Maillard Technology as Applied to Meat and Savory Flavors - ACS

Oct 3, 1989 - The Maillard reaction is responsible for these changes and it is involved ... Abstract: The flavor industry has introduced, over the yea...
0 downloads 0 Views 1MB Size
Chapter 38

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

Maillard Technology as Applied to Meat and Savory Flavors Lawrence L. Buckholz, Jr. International Flavors and Fragrances, Dayton, NJ 08810

The purpose of pyrolytically treating certain foods is to promote flavor changes that increase their overall palatability. A knowledge of the composition of flavor volatiles produced by heating foods would therefore be most desirable. The Maillard reaction is responsible for these changes and it is involved with food processing in three quite different ways: 1) The development of flavors in traditional roasting, baking and cooking processes. 2) The rational use of "reaction flavor" technology to manufacture engineered foods and processed flavors. 3) Efforts to inhibit undesirable browning, such as that of whey in cheese powders. The development of cooked meat flavors for new "fast" food, frozen entree, and microwave applications is strongly impacted by the Maillard reaction. This review discusses the use of Maillard technοlogy to generate meat and savory flavors, with emphasis on flavor chemistry, precursors, volatiles, and recent flavor improvements. MAN HAS B E E N INVOLVED WITH MAILLARD REACTION T E C H N O L O G Y FROM T H E DAWN O F T I M E WHEN H E F I R S T U S E D F I R E TO COOK H I S F O O D . T H E CHANGES THAT OCCURRED DURING THE C O O K I N G OF MEAT WERE T H E R E S U L T O F NON ENZYMATIC BROWNING. T H E FLAVOR PRODUCED WAS T H E R E S U L T O F SUGARA M I N O A C I D R E A C T I O N S , S T R E C K E R D E G R A D A T I O N , A N D FAT O X I D A T I O N ; T H U S , W I T H O U T H I S A W A R E N E S S , MAN WAS U S I N G T H E BROWNING R E A C T I O N TO R E N D E R MEAT T E N D E R , F L A V O R F U L A N D P A L A T A B L E . MANY

BLAND

TRANSFORMED HEAT-TREATED CHOCOLATE, UNDERGO

AND

EVEN UNPLEASANT

I N T O SOME OF FOODS BREAD,

C O M P R I S I N G SUCH COFFEE,

M A I L L A R D BROWNING

GENERATED

FROM T H E

ROASTED

SUBSTANCES ARE BY ROASTING

TASTES

CEREALS,

ENORMOUS

AND

FEW P R I M A R Y R E A C T A N T S APPLICATIONS

HAVE

(AMINO

B E E N WELL

A C I D S AND S U G A R S ) . STUDIED,

(1).

AROMAS A S

AND TOASTED FLAVOR

L A R G E NUMBER OF P O S S I B L E P E R M U T A T I O N S

TIVELY

ABOUT

MEATS,

FOOD

FLAVORS

DIFFERENT

REACTIONS.

FLAVOR

UNDERSTOOD

TASTING

T H E MOST D E S I R A B L E

MUCH

NUTS

VARIETY

IS

AMONG R E L A ­ WHILE

ITS

R E M A I N S TO

B A S I C P R I N C I P L E S GOVERNING MAILLARD CHEMISTRY

0097-6156/89/0409-0406$06.00A) ο 1989 American Chemical Society Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

BE

(2).

38.

