( L u c i t e , P l e x i g l a s ) b o x w i t h t w o c o m p a r t m e n t s . T h e rear section contains a p h o s p h o r u s p e n t o x i d e t r a y to p r e v e n t c o n d e n s a t i o n o n t h e c o o l e d s a m p l e . T h e f r o n t section contains the s a m p l e a n d is l i n e d w i t h b l a c k P V C tape to obscure t h e l u m i n e s c e n c e f r o m t h e i r r a d i a t e d Perspex. A t the f r o n t e n d of t h e box, i n l i n e w i t h t h e sample, is a 1 m m . t h i c k Perspex w i n d o w t h r o u g h w h i c h the electron i r r a d i a t i o n b e a m enters h o r i z o n t a l l y . D i r e c t l y above t h e s a m p l e is a S p e c t r o s i l q u a r t z w i n d o w 0.25 m m . t h i c k t h r o u g h w h i c h t h e l u m i n e s cence is o b s e r v e d . L i g h t e m i t t e d f r o m t h e s a m p l e passes t h r o u g h t h e w i n d o w a n d is t h e n reflected h o r i z o n t a l l y b y a f r o n t s u r f a c e d m i r r o r i n c l i n e d at 4 5 ° (see F i g u r e 1 ) . T h e p o w d e r e d s a m p l e is h e l d i n a 6 m m . d i a m e t e r c u p t u r n e d i n t h e e n d of a short a l u m i n u m r o d . A t h e r m o c o u p l e is fixed i n this r o d just b e l o w the sample c u p . T h i s c u p assembly makes g o o d t h e r m a l contact w i t h a 9 m m . d i a m e t e r c o p p e r r o d w h i c h passes h o r i z o n t a l l y i n t o t h e rear c o m p a r t m e n t . A s m a l l h e a t i n g c o i l is w o u n d o n t h e c o p p e r r o d close to t h e a l u m i n u m c u p . I n t h e rear c o m p a r t m e n t the c o p p e r r o d is s o l d e r e d to a c o p p e r t u b e of the same external d i a m e t e r
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N A N D LILLICRAP
Luminescence
447
Kinetics
w h i c h p r o t r u d e s f r o m the b a c k of t h e Perspex b o x a n d is b e n t u p w a r d s . A c y l i n d r i c a l brass c u p , 5 c m . diameter, is s o l d e r e d v e r t i c a l l y onto t h e c o p p e r tube. T h e brass c u p a n d t h e c o p p e r t u b e outside t h e b o x are i n s u l a t e d w i t h 4 c m . of e x p a n d e d p o l y s t y r e n e . T h e s a m p l e is c o o l e d b y f i l l i n g t h e brass c u p w i t h l i q u i d n i t r o g e n . A f t e r 10 m i n u t e s the s a m p l e has c o o l e d to 93 ° K . a n d , b y c o n t r o l l e d use of the h e a t i n g c o i l , i n t e r m e d i a t e temperatures c a n b e o b t a i n e d . A b o v e 200 °K., s o l i d C 0 - a c e t o n e is a m o r e suitable coolant. T h e i n t e r i o r of t h e b o x c a n b e flushed w i t h a n y a v a i l a b l e gas b y means of a n entrance t u b e i n the rear section of the b o x a n d a n exit t u b e i n t h e f r o n t section.
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
2
Mirror
Quartz Window
Thermocouple Beam Entrance Window Sample Cup
\
Polystyrene Insulation
10 cm Figure 1. Schematic diagrams of the irradiation assembly. For clarity the liquid nitrogen reservoir has been omitted from the front view and the inclined mirror from the side view I r a d i a t i o n s a b o v e r o o m t e m p e r a t u r e are c a r r i e d o u t b y p r e s s i n g t h e p o w d e r i n t o a 6 X 1 m m . slot m i l l e d i n a 5 m m . d i a m e t e r a l u m i n u m r o d . T h e r o d replaces the n o r m a l b i t i n a 2 5 W s o l d e r i n g i r o n w h i c h acts as a heat source. T h e assembly is m o u n t e d v e r t i c a l l y w i t h a t h e r m o c o u p l e fixed i n the s a m p l e h o l d e r . T e m p e r a t u r e s c a n be c o n t r o l l e d to w i t h i n 5 ° C . b y r e g u l a t i n g t h e current t h r o u g h the h e a t i n g element w i t h a V a r i a c transformer.
American Chemical feisty library 1155 16th St., HM Hart; Radiation Chemistry Washington, 0,C* 2 0038 DC, 1968. Advances in Chemistry; American Chemical Society: Washington,
448
RADIATION CHEMISTRY
1
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
T h e l i g h t e m i t t e d b y the i r r a d i a t e d p o w d e r s is r e l a y e d b y means of t w o q u a r t z lenses a n d t w o m i r r o r s to the d e t e c t i n g system i n the acceler ator c o n t r o l r o o m . T h e o p t i c a l a n d p h o t o m e t e r system are to be d e s c r i b e d i n d e t a i l elsewhere (10). B r i e f l y , the o p t i c a l system i m a g e d the p o w d e r sample o n the m o n o c h r o m a t o r slits w i t h a 1:1 object-to-image ratio a n d a l i g h t acceptance angle of f 3.5. T h e m o n o c h r o m a t o r is a B a u s c h a n d L o m b H i g h Intensity t y p e w i t h t w o gratings c o v e r i n g the range 180 to 400 n . m . a n d 350 to 800 n . m . T h e l i g h t e m e r g i n g f r o m the m o n o c h r o m a t o r is m o n i t o r e d b y a p h o t o m u l t i p l i e r , E M I t y p e 9 5 5 8 B Q , w h o s e o u t p u t w a s f e d d i r e c t l y to a n oscilloscope ( T e k t r o n i x t y p e 547 or 5 5 5 ) . The resultant d i s p l a y of l i g h t intensity vs. t i m e was p h o t o g r a p h e d . F i g u r e 2 gives a n e x a m p l e of t w o s u c h p h o t o g r a p h s ; the p h o t o g r a p h s are e n l a r g e d
Figure 2. Oscilloscope traces of luminescent decays from adenine following a 10 Krad pulse of 4.3 Mev. electrons of 1.6 jusec. duration. Curve A, 2 ^sec./large horizontal division, measured at 295°K. Curve B, 0.5 sec./large horizontal division, measured at 93°K. The vertical sensitivity of Curve B is a factor of 400 greater than that of Curve A
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N A N D LILLICRAP
Luminescence
Kinetics
449
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
