Chapter 7
Luminescence Standards for Macro-and Microspectrofluorometry
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
Rance A. Velapoldi and Michael S. Epstein Center for Analytical Chemistry, National Bureau of Standards, Gaithersburg, MD 20899 Requirements for standards used in macro- and micro spectrofluorometry differ, depending on whether they are used for instrument calibration, standardization, or assessment of method accuracy. Specific examples are given of standards for quantum yield, number of quanta, and decay time, and for calibration of instrument parameters, including wavelength, spectral responsivity (determining correction factors for luminescence spectra), stability, and linearity. Differences in requirements for macro- and micro-standards are consid ered, and specific materials used for each are compared. Pure compounds and matrix-matched standards are listed for standardization and assessment of method accuracy, and existing Standard Reference Materials are discussed. The i n h e r e n t s e n s i t i v i t y and s e l e c t i v i t y o f s p e c t r o f l u o r o m e t r y , c o u p l e d w i t h the advances i n e l e c t r o - o p t i c a l components and compute r s , has l e d t o the wide use o f s p e c t r o f l u o r o m e t r y d u r i n g the l a s t t h r e e decades i n d i v e r s e a r e a s o f a n a l y s i s , i n c l u d i n g a n a l y t i c a l c h e m i s t r y , c e l l u l a r b i o l o g y , g e o c h e m i s t r y , and m a i l s o r t i n g systems The i n f o r m a t i o n o b t a i n e d from t h e s e measurements has had a p r o f o u n d impact on a l l o f t h e s e a r e a s , f o r example, i n a s s e s s i n g m o l e c u l a r i n t e r a c t i o n s used f o r q u a l i t a t i v e and q u a n t i t a t i v e a n a l y s e s , c h r o m a t o g r a p h i c s e p a r a t i o n s , c e l l u l a r make-up and i n t e r a c t i o n s , m o l e c u l a r volume, r o t a t i o n and d i f f u s i o n c o e f f i c i e n t s f o r l a r g e m o l e c u l e s , d e t e r m i n a t i o n o f p o r o s i t i e s o f g e o l o g i c samples on a m i c r o - and m a c r o - s c a l e , p h o t o c h e m i c a l and k i n e t i c p r o c e s s e s , and energy t r a n s f o r m a t i o n / c o n v e r s i o n . I n g e n e r a l , luminescence measurements a r e r e l a t i v e r a t h e r t h a n a b s o l u t e , s i n c e the i n s t r u m e n t c h a r a c t e r i s t i c s and sample p r o p e r t i e s t h a t determine the f l u o r e s c e n c e i n t e n s i t i e s are o f t e n n o t w e l l defined. A b s o l u t e luminescence measurements are d i f f i c u l t t o p e r f o r m and r e q u i r e time and i n s t r u m e n t a t i o n n o t a v a i l a b l e i n most l a b o r a t o ries. Thus, luminescence measurements r e l y h e a v i l y on s t a n d a r d s t o determine i n s t r u m e n t responses and p a r a m e t e r s , the c h e m i c a l composit i o n o f samples, and the c h a r a c t e r i s t i c s o f c h e m i c a l s y s t e m s . To This chapter not subject to U.S. copyright Published 19S9 American Chemical Society
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
VELAPOLDI AND EPSTEIN
Macro- and Microspectrofluorometry
99
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
a v o i d i n a c c u r a c y and c o n f u s i o n i n luminescence measurements and d a t a i n t e r p r e t a t i o n , r e l i a b l e s t a n d a r d s a r e needed. Definition and Uses of Standards. I n the c o n t e x t o f t h i s p a p e r , the term " s t a n d a r d " denotes a w e l l - c h a r a c t e r i z e d m a t e r i a l f o r w h i c h a p h y s i c a l parameter o r c o n c e n t r a t i o n o f c h e m i c a l c o n s t i t u e n t has been d e t e r m i n e d w i t h a known p r e c i s i o n and a c c u r a c y . These s t a n d a r d s can be used t o check o r determine (a) i n s t r u m e n t a l parameters such as w a v e l e n g t h a c c u r a c y , d e t e c t i o n - s y s t e m s p e c t r a l r e s p o n s i v i t y , and s t a b i l i t y ; (b) the i n s t r u m e n t response t o s p e c i f i c f l u o r e s c e n t s p e c i e s ; and (c) the a c c u r a c y o f measurements made by s p e c i f i c i n s t r u m e n t s o r measurement p r o c e d u r e s ( a s s e s s whether the a n a l y t i c a l measurement p r o c e s s i s i n s t a t i s t i c a l c o n t r o l and whether i t e x h i b i t s bias). Once the luminescence i n s t r u m e n t a t i o n has been c a l i b r a t e d , i t can be used t o measure the luminescence c h a r a c t e r i s t i c s o f c h e m i c a l systems, i n c l u d i n g c o r r e c t e d e x c i t a t i o n and e m i s s i o n s p e c t r a , quantum y i e l d s , decay t i m e s , e m i s s i o n a n i s o t r o p i c s , energy t r a n s f e r , and, w i t h a p p r o p r i a t e s t a n d a r d s , the c o n c e n t r a t i o n s o f c h e m i c a l c o n s t i t u e n t s i n complex samples. S e v e r a l books and symposium p r o c e e d i n g s on l u m i n e s c e n c e s t a n dards and measurements have been p u b l i s h e d i n the l a s t s e v e r a l y e a r s , i n c l u d i n g : "Advances i n Standards and Methodology i n S p e c t r o p h o t o metry" ( I ) , "Measurement o f P h o t o l u m i n e s c e n c e " ( 2 ) , "Standards i n Fluorescence Spectrometry" ( 3 ) , and "Modern F l u o r e s c e n c e S p e c t r o scopy" (Volumes 1-4) ( 4 ) . These b o o k s , the r e f e r e n c e s w i t h i n them, and the c l a s s i c i n the f i e l d , "Photoluminescence o f S o l u t i o n s " by C . A . P a r k e r ( 5 ) , p r o v i d e the r e s e a r c h e r w i t h e x t e n s i v e i n f o r m a t i o n about luminescence s t a n d a r d s and measurements. I n t h i s c h a p t e r , we w i l l r e v i e w luminescence s t a n d a r d s f o r m a c r o s p e c t r o f l u o r o m e t r y and e x t e n d the d i s c u s s i o n t o s t a n d a r d s f o r microspectrofluorometry. The term " l u m i n e s c e n c e " i n c l u d e s b o t h f l u o r e s c e n c e and phosphorescence; however, we w i l l c o n t i n u e t o use g e n e r a l l y a c c e p t e d t e r m i n o l o g y such as " s p e c t r o f l u o r o m e t r y " o r " m i c r o s p e c t r o f l u o r o m e t e r , " even though " s p e c t r o l u m i n i m e t r y " might be more r e p r e s e n t a t i v e o r "luminescence s p e c t r o m e t e r f o r measurements on a m i c r o s c a l e " might be more c o r r e c t ( 6 ) . A l t h o u g h m a c r o s p e c t r o f l u o r o m e t r i c s t a n d a r d s are d i s c u s s e d f i r s t , the comments b a s i c a l l y h o l d f o r m i c r o s p e c t r o f l u o r o m e t r i c s t a n d a r d s , e x c e p t i n the s p e c i a l a r e a s o f s t a b i l i t y and s i z e and shape, w h i c h w i l l be d i s c u s s e d l a t e r . Macrospectrofluorometric
Standards
Requirements of Standards. The g e n e r a l r e q u i r e m e n t s f o r luminescence s t a n d a r d s have been d i s c u s s e d e x t e n s i v e l y (3,7-9) and i n c l u d e s t a b i l i t y , p u r i t y , no o v e r l a p between e x c i t a t i o n and e m i s s i o n s p e c t r a , no oxygen q u e n c h i n g , and a h i g h , c o n s t a n t quantum y i e l d independent o f e x c i t a t i o n wavelength. S p e c i f i c system p a r a m e t e r s - - s u c h as the b r o a d or narrow e x c i t a t i o n and e m i s s i o n s p e c t r a , i s o t r o p i c o r a n i s o t r o p i c emission, s o l u b i l i t y i n a s p e c i f i c solvent, s t a b i l i t y (standard r e l a t i v e t o s a m p l e ) , and c o n c e n t r a t i o n - - a l m o s t r e q u i r e the s t a n d a r d t o be i n the same c h e m i c a l and p h y s i c a l environment as the sample. I n the i d e a l c a s e , the s t a n d a r d and the sample s h o u l d be the same c h e m i c a l i n the same m a t r i x . The b e s t we c a n hope f o r i s a j u d i c i o u s c h o i c e o f w e l l - c h a r a c t e r i z e d s t a n d a r d s t o c o v e r most measurement situations. A t the same t i m e , the r e s e a r c h e r and u s e r must be aware
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
100
LUMINESCENCE APPLICATIONS
o f the c o r r e c t a p p l i c a t i o n o f the s t a n d a r d s and the l i m i t a t i o n s i n h e r e n t i n luminescence s p e c t r o m e t e r s and s t a n d a r d s .