BUCKHOLZ

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

Historical

Maillard Technology Applied to Meat and Savory Flavors

Perspective

The e a r l i e s t r e p o r t e d s c i e n t i f i c s t u d i e s of the M a i l l a r d r e a c t i o n were i n i t i a t e d by L o u i s C a m i l l e M a i l l a r d ( 1 ) . In a misguided attempt to determine the b i o l o g i c a l s y n t h e s i s o f p r o t e i n s , he heated concentrated s o l u t i o n s of D-glucose and amino a c i d s . What he observed was a g r a d u a l d a r k e n i n g and f r o t h i n g , w i t h the development o f odors r e m i n i s c e n t of the b a k i n g of bread or the r o a s t i n g o f a n i m a l or v e g e t a b l e p r o d u c t s . T h i s work a t t r a c t e d s u f f i c i e n t a t t e n t i o n to persuade many o t h e r s to c o n t i n u e the s t u d y o f what has come to be c a l l e d the M a i l l a r d r e a c t i o n . On November 27, 1911 M a i l l a r d f i r s t r e p o r t e d a c o n d e n s a t i o n o f amino a c i d s by the use o f g l y c e r o l . I n a l a t e r r e p o r t he c i t e d a paper on m a l t i n g by L i n g ( 3 ) , who noted the e f f e c t s o f k i l n i n g o r heat d r y i n g a t 120°C to 150^C. Others performed f u r t h e r e x p e r i m e n t s f o l l o w i n g M a i l l a r d ' s methods; i n 1912 Lintner reported obtaining d a r k r e a c t i o n p r o d u c t s which were r e s p o n s i b l e f o r f l a v o r and aroma (4). Four y e a r s l a t e r , P i c t e t d e s c r i b e d the f o r m a t i o n of p y r a z i n e and i s o q u i n o l i n e bases from the a c i d h y d r o l y s i s of c a s e i n i n the presence of formaldehyde ( 5 ) . A d d i t i o n a l h i s t o r i c a l d e t a i l s o f the M a i l l a r d r e a c t i o n are a v a i l a b l e ( 6 ) . Both the volume o f the p u b l i s h e d work and the r e c o g n i t i o n o f its p o t e n t i a l importance to the food i n d u s t r y l e d to the f i r s t g e n e r a l r e v i e w o f the s u b j e c t i n 1951 by Danehy ( 7 ) . Only two y e a r s l a t e r a second r e v i e w , l i m i t e d l a r g e l y to a c o n s i d e r a t i o n o f model systems and m e c h a n i s t i c i n t e r p r e t a t i o n s was p u b l i s h e d by Hodge (8). I n i t , he c o n c l u d e d t h a t " . . . t h e c o n t r o l of browning r e a c t i o n s to produce o n l y wanted f l a v o r s and odors i s an i n t r i g u i n g p o s s i b i l i t y , ...but p r o g r e s s toward t h i s g o a l can be made o n l y as the r e a c t i o n mechanisms are b e t t e r u n d e r s t o o d . " More r e c e n t l y , t h r e e intern a t i o n a l symposia have been devoted to the M a i l l a r d r e a c t i o n ( 9 - 1 1 ) . C h e m i s t r y o f the M a i l l a r d R e a c t i o n The M a i l l a r d r e a c t i o n i s a c t u a l l y a complex group o f hundreds o f p o s s i b l e r e a c t i o n s . The initial r e a c t i o n sequence i s s i m i l a r to t h a t f o r c a r a m e l i z a t i o n , except t h a t the sugars t h e r m a l l y condense w i t h amino a c i d s , p e p t i d e s , and p r o t e i n s . C o n d e n s a t i o n i s f o l l o w e d by e n o l i z a t i o n and d e h y d r a t i o n . Two of the s e v e r a l branches o f the M a i l l a r d r e a c t i o n are shown i n F i g u r e 1 ( 1 2 ) . The major pathway leads from the 1,2-eneaminol o f the Amadori compound to 5-hydroxymethyl-l,2-furaldehyde. The amino a c i d may be r e t a i n e d i n some m o l e c u l e s o f t h i s pathway. The minor branch b e g i n s w i t h the 2,3e n e d i o l of the Amadori compound; the amino compounds can then condense w i t h the a c y c l i c c a r b o n y l forms of s u g a r s . Amino a c i d s , peptides, and p r o t e i n s o f f e r b a s i c amino groups when the pH o f the a d j a c e n t medium r i s e s above the i s o e l e c t r i c p o i n t o f the amino compound. The i n i t i a l r a t e of browning of a r e d u c i n g sugar w i t h a given amino compound i s d i r e c t l y r e l a t e d to the r a t e a t w h i c h the s u g a r ' s r i n g opens to a r e d u c i b l e form. Pentoses and 2-deoxy-Dr i b o s e r e a c t f a s t e r then 2-deoxy hexoses, which i n t u r n r e a c t f a s t e r than hexoses. Among the hexoses, browning r a t e s d e c r e a s e i n the order: D - g a l a c t o s e > D-mannose > D-glucose. The g e n e r a l p r o p e r t i e s and c h a r a c t e r i s t i c s o f the M a i l l a r d r e a c t i o n a r e summarized i n T a b l e I (13).

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

407

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

compound

Amadori

I I

CHOH

CHOH

c=o

H2Ç-NC

Enediol

— •

-Amine CHOH

c=o

I _

CH 2 I C—OH

CH 1 CHOH

II —

2

^

+H 0

j c=o

C-OH 2

Methyl adicarbonyl intermediate

CHOH

C=0

CH 3

intermediate

3Deexyhexosene

CHOH

1 CH 2

HC=0

H Ç =
d i d an e x t e n s i v e study o f the M a i l l a r d r e a c t i o n and meat f l a v o r . Many d e s i r a b l e meat f l a v o r v o l a t i l e s a r e s y n t h e s i z e d by h e a t i n g w a t e r - s o l u b l e p r e c u r s o r s such as amino a c i d s and carbohydrates. These latter constituents interact t o form i n t e r m e d i a t e s which a r e c o n v e r t e d to meat f l a v o r compounds by o x i d a t i o n , d e c a r b o x y l a t i o n , c o n d e n s a t i o n , and c y l i z a t i o n . 0-, N-, and S-heterocyclics including f u r a n s , furanones, pyrazines, thiophenes, thiazoles, thiazolines, and cyclic polysulfides c o n t r i b u t e s i g n i f i c a n t l y to the o v e r a l l d e s i r a b l e aroma i m p r e s s i o n o f meat. The M a i l l a r d r e a c t i o n i s important to the f o r m a t i o n of S t r e c k e r a l d e h y d e s , hydrogen s u l f i d e and ammonia. There a r e two approaches to meat f l a v o r a n a l y s i s : one is concerned w i t h the i s o l a t i o n and i d e n t i f i c a t i o n o f v o l a t i l e f l a v o r components, and the o t h e r i n v o l v e s i d e n t i f i c a t i o n o f non v o l a t i l e flavor precursors. Non-volatile Precursors. Water-soluble meat f l a v o r precursors encompass a number o f d i f f e r e n t o r g a n i c c l a s s e s o f compounds i n c l u d i n g n u c l e i c a c i d s , n u c l e o t i d e s , n u c l e o s i d e s , p e p t i d e s , amino a c i d s , f r e e s u g a r s , sugar amines, g l y c o g e n , and amines (20-30). The influence of h e a t i n g on the d i a l y z a b l e low m o l e c u l a r weight c o n s t i t u e n t s (amino a c i d s , c a r b o h y d r a t e s , n u c l e o t i d e s , n u c l e o s i d e s ) i n beef, pork and lamb was s t u d i e d (25-29). The predominant amines i n the d i a l y z a b l e d i f f u s a t e were a l a n i n e , a n s e r i n e - c a r n o s i n e , and t a u r i n e , and these decreased c o n s i d e r a b l y d u r i n g h e a t i n g . Other amino a c i d s d e c r e a s i n g d u r i n g h e a t i n g i n c l u d e d m e t h y l h i s t i d i n e , i s o l e u c i n e , l e u c i n e , methionine, cystine, serine, lysine, glycine and glutamic acid. Glucose, f r u c t o s e , and e s p e c i a l l y r i b o s e and ribose-5-phosphate r e a d i l y decomposed d u r i n g h e a t i n g a t 100 C f o r one hour ( 3 0 ) . e