to t w i c e t h e o r i g i n a l size f o r t h e p u r p o s e of analysis. T h e o p t i c a l system is a l i g n e d b y i l l u m i n a t i n g t h e p o w d e r w i t h a tungsten l a m p a n d t h e n f o c u s s i n g t h e l i g h t scattered f r o m t h e p o w d e r surface onto t h e entrance slit of the m o n o c h r o m a t o r . Calibration of the Photometer System. I n order to p r o d u c e m e a n i n g f u l emission spectra t h e r e l a t i v e responses at different w a v e l e n g t h s of the entire o p t i c a l a n d d e t e c t i n g system h a d to b e k n o w n . T h e o v e r a l l response is a f u n c t i o n of t h e response of t h e p h o t o - m u l t i p l i e r , t h e m o n o c h r o m a t o r efficiency a n d t r a n s m i s s i o n factors, t h e reflectivity of m i r r o r s a n d t h e transmission a n d d i s p e r s i o n of t h e lenses. T h e relative response of t h e t o t a l system w a s o b t a i n e d b y c o m p a r i s o n w i t h a k n o w n emission s p e c t r u m ; that of C e r e n k o v r a d i a t i o n . T h e s p e c t r u m of t h e C e r e n k o v l i g h t e m i t t e d w h e n h i g h energy particles pass t h r o u g h a m e d i u m has b e e n c a l c u l a t e d a n d m e a s u r e d e x p e r i m e n t a l l y (11, 19). T h e s p e c t r a l intensity is g i v e n b y : _ /
(
X
)
_
Const " A T '
/I -
V
1 \
W) 2
w h e r e p is t h e electron v e l o c i t y relative to l i g h t i n v a c u o a n d n is t h e refractive i n d e x of the m e d i u m . F o r t h e p u r p o s e of c a l i b r a t i o n t h e sample c u p was filled w i t h finely p o w d e r e d S p e c t r o s i l h i g h p u r i t y q u a r t z , w h i c h w a s a s s u m e d to e x h i b i t n e g l i g i b l e fluorescence c o m p a r e d w i t h t h e intensity of t h e C e r e n k o v light. W i t h the p h o t o m u l t i p l i e r o p e r a t i n g at a fixed voltage t h e intensity of C e r e n k o v l i g h t p r o d u c e d b y a single p u l s e of 4.3 M e v . electrons w a s r e c o r d e d at various w a v e l e n g t h s . A s the u l t r a v i o l e t g r a t i n g has h a l f t h e d i s p e r s i o n of t h e v i s i b l e range g r a t i n g , the entrance a n d exit slits w e r e d o u b l e d w h e n t h e f o r m e r was i n use to m a i n t a i n a constant b a n d - w i d t h . S u p p l e m e n t a r y C h a n c e - P i l k i n g t o n color filters w e r e u s e d over some w a v e l e n g t h ranges t o r e m o v e scattered l i g h t f r o m t h e m o n o c h r o m a t o r . T h e resultant s p e c t r u m consisted of t h e C e r e n k o v s p e c t r u m m o d i f i e d b y t h e system response. F r o m a c o m p a r i s o n of the m e a s u r e d s p e c t r u m w i t h t h e k n o w n s p e c t r u m t h e relative system response w a s d e d u c e d . F i g u r e 3 shows the response of the apparatus together w i t h the q u a r t z C e r e n k o v s p e c t r u m c a l c u l a t e d f r o m the expression above. C a r e w a s t a k e n to operate t h e p h o t o m u l t i p l i e r o n l y i n t h e linear r e g i o n of its characteristics. U n f o r t u n a t e l y t h e l u m i n e s c e n c e i n t e n s i t y of i r r a d i a t e d a d e n i n e i m m e d i a t e l y after t h e electron p u l s e w a s less t h a n 2 % of t h e C e r e n k o v p l u s fluorescence emission d u r i n g t h e pulse. T h u s , i n o r d e r to fill t h e oscilloscope d i s p l a y w i t h t h e l u m i n e s c e n c e signal, t h e oscilloscope amplifiers w e r e necessarily o v e r l o a d e d d u r i n g t h e r a d i a t i o n pulse. T h e t i m e t a k e n for t h e system to recover was m e a s u r e d b y observ i n g t h e o v e r l o a d r e c o v e r y of t h e amplifiers f o l l o w i n g a s i m i l a r p u l s e of C e r e n k o v l i g h t f r o m i r r a d i a t e d q u a r t z p o w d e r ( w h i c h has n o l o n g - l i v e d l u m i n e s c e n c e ) . U n d e r these c o n d i t i o n s i t w a s f o u n d that there w a s n o spurious s i g n a l 3.4 jusec. after t h e e n d of t h e pulse. S i m i l a r tests w e r e m a d e f o r a l l w o r k i n g c o n d i t i o n s of t h e p h o t o m u l t i p l i e r . Temperature Measurements. A C h r o m e l / A l u m e l t h e r m o c o u p l e m a d e from 0.25 m m . d i a m e t e r w i r e s w a s u s e d f o r a l l temperature measure ments. A b o v e 0 ° C . t h e t e m p e r a t u r e / E M F c u r v e f o l l o w e d t h e p u b l i s h e d
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
450
RADIATION CHEMISTRY
1
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
values (12) b u t b e l o w 0 ° C . there w a s a n a p p r o x i m a t e l y l i n e a r d e v i a t i o n w i t h t e m p e r a t u r e a m o u n t i n g to a n i n c r e a s e d E M F of 5 % at l i q u i d n i t r o g e n t e m p e r a t u r e . T h i s l o w t e m p e r a t u r e d e v i a t i o n is c a u s e d b y i m p u r i t i e s i n t h e w i r e s a n d is c o m m o n to several t h e r m o c o u p l e systems. T h e t h e r m o couple E M F was measured b y a Solartron d i g i t a l voltmeter, m o d e l LM1420.
Figure 3. Spectral response of photometer system. Curve A is the emission spectrum of Cerenkov light from irradiated quartz. Curves B, C, and D show the photometer response using Bausch and Lomb gratings. Curve B, ultraviolet grating type 33-86-01, no filter. Curve C, visible grating type 33-86-02, no filter. Curve D, visible grating type 33-86-02, using the Chance filters indicated above the curve Materials. T h e a d e n i n e w a s o b t a i n e d f r o m C a l b i o c h e m as A g r a d e microcrystalline powder a n d was used without further purification. This is a synthetic p r o d u c t , free f r o m c o n t a m i n a t i o n w i t h r e l a t e d n a t u r a l p r o d u c t s . I t s h o w e d o n l y one spot w h e n c h e c k e d b y t h i n l a y e r c h r o m a t o g r a p h y . M o s t of t h e p o w d e r passed t h r o u g h a 90JU sieve. A s a m p l e w a s also r e c r y s t a l l i z e d f r o m t r i p l y - d i s t i l l e d w a t e r . Dosimetry. F o r dose measurements t h e a d e n i n e p o w d e r i n the s a m p l e c u p w a s r e p l a c e d b y a s i m i l a r q u a n t i t y of L i F p o w d e r ( T L D 1 0 0 ) . T h e t h e r m o l u m i n e s c e n c e of t h e L i F w a s m e a s u r e d 24 h o u r s after a single p u l s e i r r a d i a t i o n o n a c o m m e r c i a l reader, t h e M a d i s o n R e s e a r c h S - 2 L . A t y p i c a l dose w a s 10 to 15 K r a d i n w a t e r f r o m a 1.6 /xsec. p u l s e . Experimental
Results
Emission Spectra. S p e c t r a of the l i g h t e m i s s i o n f r o m adenine p o w d e r , after r e c e i v i n g a 15 K r a d p u l s e of 4.3 M e v . electrons, w e r e m e a s u r e d at
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N AND LILLICRAP
Luminescence
b o t h r o o m t e m p e r a t u r e a n d 93 ° K .