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
Functions of Standards. F l u o r e s c e n t s t a n d a r d s c a n be u s e d f o r t h r e e basic functions: c a l i b r a t i o n , s t a n d a r d i z a t i o n , and measurement method assessment. I n c a l i b r a t i o n , the s t a n d a r d i s used t o check o r c a l i b r a t e i n s t r u m e n t c h a r a c t e r i s t i c s and p e r t u r b a t i o n s on t r u e spectra. F o r s t a n d a r d i z a t i o n , s t a n d a r d s a r e used t o determine the f u n c t i o n that r e l a t e s chemical c o n c e n t r a t i o n to instrument response. T h i s l a t t e r use has been expanded from pure m a t e r i a l s t o q u i t e complex s t a n d a r d s t h a t are c a r r i e d t h r o u g h the t o t a l c h e m i c a l measurement p r o c e s s ( 1 0 ) . These more complex s t a n d a r d s a r e now used t o a s s e s s the p r e c i s i o n and a c c u r a c y o f measurement p r o c e d u r e s . C a l i b r a t i o n . I n g e n e r a l , standards used f o r instrument c a l i b r a t i o n a r e p h y s i c a l d e v i c e s ( s t a n d a r d lamps, f l o w m e t e r s , e t c . ) o r pure c h e m i c a l compounds i n s o l u t i o n ( s o l i d o r l i q u i d ) , a l t h o u g h some combined forms c o u l d be used ( e . g . , T b + E u I n g l a s s f o r w a v e l e n g t h c a l i b r a t i o n ) . C a l i b r a t e d i n s t r u m e n t parameters i n c l u d e wavelength accuracy, detection-system s p e c t r a l r e s p o n s i v i t y (to determine c o r r e c t e d e x c i t a t i o n and e m i s s i o n s p e c t r a ) , and s t a b i l i t y , among o t h e r s . F l u o r e s c e n c e d a t a such as c o r r e c t e d e x c i t a t i o n and e m i s s i o n s p e c t r a , quantum y i e l d s , decay t i m e s , and p o l a r i z a t i o n t h a t a r e t o be compared among l a b o r a t o r i e s a r e dependent on t h e s e c a l i brations. The i n s t r u m e n t and f l u o r e s c e n c e parameters and v a r i o u s s t a n d a r d s , r e v i e w e d r e c e n t l y (1,2,11), are d i s c u s s e d b r i e f l y b e l o w . 3 +
3 +
Wavelength. Three types o f s t a n d a r d s used f o r w a v e l e n g t h c a l i b r a t i o n a r e n a r r o w - s p e c t r a l - l i n e l o w - p r e s s u r e d i s c h a r g e s o u r c e s and l a s e r s ; o r g a n i c and i n o r g a n i c s p e c i e s i n s o l u t i o n ; and narrow bands from the e x c i t a t i o n s o u r c e s ( X e , Hg) ( e . g . , see R e f s . 11-16). For wavelength a c c u r a c i e s a p p r o a c h i n g 0 . 1 nm, n a r r o w - l i n e s o u r c e s a r e recommended; s e v e r a l are l i s t e d i n T a b l e I . A few l i n e s o r many l i n e s c o v e r i n g the w a v e l e n g t h r e g i o n o f i n t e r e s t can be used ( 1 7 ) . P r o c e d u r e s f o r c a l i b r a t i n g b o t h monochromators i n a f l u o r e s c e n c e s p e c t r o m e t e r u s i n g narrow l i n e s o u r c e s have been d i s c u s s e d ( 1 5 , 1 8 ) ; c a r e must be t a k e n w i t h placement o f the c a l i b r a t i o n s o u r c e . For ease o f use and w a v e l e n g t h a c c u r a c i e s o f 1-2 nm, o r g a n i c m a t e r i a l s o r i n o r g a n i c i o n s i n s o l u t i o n have been recommended as standards (Table I I ) . However, t h e s e must be u s e d c a r e f u l l y because (a) the peak maxima are m a t r i x dependent, (b) narrow i n s t r u m e n t a l bandpasses are n e c e s s a r y , ( c ) i m p u r i t i e s may a f f e c t peak l o c a t i o n , and (d) the peak w a v e l e n g t h v a l u e s have g e n e r a l l y n o t been c e r t i f i e d (11). As mentioned p r e v i o u s l y ( 1 1 ) , the w a v e l e n g t h p o s i t i o n and s t a b i l i t y o f s p e c t r a l l i n e s from xenon o r mercury e x c i t a t i o n s o u r c e s o f s p e c t r o f l u o r o m e t e r s may be v a r i a b l e w i t h time-, and such s o u r c e s a r e d i f f i c u l t t o use w i t h c e r t a i n t y f o r the c a l i b r a t i o n o f monochromators . Spectral Responsivity Standards (for Corrected Spectra). Depending on the c o n d i t i o n s , many d i f f e r e n t o r g a n i c and i n o r g a n i c compounds i n v a r i o u s s o l v e n t s have been used as s t a n d a r d s f o r d e t e r m i n i n g the s p e c t r a l r e s p o n s i v i t y of instruments. S e v e r a l measurement p r o c e -
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
VELAPOLDI AND EPSTEIN
101
Macro- and Microspectrofluorometry
Table I . S p e c t r a l L i n e s from E x t e r n a l Sources Used f o r Monochromator Wavelength C a l i b r a t i o n
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
Wavelength (nm)
Source 3
Line
Laser
202.55 253.65 296.73 325.03 365.01 404.66
Zn Hg Hg
_
435.84 514.54 546.07 576.96 579.07 632.82
Hg
692.95 724.52 752.55 799.30 852.11 894.35
Ne Ne
a
Hg Hg
3+
_
15 24 25 25 25 24
Ar Hg Hg Hg
-
-
He-Ne
Cs Cs
27 27 24 24 27 27
Kr Kr
-
Luminescence Wavelength S t a n d a r d s - - O r g a n i c s and I n o r g a n i c Ions i n G l a s s M a t r i c e s
Phenanthrene Gd Tb Sm Eu A n t h r a c e n e , Napht h a l e n e , Ovalene 3 +
-
He-Cd
Matrix
3 +
27 15 15 24 25 15
-
Wavelengths i n a i r .