V o l a t i l e Precursors. I n v e s t i g a t i o n s i n v o l v i n g model systems f o r meat aromas have been reviewed (31-34). More than 600 v o l a t i l e s have been i d e n t i f i e d from meat o r s i m u l a t e d meat p r e c u r s o r s .

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

38.

BUCKHOLZ

HC=0



Maillard Technology Applied to Meat and Savory Flavors

HC=H—CH2COOM I

HINCNJCOOH

•M

HC=0

HC=0

H,0 X

"V"

6 0 2

HC

HC=0

I

• HCHO •

C0

COOH

OH NH

/HHî

2

HC 2

I OH

C00H

-2H 0 2

-ÎL,

HC

Figure 2. Strecker degradation reactions and products. (Reprinted with permission from ref. 13. Copyright 1976 Marcel Dekker.)

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2

411

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

oldoheiose

+

α-Amino

Acid

1

R

C-OH

1

-QH^

(t)

CH(OH

H-C-OH

ÇH H-C-OH

H

C-OH

CH

\

0

NH-CH-CI R

-CQ 2

+

(Π)

CHjOH

(1)

CHjOH

-C-OH

II

C-OH

C-OH H-C-OH "

• H.O

ÇH

C-OH

Η

CH C-OH ι CH

NH, CH

H=CH ι

R

Amino Acid

t

American Chemical Society.)

m

n

+ R-CHO

-

mi

C-OH CH,OH

II

C-OH

ÇH,

C=0

2

NH« ι * CH ι

ft

" '7

CH,OH

-C-OH

CHO

Pigments

o

B f0

(ΙΠI



| 101 CH

5

CHj

+ ommo acetone

CHj

C=0

CM,

NH,

Reductones - ° - ' "

Figure 3. Mechanism for formation of pyrazines. (Reprinted from ref. 17. Copyright 1967

(!)

CH^OH

CH OH

2

H-C-OH

H—C-OH

H-C-OH

H-i-OH

H-C-OH

H-C-OH

CH

1

H- C-OH

•H^

R

H - N - C H - -COOH

H-C-OH

H— N - C H - COOH

a, 0-unsoturoted

M- C - O H ""a-dicorfconyl ~~~ CH OH m)

H-C-OH

I *

CH.

I

c=o

H-C=0 I

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

38.

BUCKHOLZ

Maillard Technology Applied to Meat and Savory Flavors

Further e v i d e n c e o f the importance o f the M a i l l a r d r e a c t i o n i n the formation o f v o l a t i l e f l a v o r a n t s from meat p r e c u r s o r s i s g l e a n e d by examining i n g r e d i e n t s i n r e a c t i o n mixtures p a t e n t e d as synthetic meat constituents. C h i n g ( 3 1 ) , examined 128 p a t e n t s o f meat f l a v o r and found t h a t 55 s p e c i f i e d use o f both amino a c i d s and s u g a r s . Cysteine, c y s t i n e , and g l u t a m i c a c i d were used i n 39 such m i x t u r e s . Over 80 p a t e n t s d e s c r i b e meat f l a v o r " r e a c t i o n p r o d u c t s " ( 3 2 ) . Meat aroma i s not the r e s u l t o f one c h e m i c a l c o n s t i t u e n t but the sum o f the s e n s o r y e f f e c t s o f many o f these v o l a t i l e s . Over 90% of the volume o f v o l a t i l e c o n s t i t u e n t s from f r e s h l y r o a s t e d beef i s from l i p i d , but 40% o f the v o l a t i l e s from the aqueous f r a c t i o n a r e thought to be heterocyclic compounds. Heterocyclic compounds c o n t r i b u t e s i g n i f i c a n t l y to the o v e r a l l aroma i m p r e s s i o n o f meat. Although some i n v e s t i g a t o r s b e l i e v e that dihydrofuranone i s derived from ribose-5-phosphate through a dephosphorylationdehydration mechanism, o t h e r s b e l i e v e i t can be formed by a t y p i c a l Maillard r e a c t i o n between amines and s u g a r s , i n which the Amadori products d e h y d r a t e and e l i m i n a t e to amines. Both r o u t e s a r e l i k e l y to o c c u r .

Furans and Furanones E l e v e n f u r a n s and seven furanones have been i d e n t i f i e d from r e a c t i o n mixtures c o n t a i n i n g p r e c u r s o r s r e s p o n s i b l e f o r beef f l a v o r (31). Furfural derivatives were o b t a i n e d by heating water-extractable components from beef and s i m p l e amino a c i d - s u g a r mixtures. Furanones can be formed by Amadori compound pathways: Hexoses produce 5 - m e t h y l f u f u r a l s and 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, while pentoses' y i e l d furfural and 4-hydroxy-5-methyl-3-(2H)furanone. The l a t t e r compound was s y n t h e s i z e d by h e a t i n g amines with x y l o s e , r i b o s e , ribose-5-phosphate, or g l u c o n i c a c i d (35,36). Furans t h a t do not c o n t a i n s u l f u r are u s u a l l y nutty, f r u i t y , and caramel-like i n odor. The furanones d e s c r i b e d above have b u r n t p i n e a p p l e and sweet r o a s t e d n o t e s .

