3 Mass Spectrometric Study of Ion-Solvent Molecule Interactions in the Gas Phase P.
KEBARLE
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
University of Alberta, E d m o n t o n , Alberta, Canada
Important
and
hitherto
-solvent molecule spectrometric Individual
detection solvation
A
reactions systems
+
A
where
+
and
B Cl 2
-
=
NH4 ,
3
of
CH OH2
into this shell while
gas
and S =
solvation
water
and
phase.
(large clusters)
NH
and BCl ,
3
-
-
competi
at close
it is range
water is taken
ion shows a distinct is taken up
water is taken up
the The
of Cl ,
methanol,
solvating
Ammonia
ion
for
In a study of the
The ammonium
shell of four solvent molecules. into the outer
+
is more strongly
At larger distances
up preferentially.
Na
+
by
+
3
in the
and entropies
HO,
+
on
from the mass
· n S can be obtained.
by water is described.
tive solvation
entially
clusters
The comparative
found that methanol of the ion.
of ion
step enthalpies +
are described.
information
can be obtained
· (n — 1)S + S = A
HO 2
unavailable
interactions
inner prefer
preferentially
shell.
Ο t u d i e s of ion-solvent m o l e c u l e interactions i n s o l u t i o n date b a c k to the ^
b e g i n n i n g of p h y s i c a l c h e m i s t r y a n d represent a m a j o r field i n c h e m i
c a l r e s e a r c h . I n contrast, the systematic s t u d y of ion-solvent m o l e c u l e interactions i n t h e gas phase is o n l y a f e w years o l d (10,
12).
I n this
p a p e r w e h o p e to s h o w that a great w e a l t h of significant i n f o r m a t i o n o n i o n - s o l v e n t m o l e c u l e i n t e r a c t i o n s c a n b e o b t a i n e d f r o m the s t u d y of i o n - s o l v e n t m o l e c u l e clusters A
+
· n S or B " * nS i n the gas phase. A or B " +
is a n y p o s i t i v e or n e g a t i v e i o n , a n d S is a solvent m o l e c u l e — i . e . , a m o l e cule w i t h a high dipole moment. T h e mass s p e c t r o m e t r i c gas phase studies are b a s e d o n m e a s u r e m e n t of the r e l a t i v e concentrations of the c l u s t e r e d i o n i c species: A A
+
* ( n + l ) S etc.
+
· nS,
T h e m e a s u r e m e n t of the r e l a t i v e concentrations is
o b t a i n e d b y b l e e d i n g a p r o b e of the gas i n t o a n i o n mass analysis system —i.e., a v a c u u m c h a m b e r a t t a c h e d to a mass spectrometer. I n the v a c u u m 24
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
Gas
25
Phase
c h a m b e r the gas is p u m p e d out w h i l e the ions are c a p t u r e d b y e l e c t r i c fields,
a c c e l e r a t e d , focused,
a n d mass a n a l y z e d b y some c o n v e n t i o n a l
means ( m a g n e t i c s e p a r a t i o n , q u a d r u p o l e filter, etc. ). A f t e r mass analysis, t h e i o n b e a m intensities are d e t e c t e d as e l e c t r i c a l currents. S e v e r a l types of s o l v a t i o n studies c a n b e u n d e r t a k e n i f the r e l a t i v e concentrations of the i o n i c species are k n o w n . Solvation Enthalpies and Entropies of Individual Solvent Molecule Additions Steps. C o n s i d e r the i o n A
p r o d u c e d i n the gas phase b y some
+
f o r m of i o n i z i n g r a d i a t i o n or t h e r m a l means. I f the a t m o s p h e r e s u r r o u n d i n g the i o n contains the v a p o r of a p o l a r m o l e c u l e ( s o l v e n t S ) , a n u m b e r
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
of c l u s t e r i n g reactions w i l l o c c u r . A A A
+
+ S-*A -S
· S + S —> A
+
· (n -
+
(0,1)
+
+
· 2S
1)S + S - » A
+
(1,2)
· nS
(η -
l,n)
A t e q u i l i b r i u m the f o l l o w i n g relations w i l l h o l d AFV ΔΡ%.
M
= A F V + AF\
= -RT
In
2
= —RT In K . n
A
t
.(n-l)S
(I)
+ . . . + AFVi.»
S
(II)
1§ll
r
w h e r e P is the p a r t i a l pressure of X . x
T h u s , k n o w l e d g e of the e q u i l i b r i u m concentrations of the c l u s t e r e d species A
+
· nS o b t a i n e d f r o m experiments at different pressures of S
w i l l a l l o w d e t e r m i n a t i o n of K,,.-,,,, a n d ΔΡ,,.ι,,,. S u c h measurements d o n e at different temperatures w i l l l e a d to the e v a l u a t i o n of Δ Η „ _ ι . „
and
AS„_i,„. T h e a v a i l a b i l i t y of s u c h d e t a i l e d i n f o r m a t i o n w i l l , for instance, r e v e a l the s h e l l s t r u c t u r e since a d i s c o n t i n u o u s c h a n g e of the Δ Η » . ι , « and AS°„. i
) N
values w i l l o c c u r w h e n e v e r a s h e l l is c o m p l e t e d . F i n a l l y , the
t o t a l heat of s o l v a t i o n of the i o n c a n also b e o b t a i n e d f r o m E q u a t i o n I I I , with DO
ΔΗ
8 0 1 ν
. = 2 [ΔΗ . n=0 Μ
Μ
-
A H ^ S ) ]
(III)
equations of the same f o r m h o l d i n g for the free energy a n d e n t r o p y c h a n g e of s o l v a t i o n . It is e v i d e n t f r o m E q u a t i o n I I , that o n l y the r e l a t i v e concentrations of the i o n i c species are r e q u i r e d . T h u s , Δ Ρ ° „ - ι , „ a n d K
p
can be obtained
f r o m E q u a t i o n I I b y a s s u m i n g that the mass s p e c t r o m e t r i c a l l y m e a s u r e d i o n intensities are p r o p o r t i o n a l to the e q u i l i b r i u m p a r t i a l pressures of the ions i n the i o n source. T h e s o l v a t i o n of N H
4
+
by N H and H 0 3
3
+
are examples of this t y p e of s t u d y .
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
b y HoO,
26
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
Comparative Solvation of T w o Different Ions b y the Same Solvent. T h e r e are three v a r i a n t s o f this t y p e o f study. COMPARATIVE SOLVATION OF IONS A , C +
+
B Y S O L V E N T S. T h e t w o i o n s
are p r o d u c e d i n the same system w h i c h also contains v a p o r o f the solvent S. I n g e n e r a l , d e p e n d i n g o n t h e effective r a d i u s a n d structure o f the i o n , the r e l a t i v e c o n c e n t r a t i o n o f clusters A · n S w i l l b e different f r o m t h a t o f +
C
· m S . T h u s , f o r e x a m p l e , i n the average η m a y b e l a r g e r b y one o r t w o
+
units t h a n m . T h i s w i l l r e v e a l a stronger i n t e r a c t i o n o f A w i t h S. C o m +
p a r i s o n o f η a n d m c a n b e d o n e at different t e m p e r a t u r e s a n d pressures of S i n o r d e r t o c o m p a r e the interactions i n the i n n e r s h e l l o r i n the outer shells. A n e x a m p l e o f this t y p e of s t u d y is t h e system H 0 \ N H 3
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
Na
+
4
+
, and
i n H 0 v a p o r , w h i c h is d e s c r i b e d i n the s u b s e q u e n t text. 2
C O M P A R A T I V E SOLVATION O F IONS A
+
A N D B " B Y S O L V E N T S.
A n ex
a m p l e o f this t y p e o f s t u d y w o u l d b e t h e system K a n d C I " w i t h H 0 . +
2
S i n c e t h e o r i e n t a t i o n o f t h e w a t e r d i p o l e s is r e v e r s e d i n t h e s o l v a t i o n o f p o s i t i v e a n d n e g a t i v e ions, s u c h a c o m p a r a t i v e s t u d y is o f great interest, p a r t i c u l a r l y f o r i s o e l e c t r o n i c p a i r s as the o n e q u o t e d a b o v e . W e h a v e n o t y e t p e r f o r m e d studies o n s u c h isoelectronic p a i r s . H o w e v e r , s u c h studies are p e r f e c t l y possible. T h e p a i r K a n d C I " c o u l d b e p r o d u c e d i n w a t e r +
vapor.