Table I I .
3+
Reference
n-CeHi2 Borate Glass Borate Glass Phosphate G l a s s Phosphate G l a s s Polymer B l o c k s
m
Wavelength < > * 211- 346 248- 274 220- 379 318- 526
i n Solution
Reference
_
312 486 562-707 578-612 300-550
Wavelengths rounded t o n e a r e s t nanometer.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
19 20 20 20 21 22
102
LUMINESCENCE APPLICATIONS
d u r e s , i n c l u d i n g a b s o l u t e measurements, c a n be used t o determine v a r i o u s c o r r e c t i o n f a c t o r s g i v e n i n e q u a t i o n s 1 and 2 . Excitation Spectra (11,19;.· 1
*(λ )
- Χ (Χ )ηρ(Χ )/τ(Χ )]Ν(Χ )[τ'(Χ )Γ
χ
χ
Α
χ
χ
(1)
χ
χ
the
where Χ(Χ ) i s the c o r r e c t e d spectrum, Χ i s the measured e x c i t a t i o n spectrum i n c l u d i n g c o r r e c t i o n s f o r s t r a y r a d i a t i o n ; k i s a c o n s t a n t ; ρ(Χ )/τ(Χ ) i s the b e a m - s p l i t t e r c o r r e c t i o n f a c t o r ; # ( λ ) i s the r e f e r e n c e d e t e c t o r w a v e l e n g t h response i n c l u d i n g the t r a n s m i t t a n c e o f the d e t e c t o r window; and τ' (Χ ) i s the t r a n s m i t t a n c e o f the sample c e l l window. For e x c i t a t i o n s p e c t r a , the a c c u r a c y o f the c o r r e c t i o n p r o c e d u r e can be checked by comparing the c o r r e c t e d , n o r m a l i z e d v a l u e s w i t h the absorbance spectrum (19) o r d e t e r m i n i n g i f any peaks from the s o u r c e are o b s e r v e d i n the c o r r e c t e d e x c i t a t i o n spectrum (23). Emission Spectra (11,24;: χ
χ
Λ
χ
χ
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
χ
E(X ,X ) x
m
- Ε
λ χ
α10 s ) r e s u l t e d i n p h o t o b l e a c h i n g o f the o r g a n i c f l u o r o p h o r . F i g u r e 3 shows the p o r o s i t y on a m i c r o s c a l e f o r a g e o l o g i c t h i n s e c t i o n from a d r i l l i n g core. Haaijman (53) took a d i f f e r e n t approach f o r the s t a n d a r d i z a t i o n o f m i c r o s c o p i c immunofluorescence measurements u s i n g F I T C . Rather t h a n u s i n g s p e c i a l i n s t r u m e n t a t i o n o r p r o c e d u r e s t o reduce p h o t o b l e a c h i n g , he d e s i g n e d a s t a n d a r d u s i n g FITC bound t o a m i n o e t h y l Sephadex beads, i n w h i c h the amount o f bound f l u o r o p h o r was q u a n t i f i e d u s i n g absorbance measurements. Though the response o f the FITCl a b e l e d beads t o changes i n p h y s i c o c h e m i c a l v a r i a b l e s ( i . e . , pH and d u r a t i o n o f e x c i t a t i o n ) was n o t i d e n t i c a l t o t h a t o f F I T C - l a b e l e d c e l l s , the d i s c r e p a n c i e s were n o t c o n s i d e r e d major and the beads were deemed to be adequate f o r immunofluorescence m i c r o s c o p y and s u p e r i o r to other a v a i l a b l e standards. These problems are n o t as s i g n i f i c a n t i n the macroenvironment, where many s t a n d a r d s can be used f o r b o t h c a l i b r a t i o n and s t a n d a r d i z a t i o n , s i n c e p h o t o d e g r a d a t i o n o f the sample i s u s u a l l y n o t s i g n i f i c a n t , r u n n i n g around 5-10%. However, i f measurements o f the h i g h e s t a c c u r a c y o r o f s m a l l d i f f e r e n c e s are r e q u i r e d , t h e s e u n c e r t a i n t i e s
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
7. VELAPOLDI AND EPSTEIN
0
4 0
Macro- and Mwwspectrofluorometry
. 45
, 90
109
135
Exposure time (s) F i g u r e 2 . I r r a d i a t i o n o f u r a n y l g l a s s m i c r o s p h e r e s (A) and FITCl a b e l e d microbeads (B) demonstrate p h o t o b l e a c h i n g and s t a b i l i t y o f both materials.
F i g u r e 3 . P o r o s i t y measurements on a m i c r o s c o p i c s c a l e f o r a s m a l l (2 cm χ 2 cm χ 30 μιη) t h i n s e c t i o n o f sandstone impregnated w i t h f l u o r o p h o r - d o p e d p o l y m e r . Average p o r o s i t y - 16.3%; range o f p o r o s i t i e s - 1.8-42%.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
110
LUMINESCENCE APPLICATIONS
may be too l a r g e , and as d i s c u s s e d p r e v i o u s l y , new w o r k i n g s t a n d a r d s s h o u l d be p r e p a r e d .