Sulfur Compounds Thiophenes and Furanthiols. Thiophenes are extremely important contributors to cooked meat f l a v o r and a r e r e s p o n s i b l e f o r m i l d sulfurous aromas. The s u l f u r i n t h i o p h e n e s may be d e r i v e d from amino a c i d s ( c y s t e i n e , c y s t i n e , m e t h i o n i n e ) o r from t h i a m i n e . Over 36 thiophene derivatives have been found during various i n v e s t i g a t i o n s o f meat o r meat c o n s t i t u e n t s ( 3 2 ) . Probably the most important r e a c t a n t i n the formation of volatile meat flavor compounds i s hydrogen s u l f i d e . I t can be formed as a S t r e c k e r d e g r a d a t i o n product o f c y s t e i n e i n the p r e s e n c e of a diketone (37). S e v e r a l S - s u b s t i t u t e d f u r a n s have been i d e n t i f i e d from M a i l l a r d reaction m i x t u r e s which p o s s e s s meaty aromas i n c l u d i n g 3-mercapto2 - m e t h y l f u r a n and 3-mercapto-2,5-dimethyl furan (38). Thiazoles and Thiazolines. T h i a z o l e s and t h i a z o l i n e s p r o v i d e n u t t y , roasted n o t e s to meat flavors. These compounds can be formed by combining a d i k e t o n e , such as 2,3-butanedione ( d i a c e t y l ) , with acetaldehyde, hydrogen sulfide, and ammonia (39). 2-Acetyl-2-

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

413

414

THERMAL GENERATION OF AROMAS

thiazoline i s postulated t o be formed by S t r e c k e r d e g r e d a t i o n o f c y s t e i n e f o l l o w e d by o x i d a t i v e c y c l i z a t i o n ( 4 0 ) . Other thiazoles have been i s o l a t e d from meat o r meat c o n s t i t u e n t s which have undergone M a i l l a r d - t y p e r e a c t i o n s ( 4 1 ) .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

Polysulfide Heterocyclics. Polysulfur heterocyclics, including thialdine (5,6-dihydro-2,4,5-trimethyl-1,3,5- d i t h i a z i n e ) and t r i t h i o a c e t o n e ( 2 , 2 , 4 , 4 , 6 , 6 - h e x a m e t h y l - l , 3 , 5 - t r i t h i a n e ) , have been identified i n meat f l a v o r e x t r a c t s ( 4 1 ) . The formation of these compounds i s shown i n F i g u r e 4. 1-(Methylthio)ethanethiol. T h i s component was i d e n t i f i e d i n the headspace v o l a t i l e s o f beef b r o t h as a r e s u l t o f S t r e c k e r degrada­ t i o n ( 4 2 ) . A l t h o u g h i t has a r o a s t e d o n i o n - l i k e odor, t h i s compound i s a s i g n i f i c a n t c o n t r i b u t o r t o beef f l a v o r . Pyrazines The i d e n t i f i c a t i o n o f 49 p y r a z i n e s i n heated beef and o t h e r meats has been e x t e n s i v e l y reviewed (32, 4 3 ) . S e v e r a l mechanisms have been proposed f o r p y r a z i n e f o r m a t i o n by the M a i l l a r d r e a c t i o n . D i c a r b o n y l compounds can i n i t i a t e S t r e c k e r d e g r a d a t i o n o f amino acids to y i e l d α-amino k e t o n e s , which i n t u r n can undergo c o n d e n s a t i o n s and o x i d i z a t i o n s t o form s u b s t i t u t e d p y r a z i n e s ( 1 3 ) . Sugar-Amino A c i d Model Systems A thorough s t u d y o f the aromas produced from over 400 model M a i l l a r d r e a c t i o n systems was performed ( 4 4 ) . Combinations o f 21 amino a c i d s and 8 s u g a r s were e v a l u a t e d under d i f f e r e n t c o n d i t i o n s o f tempera­ t u r e and h u m i d i t y . T a b l e I I l i s t s beefy o r meaty aromas produced from t h e r m a l i n t e r a c t i o n s between g l u c o s e and e i g h t amino a c i d s .

Table I I .

Amino A c i d

G e n e r a t i o n o f "Meaty, B e e f y " Aromas i n Heated M i x t u r e s o f Amino A c i d s w i t h G l u c o s e With G l u c o s e Temperature (°C) 100 140 180 220

Asn Cys Cys Glu Gly He Ser Thr

· 9

· ·

· ·

·

T o t a l Meaty Aromas: Source: Adapted from

3 R e f . 44.

Alone Temperature (°C) 100 140 180 220

• • • • • • • • • • • · • • • · 7

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

BUCKHOLZ

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

38.

Maillard Technology Applied to Meat and Savory Flavors

OH

0 H

3

(3X)

H C-Ç-SH

C

3

H*

H

2,4, (3x)

ι

NH,

HS

(2x)

TRIMETHYLTRITHIANE

2

SH

ι

6~

1 , 3 , 5 -

CH3-CH -S-S-S-CH -CH 2

2

H 5, 6 -

DIHYDRO-

2,4,6

—TRIMETHYL —

1,3,5

— DITHIAZINE

3

4

SH

CH -CH -S-S-CH -CH

4 [·]

S

C H

3

- C H

2

2

2

- S - S - S - S - C H

2

3

- C H

3

DIETHYLTETRASULFIOE

3 , 5 -

DIMETHYL

I ,2, 4-



TRITHIOLANE

Figure 4. Formation of important meat aroma polysulfide heterocyclics by heating acetaldehyde and hydrogen sulfide. (Reprinted from ref. 39. Copyright 1976 American Chemical Society.)