451
Kinetics
F i g u r e 4 shows t h e e m i s s i o n spectra
of a d e n i n e at 5 /xsec. a n d 500 /xsec. after i r r a d i a t i o n at r o o m t e m p e r a t u r e , a n d at 5 /xsec, 500 ^sec., 600 m s e c , a n d 15 sec. after i r r a d i a t i o n at 9 3 ° K . T h e b a n d p a s s of the m o n o c h r o m a t o r f o r these measurements w a s 8.5 n . m . , a n d the spectra w e r e c o r r e c t e d f o r t h e s p e c t r a l response of t h e w h o l e system. T h e r o o m t e m p e r a t u r e spectra are s i m i l a r i n p o s i t i o n a n d shape to t h e c o r r e s p o n d i n g l o w t e m p e r a t u r e spectra, a l t h o u g h there are differences at the l o n g e r w a v e l e n g t h s . T h e r e is also a progressive n a r r o w i n g of t h e s p e c t r u m a n d a slight shift to shorter w a v e l e n g t h s w i t h increase i n t i m e . T h e l o w t e m p e r a t u r e spectra m e a s u r e d at 600 msec, a n d 15 sec. Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
after i r r a d i a t i o n are t h e same, w i t h i n e x p e r i m e n t a l error, as t h e u l t r a v i o l e t e x c i t e d l o w t e m p e r a t u r e p h o s p h o r e s c e n c e s p e c t r u m of s o l i d a d e n i n e d e s c r i b e d b y S i n g h a n d C h a r l e s b y (22)
a n d agree w e l l w i t h that f o u n d f o r
the i n t e g r a t e d e m i s s i o n at l o w temperatures pulses
following
.01 r a d x-ray
I t is n o t u n l i k e l y , therefore, that a c o m m o n process is
(16).
r e s p o n s i b l e f o r t h e f o u r s i m i l a r spectra a n d p o s s i b l y also f o r t h e b r o a d e r 5 /xsec. a n d 500 fxsec. spectra. T h e 15 sec. l o w t e m p e r a t u r e s p e c t r u m is i n agreement w i t h t h e l i m i t e d s p e c t r a l d a t a p u b l i s h e d b y L e h m a n a n d W a l l a c e (15)
0-6
for irradiated adenine powder.
0-6
r
300
400
500
600
700 300
400
500
600
700
Wavelength (am)
Figure 4. Emission spectra from adenine at 294°K. and 93°K., at different times after irradiation. — # — • — 5 \xsec, — O — O — 500 fxsec, — • — • — 600 msec, — • — • — 15 sec. The intensity scales have been expanded by different factors to allow comparison. At 294°K., expansion factors are X 1 (5 ^sec. spectra), X 100 (500 ^sec. spectra). At 93°K. expansion factors are X 2 (5 fxsec. spectra), X 100 (500 ^sec. spectra), X 200 (600 msec, spectra), X 4.10 (15 sec. spectra) 3
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
452
RADIATION CHEMISTRY
1
D e c a y P r o f i l e s . T h e d e c a y of a d e n i n e e m i s s i o n w a s r e c o r d e d over a range of temperatures.
F i g u r e 5 shows t h e d e c a y profiles at 475 n . m .
p l o t t e d f r o m 5 ^sec. to 1 msec, after i r r a d i a t i o n b y a n 11 K r a d electron p u l s e at 296 ° K . a n d 93 ° K .
I n a l l experiments zero t i m e is t a k e n to b e
the b e g i n n i n g of t h e p u l s e . T h e i n t e r e s t i n g features of this p l o t are that the r o o m t e m p e r a t u r e d e c a y is i n i t i a l l y s l o w e r t h a n t h e l o w t e m p e r a t u r e d e c a y a n d that t h e d e c a y curves cross at 230 /xsec. T h e l u m i n e s c e n c e is w e a k e r f o r a b o u t 200 /xsec. at 93 ° K . t h a n at r o o m t e m p e r a t u r e , w h e r e a s the i n t e g r a t e d e m i s s i o n w a s f o u n d to increase o n l o w e r i n g t h e t e m p e r a ture.
N e i t h e r c u r v e is e x p o n e n t i a l over this range.
I n addition to the
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
measurements at 475 n . m . , d e c a y profiles w e r e also r e c o r d e d at 400 n . m . a n d 520 n . m . If the 5 /xsec. spectra of F i g u r e 4 are t h e s u m of c o m p o n e n t spectra, t h e n t h e d e c a y at 400 n . m . i n p a r t i c u l a r m i g h t b e e x p e c t e d t o be c a u s e d b y a single c o m p o n e n t a n d h e n c e h a v e s i m p l e r k i n e t i c s t h a n i n a n o v e r l a p r e g i o n . H o w e v e r , n e i t h e r of t h e d e c a y curves at 400 n . m . or 520 n . m . c o u l d b e fitted to a s i m p l e d e c a y scheme. A b o v e r o o m t e m p e r a ture t h e decays are a l l s i m i l a r a n d n o n e w features appear.
200
400
600
800
1 Msec.
Time (usee)
Figure 5, Decay curves of adenine luminescence from 5 /msec, to 1 msec, after irradiation by an 11 Krad. electron pulse at 93°K. and 296°K. T h e d e c a y of a d e n i n e l u m i n e s c e n c e at 93 ° K . is p l o t t e d i n F i g u r e 6 f r o m 5 /xsec. to 5 m i n . after i r r a d i a t i o n . T h e d e c a y curves o u t to 30 sec. w e r e r e c o r d e d f o l l o w i n g single pulses of electrons a n d those f r o m 10 sec.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N A N D LILLICRAP
Luminescence
453
Kinetics
to 5 m i n . f o l l o w i n g 140 electron pulses g i v e n i n 1.4 sec. T h e t w o curves w e r e i d e n t i c a l i n shape i n t h e r e g i o n of o v e r l a p f r o m 10 sec. to 30 s e c , a n d t h e p a r t o f the c u r v e t a k e n w i t h 140 pulses w a s therefore
matched
to t h e rest o f the c u r v e i n t h e r e g i o n of o v e r l a p since absolute c a l i b r a t i o n of dose w a s n o t accurate i n t h e m u l t i p l e p u l s e r u n .
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
io-y
•
lO"
6
I
10'
• 5
•
I
10
I -4
10'
I
I
I
1
10"
3
2
I
I
I
10"
1
1
1
10°
1
1
1
10
1 1
1
1
10
I 2
1
1
10
3
Time (sec)
Figure 6. Decay curves of adenine luminescence at 93°K. From 5 jxsec. to 30 sec. the decay was recorded following a single electron pulse of 11 Krad, and from 10 sec. to 5 min. following 140 electron pulses in 1.4 sec. The broken line is the continuation of the exponential portion of the curve (5 msec.-8 sec). The dotted line is the result when the exponential portion is subtracted from the total decay curve B e t w e e n 5 msec, a n d 8 sec. after i r r a d i a t i o n t h e d e c a y c u r v e is e x p o n e n t i a l w i t h a h a l f - l i f e o f 800 msec. obeys t h e s i m p l e l a w I oc f (15).