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
Size and Shape. The dimensions o f the s t a n d a r d are more c r i t i c a l i n the m i c r o e n v i r o n m e n t than i n the macroenvironment, s i n c e m i c r o s c o p i c measurements commonly r e q u i r e changes i n f i e l d a p e r t u r e s and m a g n i f i cation. I f a m i c r o s c o p i c s t a n d a r d has a s m a l l ( / i m - s i z e d ) , w e l l d e f i n e d shape, such as a sphere o r c y l i n d e r , an a c c u r a t e i n t e n s i t y / volume r e l a t i o n s h i p can be e s t a b l i s h e d , w h i c h s h o u l d be independent o f the microscope o p t i c s . S t a n d a r d i z a t i o n i s thus v a l i d no m a t t e r what m i c r o s c o p e parameters are employed, as l o n g as the s p e c t r a l c h a r a c t e r i s t i c s o f the s t a n d a r d and the sample are q u i t e s i m i l a r o r identical. Use of Macrostandards in the Microenvironment. M a c r o s t a n d a r d s , such as u r a n y l i o n - d o p e d g l a s s microscope s l i d e s , have been used as s t a n dards f o r m i c r o s p e c t r o f l u o r o m e t r i c measurements by s e v e r a l a u t h o r s (59,60). The a p p e a l o f such an approach i s o b v i o u s , because w e l l c h a r a c t e r i z e d and s t a b l e s t a n d a r d s are r e a d i l y a v a i l a b l e and easy t o use. However, as d i s c u s s e d by S e r n e t z and Thaer ( 6 1 ) , the d i a m e t e r o r t h i c k n e s s o f a macrostandard w i l l be g r e a t e r t h a n the e x c i t a t i o n and e m i s s i o n f i e l d d i a m e t e r s o f the m i c r o s p e c t r o f l u o r o m e t e r , and thus the f l u o r e s c e n c e e m i s s i o n w i l l be a f u n c t i o n o f m i c r o s c o p e parameters t h a t d e f i n e the volumes i l l u m i n a t e d and o b s e r v e d , such as o b j e c t i v e m a g n i f i c a t i o n and n u m e r i c a l a p e r t u r e , e m i s s i o n and e x c i t a t i o n a p e r t u r e s i z e , and f o c a l p o i n t . These parameters w i l l be d i f f i c u l t t o reproduce on two o r more d i f f e r e n t m i c r o s c o p e s and w i l l be s u b j e c t t o f o c u s i n g e r r o r s when u s i n g the same m i c r o s c o p e . Use o f a macros t a n d a r d w i l l be f u r t h e r c o m p l i c a t e d by e r r o r s due t o p r e f i l t e r and p o s t f i l t e r e f f e c t s and would be i m p o s s i b l e f o r nonphotometrie ( i . e . , v i s u a l ) d e t e c t i o n schemes. Use of Microstandards in the Microenvironment. The most common approach t o p r e p a r i n g m i c r o s t a n d a r d s i s t o p l a c e a f l u o r o p h o r i n o r to b i n d i t to a s t a b l e , n o n f l u o r e s c i n g h o s t o f w e l l - d e f i n e d shape. Ploem (62) u s e d m i c r o d r o p l e t s o f FITC s o l u t i o n i n m i c r o - w e l l s i n a p e r s p e x s l i d e , b u t found s i g n i f i c a n t p h o t o b l e a c h i n g under i l l u m i n a tion. More s u c c e s s f u l were m i c r o c a p i l l a r i e s (61-63) o f about 6 μιη i n s i d e d i a m e t e r and 50 mm l e n g t h f i l l e d w i t h f l u o r o p h o r s o l u t i o n . These s t a n d a r d s d i d n o t p h o t o b l e a c h as much as the m i c r o d r o p l e t s , s i n c e the e x c i t e d p o r t i o n o f the f l u o r o p h o r s o l u t i o n , w h i c h was l e s s than 40 μια i n l e n g t h , was c o n t i n u o u s l y renewed by c o n v e c t i o n a l f l o w and d i f f u s i o n . However, a s p e c i f i c l e n g t h o f c a p i l l a r y had t o be i s o l a t e d u s i n g the microscope measuring a p e r t u r e . V e l a p o l d i e t a l . (64) used a s i m i l a r approach b u t p r e p a r e d f i b e r s o f u n i f o r m diameter (5-45 μπι) from i n o r g a n i c i o n - d o p e d glasses. The f l u o r e s c e n c e parameters o f t h e s e m a t e r i a l s can be changed by s u b s t i t u t i n g v a r i o u s i o n s , such as T b , S m , E u , M n , U 0 , C u , and S n . They show e x c e l l e n t s t a b i l i t y under i r r a d i a t i o n u s i n g i n c i d e n t e x c i t a t i o n (measurement i m p r e c i s i o n o f 1% under c o n t i n u o u s i r r a d i a t i o n i n the microscope f o r 24 h) and have a f l u o r e s c e n c e f l u x d e n s i t y p r o p o r t i o n a l t o the f i b e r l e n g t h . R e c e n t l y , m i c r o s p h e r e s (5-40 μιη d i a m e t e r ) o f t h e s e i o n - d o p e d g l a s s e s have been p r e p a r e d and e v a l u a t e d ( 6 5 ) . Ions can be s e l e c t e d t o produce e i t h e r sharp ( T b , Sm , E u ) o r b r o a d ( M n , U 0 , C u , 3 +
2 +
+
3+
3 +
2+
2 +
2
3+
3+
3+
2+
2 +
2
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
+
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
7.
VELAPOLDI AND EPSTEIN
111
Macro- and Microspectrofluorometry
Sn ) s p e c t r a l d i s t r i b u t i o n s . The spheres e x h i b i t a f l u o r e s c e n c e f l u x d e n s i t y p r o p o r t i o n a l t o the r a d i u s cubed ( F i g u r e 4 ) . They a r e s i m i l a r i n s i z e and shape t o c e l l s and have a d i s t i n c t advantage over f i b e r s o r c a p i l l a r i e s i n t h a t no p h y s i c a l parameters ( i . e . , c a p i l l a r y l e n g t h ) need t o be d e f i n e d b y the m i c r o s c o p e o p t i c s . F i g u r e s 5a and b i l l u s t r a t e homogeneously and nonhomogeneously uranium-doped g l a s s microspheres. The luminescence i n t e n s i t y d i s t r i b u t i o n was o b t a i n e d u s i n g an automated m i c r o s p e c t r o f l u o r o m e t e r system w i t h a s c a n n i n g m i r r o r o r s t a g e ( 0 . 1 t o 2 . 5 μιη s t e p r e s o l u t i o n ) , w h i c h was scanned i n a r a s t e r mode (100x100), y i e l d i n g 10,000 d a t a p o i n t s o f f l u o r e s c e n c e f l u x d e n s i t y as a f u n c t i o n o f x j p o s i t i o n . Many i n o r g a n i c i o n - d o p e d g l a s s e s l u m i n e s c e , g i v i n g coverage from the u l t r a v i o l e t t o the r e d ( T a b l e V I ) . I n a d d i t i o n , i o n s t h a t undergo i n t e r c o n f i g u r a t i o n a l e l e c t r o n i c t r a n s i t i o n s upon a b s o r p t i o n and e m i s s i o n o f r a d i a t i o n , such as P b , show e m i s s i o n maximum s h i f t s as l a r g e as 150 nm upon c h a n g i n g m a t r i c e s ( F i g u r e 6 ) , whereas i o n s 2 +
Table V I .
Element
Tl Pb Ag Ce Eu Sn Cu Bi U Mn Cd Fe Cr Mo Gd Tm Dy Tb Sm Eu Pr Nd
C h a r a c t e r i s t i c s o f Luminescence from Ion-Doped G l a s s e s
Spectra Type* Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Broadband Narrowband Narrowband Narrowband Narrowband Narrowband Narrowband Narrowband Narrowband
Luminescing Species +
Tl Pb Ag,Ag Ce Eu Sn Cu Bi (U0 ) Mn CdS Fe Cr Mo Gd Tm Dy Tb Sm Eu Pr Nd 2 +
3+
2 +
+
+
3 +
2 +
2
2+
3 +
3 +
3+
3+
3+
3+
3 +
3+
3 +
3 +
3+
+
Excitation Range (nm) 215-260 241-295 250-320 215-317 230-400 265 254-445 319 340-480 356-422 350-470 458 585 980 220-280 265-350 340-380 250-378 403-469 340-395 440-475 530-585
Inorganic
Useful Emission Range ( n m ) c
250-370 270-480 290-430 310-420 325-650 370-450 385-600 390-525 490-620 500-680 560-790 570-650,800-880 710-1000 990-1030 311 350,383,455 475,576 495,544,580,620 563,572,599,647,705 578,591,611,653,700 610,710,890 890,1060
Shape o f the s p e c t r a l d i s t r i b u t i o n ; broadband s p e c t r a have a band w i d t h a t h a l f h e i g h t o f g r e a t e r t h a n 5 nm. The w a v e l e n g t h range o b s e r v e d t o e x c i t e luminescence i n the i o n - d o p e d g l a s s . T h e approx imate w a v e l e n g t h range o v e r w h i c h luminescence has been o b s e r v e d (broadband) o r the approximate wavelengths a t w h i c h l u m i n e s c e n c e maxima o c c u r (narrowband). A l l wavelengths a r e approximate s i n c e they r e p r e s e n t an average v a l u e t a k e n from d i f f e r e n t r e f e r e n c e s u s i n g v a r i o u s e x c i t a t i o n s o u r c e s and base g l a s s c o m p o s i t i o n s ( 6 5 ) . c
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
LUMINESCENCE APPLICATIONS
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
112
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Macro- and
Microspectrofluorometry
113
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
VELAPOLDI AND EPSTEIN
Figure 5. Two- and three-dimensional representations of r e l a t i v e luminescence f l u x of uranyl ion-doped glass beads, measured i n a 100 x 100 raster with 10,000 data points. Depicted are a homogeneously doped bead (a) and a nonhomogeneously doped bead (b).