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

415

THERMAL GENERATION OF AROMAS

416

The s e n s o r y p r o p e r t i e s of n e a r l y 450 v o l a t i l e M a i l l a r d r e a c t i o n p r o d u c t s and r e l a t e d compounds have been compiled (45)· The r e v i e w i n c l u d e s q u a n t i t a t i v e aroma and f l a v o r d e s c r i p t i o n s , as w e l l as sensory t h r e s h o l d v a l u e s f o r d i f f e r e n t media, c l a s s i f i e d a c c o r d i n g to c h e m i c a l s t r u c t u r e .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

P a t e n t Review While the m a j o r i t y o f M a i l l a r d technology p a t e n t s d e a l w i t h the p r o d u c t i o n o f m e a t - l i k e f l a v o r s ( 1 ) , i t i s a p p r o p r i a t e t o comment on the s i g n i f i c a n c e o f " r e a c t i o n f l a v o r " p a t e n t s . D u r i n g the p a s t 30 y e a r s , s e v e r a l hundred p a t e n t s have been g r a n t e d worldwide f o r p r o c e s s e s and r e a c t i o n p r o d u c t s based on non-enzymatic browning technology. Less than 100 o f these a r e i n c l u d e d i n C h e m i c a l Abstracts, since subsequent patents are listed in patent concordance. There appears t o be about 45 " s t a n d a r d p a t e n t s " , i . e . p a t e n t s which s p e c i f y m i x i n g one o r more amino a c i d s w i t h one o r more carbonyl compounds, f o l l o w e d by p r o c e s s i n g over a range o f temperatures. No s i n g l e patent p r o v i d e s a r i g i d specification. These p a t e n t s have l i t t l e i n s t r u c t i v e o r commercial v a l u e because the extreme c o m p l e x i t y o f the r e a c t i o n product c o m p o s i t i o n would make i t i m p o s s i b l e to determine by e x a m i n a t i o n how they were made. Secondly, i n view o f the redundancy o f the p a t e n t s , i t would be overwhelmingly d i f f i c u l t to determine patent i n f r i n g e m e n t . N e v e r t h e l e s s , the patent l i t e r a t u r e can p r o v i d e i n s i g h t s to the use and importance o f M a i l l a r d t e c h n o l o g y . The key involvement o f o r g a n i c s u l f u r compounds w i t h the development o f m e a t - l i k e f l a v o r s was announced s i m u l t a n e o u s l y i n 1960 by s e v e r a l i n v e s t i g a t o r s ( 4 6 ) . The e a r l i e s t paper to d e s c r i b e attempts to produce aromas usefuï~in foods v i a M a i l l a r d r e a c t i o n s noted t h a t both c y s t e i n e and cystine gave meaty aromas when heated w i t h r e d u c i n g sugars ( 4 7 ) . Heating c y s t e i n e o r c y s t i n e w i t h f u r a n , s u b s t i t u t e d f u r a n s , pentoses o r g l y c e r a l d e h y d e was c l a i m e d to g i v e a m e a t - l i k e f l a v o r (48-52). Most of the o r i g i n a l p a t e n t s r e f e r r i n g to meat flavors u t i l i z i n g Maillard t e c h n o l o g y were c l a i m e d by U n i l e v e r (48-52; 56,57). More r e c e n t p a t e n t s a r e i n v o l v e d w i t h the p r o d u c t i o n o f m e a t - l i k e f l a v o r s . While a m a j o r i t y o f p a t e n t s a r e concerned w i t h c y s t e i n e , c y s t i n e , o r m e t h i o n i n e as the s u l f u r s o u r c e , o t h e r s c l a i m a l t e r n a t i v e s such as mercaptoacetaldehyde, mercaptoalkamines, e t c . S e v e r a l p a t e n t s (53,54), d e c l a r e the c o n t r i b u t i o n t o m e a t - l i k e f l a v o r s produced from t h i a m i n e i n the M a i l l a r d r e a c t i o n . Altern a t e l y , a t e c h n i c a l r e p o r t d e s c r i b e s the v o l a t i l e f l a v o r compounds produced by the t h e r m a l d e g r a d a t i o n of t h i a m i n e a l o n e ( 5 5 ) . M a i l l a r d - r e a c t i o n f l a v o r s have been manufactured f o r y e a r s by v a r i o u s food and f l a v o r companies. P r i n c i p a l companies utilizing Maillard t e c h n o l o g y to c u r r e n t l y develop f l a v o r s a r e P f i z e r , F i d c o , A l e x F r i e s , F r i t z s c h e Dodge & O l c o t t , Dragoco, Haarman & Reimer, Quest, F r i e s & F r i e s , and I n t e r n a t i o n a l F l a v o r s and F r a g r a n c e s . Givaudan has pursued new n a t u r a l raw m a t e r i a l s to use f o r g e n e r a t i o n of M a i l l a r d f l a v o r s ( 5 8 ) . F o l l o w i n g i s a d i s c u s s i o n o f the more r e c e n t p a t e n t s c o n c e r n i n g m e a t - l i k e aroma and f l a v o r i n g agents. Meaty f l a v o r s a r e developed by h e a t i n g r e d u c i n g sugars w i t h c y s t e i n e o r c y s t i n e ( 5 9 ) . Removing cooker j u i c e from f i s h and p r o c e s s i n g i t by M a i l l a r d r e a c t i o n s t o

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

38.