B y r e v e r s i n g t h e mass spectrometer controls, t h e p o s i t i v e a n d
n e g a t i v e ions i n t h e system c o u l d b e m e a s u r e d w i t h i n m i n u t e s o f e a c h other. COMPARATIVE SOLVATION O F Two
N E G A T I V E I O N S B Y S.
A n example
of this t y p e o f s t u d y f o r C l " , B C 1 " a n d B C 1 ~ b y H 0 is g i v e n i n t h e s u b 2
2
sequent text. Competitive Solvation of Ion A
+
(or B") b y Solvent Molecules of
Solvents S and S . A c o m p a r i s o n o f t h e s o l v a t i n g p o w e r o f t w o different k
e
solvents c a n b e o b t a i n e d b y m e a s u r i n g t h e c o m p o s i t i o n o f i o n clusters w h e n t w o different solvents a r e present at k n o w n p a r t i a l pressures. A n e x a m p l e o f this t y p e o f s t u d y is the c o m p e t i t i v e s o l v a t i o n o f N H and N H
3
a n d the solvation of C H O H 3
2
+
4
+
by C H O H andH 0 . 3
2
by H 0 2
A dis
cussion o f e x p e r i m e n t s d e a l i n g w i t h these t w o systems i s g i v e n l a t e r i n the text. Apparatus
and Method
T h e mass s p e c t r o m e t r i c s t u d y o f ion-solvent m o l e c u l e interactions r e q u i r e s mass s p e c t r o m e t r i c a p p a r a t u s w h i c h c a n s a m p l e ions o r i g i n a t i n g at r e l a t i v e l y h i g h pressures. T h r e e s o m e w h a t different arrangements are p r e s e n t l y i n u s e i n this l a b o r a t o r y . A l p h a Particle Mass Spectrometer (11). A recent v e r s i o n of this a p p a r a t u s is s h o w n i n F i g u r e 1. T h e gas, s u p p l i e d f r o m a c o n v e n t i o n a l gas h a n d l i n g s y s t e m , w h i c h c a n b e b a c k e d t o 1 7 0 ° C , is i r r a d i a t e d i n t h e i o n i z a t i o n c h a m b e r . T h e r a d i a t i o n is s u p p l i e d f r o m a n e n c l o s e d 200-mc.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
Gas
27
Phase
p o l o n i u m a l p h a source. T h e p o l o n i u m is d e p o s i t e d o n a c i r c u l a r a r e a of a b o u t 1 / 8 i n c h d i a m e t e r o n the side f a c i n g the i o n source. T o p r e v e n t s p r e a d i n g of the p o l o n i u m , a d o u b l e c o n t a i n e r is u s e d . T h e r a d i a t i o n reaches the i o n source t h r o u g h t w o 10~ -inch stainless steel f o i l s . T o p r e v e n t e a r l y r u p t u r e of the foils, t w o stainless porous p l u g s are u s e d , a l l o w i n g p u m p - o u t of the a l p h a source. T h e i r r a d i a t e d gas bleeds t h r o u g h a l e a k i n t o the e v a c u a t e d electrode c h a m b e r . T h e r e the ions c a r r i e d b y the gas are c a p t u r e d b y the e l e c t r i c fields w h i l e the gas is p u m p e d a w a y . T h e ions are f o c u s e d , a c c e l e r a t e d , a n d t h e n s u b j e c t e d to mass analysis a n d e l e c t r o n m u l t i p l i e r d e t e c t i o n i n a 9 0 ° sector field analyzer tube. I n " s t a t i c " r u n s , gas is s u p p l i e d to the i o n source o n l y at a r a t e sufficient to compensate the o u t f l o w t h r o u g h the leak (0.5 c c . / s e c . f o r a i r , e q u a l to c o n d u c t a n c e of l e a k ) . T h e gas m i x t u r e s w e r e p r e p a r e d i n t w o 2-liter storage flasks of the gas h a n d l i n g system. F l o w r u n s c a n b e m a d e b y p a s s i n g gas t h r o u g h the i o n source. I n the n o r m a l r u n s , one irradiates the t o t a l v o l u m e over the leak. P r o v i s i o n s are also m a d e for p l a c i n g a c o l l i m a t i n g slit b e t w e e n the l e a k a n d the a l p h a source. T h e c o l l i m a t i n g slit w a s cut i n a t u r r e t of 6 - m m . d i a m e t e r , w h i c h s c r e w e d onto a l e a k - c a r r y i n g cone p r o v i d e d w i t h threads. T h e slit w a s e l e v a t e d over the p l a n e of the l e a k b y u n w i n d i n g the t u r r e t a c e r t a i n n u m b e r of r e v o l u t i o n s . T h e i o n source is n o r m a l l y at r o o m t e m p e r a t u r e . H o w e v e r , the t e m p e r a t u r e c a n b e v a r i e d u p to a m a x i m u m of 2 0 0 ° C . b y heaters m o u n t e d i n the heater w a l l s . T h e s e are u s e d either for b a k e - o u t o r r u n s at e l e v a t e d temperatures. T h e t i m e for r e a c t i o n a v a i l a b l e to the average i o n is of the o r d e r of a f e w m i l l i s e c o n d s w h e n the u n c o l l i m a t e d a l p h a b e a m is u s e d ( I I ) . T h i s t i m e c a n b e i n c r e a s e d b y u s i n g the c o l l i m a t i n g slit to screen off a p o r t i o n i m m e d i a t e l y a b o v e the leak f r o m i r r a d i a t i o n . Electron Beam Mass Spectrometer (6). I n a m o r e recent a p p a r a t u s a n e l e c t r o n b e a m is u s e d as i o n i z i n g m e d i u m . T h e i o n source is i d e n t i c a l to that of F i g u r e 1 except t h a t the f o r m e r a l p h a source p o r t contains o n l y one t h i n n i c k e l f o i l ( 10" i n c h ) w i n d o w t h r o u g h w h i c h the electrons enter the source. T h e electrons are c r e a t e d b y a n o r d i n a r y e l e c t r o n g u n h o u s e d i n a s i d e a r m o f the v a c u u m c h a m b e r opposite the n i c k e l w i n d o w . T h e e l e c t r o n filament is k e p t at ca. —25000 volts w h i l e the i o n source is n e a r g r o u n d p o t e n t i a l . A b s e n c e of r a d i o a c t i v e c o n t a m i n a t i o n , h i g h i n t e n s i t y (— 10 m i c r o a m p s ) a n d p o s s i b i l i t i e s for p u l s i n g ( f o r d e t e r m i n i n g i o n i c l i f e t i m e s ) are some of the advantages of the e l e c t r o n b e a m source. T h e greater scattering of electrons at h i g h i o n source pressures causes a d i s a d v a n t a g e w h i c h makes b e a m c o l l i m a t i o n a p r o b l e m . A q u a d r u p o l e mass a n a l y z e r is u s e d w i t h this i n s t r u m e n t .
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
4
r>
Proton Beam Mass Spectrometer ( 5 ) . A 100-kev. p r o t o n b e a m o b t a i n e d f r o m a W a l t o n - C o c k r o f t accelerator is u s e d as the i o n i z i n g m e d i u m . T h e i o n source is not l i k e that of F i g u r e 1 b u t is of the c o n v e n t i o n a l design—i.e., a r e c t a n g u l a r b o x w i t h r e p e l l e r a n d n a r r o w e d - d o w n i o n exit slit. T h e p r o t o n b e a m enters a n d exits the i o n source t h r o u g h t h i n n i c k e l f o i l w i n d o w s ( 1 0 " i n c h ) . T h e i o n optics are of the c o n v e n t i o n a l N i e r t y p e , a n d m a g n e t i c analysis is used. A p r o t o n b e a m ( p r e f e r a b l y of e v e n h i g h e r e n e r g y t h a n u s e d b y us ) seems to b e the most c o n v e n i e n t i o n i z i n g 5
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
28
MASS SPECTROMETRY
I N INORGANIC
CHEMISTRY
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
m e d i u m f o r h i g h i o n source pressures since i t p r o v i d e s h i g h i n t e n s i t y , p o s s i b i l i t y for p u l s i n g , a n d little scattering at h i g h pressure. T h e p r o t o n b e a m c a n also b e deflected e l e c t r o s t a t i c a l l y before e n t e r i n g the i o n source.
TO MASS ANALYSIS
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
3.