1
B e y o n d 10 sec. t h e e m i s s i o n
i n agreement w i t h L e h m a n a n d W a l l a c e
I f i t is a s s u m e d that t h e e x p o n e n t i a l d e c a y c a n b e e x t r a p o l a t e d
b a c k t o 5 /xsec. after i r r a d i a t i o n , t h e n t h e e x p o n e n t i a l p o r t i o n m a y b e s u b t r a c t e d f r o m t h e t o t a l d e c a y profile. T h e d e c a y c u r v e d e r i v e d i n this w a y is s h o w n i n F i g u r e 6 b y the d o t t e d l i n e . T h i s c u r v e also f o l l o w s a
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
454
RADIATION CHEMISTRY
1
r e c i p r o c a l p o w e r l a w d e c a y a l t h o u g h it does not extrapolate to meet the p o r t i o n of the c u r v e b e y o n d 10 sec. after i r r a d i a t i o n . Dose Dependence. I n o r d e r to investigate the effect of dose o n the l i g h t e m i s s i o n f r o m a d e n i n e the i n t e n s i t y of the e l e c t r o n b e a m w a s re d u c e d b y scattering a n d the c o m p l e t e d e c a y curves w e r e r e - r e c o r d e d . T h e thickest scattering plate u s e d r e d u c e d the dose to the p o w d e r b y a f a c t o r of 4.6. O v e r this l i m i t e d dose r a n g e it w a s f o u n d that the e m i s s i o n i n t e n s i t y at a n y t i m e after i r r a d i a t i o n w a s p r o p o r t i o n a l to the dose at b o t h r o o m t e m p e r a t u r e a n d at 93 °K., except at p o s t - i r r a d i a t i o n times less t h a n 50 ju,sec at r o o m t e m p e r a t u r e . A t these short times the l i g h t e m i s s i o n Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
p e r r a d s l i g h t l y i n c r e a s e d w i t h i n c r e a s i n g dose.
The deviation from a
l i n e a r dose d e p e n d e n c e w a s greater at the shortest t i m e a n d c o u l d b e a p p r o x i m a t e d to a ( D o s e ) 1
2
d e p e n d e n c e at 5 /xsec. T h e r e is a n i n d i c a t i o n
of a s i m i l a r s m a l l e r dose d e p e n d e n c e at short times at 9 3 ° K . , b u t this departure
is at
present
within
the
e x p e r i m e n t a l error
of
a
linear
dependence. Temperature Dependence. T h e t e m p e r a t u r e d e p e n d e n c e of the i n tensity at 475 n . m . at v a r i o u s times after i r r a d i a t i o n out to 4 msec, are p r e s e n t e d i n F i g u r e 7. A t temperatures a b o v e 3 0 0 ° K . there is a decrease i n the r e s i d u a l l u m i n e s c e n c e w i t h i n c r e a s i n g t e m p e r a t u r e . B e l o w 300 °K., h o w e v e r , the r e s i d u a l e m i s s i o n at a g i v e n t i m e after i r r a d i a t i o n has a m a x i m u m v a l u e at a p a r t i c u l a r t e m p e r a t u r e .
T h i s m a x i m u m occurs at
l o w e r temperatures as the o b s e r v a t i o n t i m e after i r r a d i a t i o n is i n c r e a s e d . A l l the d e c a y curves, w h e t h e r d i r e c t l y o b s e r v e d at constant t e m p e r a t u r e , or p l o t t e d at i n t e r m e d i a t e temperatures f r o m the s m o o t h e d curves of F i g u r e 7, are n o n - e x p o n e n t i a l i n f o r m a n d change g r a d u a l l y f r o m
the
shape at h i g h t e m p e r a t u r e to that at 93 ° K . B e c a u s e of the l o w i n t e n s i t y of the e m i s s i o n at temperatures a b o v e 1 6 0 ° K . for times greater t h a n 100 m s e c , it was not possible to f o l l o w the v a r i a t i o n of l u m i n e s c e n c e efficiency w i t h t e m p e r a t u r e over the c o m plete t e m p e r a t u r e range s h o w n i n F i g u r e 7.
It w a s , h o w e v e r , possible
to investigate the effect of t e m p e r a t u r e o n the e x p o n e n t i a l p o r t i o n of the l o w t e m p e r a t u r e d e c a y c u r v e over a l i m i t e d range near l i q u i d n i t r o g e n t e m p e r a t u r e . A n A r r h e n i u s p l o t of the e x p o n e n t i a l d e c a y at temperatures b e t w e e n 9 3 ° a n d 1 3 0 ° K . y i e l d e d a n a c t i v a t i o n energy of 0.007 e.v./molecule. T h i s v a l u e is i n agreement w i t h the a c t i v a t i o n energy f o u n d p r e v i o u s l y (16)
f o r the effect of t e m p e r a t u r e over the same range o n the
i n t e g r a t e d e m i s s i o n f o l l o w i n g 0.01 r a d x-ray pulses. A s the d o m i n a n t p a r t of the l o n g - l i v e d e m i s s i o n at the l o w t e m p e r a t u r e is the e x p o n e n t i a l , this is f u r t h e r e v i d e n c e , i n agreement w i t h the s p e c t r a l results, that the same process is r e s p o n s i b l e f o r e m i s s i o n at these extremes of dose. Radiation Damage. It w a s f o u n d that after d e l i v e r i n g a b o u t 1 M r a d to the p o w d e r at 9 3 ° K . , the slope of the e x p o n e n t i a l p o r t i o n of the d e c a y
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N AND LILLICRAP
Luminescence
455
Kinetics
decreased f r o m a h a l f - l i f e of 800 msec, to 600 m s e c , a n d also t h e i n t e n s i t y of e m i s s i o n at 1 s e c after i r r a d i a t i o n d r o p p e d b y a factor of t w o . A f t e r w a r m i n g t h e p o w d e r to r o o m t e m p e r a t u r e a n d r e c o o l i n g , t h e d e c a y c u r v e r e t u r n e d to n o r m a l .
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
10-
1
10 _
03 C
c
ior
I —^14 m sea
10'
3.7msecT^*^
10"
100
200
300 400 Temperature (°KJ
500
600
Figure 7. A composite plot of the temperature dependence of the luminescence intensity at various times after irradiation out to 4 msec. The data on this plot are taken from decay curves measured at various temperatures between 93°K. and 540°K. P h y s i c a l E f f e c t s . T o investigate the effect of a different atmosphere on the light emission from adenine, d r y argon was introduced into the s a m p l e c o m p a r t m e n t a n d the d e c a y curves at r o o m t e m p e r a t u r e a n d 93 ° K . m e a s u r e d .