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
114
LUMINESCENCE APPLICATIONS
2+
F i g u r e 6. C o r r e c t e d s p e c t r a f o r P b - d o p e d phosphate ( 1 ) , b o r a t e ( 2 ) , and s i l i c a t e (3) g l a s s e s . E x c i t a t i o n shown as r e l a t i v e i n t e n s i t y ; e m i s s i o n shown as r e l a t i v e q u a n t a / u n i t b a n d w i d t h .
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
VELAPOLDI AND EPSTEIN
Macro- and Micwspectrofluorometry
115
t h a t undergo i n t r a c o n f i g u r a t i o n a l e l e c t r o n i c t r a n s i t i o n s , such as E u * , show e m i s s i o n maximum s h i f t s o f o n l y a few nanometers ( β ) . Thus the c h o i c e o f the r i g h t i o n and m a t r i x g i v e s some v a r i e t y o f luminescence c h a r a c t e r i s t i c s . A l t h o u g h i n o r g a n i c i o n - d o p e d g l a s s e s are i d e a l as s t a n d a r d s f o r c a l i b r a t i o n , they have l i m i t e d a p p l i c a t i o n f o r r e l a t i n g i n s t r u m e n t s i g n a l to a n a l y t e c o n c e n t r a t i o n because o n l y a s m a l l number o f d i f f e r e n t s p e c t r a l d i s t r i b u t i o n s are a v a i l a b l e ( r e l a t i v e to the m y r i a d of o r g a n i c s p e c i e s ) . There are l i k e l y to be o n l y a few cases i n w h i c h the s p e c t r a l d i s t r i b u t i o n o f a s p e c i f i c c l a s s i s s i m i l a r enough to the a n a l y t e spectrum to be u s e f u l . The use of u r a n i u m doped g l a s s e s f o r the q u a n t i f i c a t i o n o f F I T C - l a b e l e d s p e c i e s (6*5) i s one such c a s e . The f a c t r e m a i n s , though t h a t a s t a n d a r d o f the same m a t e r i a l as the sample i s p r e f e r r e d f o r s t a n d a r d i z a t i o n . The approach t o s t a n d a r d i z a t i o n u s e d b y Haaijman (53) and o t h e r s (66,67), i n w h i c h the f l u o r o p h o r i s i n c o r p o r a t e d w i t h i n o r bound t o the s u r f a c e o f a p l a s t i c s p h e r e , i s more v e r s a t i l e t h a n the use o f i n o r g a n i c i o n - d o p e d s p h e r e s , s i n c e the s t a n d a r d c a n be t a i l o r e d e x a c t l y t o the s p e c i f i c a t i o n s r e q u i r e d b y the a n a l y t e s p e c i e s . However, t h i s approach i n c r e a s e s the u n c e r t a i n t y o f the measurement because the p h o t o b l e a c h i n g c h a r a c t e r i s t i c s o f b o t h the s t a n d a r d and the sample must be c o n s i d e r e d . The i d e a l approach i s t o employ b o t h types o f s t a n d a r d s . The g l a s s m i c r o s p h e r e s c a n be u s e d t o c a l i b r a t e i n s t r u m e n t s and s e t i n s t r u m e n t o p e r a t i n g parameters on a d a y - t o - d a y b a s i s , and the f l u o r o p h o r - d o p e d polymer m a t e r i a l s can be used t o determine the c o n c e n t r a t i o n - i n s t r u m e n t response f u n c t i o n .
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
3
Applications
ot Macrospectrofluorometric
Standards
Standardization. Standardization i n a n a l y t i c a l chemistry, i n which s t a n d a r d s a r e u s e d t o r e l a t e the i n s t r u m e n t s i g n a l t o compound c o n c e n t r a t i o n , i s the c r i t i c a l f u n c t i o n f o r d e t e r m i n i n g the r e l a t i v e c o n c e n t r a t i o n s o f s p e c i e s i n a wide v a r i e t y of m a t r i c e s . Environ m e n t a l Standard Reference M a t e r i a l s (SRM's) have been developed f o r v a r i o u s p o l y n u c l e a r a r o m a t i c hydrocarbons ( P A H ' s ) . I n f o r m a t i o n on SRM's can be o b t a i n e d from the O f f i c e o f S t a n d a r d R e f e r e n c e M a t e r i a l s , N a t i o n a l Bureau o f S t a n d a r d s , G a i t h e r s b u r g , MD 20899. Summa r i z e d i n T a b l e V I I , t h e s e SRM's range from "pure compounds" i n aqueous and o r g a n i c s o l v e n t s t o " n a t u r a l " m a t r i c e s such as s h a l e o i l and urban and d i e s e l p a r t i c u l a t e m a t e r i a l s . P u r e Compound SRM's. Pure compound SRM's ( o r s t a n d a r d s ) a r e conve n i e n t t o use f o r e n v i r o n m e n t a l samples such as w a t e r , where l i t t l e sample e x t r a c t i o n i s n e c e s s a r y . G e n e r a t o r columns (SRM 1644) were d e v e l o p e d t o p r o v i d e d i f f e r i n g c o n c e n t r a t i o n s o f pure P A H ' s b y v a r y i n g the temperature of the b a t h i n w h i c h the g e n e r a t o r column i s p l a c e d (68). F i g u r e 7a i l l u s t r a t e s the raw f l u o r e s c e n c e s i g n a l o b t a i n e d d u r i n g the SRM c e r t i f i c a t i o n p r o c e s s u s i n g the s t a n d a r d a d d i t i o n method f o r d e t e r m i n i n g benzo [a] pyrene c o n c e n t r a t i o n s by an "on stream" f l u o r e s c e n c e t e c h n i q u e . F i g u r e 7b i s a p l o t of the i n t e n s i t i e s , showing the b e s t l e a s t - s q u a r e s f i t s t o d a t a c o l l e c t e d a t f o u r d i f f e r e n t t e m p e r a t u r e s . I n t h i s c a s e , the i n s t r u m e n t response as a f u n c t i o n o f c o n c e n t r a t i o n can be d e t e r m i n e d f o r a s p e c i f i c PAH w h i l e the unknown sample i s measured by the same p r o c e s s (assuming
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
116
LUMINESCENCE APPLICATIONS
Column 215 1.2X10NÛ»
-5.0
0.0 [Benzo(a)pyrene], ng/g
5.0
Figure 7. (a) Multichannel analyzer CRT display of raw data using standards-addition technique and (b) raw data (x) and f i t t e d least-squares l i n e (—) f o r the c a l c u l a t i o n of the benzo[a]pyrene concentration i n the generator column e f f l u e n t at four temperatures.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
VELAPOLDI AND EPSTEIN
T a b l e V I I . S t a n d a r d Reference M a t e r i a l s (SRM's) f o r the D e t e r m i n a t i o n o f P o l y c y c l i c A r o m a t i c Hydrocarbons ( P A H ' s ) S RM #
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
1587 1596
1582 1588 1597
Anthracene, benzo[a]anthracene, benzo[a]pyrene 16 PAH's
P r i o r i t y p o l l u t a n t PAH i n acetonitrile N i t r a t e d PAH i n m e t h a n o l Dinitropyrenes i n solvent 5
Natural Matrix Materials: 1580 Organics i n shale
oil
6 n i t r a t e d PAH's 4 n i t r a t e d pyrenes (3 d i n i t r o and 1 n i t r o )
c
5 PAH's + 4 oxygennitrogen- containing compounds 5 PAH's + d i b e n z o t h i o p h e n e
c
P e t r o l e u m crude o i l Cod l i v e r o i l ' Complex PAH m i x t u r e from coal t a r Urban p a r t i c u l a t e m a t t e r Urban d u s t / o r g a n i c s Diesel particulate material c
a
C e r t i f i e d Compounds
SRM Name
Pure S o l u t i o n s : 1644 G e n e r a t o r columns f o r PAH 1647
117
Macro- and Microspectrofluorometry
d
9 PAH's
c
1648 1649 1650
c , e
c
c
5 PAH's 6 PAH's
a
0 f f i c e o f S t a n d a r d Reference M a t e r i a l s , N a t i o n a l Bureau o f S t a n d a r d s , G a i t h e r s b u r g , MD 20899. ^ N i t r a t e d PAH's do n o t f l u o r e s c e b u t can be made t o f l u o r e s c e by p a s s i n g t h r o u g h a Zn o r P t column t o reduce n i t r o groups t o amino g r o u p s , i n f o r m a t i o n values for other organics i n c e r t i f i c a t e . C e r t i f i e d v a l u e s f o r p e s t i c i d e s and P C B ' s . C e r t i f i e d values for inorganic constituents.