KEBARLE
Gas
29
Phase
T h i s p e r m i t s v a r i a t i o n of the p r o t o n b e a m - e x i t slit distance i n the i o n source. T h e cost of W a l t o n - C o c k r o f t accelerators is r e l a t i v e l y l o w . A h i g h pressure mass spectrometer u s i n g m.e.v. protons f r o m a V a n d e G r a a f f accelerator has b e e n d e s c r i b e d b y W e x l e r (14). Conditions for Meaningful Measurements and Tests for Equilibrium. I n the discussion g i v e n i n subsequent sections it is a s s u m e d t h a t the m e a s u r e d r e l a t i v e i o n intensities represent at least the a p p r o x i m a t e r e l a t i v e i o n i c concentrations i n the i o n source. It is f u r t h e r a s s u m e d t h a t i o n cluster e q u i l i b r i u m was a c h i e v e d i n the i o n source. T h e v a l i d i t y of these assumptions has b e e n e x a m i n e d i n p r e v i o u s p u b l i c a t i o n s . I t w a s p o i n t e d out t h a t a n o n e q u i l i b r i u m g r o w t h of the clusters m i g h t o c c u r i f c o o l i n g occurs because of a d i a b a t i c expansion past the s a m p l i n g orifice. T o g u a r d against this, one must either h a v e m o l e c u l a r flow i n the s a m p l i n g l e a k ( s m a l l d i a m e t e r of leaks ) or k e e p the p a r t i a l pressure of the c l u s t e r i n g gas l o w so that the m e a n free p a t h for c l u s t e r i n g reactions is m u c h l a r g e r t h a n the d i a m e t e r of the s a m p l i n g leak. A d d i n g a n i n e r t gas u n d e r s u c h c o n d i t i o n s s h o u l d not c h a n g e the o b s e r v e d r e l a t i v e i o n intensities. C h e c k s for the presence of e q u i l i b r i u m c a n b e m a d e b y i n c r e a s i n g the i o n i c r e a c t i o n t i m e . I f the r e l a t i v e intensities r e m a i n constant, one m a y assume that e q u i l i b r i u m or near e q u i l i b r i u m has b e e n a c h i e v e d since the c l u s t e r i n g reactions p r o b a b l y p r o c e e d ( i n the f o r w a r d d i r e c t i o n ) r a p i d l y a n d w i t h o u t a c t i v a t i o n energy. T h e i o n i c r e a c t i o n times c a n b e i n c r e a s e d b y m o v i n g the i o n i z i n g b e a m a w a y f r o m the s a m p l i n g l e a k or slit a n d b y c l o s i n g d o w n the l e a k or slit. T h e latter slows d o w n the mass flow to the s a m p l i n g orifice a n d since the ions, at h i g h e r pressures a n d i n the absence of electric fields, are c a r r i e d b y mass flow to the orifice, increases the i o n i c r e a c t i o n times. Results and
Discussion
Heats and Entropies of Individual Steps, NH
3
=
NH
4
+
(a) N H t
+
* (n—1)NH«
· n N H . P r e v i o u s w o r k o n a m m o n i a (9, 12) 3
that the p r i m a r y ( p o s i t i v e )
+
has s h o w n
ions p r o d u c e d b y the a l p h a r a d i a t i o n are
r a p i d l y c o n v e r t e d b y i o n - m o l e c u l e reactions to the most stable i o n , w h i c h Figure
1.
Ion source and electrode
system
(1 ) Stainless steel block forming ion source. (2) Alpha source, consisting of polonium deposited on a metal disc. Metal disc enclosed in container with stainless foil window and stainless porous plug allowing pressure equalization across foil. (3) Outer alpha source container with foil window and porous plug. Double container prevents spreading of polonium into pressure equalization system. (4) Porous stainless plug allowing pump-out of alpha source and pressure equalization across foils. (5) Gas supply to ion source and flow system (in the direction of the arrows). (6) Tube leading to vacuum system of alpha source contained. (7) Insulating material allowing voltages different from ground to be applied to ion source. (8) Cone-carrying metal foil at its truncated apex. Foil has one or several leaks through which the gas and ions enter the pumping and electrode chamber. (9) Heater and thermocouple wells for temperature control of ion source. (10) Auxiliary electron gun for gas purity determinations. (11-19) Electrodes focusing ion beam into magnetic mass analyzer
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
MASS SPECTROMETRY I N INORGANIC
30
N H
4
+
- n N H
10
3
torr23°C
5
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
CHEMISTRY
6
n
10 torr
23°C
1
torr
23°C
1
torr 100°C
to
I
η Figure
2.
Schematic representation of ion clustered NH, · nNH +
t
intensities
for
3
Intensities are expressed as fractions of total ion current. Con dition of 1 torr and 100° shows cluster of largest concentration to be NHf - 2NH.1. Reduction of temperature at constant pres sure (23°, 1 torr) causes clusters to grow. Increase of pressure at constant temperature (23°, 10 torr) produces further cluster growth. Spectrum at top (23°, 10 torr) shows effect of using large sampling pinhole (70-μ diameter) producing dynamic flow. The resultant adiabatic cooling causes further nonequilibrium growth of clusters. Other three spectra taken with sampling leak consisting of a laser produced array of 30 holes, each of 10 μ diameter is N H
4
+
.
A t t a c h m e n t of a m m o n i a
A representation
m o l e c u l e s t h e n l e a d s to N H
4
+
* nNH . 3
of s o m e t y p i c a l r e l a t i v e i o n intensities o b s e r v e d w i t h i n
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
31
Gas Phase
the e x p e r i m e n t a l range u s e d i n t h e measurements is g i v e n i n F i g u r e 2. T h e most a b u n d a n t species at 1 0 0 ° C . a n d 1 torr a m m o n i a pressure is NH * 2 N H . A s the t e m p e r a t u r e is l o w e r e d to 2 3 ° C . a n d 1 torr pressure, the l a r g e r clusters η = 3 a n d η = 4 b e c o m e m o r e stable. I n c r e a s i n g t h e pressure at constant t e m p e r a t u r e also increases the cluster size as is e v i d e n t f r o m t h e increase of t h e N H * 4NH /NH · 3 N H ratio o n going f r o m 1 to 10 torr. T h e i o n intensities g i v e n at the t o p o f F i g u r e 2 i l l u s trate t h e effect o f t h e s a m p l i n g leak size. I n this case, a single l e a k o f 70/A d i a m e t e r w a s u s e d . T h e a p p e a r a n c e o f clusters o f h i g h e r mass m u s t b e a t t r i b u t e d to a d i a b a t i c c o o l i n g c a u s e d b y the e x p a n s i o n o f t h e gas jet. 4
+
3
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
4
0
2
+
3
4
4
+
6
3
8
10
PRESSURE (torr ) Figure 3. Flot of log K where K = I /Is^nh > at con stant temperatures and variable ammonia pressure (pressure expressed in torr) J t 4
3 J T 9
3
U
R e w r i t i n g E q u a t i o n I I f o r t h e a m m o n i a system w i t h the a s s u m p t i o n that t h e r e l a t i v e i o n intensities I„ =
I(NH
4
+
· n N H ) represent 3
ade
q u a t e l y t h e e q u i l i b r i u m c o n c e n t r a t i o n ratios w e o b t a i n E q u a t i o n I V . Plots o f l o g K , 4 3
RT l o g K . N
1)M
= RT log
7
h=—
/t - 1 '
r
NH
< > IV
3
w i t h pressure a t different constant temperatures a r e g i v e n i n F i g u r e 3.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
32
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
T h e s e d a t a s h o w that E q u a t i o n I V is o b e y e d to a g o o d a p p r o x i m a t i o n for a pressure c h a n g e b y a f a c t o r of 10. A p l o t of l o g K .x a n d K . 2
3
4
vs.
1/T is s h o w n i n F i g u r e 4. T h e d a t a u s e d for K . 8 w e r e of s i m i l a r a p p e a r 2
ance to those i n F i g u r e 3. S i n c e there is a s m a l l v a r i a t i o n of l o g Κ w i t h pressure, the values u s e d for the e n t h a l p y plots w e r e t a k e n at zero pres sure. T h i s w a s d o n e o n l y for the sake of consistency.
V a l u e s t a k e n at
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
5 t o r r pressure l e a d to s i m i l a r e n t h a l p y d a t a .
Figure n-lNH ;i
4.
Plots + NH
:}
giving enthalpy changes for reaction NH, · = NH ; · nNH where n - I , n is 2,3 and 3,4 +
t
f
s
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
Gas
33
Phase
T h e slopes l e a d to Δ Η ο No
data
were
obtained
=
3
for
w h i c h w o u l d be observable A K
4
5
—17.8 a n d ΔΗ3.4 = the
clustering
—15.9 k c a l . / m o l e .