N o difference e x c e e d i n g e x p e r i m e n t a l error c o u l d b e
d e t e c t e d b e t w e e n these curves a n d those r e c o r d e d i n a n atmosphere of air. W e t samples also gave the same d e c a y c u r v e at r o o m t e m p e r a t u r e . F i n a l l y , to test w h e t h e r the e m i s s i o n d e p e n d e d o n t h e size of t h e crystals, as i t m i g h t d o i f t h e e m i s s i o n w e r e l i m i t e d b y d i f f u s i o n of some entities to the c r y s t a l surface b u t n o t i f i t arose f r o m p h y s i c a l defects
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
456
RADIATION CHEMISTRY
1
t h r o u g h o u t the crystal, a n attempt was m a d e to r e d u c e the c r y s t a l size b y g r i n d i n g it w i t h a n agate pestle a n d m o r t a r a n d to increase the size by
r e c r y s t a l l i z a t i o n . N e i t h e r of these processes c a u s e d any significant
change, b u t it is not c e r t a i n that they s u c c e e d e d i n c h a n g i n g the size of the crystals. Discussion T h e m a i n features of this experiment w h i c h r e q u i r e a n e x p l a n a t i o n are the c o m p l e x shape of the l u m i n e s c e n c e d e c a y curves, especially at Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
93 °K., a n d the t e m p e r a t u r e d e p e n d e n c e of the emission.
O n a simple
e x c i t a t i o n t h e o r y w h i c h w i l l b e c o n s i d e r e d i n i t i a l l y , o n l y t r i p l e t states r e m a i n 1 /xsec. or longer after i r r a d i a t i o n as a l l the singlets p r o d u c e d w i l l h a v e r e t u r n e d to the g r o u n d state or u n d e r g o n e intersystem crossing to t r i p l e t states.
I n a d d i t i o n to the d i r e c t phosphorescence,
T
x
-»
S, a 0
n u m b e r of different p a t h w a y s are a v a i l a b l e for the r e m o v a l of the re m a i n i n g triplets. A c o m p l e t e d e c a y scheme m u s t i n c l u d e the f o l l o w i n g processes. 7\ —> S
x
T —> S + hp T T
t
t
2
+ T —> Tj + S t
+ T —> Sj + S r
0
(II)
fc
Bimolecular triplet quenching
(III)
k
Triplet-triplet annihilation
(IV)
3
0
(I)
Phosphorescence
k
0
x
Non-radiative quenching
k
0
4
T h e singlet p r o d u c e d i n Process I V m a y l e a d to d e l a y e d b y the r a d i a t i v e process S i - » S
0
+
fluorescence
hv, or to the p r o d u c t i o n of a f u r t h e r
t r i p l e t b y intersystem crossing. A s the singlet S i has a v e r y short l i f e t i m e , Process I V is n o r m a l l y the rate d e t e r m i n i n g step i n d e l a y e d fluorescence. F r o m these reactions the rate of d i s a p p e a r a n c e of triplets is g i v e n b y : ~ - ^ - - ( ^ i + ^ ) [ T i ] + (*3 + 2 - a * ) I T i ] i
where a =
4
p r o b a b i l i t y of intersystem crossing, S i - » T
2
d)
x
T h e l u m i n e s c e n c e intensity ( I ) of a l l q u a n t a is g i v e n b y the e q u a t i o n : I = ^ = f c [ T ] +fc [T ] / 2
where / =
p r o b a b i l i t y that S w i l l x
1
4
1
2
(2)
fluoresce.
T h e i n i t i a l c o n c e n t r a t i o n of triplets f o l l o w i n g i r r a d i a t i o n m a y be assumed to be p r o p o r t i o n a l to the dose as no second or h i g h e r order process has b e e n p r o p o s e d for t h e i r p r o d u c t i o n (5, 24). T h e relative i m p o r t a n c e of the first a n d second order d e c a y processes d e p e n d s o n the i n i t i a l c o n c e n t r a t i o n of triplets a n d also o n the t i m e of o b s e r v a t i o n after
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N AND LILLICRAP
Luminescence
457
Kinetics
i r r a d i a t i o n . T h i s is because, i n general, t h e rate of f o r m a t i o n of p r o d u c t s ( p h o t o n s i n this e x p e r i m e n t )
at a n y t i m e after i r r a d i a t i o n is d i r e c t l y
p r o p o r t i o n a l to dose i n first order reactions, whereas i n a s e c o n d o r d e r r e a c t i o n t h e d e p e n d e n c e of t h e p r o d u c t f o r m a t i o n rate o n dose varies from (dose)
2
at zero t i m e to ( d o s e ) ° at infinite t i m e .
A s t h e present
apparatus o n l y a l l o w s o b s e r v a t i o n f r o m 5 fisec. after i r r a d i a t i o n , i t w a s not possible to m a k e measurements at zero t i m e . D e c a y C u r v e a t 9 3 ° K . T h e d e c a y c u r v e at 9 3 ° K . ( F i g u r e 6 ) is r e a d i l y r e s o l v e d into three c o m p o n e n t s w h i c h m a y b e c o n s i d e r e d separately.
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
T h e t i m e intervals after i r r a d i a t i o n i n w h i c h these c o m p o n e n t s
occur
are 5 /xsec. t o 1 m s e c , 5 m s e c to 8 s e c , a n d 10 s e c to 300 sec. 5 M S E C , T O 8 SEC. A F T E R IRRADIATION.
F r o m 5 msec, t o 8 s e c after
i r r a d i a t i o n the c u r v e is e x p o n e n t i a l over n i n e h a l f - l i v e s a n d t h e intensity is d i r e c t l y p r o p o r t i o n a l to dose.
T h i s b e h a v i o r is that expected f r o m
phosphorescence (Process I I ) w i t h n e g l i g i b l e c o m p e t i t i o n f r o m b i m o l e c u lar Processes
I I I a n d I V . A s f u r t h e r e v i d e n c e that this is t h e process
observed, the s p e c t r u m taken at 600 msec, is i d e n t i c a l w i t h t h e u l t r a v i o l e t i n d u c e d phosphorescence of a d e n i n e (22).
H o w e v e r , as t h e exponent of
the e x p o n e n t i a l varies w i t h t e m p e r a t u r e i t w o u l d a p p e a r that t h e triplets are also b e i n g q u e n c h e d b y a radiationless process w i t h rate k
lt
If t h e
phosphorescence d e c a y (Process I I ) has a true rate constant m u c h s m a l l e r t h a n w o u l d give t h e o b s e r v e d 800 msec, h a l f - l i f e , t h e n t h e q u e n c h i n g Process I m u s t b e t h e rate d e t e r m i n i n g step i n t h e o b s e r v e d decay. this is so t h e n t h e a c t i v a t i o n energy of 0.007 e.v. (0.16 k c a l . )
If
obtained
earlier f r o m t h e t e m p e r a t u r e d e p e n d e n c e of t h e e x p o n e n t i a l d e c a y relates to t h e q u e n c h i n g process. H o w e v e r , i f k a n d k are a p p r o x i m a t e l y e q u a l , ±
2
the use of a s i m p l e A r r h e n i u s p l o t is not justified e v e n i f phosphorescence is a s s u m e d to h a v e zero a c t i v a t i o n energy. T h e h a l f - l i f e of the e x p o n e n t i a l gives t h e s u m k - f k = 0.875 s e c " at 9 3 ° K . w i t h t h e p o s s i b i l i t y that t
1
2
this is t h e v a l u e o f ki o n l y . 5 /XSEC. T O 1 M S E C , A F T E R IRRADIATION.