BUCKHOLZ

Maillard Technology Applied to Meat and Savory Flavors

remove f i s h y odors i s c l a i m e d to p r o v i d e meat f l a v o r (60)· Meat f l a v o r i s r e p o r t e d by h e a t i n g hydrogen s u l f i d e p r e c u r s o r s w i t h an e d i b l e p r o t e i n a c e o u s m a t e r i a l (such as soy p r o t e i n ) i n an aqueous medium ( 6 1 ) . For microwave c o o k i n g a p p l i c a t i o n s , a browning agent comprised o f a h y d r o l y z e d p r o t e i n ( c o l l a g e n o r g e l a t i n ) i n the presence o f a r e d u c i n g sugar was produced ( 6 2 ) . A g l a z e f o r r e f r i g e r a t e d dough a p p l i c a t i o n s t h a t r a p i d l y browns i n the microwave oven has been developed i n the a u t h o r ' s l a b o r a t o r y ( 6 3 ) . Many i n d i v i d u a l f l a v o r c h e m i c a l s which were i s o l a t e d and identified from M a i l l a r d " s i d e r e a c t i o n s " have been r e p o r t e d i n the patent l i t e r a t u r e . I t i s e v i d e n t from these p a t e n t s t h a t much work has been done to g l e a n s p e c i f i c f l a v o r chemicals from the c o m p l e x i t i e s o f the M a i l l a r d r e a c t i o n . 3-Furyl a l k y l sulfide, d i s u l f i d e , and β-chalcogenalkyl s u l f i d e d e r i v a t i v e s a r e c l a i m e d to p r o v i d e b l o o d y , meaty, and r o a s t e d notes to beef b r o t h and beef p r o d u c t s (64-66). 3 - M e t h y l c y c l o p e n t - 2 - e n - l - o n e was d e c l a r e d f o r i t s flavor enhancement o f beef b o u i l l o n ( 6 7 ) . Firmenich claimed 2,6-dimethyl-2-octenal and i t s analogs as p o s s e s s i n g meat flavor qualities ( 6 8 ) . A method to produce d i s u l f i d e s f o r a p p l i c a t i o n to meat and s a v o r y f l a v o r s was patented ( 6 9 ) . Meaty and sauteed onion-like flavors a r e imparted by 2-(o-mercaptoalkyl)-3-thiazoline when added to foods (70). A synthesis of 4-hydroxy-5-methyl-2,3-dihydrofuran-3-one was d e s c r i b e d , which i s c l a i m e d to p r o v i d e meaty o r beefy f l a v o r ( 7 1 ) . 2 - ( 2 , 6 - D i m e t h y l - l , 5 - h e p t a d i e n y l ) - l , 3 - d i t h i o l a n e s possess h y d r o l y z e d v e g e t a b l e p r o t e i n - l i k e o r cooked l i v e r aroma and flavor. Methyl (methylthioalkyl)-l,3-dithiolanes produce v e g e t a b l e - l i k e , sweet m e a t - l i k e , t u r k e y , c h i c k e n , and p o r k - l i k e aromas and flavors. At the proper c o n c e n t r a t i o n , bready notes can a l s o be a c h i e v e d . Furyl and p h e n y l m e r c a p t a l s a r e used to enhance r o a s t e d n u t , r o a s t e d meat, beef b r o t h , b l a c k pepper, o n i o n , f i n e herbs omelet, and cooked o n i o n omelet foods. 4,5-Dimethyl-2-(2-methylthioethyl)-l,3-oxathiolane p r o v i d e s beef b r o t h , o n i o n , g a r l i c , b l o o d y , and mushroom notes to foods and snacks. D i a l k y l t h i o a l k e n e s and derivatives produce v e g e t a b l e p r o t e i n - l i k e and beany nuances. T h i o a l k a n o i c a c i d e s t e r s o f p h e n y l a l k a n o l s produce f l o r a l , r o a s t e d n u t t y , r o a s t e d p e a n u t t y , sesame, coconut macaroon, y e a s t y , and h y d r o l y z e d v e g e t a b l e p r o t e i n ­ l i k e nuances. o-Dioxybenzaldehyde d i m e t h y l m e r c a p t a l s produce beef e x t r a c t , o n i o n y , cabbage-type aroma and f l a v o r i n s p e c i f i e d food a p p l i c a t i o n s (72-78). CONCLUSION

Modern M a i l l a r d r e a c t i o n technology i s c r i t i c a l to today's food i n d u s t r y . The development o f convenience foods and q u i c k l y - p r e p a r e d meals r e q u i r e s the use o f n a t u r a l f l a v o r enhancements to overcome the s e n s o r y gaps when compared w i t h " t r a d i t i o n a l " c o o k i n g methods: the b a s t i n g of r o a s t s , the simmering of soups, g r a v i e s , meats, e t c . M a i l l a r d t e c h n o l o g y can be used to p r o v i d e the f l a v o r , browning, and room aroma t h a t would be l a c k i n g i n q u i c k , c o n v e n i e n t l y prepared f o o d s . As more i s l e a r n e d about non-enzymatic browning and s p e c i f i c f l a v o r c h e m i s t r i e s , the a b i l i t y to m a i n t a i n o r g e n e r a t e d e s i r e d f l a v o r s and aromas w i l l i n c r e a s e , r e g a r d l e s s of food a p p l i c a t i o n .