Reactions
0,1
and
1,2
o n l y at c o n s i d e r a b l y h i g h e r t e m p e r a t u r e s .
c o u l d s t i l l b e m e a s u r e d b u t o n l y at the l o w e s t t e m p e r a t u r e ( 2 5 ° C . ).
It is of interest to p o i n t o u t that the r a n g e c o v e r e d e v e n t h o u g h insuffi c i e n t for d e t e r m i n i n g a w i d e r set of reactions is still q u i t e T h u s , the m e a s u r e d r a t i o Ι / / 2
extensive.
increases i n the r a n g e (10 t o r r , 23 ° C . to
4
1 t o r r , 100 ° C . ) b y a factor of 100,000. T h e t h e r m o d y n a m i c d a t a o b t a i n e d are s u m m a r i z e d i n T a b l e I.
It c a n b e s h o w n t h a t the e n t h a l p i e s a n d
entropies of T a b l e I agree w i t h estimates b a s e d o n t h e r m o d y n a m i c cycles
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
and calculation.
Table I.
Thermodynamic Data on Clustering Reactions
NH ;
· (n - l)NH (g)
f
- i , η
b c
- * NH,;
s
·
nNH (g) 3
AS° (298°K.), e.u.
ΔΗ, kcal./mole
(298°K.)"
2,3 3,4 4,5 a
+ NH (g)
s
-38 -40.5 (-33)
-17.8 -15.9 (-9)
-6.4 -3.8 -0.5
6
c
Standard state of ammonia, 1 atm. Obtained from AF° and the estimated entropy loss. Estimated.
F i g u r e 5 shows the e n t h a l p i e s for the first five c l u s t e r i n g reactions of N H
4
i n N H . T h e values for Steps 2 - 5 are those f r o m T a b l e I .
+
S
The
Steps 0,1 a n d 1,2 w e r e e s t i m a t e d f r o m the c y c l e s h o w n i n F i g u r e 6a. F r o m this c y c l e w e o b t a i n E q u a t i o n V : ΔΗ
0 > 4
=
ΔΗ
Λ 1 Ώ η
Substituting: ΔΗ
β ν β
,(ΝΗ ) 4
ΔΗ
ρ.(ΝΗ ) =
β η ι 1 1 1
3 ι 4
4
. ( Ν Η ) - AH
·
4NH )
=
3
—80 k c a l . / m o l e .
( f r o m T a b l e I ) one obtains Δ Η
m a g n i t u d e s of Δ Η . ι a n d Δ / / 0
1 2
(NH · 4NH )
amm
3
4
-30
(NH
amm
0>
ΔΗ
.(NH
β ν β ρ
— 5 k c a l . / m o l e a n d &H .
8
( 9 ) , one obtains Δ Η 4 = and
4ΔΗ
+
4
+
) =
3
kcal./mole
=
(9)
—90 k c a l . / m o l e
S u b t r a c t i n g f r o m this ( ) > 2
(V)
—46 k c a l . / m o l e .
ΔΗ
w e r e selected as —25 a n d —21 k c a l . / m o l e
w h i c h n u m b e r s g i v e a c o n t i n u o u s increase of Δ Η i n the d i r e c t i o n Δ Η to Δ Η 0 . 1 ·
2 3
The
W h i l e the p r o c e d u r e i n o b t a i n i n g F i g u r e 5 is s o m e w h a t
t r a r y , w e b e l i e v e t h a t it does g i v e a g o o d q u a l i t a t i v e p i c t u r e of
3 > 4
arbi the
e n t h a l p y changes i n the i n d i v i d u a l s o l v a t i o n steps. (b)
H 0 3
+
( n - l ) H 0 + 2
H 0 = 2
H 0 3
+
· n H . O . A system of greater
i m p o r t a n c e t h a n the a m m o n i u m i o n d e s c r i b e d a b o v e is the w a t e r - c l u s t e r e d
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
34
MASS SPECTROMETRY I N INORGANIC
hydronium ion, H 0
+
3
*nH 0. 2
has b e e n p u b l i s h e d (12). single (constant)
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
gave Δ #
=
3 > 4
CHEMISTRY
A n e a r l y , p r e l i m i n a r y s t u d y of this system
I n that s t u d y K „ - i , „ was d e t e r m i n e d o n l y at a
pressure of w a t e r , a n d A r r h e n i u s plots of these
—20 ± 5 , AH
4J}
— —24 ± 5 , ΔΗ ,. > = Γ
1.2
2.3
—13 ± 5
(
3.4
K's
kcal./mole.
4.5
Solvation Reaction Figure 5. Enthalpy changes for reactions: NH · (n—l)NH + NH = NH · nNH (n—l,n). Some of the data are based on estimates as described in the text +
f)
/t
3
S
3
O n l y r o u g h estimates of the expected enthalpies c a n b e m a d e o n the basis of a v a i l a b l e t h e r m o d y n a m i c data. T h e c y c l e s h o w n i n F i g u r e 6 b is of the same t y p e as that u s e d for a m m o n i a (k here is the as of yet u n s p e c i f i e d n u m b e r of i n n e r s h e l l w a t e r m o l e c u l e s ) .
F r o m F i g u r e 6b
we obtain Equation V I . ΔΗ„,* = Δ Η ^ , ( Η 0 ) 3
T o evaluate AH , ()k
and H 0 3
· kR 0.
+
2
+
- *ΔΗ,
ν η ρ
.(Η 0) 2
AH
h y d r
. (H 0* · *H 0) 8
(VI)
2
w e n e e d values for the heats of h y d r a t i o n of H 0 3
ΔΗ
h y d r
. (H 0 ) 3
+
c a n be e v a l u a t e d f r o m the c y c l e
+
of
F i g u r e 6c. T h e r e q u i r e d p r o t o n affinity of w a t e r , P A ( H 0 ) , is p r o b a b l y 2
170 k c a l . / m o l e
(3,
Δ#
- 2 8 3 kcal./mole
1 ι ν ( 1 1
AJT
,(Η ) =
I i y d P
+
.(H 0 ) 8
+
=
13).
T a k i n g the heat of h y d r a t i o n of the :î
a n d ΔΗ .
—123.5 k c a l . / m o l e .
4
νΛΙ>
. (H 0 ) = 2
A n estimate of Δ Η
ZcHoO) c a n b e o b t a i n e d f r o m the B o r n equations
(4).
proton
10.5, w e o b t a i n l i y d P
. (H O a
(Examples
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
+
· of
3.
KEBARLE
Gas Phase
35
calculations w i t h t h e B o r n equations are g i v e n b y B a s o l o a n d P e a r s o n (2).
T a k i n g 1.5 A . f o r t h e r a d i u s of H 0 3
+
a n d 2.76 A . f o r the d i a m e t e r
of t h e w a t e r m o l e c u l e s ( 2 ) i n the first s h e l l , one has a t o t a l r a d i u s o f t h e first s h e l l cluster e q u a l to 3.76 A . S u b s t i t u t i n g this v a l u e i n t o t h e B o r n equations, one obtains the estimate A H mole.
h V ( l r
. (H 0 ·
fcH 0)
3
=
2
—39 k c a l . /
S u b s t i t u t i n g into E q u a t i o n V I , w e t h e n o b t a i n : ΔΗ ^ « —123.5 — {)
10.5& + 39 =
—84.5 — 10.5fc. T h i s y i e l d s f o r the average s o l v a t i o n step
i n t h e first s h e l l ΔΗ„. ι „ =
— — (84.5/fc) —10.5 k c a l . / m o l e . F o r
AH
ok
~~k~ different values o f k w e thus o b t a i n i n k c a l . / m o l e Δ Η . ι . « = —31.6 (k = 4 ) , - 2 7 . 4 (k — 5 ) , - 2 4 . 6 (k = 6 ) , - 2 2 . 5 (k = 7 ) , a n d - 2 1 (k = 8 ) . T h i s c r u d e estimate shows t h a t t h e d a t a o b t a i n e d i n o u r earlier s t u d y are i n t h e r i g h t range.
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
Μ
NH;
(fl)
+
4ΝΗ
3 ( β )
^ V N H ; . 4 N H
AHamm. (NH*)\
3
(
e
)
Δ H amm.(NH '4NH ) 4
3
-4ΔΗβναρ.(ΝΗ ) 3
NHj (ammoniated) ΔΗ W
k
H
A
.
)
3
H
Δ H hydr.iKjO*) \ -Ι(ΔΗβναμ(Ηρ)
/
0
+
k
H
2 ° (
9
)
AHhydr^Hp+kHjO)
H3O (hydrated) or H(hydrated) +
H
(9)
+
™2°A9)
^
AHhydr.(H ) \ - Δ H evap(H20)
/
+
H
3
°
(9)
AHhydr.(H30+)
H30 (hydrated) or Hi hydrated) +
Figure
6.