The
sections of t h e
decay
curves at times less t h a n 1 msec, a n d greater t h a n 10 sec. after i r r a d i a t i o n b o t h s h o w a n intensity d e p e n d e n c e w h i c h is i n v e r s e l y p r o p o r t i o n a l to the t i m e after i r r a d i a t i o n — i . e . , I cc r . I n a d e c a y scheme a p p l i c a b l e t o 1
short times after i r r a d i a t i o n , Processes I a n d I I h a v e to b e r u l e d o u t as b e i n g rate d e t e r m i n i n g since t h e s u m of t h e i r first o r d e r rate cannot g i v e a t i m e constant shorter t h a n 0.875 s e c " at 9 3 ° K . 1
constants As bi-
m o l e c u l a r processes h a v e a greater r e l a t i v e i m p o r t a n c e at short times w h e n t h e c o n c e n t r a t i o n of species is highest, Processes I I I a n d I V m a y be m a i n l y c o n t r i b u t i n g to t h e e a r l y p a r t of t h e decay. a n n i h i l a t i o n l e a d i n g to d e l a y e d
fluorescence
Triplet-triplet
has b e e n s h o w n b y a n u m
b e r of authors to f o l l o w u l t r a v i o l e t - a n d i o n i z i n g - i r r a d i a t i o n a n d has b e e n
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
458
RADIATION CHEMISTRY
1
suggested as a n e x p l a n a t i o n of the d e l a y e d c o m p o n e n t i n s c i n t i l l a t i o n counting ( 5 ) . If b i m o l e c u l a r Processes I I I a n d I V are t h e o n l y ones of i m p o r t a n c e at short times, t h e n E q u a t i o n s 1 a n d 2 m a y b e r e d u c e d t o : - d m
=(h
d t
(3)
+ 2-ah){T y i
(4)
I = h[TiVf S o l v i n g E q u a t i o n s 3 a n d 4 f o r the t i m e d e p e n d e n c e of J g i v e s :
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
I — where K =
+
(k
s
2 — a k ),
h (KTJ+ I
4
0
=
l )
(5) 2
v
[T ] fc f and T 2
0
4
0
=
;
initial concen
t r a t i o n of triplets. A p l o t of l o g I vs. l o g t w i t h these kinetics w o u l d s h o w a negative slope w h o s e m a g n i t u d e w o u l d increase w i t h t i m e a n d a p p r o a c h a v a l u e of —2 after several h a l f - l i v e s . A s t h e e x p e r i m e n t a l d a t a are a v e r y close fit to a r e c i p r o c a l plot, d e l a y e d
fluorescence
cannot b e c o n
t r i b u t i n g m u c h to t h e i n i t i a l decay. A l t e r n a t i v e l y , a l t h o u g h Process I I cannot b e t h e rate d e t e r m i n i n g process it m a y s t i l l b e t h e emission process p r o v i d e d that the q u e n c h i n g of emission determines t h e rate of decay.
If t h e b i m o l e c u l a r processes
(Processes I I I a n d I V ) are t h e i m p o r t a n t q u e n c h i n g processes, E q u a t i o n 3 remains a p p l i c a b l e .
A l s o , as d e l a y e d
fluorescence
has b e e n s h o w n to
b e u n i m p o r t a n t , t h e n either fc or the factor / is s m a l l a n d E q u a t i o n 2 4
reduces t o : J = *2lTi]
() 6
S o l v i n g E q u a t i o n s 3 a n d 6 f o r t h e t i m e d e p e n d e n c e of I g i v e s : (7)
(KTJ+1) where I
0
=
k [T ']. 2
phosphorescence
0
T h i s expression describes b i m o l e c u l a r q u e n c h i n g of
a n d a p p r o x i m a t e s to I a f
1
after 7 has decreased b y 0
a f e w h a l f - l i v e s . It thus fits t h e d a t a of F i g u r e 6 f r o m about 5 /xsec. after irradiation. I n the region where the reciprocal approximation holds, E q u a t i o n 7 also p r e d i c t s that t h e intensity is i n d e p e n d e n t of dose. ever, that t h e i n t e n s i t y is p r o p o r t i o n a l to dose.
It is f o u n d , h o w
T h i s dose
dependence
c o u l d arise i n this k i n e t i c scheme i f t h e species c a u s i n g l u m i n e s c e n c e are i n n o n - o v e r l a p p i n g clusters o r " s p u r s " a n d a n increase
i n dose s i m p l y
results i n a p r o p o r t i o n a t e increase i n t h e n u m b e r of s u c h clusters.
How
ever, this "cluster m o d e l " w o u l d i m p l y that v i r t u a l l y a l l triplets m u s t b e f o r m e d i n t h e clusters, a n d there is as y e t n o other e v i d e n c e f o r this.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N AND LILLICRAP
Luminescence
459
Kinetics
10 SEC. TO 300 SEC. A F T E R IRRADIATION. T h e r e c i p r o c a l d e c a y at times longer t h a n 10 sec. cannot b e c a u s e d b y b i m o l e c u l a r t r i p l e t reactions since, i f present, these b e c a m e n e g l i g i b l e c o m p a r e d w i t h t h e s i m p l e first o r d e r t r i p l e t d e c a y f r o m 10 msec, o n w a r d s . Processes I t o I V alone are therefore n o t sufficient to a c c o u n t f o r this l o n g - l i v e d e m i s s i o n a n d a n alternative e x p l a n a t i o n m u s t b e c o n s i d e r e d . T h e p r o p e r t y of t h e r m o l u m i n e s c e n c e demonstrates t h e existence of t r a p p i n g sites i n a d e n i n e p o w d e r ( 1 5 , 16, 22).
T h e luminescence decay
at times greater t h a n 10 sec. after i r r a d i a t i o n c a n b e a d e q u a t e l y e x p l a i n e d b y t h e existence of s u c h traps. A s t h e e m i s s i o n s p e c t r u m at 15 sec. is Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
i d e n t i c a l w i t h that of the phosphorescence ( F i g u r e 4 ) , i t is reasonable t o assume, i n s u c h a t r a p p i n g m o d e l , that t h e emission after 10 sec. is f r o m the same energy t r a n s i t i o n as t h e phosphorescence b u t that t h e release of energy f r o m t h e traps is t h e rate d e t e r m i n i n g step. T h e kinetics of d e l a y e d e m i s s i o n a r i s i n g f r o m electron t r a p p i n g i n i n o r g a n i c p h o s p h o r s has b e e n c o n s i d e r e d b y R a n d a l l a n d W i l k i n s ( 1 8 ) w h o s h o w e d h o w the f o r m of the d e c a y a n d its d e p e n d e n c e o n t e m p e r a ture d e p e n d e d o n the d i s t r i b u t i o n of t r a p depths. F o r a u n i f o r m d i s t r i b u t i o n of t r a p levels they s h o w e d that the i n t e n s i t y is i n v e r s e l y p r o p o r t i o n a l to t i m e after i r r a d i a t i o n for times greater t h a n one m i c r o s e c o n d . P r o v i d e d there is n o s a t u r a t i o n the i n t e n s i t y w i l l b e p r o p o r t i o n a l to dose.