o n l y t h a t the same s p e c i f i c PAH i s p r e s e n t i n the unknown s a m p l e ) . L i q u i d chromatographic t e c h n i q u e s can be used t o s e p a r a t e complex m i x t u r e s o f PAH's (See, f o r example, R e f s . 6 9 , 7 0 ) , and the PAH o f i n t e r e s t d e t e r m i n e d by t h a t mode. Another u s e f u l s t a n d a r d i s SRM 1647, p r i o r i t y p o l l u t a n t p o l y n u c l e a r a r o m a t i c hydrocarbons ( i n a c e t o n i t r i l e ) . I t c a n be used t o c a l i b r a t e l i q u i d chromatographic i n s t r u m e n t s ( r e t e n t i o n t i m e s , i n s t r u m e n t r e s p o n s e ) , t o determine p e r c e n t r e c o v e r i e s , and t o f o r t i f y aqueous samples w i t h known PAH c o n c e n t r a t i o n s . Figure 8 i l l u s t r a t e s the HPLC s e p a r a t i o n and UV d e t e c t i o n ( f l u o r e s c e n c e i s a l s o u s e d e x t e n s i v e l y ) f o r the 16 p r i o r i t y p o l l u t a n t s . Matrix SRM's. M a t r i x SRM's can be used f o r a v a r i e t y o f f u n c t i o n s . T a y l o r (71) r e v i e w e d the uses o f m a t r i x s t a n d a r d s , w h i c h i n c l u d e : (a) method development and e v a l u a t i o n , (b) e s t a b l i s h m e n t o f measurement t r a c e a b i l i t y , and (c) a s s u r a n c e o f measurement c o m p a t i b i l i t y . D u r i n g c e r t i f i c a t i o n o f these m a t r i x SRM's, the s e l e c t i v i t y o f f l u o r e s c e n c e
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
118
LUMINESCENCE APPLICATIONS
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
υ< c
TIME
(min)
F i g u r e 8. Reversed-phase HPLC s e p a r a t i o n o f SRM 1647, p r i o r i t y p o l l u t a n t p o l y n u c l e a r a r o m a t i c hydrocarbons ( i n a c e t o n i t r i l e ) , u s i n g UV d e t e c t i o n .
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
7.
VELAPOLDI AND EPSTEIN
Macro- and Microspectrofluorometry
119
d e t e c t i o n was used t o s i m p l i f y a n a l y t i c a l p r o c e d u r e s . F o r example, i n the c e r t i f i c a t i o n p r o c e s s e s o f SRM's 1648 (urban p a r t i c u l a t e m a t t e r ) and 1649 (urban d u s t / o r g a n i c s ) , UV d e t e c t i o n and q u a n t i f i c a t i o n o f s e l e c t e d PAH's gave q u i t e u n i n t e r p r e t a b l e r e v e r s e d - p h a s e HPLC chromatograms ( F i g u r e 9) u n l e s s normal-phase f r a c t i o n s e p a r a t i o n s were done b e f o r e the r e v e r s e d - p h a s e d e t e r m i n a t i o n s ( F i g u r e 10) ( 7 2 , 7 3 ) . Reversed-phase HPLC s e p a r a t i o n s u s i n g f l u o r e s c e n c e d e t e c t i o n w i t h w a v e l e n g t h programming p r o v i d e d " s i n g l e s t e p " q u a n t i f i c a t i o n ( F i g u r e 1 1 ) . These do n o t t r u l y r e l a t e c o n c e n t r a t i o n t o i n s t r u m e n t response b u t i n s t e a d r e l a t e c o n c e n t r a t i o n t o the t o t a l c h e m i c a l measurement p r o c e s s , i n c l u d i n g e x t r a c t i o n , s e p a r a t i o n , and instrument response. T h i s response f u n c t i o n may be b i a s e d compared t o the one o b t a i n e d f o r the pure compound s o l u t i o n s , s i m p l y because the c h e m i c a l measurement p r o c e s s response i s i n c l u d e d . I f the sample and s t a n d a r d have e s s e n t i a l l y the same m a t r i c e s ( e . g . , a i r p a r t i c u l a t e s o r r i v e r s e d i m e n t s ) , one can go t h r o u g h the t o t a l measurement p r o c e s s w i t h b o t h the sample and the s t a n d a r d i n o r d e r t o (a) check the a c c u r a c y o f the measurement p r o c e s s u s e d (compare the c o n c e n t r a t i o n v a l u e s o b t a i n e d f o r the s t a n d a r d w i t h the c e r t i f i e d v a l u e s ) and (b) o b t a i n some c o n f i d e n c e about the a c c u r a c y o f the c o n c e n t r a t i o n measurements on the unknown sample s i n c e both have gone through the same c h e m i c a l measurement p r o c e s s ( e x c e p t sample c o l l e c t i o n ) . I t i s n o t recommended, however, t h a t pure s t a n d a r d s be used to s t a n d a r d i z e the t o t a l c h e m i c a l measurement p r o c e s s f o r n a t u r a l m a t r i x type samples: c h e m i c a l c o n c e n t r a t i o n s i n the n a t u r a l m a t r i c e s c o u l d be s e r i o u s l y m i s r e a d , e s p e c i a l l y s i n c e the pure PAH p r o b a b l y would be t o t a l l y e x t r a c t e d i n a g i v e n s o l v e n t , whereas the PAH i n the m a t r i x m a t e r i a l p r o b a b l y w o u l d n o t b e . A l l the parameters and m a t r i x e f f e c t s , i n c l u d i n g e x t r a c t i o n e f f i c i e n c i e s , a r e c a r e f u l l y checked i n the c e r t i f i c a t i o n p r o c e s s l e a d i n g t o SRM's.