Thermodynamic
cycles
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
36
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
1h I
I
0.1
I
I
I
I
I
I
I
1.2
2.3
3.4
4.5
5.6
6.7
7.8
I
I
(n-i n) #
Figure
7.
Plot of AF\_ > ltIl
at 298° K. (Standard
state of water 1 atm.)
Results obtained with two different leaks, one slit leak with slit width 7μ and a laser produced array of 30 leaks of 10-μ diameter
Since the e a r l y s t u d y w a s o n l y p r e l i m i n a r y , a second, m o r e extensive research o n t h e h y d r o n i u m - w a t e r system w a s started i n this l a b o r a t o r y a year ago. T h e a l p h a p a r t i c l e - a n d p r o t o n b e a m mass spectrometer are b e i n g used. T h e s e t w o instruments p r o v i d e v e r y different i o n i c r e a c t i o n times, a n d t h e i r c o m b i n a t i o n a l l o w s a g o o d test f o r t h e presence equilibrium.
U n f o r t u n a t e l y this s t u d y is not yet c o m p l e t e d .
has a p p e a r e d c l e a r l y f r o m t h e d a t a o b t a i n e d . ( J O ) t h a t i n aqueous solution the i o n H 0 3
of
O n e result
It is g e n e r a l l y a s s u m e d
* 3 H 0 has h i g h s t a b i l i t y .
+
2
Regardless w h e t h e r this a s s u m p t i o n is correct or not, i n the gas phase this s p e c i a l s t a b i l i t y n e e d n o t a p p l y since t h e c o n s t r a i n i n g influence of the s u r r o u n d i n g l i q u i d lattice is absent.
T h u s , the positions a b o v e a n d
b e l o w the p r e s u m a b l y p l a n a r t r i h y d r a t e are free, a n d since the i n t e r a c t i o n is l a r g e l y a p u r e l y electrostatic one, the h i g h e r hydrates—i.e., H O · 4 E U O ; i
etc. m a y have stabilities w h i c h are not too different.
+
T h i s v i e w is s u p
p o r t e d b y the p l o t i n F i g u r e 7. T h e s t a n d a r d free energies for t h e cluster i n g Reactions ( n — l , n ) s h o w a continuous change i n the range η = to η =
8. Some f u r t h e r i n f o r m a t i o n o n the H O a
+
2
· n H 0 system is g i v e n 2
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
Gas
37
Phase
i n the next section w h i c h deals w i t h the c o m p a r a t i v e h y d r a t i o n of H 0 , +
3
N H , and Na\ 4
+
Comparative (a)
Solvation of
Different
Ions by the
COMPARATIVE HYDRATION OFNa , H 0 , AND N H +
ion
3
+
+
4
.
Same
Solvent.
F i g u r e 8 shows
i n t e n s i t y ratios for w a t e r c l u s t e r i n g a r o u n d N a , H 0 , a n d +
T h e ions H 0
and N H
+
3
4
+
NH
+
3
4
+
.
were produced simultaneously b y irradiating
w a t e r v a p o r ( a t pressures 1-5 t o r r ) c o n t a i n i n g several parts p e r m i l l i o n NH .
U n d e r these c o n d i t i o n s , the a m m o n i u m i o n m u s t b e p r o d u c e d
3
p r o t o n transfer f r o m h y d r a t e d h y d r o n i u m ions (see concentration H 0 Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
3
of
ammonia
leads
to
the
Reaction 1).
complete
by
Higher
disappearance
of
· nH 0.
+
2
H,0
· W H 0 + N H -» NH
+
2
3
4
+
· n * H , 0 + (w + 1 - η * ) H 0
(1)
2
I n R e a c t i o n 1 w e h a v e i n d i c a t e d that after a d d i n g a m m o n i a to the h y d r o n i u m cluster ( a n d p r o t o n t r a n s f e r ) , some w a t e r molecules w i l l b e " b o i l e d " off.
T h i s effect is to b e expected since the p r o t o n affinity of a m m o n i a is
some 35 k c a l . h i g h e r t h a n that of NH
4
4
The
ammonium
hydrate
2
with NH
water.
· n * H 0 c r e a t e d b y R e a c t i o n 1 m u s t engage i n f u r t h e r collisions
+
water
molecules
before
reaching
its
equilibrium
composition
· nH 0.
+
2
T h e s o d i u m ions w e r e not i n t r o d u c e d i n t e n t i o n a l l y . T h e i r presence was i n f e r r e d f r o m i o n intensities at mass 59, 77, 95, etc. w h i c h are of the same mass as N a ute
this i o n
series
+
· 2H 0, Na 2
to
+
· 3H 0, Na 2
some sodium
+
· 4 H 0 , etc. W e a t t r i b 2
containing
impurity which
in
some m a n n e r leads to the f o r m a t i o n of s o d i u m ions. A s p o i n t e d out i n p r e v i o u s w o r k , ions of l o w i o n i z a t i o n p o t e n t i a l o r i g i n a t i n g f r o m
trace
i m p u r i t i e s often represent a n a p p r e c i a b l e f r a c t i o n of the t o t a l i n t e n s i t y . T h e d i s t r i b u t i o n of the h y d r a t e s g i v e n i n F i g u r e 8 is for a w a t e r p r e s sure of 1 torr. D a t a w e r e o b t a i n e d at pressures f r o m 1-6 torr. T h e e q u i l i b r i u m constants for the three ions c a l c u l a t e d f r o m E q u a t i o n I I r e m a i n e d constant i n this pressure range. s o d i u m clusters ( F i g u r e 8 ) five w a t e r molecules. w a t e r molecules.
T h e d i s t r i b u t i o n s of h y d r o n i u m a n d
are s i m i l a r , the average cluster c o n t a i n i n g
T h e average a m m o n i a cluster contains o n l y f o u r
E x p e r i m e n t s w e r e also p e r f o r m e d at h i g h e r t e m p e r a
tures w h e r e the average a m m o n i u m cluster is N H
4
+
· 3 H 0 . T h e water 2
and
s o d i u m clusters w e r e a g a i n h i g h e r b y one u n i t — i . e . , H 0
and
Na
3
+
3
+
* 4H 0 2
2
h y d r a t e are almost c e r t a i n l y " i n n e r s h e i r molecules. H 0
+
· 4 H 0 . A l l w a t e r molecules i n the a m m o n i u m t r i - a n d t e t r a S i n c e the N a
+
and
u n d e r the same c o n d i t i o n s h o l d one m o r e w a t e r m o l e c u l e , w e m a y
c o n c l u d e that the f o u r t h a n d fifth molecules i n the s o d i u m a n d h y d r o n i u m hydrates are h e l d v e r y strongly a n d are thus p r o b a b l y i n n e r s h e l l molecules.
C o n c e r n i n g the H 0 , this c o n c l u s i o n is i n agreement 3
+
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
with
38
MASS SPECTROMETRY I N INORGANIC
NH^nHp
CHEMISTRY
1 torr H20 23° C
1 Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
\
ι\
. 1
5
1
6
7 Η3θ ·ηΗ2θ +
1
1,
1
3
Γ 6
>
i
i
Γ 7
Να + ·ηΗ 2 0
Figure 8.
Comparative
f solvation of NH, , H0
Η Ο , and Na
+
t
ν
+
+
by
2
The sodium and hydronium ion behave similarly while the am monium ion holds in the average one less water molecule
the d i r e c t H 0 3
tion.
+
* wH 0 2
m e a s u r e m e n t s m e n t i o n e d i n t h e p r e c e d i n g sec
F r o m the d a t a of F i g u r e 8 a n d those at h i g h e r t e m p e r a t u r e s , i t
f o l l o w s that for the h y d r a t i o n s -
AF° . (Na )
«
-
AF\ ,(H 0 )
> -
-
AF\ (Na )
«
-
AF\ (H 0 )
>
4
5
+
;
3
+
AF\ (NH 5
+
4
)
and 4
+
4
3
+
-
AF° . (NH 3
4
4
+
)
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
39
Gas Phase
A s s u m i n g t h a t these differences expect:
-ΔΗ . (Να ) 4
-Atf , (Na ) 3
+
4
«
«
+
Β
-ΔΗ
3
4
reflect ΔΗ,,.ι.,,
-Δ#
(Η 0)
4
(Η 0 )
5
>
3
differences
>
+
3
4
-Δ// . (ΝΗ 3
we would
-ΔΗ . (ΝΗ
4
4
).