This
r e l a t i o n a n d p r e d i c t e d dose d e p e n d e n c e agree w i t h the e x p e r i m e n t a l d a t a f r o m 10 sec. after i r r a d i a t i o n . I f t h e f r e q u e n c y factors (18) of t h e traps i n a d e n i n e are a l l of t h e same m a g n i t u d e , t h e n traps responsible f o r t h e l o n g t e r m d e c a y w i l l b e s h a l l o w e r t h a n t h e — 0 . 2 e.v. t r a p responsible for
t h e 1 2 0 ° K . g l o w peak (15, 16).
Thus, a trapping model with an
a p p r o x i m a t e l y u n i f o r m d i s t r i b u t i o n of t r a p depths w i l l a d e q u a t e l y ac c o u n t f o r t h e d e c a y at times greater t h a n 10 sec.
S u c h a m o d e l w i l l also
e x p l a i n t h e r e c i p r o c a l d e c a y f r o m 5 fisec. t o 1 msec, a n d its dose d e p e n d e n c e , p r o v i d e d t h e l i b e r a t i o n of energy f r o m t h e traps is also t h e rate d e t e r m i n i n g process i n this r e g i o n . Temperature Dependence.
A t room temperature
the exponential
phosphorescence d e c a y is absent, p r e s u m a b l y because of t h e r e m o v a l of t r i p l e t states b y t h e t e m p e r a t u r e sensitive q u e n c h i n g process f o u n d at l o w temperatures.
T h e d e c a y f r o m 5 /xsec. to 5 msec, d i d n o t fit a n y
s i m p l e d e c a y scheme a l t h o u g h t h e m e a n slope of the d e c a y o n a l o g - l o g p l o t w a s — 1 . I n the first 200 psec. after i r r a d i a t i o n the r o o m t e m p e r a t u r e e m i s s i o n is m o r e intense t h a n at 93 ° K . A s i m i l a r t e m p e r a t u r e d e p e n d e n c e of t h e l u m i n e s c e n c e of anthracene crystals has b e e n o b s e r v e d f o l l o w i n g u l t r a v i o l e t e x c i t a t i o n (1, 23).
T h i s b e h a v i o r w a s i n t e r p r e t e d as b e i n g
c a u s e d b y t h e e n h a n c e d intersystem crossing to the t r i p l e t states at t h e h i g h e r temperatures.
This model, however, w o u l d not explain w h y the
l u m i n e s c e n c e intensity of hot a d e n i n e p o w d e r i n F i g u r e 7 w a s l o w e r t h a n
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
460
RADIATION CHEMISTRY
that at r o o m temperature.
1
I n the t r a p p i n g m o d e l , h o w e v e r , the h i g h e r
l u m i n e s c e n c e intensity at r o o m t e m p e r a t u r e w o u l d result if the t i m e spent i n traps decreased w i t h i n c r e a s i n g t e m p e r a t u r e so that the energy nor m a l l y t r a p p e d at l o w t e m p e r a t u r e
was i m m e d i a t e l y a v a i l a b l e for re-
emission at the h i g h e r temperatures.
T h i s w o u l d also account f o r the
peaks i n the l u m i n e s c e n c e intensity vs. temperature plots of F i g u r e 7 if the subsequent decrease i n i n t e n s i t y at temperatures above the p e a k t e m p e r a t u r e w a s the result of a c o m p e t i n g temperature-sensitive q u e n c h i n g process w h i c h d o m i n a t e d after the deepest traps w e r e e m p t i e d .
The
t e m p e r a t u r e at the peaks of F i g u r e 7 changes w i t h o b s e r v a t i o n t i m e , a n d Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
this t i m e c a n be t a k e n as a representative v a l u e of the l i f e t i m e , T , of the t r a p p e d species.
T h e r e l a t i o n s h i p b e t w e e n r a n d the energy of the t r a p ,
E , is g i v e n b y : I = se~
(8)
E/kT
T
A p l o t of l o g T vs. 1/T
should,
therefore, b e l i n e a r w i t h a slope of
F i g u r e 8 shows the result of this p l o t for o b s e r v a t i o n times be
—E/k.
t w e e n 7.5 /xsec. a n d 375 /xsec, a n d temperatures b e t w e e n 2 0 0 ° a n d 3 0 0 ° K . A t l o w e r temperatures the p e a k is not seen because of the a p p e a r a n c e of the T
t
-» S
of 0.22 e.v.
0
phosphorescence.
T h e slope of this p l o t gives a t r a p d e p t h
S u b s t i t u t i n g this t r a p d e p t h i n t o E q u a t i o n 8 y i e l d s a fre
q u e n c y factor, s, of 9 X 1 0 l o w e r l i m i t of 1 0
8
8
sec." . T h i s v a l u e m a y be c o m p a r e d w i t h a 1
sec." estimated b y L e h m a n a n d W a l l a c e ( 1 5 )
from
1
w h i c h they d e r i v e d a m i n i m u m v a l u e of 0.17 e.v. for the t r a p d e p t h re sponsible for t h e r m o l u m i n e s c e n c e .
U s i n g the h i g h e r v a l u e of s d e r i v e d
above together w i t h the g l o w p e a k d a t a of L e h m a n a n d W a l l a c e
(15)
y i e l d s a " t h e r m o l u m i n e s c e n c e " t r a p d e p t h of 0.19 e.v. i n closer agreement w i t h the present v a l u e of 0.22 e.v. A b o v e the p e a k temperatures
the e m i s s i o n q u e n c h i n g curves
are
a p p r o x i m a t e l y p a r a l l e l a n d a n A r r h e n i u s p l o t of these portions of the curves gives a n a c t i v a t i o n energy for the q u e n c h i n g of l u m i n e s c e n c e of a b o u t 0.15 e.v./molecule. T h i s v a l u e is m u c h larger t h a n 0.007 e.v./molec u l e o b t a i n e d for q u e n c h i n g of the phosphorescence at l o w temperatures. H o w e v e r , i t does agree a p p r o x i m a t e l y w i t h the l o w - d o s e x-ray d a t a
(16)
w h e r e it was f o u n d that there are t w o t e m p e r a t u r e sensitive q u e n c h i n g processes, one d o m i n a t i n g a b o v e a n d one b e l o w a t r a n s i t i o n t e m p e r a t u r e of 130 ° K . T h e a c t i v a t i o n energies i n R e f e r e n c e 16 for these t w o processes w e r e f o u n d to be 0.07 e.v./molecule a n d 0.007 e.v./molecule for the h i g h a n d l o w t e m p e r a t u r e regions, r e s p e c t i v e l y . Differences in Emission Spectra.
T h e cluster m o d e l , w h i c h
arose
f r o m a c o n s i d e r a t i o n of t r i p l e t state Processes I to I V o n l y , does not sug gest a n o b v i o u s e x p l a n a t i o n f o r the b r o a d e r spectra at short times
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(see
31.