TIME (mln)
F i g u r e 9. Reversed-phase HPLC a n a l y s i s o f PAH's e x t r a c t e d from SRM 1649, urban d u s t / o r g a n i c s , w i t h UV d e t e c t i o n , not p r e c e d e d by normal-phase HPLC clean-up, ( R e p r i n t e d from r e f e r e n c e 72. C o p y r i g h t 1984 American Chemical S o c i e t y . )
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
LUMINESCENCE APPLICATIONS
14 Aromatic Carbon Fraction
U V -U 254 nm
16 Aromatic Carbon Fraction UV J 254 n m ι
1
1
1
1
1
0
10
20
30
40
50
Time (min) Figure 10. Reversed-phase H P L C analysis of PAHs extracted from S R M 1649, urban dust/organics, with U V detection, preceded by normal-phase H P L C fractionation based on ring carbon number. (Reprinted from reference 72. Copyright 1984 American Chemical Society.) Continued on next page.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
VELAPOLDI AND EPSTEIN
Macro- and Microspectrofluorometry
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
18 Aromatic Carbon Fraction
uv±4_ 254 nm
20 Aromatic Carbon Fraction
254 nm
22 Aromatic Carbon Fraction UV
j l
254 nm
ο
10
20
30
40
50
Time (min) Figure 10. Continued.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
122
LUMINESCENCE APPLICATIONS
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
Bidimensional Fluorescence Wavelength Programming LC Analysis of Air Particulate Extract
0
10
20
30
40
60
60
TIME (minutes)
F i g u r e 1 1 . Reversed-phase HPLC a n a l y s i s o f t o t a l PAH's e x t r a c t e d from SRM 1648, urban p a r t i c u l a t e m a t t e r , w i t h programmed f l u o r e s c e n c e d e t e c t i o n . ( R e p r i n t e d from r e f e r e n c e 7 2 . C o p y r i g h t 1984 American Chemical S o c i e t y . )
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
7. VELAPOLDI AND EPSTEIN
Macro- and Microspectrofluorometry
123
Standards for the Future. I n g e n e r a l , more s t a n d a r d s t h a t c o v e r a w i d e r w a v e l e n g t h range a r e needed f o r c a l i b r a t i o n , and n a t u r a l m a t r i x s t a n d a r d s are needed f o r s t a n d a r d i z a t i o n and measurement assessment. A n a l y s t s should advise s u p p l i e r s of standards ( e . g . , n a t i o n a l l a b o r a t o r i e s ) about w h i c h m a t r i c e s a r e b e i n g commonly c o l l e c t e d and w h i c h compounds need t o be c e r t i f i e d . In microspectrofluorometry, more f l u o r o p h o r - t a g g e d m a t e r i a l s a r e needed, as w e l l as i n c r e a s e d s t a b i l i t y o f the o r g a n i c - t a g g e d s p e c i e s . U n t i l we have s t a b l e o r g a n i c s p e c i e s t h a t w i l l n o t p h o t o b l e a c h under i n c i d e n t i r r a d i a t i o n , we w i l l need b e t t e r c o r r e l a t i o n o f the f l u o r e s c e n c e f l u x o f the s t a b l e , i n o r g a n i c i o n - d o p e d spheres t o the c o n c e n t r a t i o n o f the o r g a n i c s p e c i e s . T h i s r e q u i r e m e n t may n o t h o l d f o r some new t y p e s o f automated i n s t r u m e n t a t i o n ( e s p e c i a l l y m i c r o s p e c t r o f l u o r o m e t e r s ) o r f o r f l o w systems, s i n c e the r e s i d e n c e times o f any i n d i v i d u a l f l u o r o p h o r under the microscope o b j e c t i v e s h o u l d be s h o r t enough t o preclude photobleaching. Nevertheless, s t a t i c i n v e s t i g a t i o n s of samples such as c e l l s t o g i v e l o c a t i o n a l i n f o r m a t i o n c e r t a i n l y w i l l c o n t i n u e t o be o f i n t e r e s t , and the s t a b l e s t a n d a r d s w i l l c o n t i n u e t o s e r v e a u s e f u l c a l i b r a t i o n f u n c t i o n i n the f u t u r e .
Literature Cited
1. Burgess, C.; Mielenz. K. D., Eds. Advances in Standards and Methodology in Spectrophotometry; Analytical Spectroscopy Library; Elsevier Science: Amsterdam, 1987; Vol. 2. 2. Mielenz, K. D., Ed. Optical Radiation Measurements; Measur of Photoluminescence; Academic: New York, 1982; Vol. 3. 3. Miller, J. D., Ed. Techniques in Visible and Ultraviolet Spectrometry, Standards in Fluorescence Spectrometry; Spectrometry Group, Chapman and Hall: London, 1981; Vol. 2. 4. Wehry, E. L., Ed. Modern Fluorescence Spectroscopy; Plenum: York; Vol. 1, 1976; Vol. 2, 1976; Vol. 3, 1981; Vol. 4, 1981. 5. Parker, C. A. Photoluminescence of Solutions; Elsevier: Amsterdam, 1968. 6. Mielenz, K. D. Anal. Chem. 1976, 48, 1093-4. 7. Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991. 8. Velapoldi, R. A. J. Res. Nat. Bur. Stand., Sect. A 1972, 76, 641. 9. Demas, J. N. In Optical Radiation Measurements; Measurem Photοluminescence; Mielenz, K. D., Ed.; Academic: New York, 1982; Vol. 3, pp 195-248. 10. Velapoldi, R. A.; Hertz, H. S. In The Importance of Chemical Speciation in Environmental Processes; Bernhard, M.; Brinckm F. E.; Sadler, P. J., Eds.; Springer-Verlag: Berlin, 1986; pp 685-710. 11. Velapoldi, R. A. In Advances in Standards and Methodology Spectrophotometry; Burgess, C.; Mielenz, K. D., Eds.; Elsevier Science: Amsterdam, 1987; Vol. 2, pp 175-193. 12. Miller, J. N. In Techniques in Visible and Ultraviolet Spec trometry; Miller, J. D., Ed.; Chapman and Hall: London, 1981; Vol. 2, pp 8-14. 13. Mielenz, K. D. In Optical Radiation Measurements; Measure of Photoluminescence; Mielenz, K. D., Ed.; Academic: New York, 1982; Vol. 3, pp 1-87.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
124
LUMINESCENCE APPLICATIONS
14. Burke, R. W.; Velapoldi, R. A. In Recommended Reference Materi als for the Realization of Physicochemical Properties; Marsh, K. N., Ed.; Blackwell Scientific: Oxford, England, 1987; pp 465489. 15. Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, 1987; Sec. 14, pp 479-481. 16. Harrison, G. R. M.I.T. Wavelength Tables; M.I.T. Press: Cambridge, MA, 1983; Vol. 2. 17. Velapoldi, R. Α.; Mielenz, K. D. NBS Spec. Publ. 260-64 1980. 18. Guilbault, G. G. Practical Fluorescence; Theory, Methods, and Techniques; Marcel Dekker: New York, 1973, p. 150. 19. Melhuish, W. H. In Optical Radiation Measurements; Measureme of Photoluminescence; Mielenz, K. D., Ed.; Academic: New York, 1982; Vol. 3, pp 115-138. 20. Reisfeld, R. J. Res. Nat. Bur. Stand., Sect. A 1972, 76, 613. 21. Velapoldi, R. Α.; Reisfeld, R.; Boehm, L.; Phys. Chem. Glasses 1973, 14, 101. 22. West, Μ. Α.; Kemp, D. R. Am. Lab. 1977, 9 (3), 37. 23. Brecht, Ε. Anal. Chem. 1983, 58, 384. 24.