+
5
+
4
)
and
These data can be
c o m p a r e d w i t h t h e t o t a l heats of h y d r a t i o n o b t a i n e d f r o m t h e r m o d y n a m i c cycles ing
-Aff
I i y d l
section)
,(Na ) +
«
and —ΔΗ
100°, - A H ,
1 ι ν ( 1 1
.(NH ) 4
b e t w e e n the t o t a l h y d r a t i o n of N H d a t a b u t t h e difference b e t w e e n
i y d r
«
+
4
+
H 0 3
.(H 0 )
«
+
8
130 (see
70 k c a l . / m o l e .
preced-
T h e difference
a n d H 0 , N a is reflected i n o u r +
3
+
a n d N a is n o t . F u r t h e r
+
+
mass
s p e c t r o m e t r i c w o r k o n this system is r e q u i r e d b e f o r e m o r e m e a n i n g f u l comparisons c a n be made. C O M P A R A T I V E S O L V A T I O N O F C l " , BC1", A N D B C 1 " B Y H 0 .
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
2
Figure 9
2
shows t h e h y d r a t e d n e g a t i v e ions C l " , B C 1 " , a n d B C 1 " .
T h e original
2
i n t e n t i o n h a d b e e n to s t u d y o n l y t h e h y d r a t i o n o f C I " . F o r this p u r p o s e a mixture of a chlorine-containing c o m p o u n d
( C C 1 a n d C l ) , water, a n d 4
2
excess of N w e r e a d m i t t e d to t h e i o n source. I n a d d i t i o n to C I " * n H 0 , 2
2
t w o other groups of ions w e r e o b s e r v e d .
T h e s e ions w e r e i d e n t i f i e d as
B C 1 - · n H 0 a n d B C 1 " · n H 0 o n the basis of t h e t y p i c a l 2
3 3
C1,
3 7
2
1 0
2
B,
n
B and
C 1 isotope ratios. T h e t w o b o r o n ions o b v i o u s l y arise f r o m s o m e
i m p u r i t y present i n t h e i o n source ( p o s s i b l y solder flux ) . T h e i r presence p e r s i s t e d over m a n y m o n t h s . A t t h e l o w w a t e r pressure CI" · H
2
( F i g u r e 9 ) t h e d o m i n a n t species are
0 ( w i t h some C I " · 2 H 0 ) , B C 1 " · 2 H 0 a n d B C 1 " · 4 H 0 . T h i s 2
2
2
2
difference i n w a t e r content c a n b e u n d e r s t o o d i f i t is a s s u m e d t h a t a l l three ions h o l d a b o u t one w a t e r m o l e c u l e as a h y d r a t i n g species
(i.e.,
w i t h h y d r o g e n s t o w a r d the n e g a t i v e i o n ) a n d B C 1 " a n d B C 1 " h o l d r e s p e c 2
t i v e l y one a n d three w a t e r m o l e c u l e s i n a d a t i v e b o n d o x y g e n lone p a i r .
involving the
T h e c o r r e s p o n d i n g e l e c t r o n i c structures of t h e b o r o n
ions a r e g i v e n i n F i g u r e 10. W h e n t h e w a t e r pressure is i n c r e a s e d ( F i g u r e 9)
CI" · H
2
0 g r o w s to C I " · 4 H 0 a n d C I " · 5 H 0 b u t t h e B C 1 " a n d 2
2
B C 1 " h y d r a t e s g r o w o n l y b y t w o a n d one w a t e r m o l e c u l e s w h i c h c o u l d 2
b e e x p e c t e d c o n s i d e r i n g that these ions are m u c h b u l k i e r . Competitive Solvation of a Given Ion by T w o Different Solvents, a.
COMPETITIVE SOLVATION O F C H O H 3
2
+
BY WATER
AND METHANOL.
A
s t u d y of t h e ions i n m e t h a n o l v a p o r i n t h e pressure r a n g e 1-10 t o r r s h o w e d that most o f the ions b e l o n g e d to t h e series C H O H 3
2
+
* nCH OH. 3
T h i s suggested t h e p o s s i b i l i t y of o b s e r v i n g t h e c o m p e t i t i v e s o l v a t i o n of CH OH 3
2
+
b y w a t e r a n d m e t h a n o l m o l e c u l e s . F i g u r e 11 shows t h e r e l a t i v e
intensities o f t h e m i x e d clusters o b t a i n e d w h e n i r r a d i a t i n g m i x t u r e s of 5 % m e t h a n o l , 9 5 % w a t e r a n d 2 0 % m e t h a n o l , 8 0 % w a t e r b o t h at 5 torr t o t a l pressure a n d 50 ° C . i o n source t e m p e r a t u r e . I n t h e m i x e d m e t h a n o l w a t e r clusters, t h e q u e s t i o n of the s t r u c t u r a l assignment arises.
Thus,
the i o n of mass 119 c o u l d b e assigned as H
2
+
· 2CH OH 3
* 3 H 0 or
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
MASS SPECTROMETRY I N INORGANIC
40
-10"
5 0 0 x l O " torr
torr H 0
3
H 0
3
2
CHEMISTRY
2
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
Cfn H.0
BCI7n H 0 2
L
Figure 9. Comparative solvation of Cl~, BCl~, and B Cl~ at two different water vapor pressures and room temperature 2
Water pressure not accurately known. At lower water pressures BCl~ and BClr contain one and three water molecules more than Cl~. This excess is probably caused by dative bonds as shown in Figure 10
CH OH 3
2
+
· C H O H · 3 H 0 or H 0 3
2
the n o t a t i o n C H O H ; J
2
+
3
· CH OH 8
+
· 2 C H O H · 2 H 0 . W e h a v e selected 3
2
· 3 H 0 (or C H O H 2
3
2
+
the g e n e r a l cluster w h e r e M a n d W s t a n d for C H O H 8
· mM · wW,
for
and H 0 and m 2
a n d w for the n u m b e r of m e t h a n o l a n d w a t e r m o l e c u l e s ) . T h e p r o t o n
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
Gas
41
Phase
was assigned to the m e t h a n o l o x y g e n i o n since the p r o t o n affinity of m e t h a n o l is some 1 0 - 2 0 k c a l . / m o l e (13)
h i g h e r t h a n that of w a t e r .
JO >DIBIBIQl)~ ,01 H
u
(H>OIBIGI)
(
Figure 10. Electronic formulas of BCl~ - H 0 and B Cl~ - 3H 0 suggested by water content of clusters shown in Figure 9
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
2
2
2
T h e clusters o b t a i n e d w i t h 5 % m e t h a n o l ( F i g u r e 11) c o n t a i n , o n the average, c o n s i d e r a b l y m o r e m e t h a n o l t h a n w a t e r e v e n t h o u g h the p a r t i a l pressure r a t i o of w a t e r to m e t h a n o l is 19:1. T h u s , m e t h a n o l is the stronger solvent i n the o b s e r v e d clusters—i.e., clusters c o n t a i n i n g u p to six solvent molecules.
W e s h a l l b e a b l e to u n d e r s t a n d the m e a n i n g of this r e s u l t
better after a m o r e d e t a i l e d treatment of the d a t a . It c a n b e s h o w n t h a t the d i s t r i b u t i o n of w a t e r a n d m e t h a n o l i n the o b s e r v e d clusters f o l l o w s q u i t e closely a p r o b a b i l i t y d i s t r i b u t i o n . C a l l i n g the p r o b a b i l i t i e s
for
i n c l u s i o n of w a t e r a n d m e t h a n o l ω a n d μ, for a cluster w i t h a t o t a l of I solvent molecules the p r o b a b i l i t y d i s t r i b u t i o n w i l l b e g i v e n b y the b i n o m i a l expansion of the t e r m ( ω -f- μ.) .
F o r example, if a probability
1
d i s t r i b u t i o n is f o l l o w e d , the cluster c o n t a i n i n g three s o l v a t i n g m o l e c u l e s CH OH 3
2
+
* mM · wW,
where I =
r e l a t i v e intensities: C H O H 3
W2M
: CH OH 3
2
+
•3M =
2
+
m + w =
· 3W
3, s h o u l d s h o w the f o l l o w i n g
: CH OH 8
or : 3ω-> : 3ωμ! : / Λ 2
2
+
• 2WM : CH OH 3
2
+
·
W e h a v e o b t a i n e d values
for o) a n d μ b y fitting b i n o m i a l expansions to the e x p e r i m e n t a l l y o b s e r v e d d i s t r i b u t i o n . T h e c a l c u l a t e d intensities s h o w n i n F i g u r e 11 demonstrate that a r e l a t i v e l y g o o d fit of the e x p e r i m e n t a l data c a n b e o b t a i n e d .