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

417

418

THERMAL GENERATION OF AROMAS

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

Literature Cited 1. Danehy, J. P. Adv. Food Res. 1986, 30, 77-138. 2. Rohan, T. A. In Phytochemical Ecology; Harborne, J. B., Ed.; Phytochem, Soc. Symp., Surrey, 1971, pp. 57-69. 3. Ling, A. R. J. Inst. Brew., 1908, 14, 494-521. 4. Lintner, C. J. Z. Gesanti Brauwes 1912, 35, 545-8, 553-6. 5. Pictet, A.; Chov. T. Q. C. R. Hebd. Seances Acad. Sci. 1916, 162, 127. 6. Kawamura, S. Shokukin Kaikatsu 1972, 1 (12), 64-65. 7. Danehy, J. P.; Pigman, W. W. Adv. Food Res. 1951, 3, 241-290. 8. Hodge, J. E. J. Agr. Food Chem. 1953, 1, 928-943. 9. Eriksson, C. E., Ed.; Prog. Food Nutr. Sci. 1981, 5, 3, 501. 10. Waller, G. R.; Feather, M. S. Eds.; The Maillard Reaction in Foods and Nutrition; ACS Symposium Series No. 215; American Chemical Society: Washington, DC, 1983. 11. Fujimaki, M.; Kurata, T.; and Kato, S., Eds.; Amino Carbonyl Reactions in Food and Biological Systems; Proc. 3rd Intern. Symp. on Maillard Reactions; Susono, Shizuoka, Japan, 1985; Vol. 13. 12. Hodge, J. E. In Chemistry and Physiology of Flavors; Schultz, H. W., Ed.; Avi Publishing: West Port, CT, 1967, Chapter 22. 13. Hodge, J. E.; Osman Ε. M. In Principles of Food Science, Part I, Food Chemistry; Fennema, O., Ed.; Marcel Dekker Inc.: New York, NY, 1976, Chapter 3. 14. Reynolds, T. M. Adv. Food Res. 1963, 12, 1-52. 15. Heyns, K. and Noack, H. Chem. Ber. 1962, 95, 720-727. 16. Schonberg, A. R.; Moubacher, R.; Mostofa, A. J. Chem. Soc. 1948, 176. 17. Newell, J. Α.; Mason, M. E.; Matlock, R. S. J. Agr. Food Chem. 1967, 15, 767. 18. Namiki, M.; and Hayashi, T. In The Maillard Reaction in Food and Nutrition; Waller, G. R.; Feather, M. S., Eds.; ACS Symposium Series No. 215; American Chemical Society: Washington, DC 1983; pp 21-46. 19. Bailey, M. E. In The Maillard Reaction in Food and Nutrition; Waller, G. R.; Feather, M. S. Eds.; ACS Symposium Series No. 215; American Chemical Society: Washington, DC, 1983; pp. 169-184. 20. Wood, T.; Bender, A. E. Biochem. J. 1957, 67, 366. 21. Bender, A. E.; Wood, T; Palgrave, J. A. J. Sci. Food Agric. 1958, 9, 812. 22. Kramlich, W. E.; Pearson, A. M. Food Res. 1958, 23, 567. 23. Hornstein, I.; Crowe, P. F. J. Agr. Food Chem. 1960, 8, 494. 24. Wood, T. J. Sci. Food Agric. 1961, 12, 61. 25. Macy, R. L., Jr.; Naumann, H. D.; Bailey, M. E. J. Food Sci. 1968, 33, 53. 26. Macy, R. L., Jr.; Naumann, H. D.; Bailey, M. E. J. Food Sci. 1964, 29, 142. 27. Macy, R. L., Jr.; Naumann, H. D.; Bailey, M. E. J. Food Sci. 1970, 35, 78. 28. Macy, R. L., Jr.; Naumann, H. D.; Bailey, M. E. J. Food Sci. 1970, 35, 81. 29. Macy, R. L., Jr.; Naumann, H. D.; Bailey, M. E. J. Food Sci. 1970, 35, 83.