Costa, L. F.; Mielenz, K. D.; Grum, F. In Optical Radiation Measurements; Measurement of Photoluminescence; Mielenz, K. D., Ed.; Academic: New York, 1982; Vol. 3, pp 139-174.
25. Melhuish, W. H. Appl. Opt. 1975, 14, 26. 26. Melhuish, W. H. J. Res. Nat. Bur. Stand., Sect. A 1972, 76, 547. 27. Ghiggino, K. P.; Skilton, P. F.; Thistlethwaite, P. J. J. Photochem. 1985, 31, 113. 28. Magde, D.; Brannon, J. H.; Cremers, T. L.; Olmstead, J., III J. Phys. Chem. 1979, 83, 696. 29. Chapman, J. H.; Förster, Th.; Kortüm, G.; Parker, C. Α.; Lippert, E.; Melhuish, W. H.; Nebbia, G. Appl. Spectrosc. 1963, 17, 171. 30. Weidner, V. R.; Mavrodineanu, R.; Eckerle, K. L. Appl. Opt. 1986, 25, 832. 31. Shelton, C. F. NBS Tech. Note 417 1968. 32. Fletcher, A. N. Photochem. Photobiol. 1969, 9, 439. 33. Gill, J. E. Photochem. Photobiol. 1969, 9, 313. 34. Melhuish, W. H. J. Phys. Chem. 1961, 72, 793. 35. Meech, S. R.; Phillips, D. J. Photochem. 1983, 23, 193. 36. Weber, G.; Teale, F. W. J. Trans. Faraday Soc. 1957, 53, 646. 37. Himel, C. M.; Mayer, R. T. Anal. Chem. 1970, 42, 130. 38. Cehelnik, E. D.; Cundall, R. B.; Palmer, T. F. Chem. Phys. Lett. 1976, 27, 586. 39. Demas, J. N.; Pearson, T. D. L.; Cetron, E. J. Anal. Chem. 1985, 57, 51. 40. Melhuish, W. H. N.Z. J. Sci. Technol, Sect. Β 1955, 37, 142. 41. Drexhage, K. H. J. Res. Nat. Bur. Stand., Sect. A, 1976, 80, 421. 42. Kopf, U.; Heinz, J. Anal. Chem. 1984, 56, 1931. 43. Taylor, D. G.; Demas, J. N. Anal. Chem. 1979, 51, 717. 44. Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, Pa., 1987; Sec. 14, pp 545-550. 45. Lampert, R. Α.; Chewter, L.A.; Phillips, D.; O'Connor, D. V.; Roberts, A.J.; Meech, S. R. Anal. Chem. 1983, 55, 68.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
7. VELAPOLDI AND EPSTEIN
Macro- and Microspectrofluorometry
125
46. Barrow, D. Α.; Lentz, B. R. Chem. Phys. Lett. 1984, 104, 163. 47. Lakawicz, J. R.; Cherek, H.; Baltur, A. J. Biochem. Biophys. Methods 1981, 5, 131. 48. Raynor, D. M.; McKinnon, A. E.; Szabo, A. G.; Hackett, P. A. Can. J. Chem. 1976, 54, 3246. 49. Chen, R. F. Anal. Biochem. 1974, 58, 593. 50. Chen, R. F. J. Res. Nat. Bur. Stand., Sect. A 1972, 76, 593. 51. Harris, J. M.; Lytle, F. E. Rev. Sci. Instrum. 1979, 48, 1469. 52. Van Houten, J. J. Am. Chem. Soc. 1976, 98, 4853. 53. Haaijman, J. J. Ph.D. Thesis, Organization for Health Research, Institute for Experimental Gerontology, Rijswijk, Netherlands, 1977. 54. Picciolo, G. L.; Kaplan, D. S. Adv. Appl. Microbiol. 1984, 30, 197. 55. Rollie, M. E.; Patonay, G.; Warner, I. M. Anal. Chem. 1987, 59, 180. 56. Bergquist, N. R.; Nilsson, P. Ann. N.Y. Acad. Sci. 1975, 254, 157. 57. Velapoldi, R. Α.; Gjelsvik, N. A. InMicrobeamAnalysis, 1987; Geiss, R. H., Ed.; San Francisco Press: San Francisco, 1987, pp 202-204. 58. Fukuda, M.; Tsuchihashi, Y.; Takamatsu, T.; Nakanishi, K.; Fujita, S. Histochemistry 1980, 65, 269. 59. Jongsma, A. P. M.; Hijmans, W.; Ploem, J. S. Histochemie, 1971, 25, 329. 60. Kaplan, D. S. Ph.D. Dissertation, George Washington University, Washington, DC, 1985. 61. Sernetz, M.; Thaer, A. J. Microsc. (Oxford) 1970, 91, 43. 62. Ploem, J. S. In Standardization in Immunofluorescence; Holborow, E. J., Ed.; Blackwell Scientific: Oxford and Edinburgh, 1970; pp 137-153. 63. van der Ploeg, M.; Ploem, J. S. Histochemie 1973, 33, 61. 64. Velapoldi, R. Α.; Travis, J. C.; Cassatt, W. Α.; and Yap, W. T. J. Microsc. (Oxford) 1976, 103, 293-303. 65. Epstein, M. S.; Velapoldi, R. Α.; Blackburn, D. Evaluation of Luminescent Glass Spheres as Calibration Standards for Micro spectrofluorimetry; National Bureau of Standards: Gaithersburg, MD; Annual Task Report to Food and Drug Administration, 1984, 1985, 1986; also, paper to be submitted. 66. Schwartz, A. Quantitative Fluorescein Microbead Standards; Flow Cytometry Standards Corporation: Research Triangle Park, NC 27709, [1985] technical brochure. 67. Bangs, L. B. Am. Biotechnol. Lab. May/June 1987, 10. 68. Velapoldi, R. Α.; White, P. Α.; May, W. E.; Eberhardt, K. R. Anal. Chem. 1983, 55, 1896. 69. Wise, S. A. In Handbook of Polycyclic Aromatic Hydrocarbons; Björseth, Α., Ed.; Marcel Dekker: New York, 1983; Vol. 1, pp 183-256. 70. Wise, S. A. In Handbook of Polycyclic Aromatic Hydrocarbons; Björseth, Α., Ed.; Marcel Dekker: New York, 1985; Vol. 2, pp 113-197.
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
126
LUMINESCENCE APPLICATIONS
Downloaded by UNIV OF MONTANA on April 7, 2015 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0383.ch007
71. Taylor, J. K. Handbook for SRM Users; NBS Spec. Publ. 260-100, 1985; For Sale By: Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. 72. May, W. E.; Wise, S. A. Anal. Chem. 1984, 56, 225. 73. Wise, S. Α.; Benner, Β. Α.; Chesler, S. Ν.; Hilpert, L. R.; Vogt, C.R.; May, W. E. Anal. Chem. 1968, 58, 3067 RECEIVED August 22, 1988
In Luminescence Applications; Goldberg, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.