F I E L D E N A N D LILLICRAP
Luminescence
461
Kinetics
F i g u r e 4 ) , unless i m p u r i t i e s are responsible, as the t r a n s i t i o n T - » S t
0
+
hv gives t h e o b s e r v e d l u m i n e s c e n c e at a l l times after i r r a d i a t i o n . O n t h e t r a p p i n g m o d e l , w h e r e t h e l i b e r a t i o n of energy f r o m traps is t h e rate d e t e r m i n i n g process, t h e e m i s s i o n s p e c t r u m at short times is e x p e c t e d to be different f r o m t h e phosphorescence s p e c t r u m as this t r a n s i t i o n , 2\ —» S
0
+ hv, is m u c h s l o w e r t h a n t h e i n i t i a l d e c a y . H e n c e , a faster t r a n s i t i o n
m u s t b e responsible f o r this e a r l y emission. O n e p o s s i b l e t r a n s i t i o n w h i c h m a y b e c o n t r i b u t i n g here is the
fluorescence
transition S - » S x
the i n i t i a l release of energy f r o m traps leads to e x c i t e d singlet states. A s all immediate
fluorescence
is m a s k e d i n this e x p e r i m e n t b y t h e a c c o m
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
p a n y i n g C e r e n k o v l i g h t , i t w o u l d b e necessary
to operate
b e l o w the
C e r e n k o v energy l i m i t to test this p o i n t . ,-3 10"
3.0
5.0
4.0 T
x
10'»-3
(V ) 1
Figure 8. Dependence of the lifetime, T , of the trapped species on temperature. The lifetimes and corresponding temperatures are derived from Figure 7 (see text) Conclusions T h e e v i d e n c e r e v i e w e d a b o v e suggests that a l t h o u g h a c l u s t e r - m o d e l f o r the i n i t i a l f o r m a t i o n of t r i p l e t states w i t h subsequent
bimolecular
t r i p l e t q u e n c h i n g cannot b e r u l e d out, a m o r e p r o b a b l e e x p l a n a t i o n of
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
462
RADIATION CHEMISTRY
1
the e a r l y r e c i p r o c a l d e c a y c u r v e at b o t h r o o m t e m p e r a t u r e a n d 93 ° K . is the p r o p o s e d t r a p p i n g m o d e l , w h i c h has a n a p p r o x i m a t e l y u n i f o r m dis t r i b u t i o n of t r a p depths i n a range 0 to 0.22 e.v. T h i s t r a p p i n g m o d e l is also t h e most l i k e l y e x p l a n a t i o n of t h e l o w t e m p e r a t u r e e m i s s i o n at times longer t h a n 10 sec. after i r r a d i a t i o n . A t these l o n g e r times, e m i s s i o n is t h e result of a t r i p l e t to singlet g r o u n d state t r a n s i t i o n w h i c h is also responsible f o r t h e l o w t e m p e r a t u r e phosphorescence
f r o m 5 msec, to
8 sec. after i r r a d i a t i o n .
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
Acknowledgments T h e authors w o u l d l i k e t o t h a n k J . W . B o a g f o r h i s e n c o u r a g e m e n t a n d f o r m a n y h e l p f u l discussions a n d L . T . L o v e r o c k f o r h i s t e c h n i c a l assistance.
W e also w i s h to thank J . C u r r a n t a n d R . H a l e f o r their
o p e r a t i o n of t h e l i n e a r accelerator f o r these studies.
Literature Cited (1) Adolph, J., Williams, D. F.,J.Chem. Phys. 46, 4248 (1967). (2) Augenstein, L., Carter, J., Nag-Chaudhuri, Y., Nelson, D., Yeargers, E., "Symposium on Physical Mechanisms in Radiation Biology," L. Augen stein, R. Mason, B. Rosenberg, eds., p. 73, Academic Press, New York, 1964. (3) Augenstein, L. G., Carter, J. G., Nelson, D. R., Yockey, H. P., Radiation Res.Suppl.2,19 (1960). (4) Azumi, T., McGlynn, S. P.,J.Chem. Phys. 39, 1186 (1963). (5) Birks, J. B., "The Theory and Practice of Scintillation Counting," Chapter 6, Pergamon Press, London, England, 1964. (6) Bollinger, L. M., Thomas, G. E., Rev. Sci. Instrum. 32, 1044 (1961). (7) Carter, J. G., Birkhoff, R. D., Nelson, D. R., Health Physics 10, 539 (1964). (8) Collinson, E., Swallow, A.J.,Chem. Rev. 56, 471 (1956). (9) Fano, U., "Comparative Effects of Radiation," M. Burton, J. S. KirbySmith, J. L. Magee, eds., p. 14, J. Wiley and Sons, New York, Ν. Y., 1960. (10) Fielden, Ε. M. (to be published). (11) Frank, I. M., Tamm,I.,Dokl.Akad.Nauk,S.S.S.R. 14, 109 (1937). (12) Hodgman, C. D., Weast, R. C., Selby, S. M., eds., "Handbook of Chem istry and Physics," 45th ed., Chemical Rubber Publishing Co., 1964. (13) King, Τ. Α., Voltz,R.,Proc. Roy. Soc. A289, 424 (1966). (14) Kupperman, Α., Raff, L. M., "Symposium on Physical Mechanisms in Radiation Biology," L. Augenstein, R. Mason, B. Rosenberg, eds., p. 161, Academic Press, New York, 1964. (15) Lehman, R. L., Wallace, R., "Electronic Aspects of Biochemistry," B. Pull man, ed., p. 43, Academic Press, New York, 1964. (16) Lillicrap, S. C . , "Radiation Effects on Subcellular Systems and Model Compounds," p. 175, K. Lohs, A. Rakow, eds., Studia Biophysica 7, East Berlin, 1968. (17) Massey, H. S. W., Burhop, E. H. S., "Electronic and Ionic Impact Phe nomena," 1st ed., p. 141, Oxford University Press, London, 1952. (18) Randall, J. T., Wilkins, M. H. F., Proc. Roy. Soc. A184, 390 (1945).
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
31.
F I E L D E N AND LILLICRAP
Luminescence
Kinetics
463
(19)
Rich, J. A., Slovacek, R. E., Studer, F. J., J. Opt. Soc. Am. 43, 75G
(20)
(22) (23)
Robinson, G. W., Frosch, R. P., Duke Univ. Symp. Reversible Photochem. Processes, Durham, North Carolina, 1962. Seitz, F., Fonda, G. R., eds., "Solid LuminescentMaterials,"J. Wiley and Sons, New York, 1948. Singh, B. B., Charlesby, A., Intern. J. Radiation Biol. 9, 157 (1965). Singh, S., Jones, W. J., Siebrand, W., Stoicheff, B. P., Schneider, W. G.,
(24)
Sternlicht, H., Nieman, G. C., Robinson, G. W., J. Chem. Phys. 38, 1326
(25)
Weinberg, C. J., Nelson, D. R., Carter, J. G., Augenstein, L. G.,J.Chem.
(1953).
(21)
J. Chem. Phys. 42, 330 (1965). (1963).
Downloaded by TUFTS UNIV on December 11, 2016 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0081.ch031
Phys. 36, 2869 (1962). RECEIVED December 26,
1967.
Hart; Radiation Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.