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

38. BUCKHOLZ

Maillard Technology Applied to Meat and Savory Flavors

30. Wasserman, A. E.; Spinelli, A. M. J. Food Sci. 1970, 35, 328. 31. Ching, J. C-Y. Ph.D. Thesis, University of Missouri, Columbia, Mo. 1979. 32. MacLeod, G.; Seyyedain-Ardebili, M. CRC Crit. Rev. Food Sci. Nutr. 1981, 14, 309. 33. Herz, K. O.; Chang, S. S. Adv. Food Res. 1970, 18, 1. 34. Dwivedi, Β. K. CRC Crit. Rev. Food Sci. Nutr. 1975, 5, 487. 35. Hicks, Κ. B.; Feather, M. S. Carbohyd. Res. 1977, 54, 209. 36. Hicks, Κ. B.; Harris, D. W.; Feather, M. S.; Loeppky, R. N. J. Agr. Food Chem. 1974, 22, 724. 37. Kobayashi, N.; Fujimaki, M. Agric Biol. Chem. 1965, 29, 698. 38. Evers, V. J . ; Heinsohn, H. H., Jr.; Mayers, B. J . ; Sanderson, A. In Phenolic, Sulfur, and Nitrogen Compounds in Food Flavors; Charalambous, G.; Katz, I., Eds.; ACS Symposium Series No. 26; American Chemical Society: Washington, DC, 1976; pp. 184-193. 39. Takken, H. J . ; van der Linde, L. M.; Devalois, D. J . ; van Dort, H. M.; Boelens, M. In Phenolic, Sulfur, and Nitrogen Compounds in Food Flavors; Charalambous, G.; Katz, I., Eds.; ACS Symposium Series No. 26; American Chemical Society: Washington, DC, 1976; pp. 114-121. 40. Tonsbeek, C. H. T.; Copier, H.; Plancken, A. J. J. Agr. Food Chem. 1971, 19, 1014. 41. Wilson, R. Α.; Mussinan, C. J.; Katz, I.; Sanderson, A. J. Agr. Food Chem. 1973, 21, 873. 42. Brinkman, H. W.; Copier, H.; DeLeuw, J. J. M.; Tgan, S. B. J. Agr. Food Chem. 1972, 20, 177. 43. Maga, J. Α.; Sizer, C. E. Fenaroli's Handbook of Flavor Ingredients; Furia, T. E.; Bellanca, Ν., Eds.; CRC Press, Inc.: Cleveland, 1975; Vol. I, pp. 47-131. 44. Lane, M. J . ; Nursten, Η. E. In The Maillard Reaction in Food and Nutrition; Waller, G. R.; Feather, M. S., Eds.; ACS Sympos­ ium Series No. 215; American Chemical Society: Washington, DC, 1983, pp. 141-158. 45. Fors, S. In The Maillard Reaction in Food and Nutrition; Waller, G. R.; Feather, M. S., Eds.; ACS Symposium Series No. 215; American Chemical Society: Washington, DC, 1983; pp. 185-286. 46. Danehy, J. P.; Wolnak, B. In The Maillard Reaction in Food and Nutrition; Waller, G. R.; Feather, M. S., Eds.; ACS Symposium Series No. 215; American Chemical Society: Washington, DC 1983; pp. 303-315. 47. Kiely, P. J . ; Nowlin, A.C.; Moriorty, J. H. Cereal Sci. Today 1960, 5, 273-274. 48. May, C. G. U.S. Patent 2 934 435, 1960. 49. May, C. G.; Morton, I. D. U.S. Patent 2 934 436, 1960. 50. Morton, I. D.; Akroyd, P.; May C. G. U.S. Patent 2 934 437, 1960. 51. May, C. G.; Akroyd, P. German Patent 1 058 824, 1959. 52. May, C. G.; Akroyd, P. U.S. Patent 2 918 376, 1959. 53. Bidmead, D. S., Giacino, C.; Grossmann, J.D.; Kraftz, P. D. U.S. Patent 3 394 017, 1968; Chem. Abstr. 66, 114766. 54. Giacino, C. U.S. Patent 3 394 017, 1968; Chem. Abstr. 66, 27875. 55. Arnold, R. G.; Libbey, L. M.; and Lindsay, R. C. J. Agr. Food Chem. 1969, 17, 390.

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

419

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 29, 2016 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch038

420

T H E R M A L

GENERATION

O F

AROMAS

56. Broderick, J. J., Finteris, L. L. U.S. Patent 2 955 041, 1960. 57. Ohwa, T. Japanese Patent 7 250 387, 1972. 58. Anonymous. The Givaudan Flavorist International Edition, 1979, 3, 1. 59. Kitada, N.; Shimazaki, H.; Komata, Y. U.S. Patent 3 620 772, 1971. 60. Dunn, H. J., Farr, M. P.; Schluesner, O. U.S. Patent 3 795 751, 1974. 61. Bernhardt, C. Α.; Moklenkamp, M. J., Jr. U.S. Patent 4 161 550, 1979. 62. Bryson, I.; Easton, I. A. U.S. Patent 4 735 812, 1988. 63. Buckholz, L. L. Jr.; Byrne, B.; and Sudol, M. A. Pending Patent Application, Docket Number IFF 4815, 1988. 64. Evers, W. J., Vock, M. H.; Pelse, I. Α.; Heinsohn, Η. H., Jr.; Giacino, C. German Patent 2 600 707, 1976. 65. Evers, W. J., Heinsohn, Η. H. Jr.; Vock, M. H. German Patent 2 604 340, 1976. 66. Evers, W. J. U.S. Patent 4 020 175, 1977. 67. King, B.; Smith, A. Y. Swiss Patent 581 960, 1976. 68. Firmenich, S. A. Japanese Patent 8 040 687, 1980. 69. Dubs, P.; Kuntzel, H. Swiss Patent 623 568, 1981. 70. Spencer M.D.; Parliment T. H.; Giordano, D. A. U.S. Patent 4 355 049, 1982. 71. de Rooij, J. F. M. U.S. Patent 4 464 409, 1984. 72. Pittet, A. O.; Courtney, T. F.; Muralidhara, R. U.S. Patent 4 515 966, 1985. 73. Pittet, A. O.; Courtney, T. F.; Muralidhara, R. U.S. Patent 4 515 967, 1985. 74. Pittet, A. O.; Courtney, T. F.; Muralidhara, R. U.S. Patent 4 515 968, 1985. 75. Pittet, A. O.; Vock, M. H.; Courtney, T. F.; Muralidhara, R. U.S. Patent 4 464 408, 1984. 76. Pittet, A. O.; Muralidhara, R.; Miller, K. P.; Luccarelli D., Jr.; Vock, M. H. U.S. Patent 4 626 440, 1986. 77. Pittet, A. O.; Muralidhara, R.; Vock M. H.; Luccarelli D., Jr.; Miller, K. P.; Wiener, C. U.S. Patent 4 634 595, 1987. 78. Pittet, A. O.; Muralidhara, R.; Vock, M. H.; Miller, K. P.; Luccarelli, D., Jr. U.S. Patent 4 652 682, 1987. RECEIVED July 20,

1989

Parliment et al.; Thermal Generation of Aromas ACS Symposium Series; American Chemical Society: Washington, DC, 1989.