In
o r d e r to express the p r e f e r e n c e for i n c l u s i o n of m e t h a n o l a n d w a t e r p e r IP u n i t m e t h a n o l a n d w a t e r pressure w e define ν = as the factor for p r e f e r e n t i a l take u p of m e t h a n o l , P a n d P b e i n g the p a r t i a l pressures Μ
/τ>
M
w
of m e t h a n o l a n d w a t e r present i n the i o n source.
T h e y s calculated i n
this m a n n e r are g i v e n i n F i g u r e 11. T h e results at 5 % a n d 2 0 % m e t h a n o l s h o w t h a t the y s for a cluster of a fixed size (i.e., I =
c o n t . ) are a p p r o x i
m a t e l y i n d e p e n d e n t of the m e t h a n o l - w a t e r pressure r a t i o .
This inde
p e n d e n c e was c o n f i r m e d i n a n u m b e r of other runs w i t h 2, 4, 5, 8, 20, 5 0 % m e t h a n o l at 2 a n d 5 torr t o t a l pressure. T h e y s are f o u n d to decrease as I increases. T h u s , m e t h a n o l is t a k e n u p p r e f e r e n t i a l l y b y a factor of 55,
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
42
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
21, a n d 8 for clusters c o n t a i n i n g three, f o u r , a n d five solvent m o l e c u l e s . F i g u r e 12 shows a l o g γ p l o t vs. the n u m b e r of s o l v a t i n g molecules. p l o t is almost l i n e a r a n d a l l o w s a n e x t r a p o l a t i o n to l o g y =
The
0 or y =
T h i s occurs w h e n the cluster contains seven s o l v a t i n g molecules. I >
1. For
7, y becomes less t h a n u n i t y — i . e . , w a t e r begins to take p r e c e d e n c e .
F i g u r e 13 also shows results o b t a i n e d w i t h the p r o t o n b e a m mass spec trometer.
T h e t o t a l pressure i n these runs was m u c h l o w e r (0.6
torr),
a n d the r e a c t i o n t i m e was m u c h shorter ( s e v e r a l microseconds vs. a f e w m i l l i s e c o n d s i n the a l p h a p a r t i c l e i o n s o u r c e ) .
O n e m i g h t suspect t h a t
u n d e r these c o n d i t i o n s c l u s t e r i n g e q u i l i b r i u m m i g h t not b e
achieved.
H o w e v e r , the results are q u i t e s i m i l a r to those o b t a i n e d w i t h the a l p h a Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
i o n source.
T h i s m i g h t b e t a k e n to m e a n that c l u s t e r i n g e q u i l i b r i u m
establishes r a p i d l y a n d that the p r o t o n b e a m results a p p r o a c h e q u i l i b r i u m . I n i n t e r p r e t i n g the present results c o n s i d e r a b l e h e l p c a n b e o b t a i n e d f r o m the "electrostatic t h e o r y " for m e t a l - i o n c o o r d i n a t i o n complexes
(2).
T h i s theory, u s i n g s i m p l e electrostatic concepts, a l l o w s one to c a l c u l a t e the b i n d i n g energies of m e t a l complexes i n the gas phase. T h e results of s u c h c a l c u l a t i o n s h a v e b e e n i n m a n y cases successful.
I n g e n e r a l , the
p o t e n t i a l e n e r g y of a c o m p l e x i o n is b u i l t u p of f o u r terms. T h e s e are a t t r i b u t e d to the a t t r a c t i o n b e t w e e n
the i o n a n d the p e r m a n e n t
and
i n d u c e d d i p o l e of the l i g a n d s , the m u t u a l r e p u l s i o n of the d i p o l e s , the e n e r g y r e q u i r e d to f o r m the i n d u c e d d i p o l e s a n d the v a n d e r W a a l s repulsions b e t w e e n the l i g a n d s a n d the c e n t r a l i o n . C o m p a r i n g the p o t e n t i a l energies of a n i o n h a v i n g w a t e r or m e t h a n o l molecules as l i g a n d s , i t is f o u n d that the first t e r m is the d e c i s i v e one. It contains the s u m of the p e r m a n e n t d i p o l e a n d the p o l a r i z a b i l i t y . T h e d i p o l e m o m e n t s of w a t e r a n d m e t h a n o l are 1.85 a n d 1.69 D w h i l e the p o l a r i z a b i l i t i e s are 1.48 a n d 3.23 Α Λ
T h e p o t e n t i a l e n e r g y of a n i o n d i p o l e i n t e r a c t i o n varies i n v e r s e l y
w i t h the square of the distance w h i l e the p o l a r i z a b i l i t y i n t e r a c t i o n d e p e n d s o n the f o u r t h p o w e r .
T h e r e f o r e , the m e t h a n o l m o l e c u l e s ,
with
their slightly lower dipole but considerably higher polarizability, w i l l be m o r e s t r o n g l y s o l v a t i n g t h a n w a t e r at close r a n g e to the i o n . T h e e x p e r i m e n t a l l y o b s e r v e d preference for m e t h a n o l is thus to b e u n d e r s t o o d
as
r e s u l t i n g f r o m the h i g h e r m e t h a n o l p o l a r i z a b i l i t y . It c a n b e s h o w n that the p o s s i b i l i t y of
fitting
the o b s e r v e d clusters
w i t h a g i v e n I b y a p r o b a b i l i t y d i s t r i b u t i o n suggests that for I
· mCH: OH - wH_,0, where m + w = 1. For low 1 methanol is taken up preferentially. As size of cluster increases preference for methanol decreases, y = 1 at 1 = 7 where water and methanol are taken up with equal preference t
+
f
T h e a b i l i t y to fit a cluster of constant I w i t h a p r o b a b i l i t y d i s t r i b u t i o n is, to a c e r t a i n extent, s u r p r i s i n g even i f a l l m o l e c u l e s b e l o n g to t h e same s o l v a t i o n s h e l l . A p r o b a b i l i t y d i s t r i b u t i o n means, f o r e x a m p l e , that i n t h e five cluster t h e p r e f e r e n c e f o r m e t h a n o l o v e r w a t e r is t h e same w h e t h e r a l l t h e r e m a i n i n g f o u r l i g a n d s are w a t e r or m e t h a n o l or a m i x t u r e of t h e m .
O b v i o u s l y this c a n n o t b e s t r i c t l y true.
T h e m e a n i n g of t h e
e x p e r i m e n t a l result m u s t b e that t h e n a t u r e of t h e other occupants i s , i n t h e first a p p r o x i m a t i o n , n o t i m p o r t a n t . W h i l e y r e m a i n s a p p r o x i m a t e l y constant for a cluster d i s t r i b u t i o n with I =
const., i t w a s o b s e r v e d that y « const, decreases f r o m I = t
3 to
Ζ — 5. T h i s c a n b e u n d e r s t o o d i f one assumes that w h e n e v e r I is i n c r e a s e d b y one u n i t , t h e effective r a d i u s of t h e ( i n n e r )
s h e l l increases.
This
causes t h e p o l a r i z a b i l i t y to b e c o m e less i m p o r t a n t a n d leads to a decrease of the p r e f e r e n c e for m e t h a n o l . A n increase of t h e effective r a d i u s m i g h t
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
3.
KEBARLE
Gas
45
Phase
b e e x p e c t e d b e c a u s e of the m u t u a l r e p u l s i o n a t t r i b u t e d to d i p o l e a n d v a n d e r W a a l ' s forces b e t w e e n the l i g a n d s . b.
COMPETITIVE
WATER
INNER
ANDAMMONIA
AND OUTER
MOLECULES.
d e s c r i b e d i n a p r e v i o u s section.
SHELL
The
SOLVATION
s o l v a t i o n of
N H
4
+
OF N H by
4
N H
+
3
BY was
W h e n w a t e r v a p o r w a s a d d e d to a m
m o n i a , n e w i o n peaks c o u l d b e o b s e r v e d w h i c h c o r r e s p o n d e d to the m i x e d clusters Ν Η η Ν Η ΐ ί / Ή 0 . 4
+
3
2
D a t a of three representative runs are s h o w n
i n T a b l e I I . T h e first e x p e r i m e n t is d o n e at v e r y l o w a m m o n i a pressure w h e r e the l o w e r solvates (I =
2, 3, 4 ) are of h i g h e s t a b u n d a n c e .
It c a n
b e seen that these ions c o n t a i n m a i n l y a m m o n i a m o l e c u l e s even t h o u g h
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
t h e w a t e r - t o - a m m o n i a pressure r a t i o is e q u a l to three. I t is also e v i d e n t t h a t the m i x e d o c c u p a n c y f o l l o w s q u i t e n e a r l y a p r o b a b i l i t y d i s t r i b u t i o n . C a l l i n g the p r o b a b i l i t y for a m m o n i a i n c l u s i o n α a n d that for w a t e r ω, t h e c a l c u l a t e d p r o b a b i l i t i e s for a n I solvate w i l l b e e q u a l to the b i n o m i a l e x p a n s i o n terms of ( a +
ω) . 1
T h u s , for the I =
2 g r o u p the intensities
of the ions s h o u l d b e i n the ratios or : 2αω : or. T h e r a t i o α / ω s h o u l d b e g i v e n b y the i o n i n t e n s i t y ratios 2 7 / I > , I53/2I54 a n d (I^/h*) ' 52
r
Taking
1 2
3
the values f r o m the t a b l e w e c a l c u l a t e for α / ω the values 10.6, 7, a n d 8.6.
log./
outer
inner shell
shell
+2
+1
0
θ
-2
2Î
3
I s number Figure 13.
4
5
6
7
8
of solvating molecules
Plot of log y for different solvation shells of ion
NH
+
Jt
y is a factor giving the observed probability for preferential take up of ammonia over water into ion: NHf · slNHS · wH^O, where a + w = 1. Ammonia is taken up with preference into inner shell (\ < 4), water is taken up with preference into outer shell
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
46
MASS SPECTROMERTY I N INORGANIC CHEMISTRY
Table II. Mass Spectra of Ammonia-Water Mixtures Showing the Competitive Solvation of the Ammonium Ion by Ammonia and Water Molecules p(NH )(torr) p(H 0)/p(NH )
0.05 3
3
2
s
Ion - Mass
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
NH NH NH NH etc.
NH etc.
4
4 4 4
4
b
· 2NH NH · H 0 · 2H 0 · 3NH
+
3
+
3
+
2
2
+
3
· 4NH
+
NH · 4NH 1 N H etc. 4
Intensity
+
3
3
·
3
NH · 4NH · 2 N H etc. 4
+
3
3
52 53 54 69 70 71 72 86 87 88 89 90 103 104 105 106 107 120 121 122
11.1 2.1 .15 104.0 40.0 6.3 d 5.1 8.3 3.2 0.6
34 0.003
1.8 1.5
e
Inten sity • 15 »
c
7 32 21 25 23 19
c
y
15
11.5 4.4
7 12 11
Intensity
°
b
y
100 d
d
0.027
335 360
d
d
9 3.2
d
0.036 0.047
800 1300 380
Contains also 20 torr. xenon to make the signals detectable. * Arbitrary units. Factor of preferential take up of ammonia to water ( see text ). Low intensity, not measured accurately. a
c
d
I n o r d e r to express the preference
for a m m o n i a p e r u n i t pressure
we
define, i n a n a l o g y w i t h the treatment of the m e t h a n o l w a t e r clusters, a γ w h i c h is g i v e n b y the e q u a t i o n y —
—-.
T h e y s c a l c u l a t e d i n this
ω/ Γ Η 0 2
w a y are g i v e n i n T a b l e I I . A s I increases f r o m 2 - 4 one observes a decrease of γ f r o m a b o u t 25 to 10. T h i s change is s i m i l a r to that o b s e r v e d i n the w a t e r m e t h a n o l system. I n clusters w i t h I =
5, 6, etc. a n e w p h e n o m e n o n
is o b s e r v e d n o t p a r a l l e l e d b y the w a t e r m e t h a n o l system. T h e a m m o n i a clusters w i t h I >
4 c a n not b e fitted w i t h a s i m p l e p r o b a b i l i t y d i s t r i b u
t i o n . T h i s is seen c l e a r l y f r o m the results at 1.8 a n d 34 torr of a m m o n i a ( T a b l e I I ) . A t 1.8 torr of a m m o n i a the c a l c u l a t e d γ for the I =
4 group
is close to t h a t o b t a i n e d at the l o w pressure s h o w i n g a n a m m o n i a p r e f e r ence γ =
15. B u t the N H
4
+
· 5NH
3
i o n of mass 103 is essentially m i s s i n g .
T h e first i o n of significant i n t e n s i t y is N H
4
+
4NH
3
H 0 (mass 1 0 4 ) . 2
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
This
3.
KEBARLE
47
Gas Phase
result c a n b e u n d e r s t o o d i f i t is a s s u m e d that a n i n n e r s h e l l of
four
molecules has b e e n b u i l t u p a n d t h a t w a t e r is t a k e n u p p r e f e r e n t i a l l y i n the outer shell. T h e preference for w a t e r i n the outer s h e l l c a n b e m e a s u r e d f r o m the result at 34 torr. T h e m u c h h i g h e r
ammonia-to-water
r a t i o u s e d i n this r u n leads to a f u l l y a m m o n i a t e d i n n e r s h e l l so t h a t the ions of h i g h e r mass are c a u s e d b y w a t e r presence i n the outer s h e l l o n l y . T h e c a l c u l a t e d y s for outer s h e l l o c c u p a n c y are s m a l l e r b y a factor of n e a r l y 1000.
T h e results f r o m a n u m b e r of runs at different pressures
a n d w a t e r - t o - a m m o n i a pressure ratios are s u m m a r i z e d i n F i g u r e 4, w h i c h gives a p l o t of l o g y for different I. T h e values for I < 4 represent i n n e r
Downloaded by RUTGERS UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch003
s h e l l ys.
T h e values for I >
4 w e r e t a k e n at h i g h e r a m m o n i a - t o - w a t e r
pressure ratios w h e r e the i n n e r s h e l l was essentially c o m p l e t e l y m a d e u p of a m m o n i a . T h i s a l l o w e d the c a l c u l a t i o n of y s for outer s h e l l s o l v a t i o n . T h e drastic c h a n g e f r o m I =
4 to I =
5 is e v i d e n t also f r o m these results.
T h e c o n s i d e r a b l e scatter of the points is b e l i e v e d to b e m a i n l y a t t r i b u t e d to the difficulty i n m e a s u r i n g a c c u r a t e l y the a m m o n i a a n d w a t e r pressures i n the i o n source. T h e p r e f e r e n t i a l take u p of a m m o n i a i n the i n n e r s h e l l a n d of w a t e r i n the outer s h e l l c a n be u n d e r s t o o d o n the basis of the p o l a r i z a b i l i t i e s a n d d i p o l e m o m e n t s of w a t e r a n d a m m o n i a .
Ammonia
has the h i g h e r p o l a r i z a b i l i t y b u t l o w e r d i p o l e ; therefore, i f it c a n w i n o v e r w a t e r , i t m u s t d o so i n the i n n e r s h e l l . T h e result of a n i n n e r f o u r s h e l l is i n agreement w i t h the ΔΗ . η
i „ measurements w i t h p u r e a m m o n i a f
d e s c r i b e d i n the s e c t i o n : " H e a t s a n d E n t r o p i e s of I n d i v i d u a l Steps."
Literature
Cited
(1) Altshuller, A. P., J. Am. Chem. Soc. 77, 3480 (1955). (2) Basolo, F., Pearson, R. G., "Mechanisms of Inorganic Reactions," p. 64, John Wiley & Sons, New York, 1958. (3) Bell, R. P., "The Proton in Chemistry," Cornell University Press, Ithaca, New York, 1959. (4) Born, M., Z. Physik 1, 45 ( 1920). (5) Collins, G. J., Kebarle, P. (to be published), (β) Durden, D. Α., Kebarle, P. (to be published). (7) Hamer, W. J., ed., "The Structure of Electrolytic Solutions," Chapter 5, John Wiley & Sons, New York, 1959. (8) Hogg, A. M., Kebarle, P., J. Chem. Phys. 43, 449 (1965). (9) Hogg, A. M., Haynes, R. M., Kebarle, P., J. Am. Chem. Soc. 80, 28 (1965). (10) Kebarle, P., Godbole, E. W., J. Chem. Phys. 39, 1131 (1963). (11) Kebarle, P., Haynes, R. M., Searles, S. K., ADVAN. C H E M . SER. 58, 210 (1966). ( 12) Kebarle, P., Hogg, A. M., J. Chem. Phys: 42, 798 (1965). (13) Munson, M. S. B., J. Am. Chem. Soc. 87, 2332 (1965). (14) Wexler, S., ADVAN. C H E M . SER. 58, 193 (1966). RECEIVED October 11, 1966.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.