Mass Spectrometry - ACS Publications - American Chemical Society

Mass Spectrometry. Robert M. Reese. Anal. Chem. , 1962, 34 (5), pp 243R–254r. DOI: 10.1021/ac60185a025. Publication Date: April 1962. ACS Legacy Arc...
2 downloads 0 Views 2MB Size
Review of Fundamental Developments in Analysis

Mass Spectrometry Robert

M. Reese, National Bureau of Sfandards, Washington, D. C.

T

HE volume of literature on the subject of mass spectrometry continues to increase and is indicative of the usefulness of the technique in determining various parameters of chemical and physical significance. This review is intended to cover those articles appearing in the literature from January 1960 to Kovember 1961. Momigny (357) reviews the subject in relation to the physical chemistry of molecules and Wagner (498) reviews it with respect to hydrocarbon reactions. The annual Japanese review appears by Tsuchiya, Hashizume, and Someno (486). Thode, bIcMullen, and Fritze (48fj describe its uses in nuclear chemistry while Beynon (44) and Stewart (467) apply the method to organic chemistry. Inelastic collisions between atomic systems are discussed by Hasted (236). The Encyclopedia of Spectroscopy by Clark (98) contains many facets of analytical applications of the mass spectrometer.

GENERAL THEORY AND DESIGN

hfter treating the ion optics of sectortype magnetic focusing fields for firstorder, second-order, and complete convergence of the ion beam, Kadota and Ishida (275) propose a new type of optical system containing a dual arrangement of circular magnetic fields and name it Collimatron. Konig (303) determines the influence of secondorder aberrations on the line shape in instruments with first-order double focusing. By an extrapolation technique not used before, Dietz (137) evaluates the spherical aberration of focused ion beams produced by various types of surface ionization filaments. I n the calculation of ion trajectories in a Sier-type ion source, Chantreau (91j concludes that the modified method of Gans is simpler if the auxiliary magnetic field is not more than 500 gauss. Tasman and Boerbooni extend their previous work on the elimination of the radial second-order angular aberrations in homogeneous field instruments by using inclined plane boundaries (480), and calculate trajectories outside the median plane with oblique incidence and note the second-order aberration coefficient (479). Charles (92) examines ion trajectories in a 90" deflection system with respect to the parallelism of object slit and collector slit and relates these to the magnetic field orientation. The theory of ion motion in a Philips omegatron is developed by Schuchhardt (443)*

The Argonne 100-inch radius double focusing mass spectrometer is described by Stevens et al. (465),the large double focusing mass spectrograph in the Max Planck Institute by Hintenberger et al. (253), and the Harvard Cniversity spectrometer (which uses the peak comparison technique of Giese and Collins for determining isotope ratios) by Bainbridge and Moreland (22). Ewald (164) describes a mass spectrograph for analyzing particles of high kinetic energy. A description of the electromagnetic isotope separator in Pretoria is given by Frahn, Rautenbach, and Wahlin ( f 9 0 ) , improvements in the collector system being given by Wahlin (499). Smith (465) designs a new radiofrequency instrument. A two-directional focusing high intensity spectrometer is used to study focusing properties and performance with a magnetic oscillation type of ion source for gases (277). An electrostatic-magnetic separator for obtaining isotopes of high purity is discussed by White et al. (510) for research in nuclear physics, metallurgy, and semiconductors. Shustrov ( 4 5 f )improves the resolving power and ion current output of a pulsed magnetic spectrometer by harmonics elimination and by a voltage pulse applied during ion revolution. Thorburn and Robbins (482) d'1scuss methods of increasing the resolving power of a Metropolitan Vickers MS-2 for analyzing UPs. Kel'man, Knyaz'kov, and Vasil'eva (285) propose a system consisting of an electrostatic analyzer followed by two electromagnets with opposite direction fields to attain an instrument possessing high dispersion with minimum magnet size. Shyuttse el al. (452) give the basic ion optical parameters for obtaining a resolving power of 120,000 with dual focusing along the total scale. Using toroid capacitors and a homogeneous magnetic field, Wollnik and Ewald (617 ) achieve a radial intermediate image free of image distortion. Valentini ( 4 9 f ) gives the theory and some experimental results of the Palletron, an electron beam tube in which electrons are accelerated by a radio-frequency field in an electrostatic parabolic field. He considers it a mass spectrometer because elm varies as the critical frequency. Kuchkov (309) presents the line profile and the role of a pulsed ion source in a radio-frequency mass spectrometer. Kohler et al. (298) report preliminary findings on a quadrupole spectrometer of high resolution. Cesar

and Delfosse (90) design a quadrupole electrostatic lens which greatly reduces the ion energy spread. INSTRUMENTATION AND TECHNIQUES

High sensitivity leak detectors are described by Daly (127) and Peters (388). A magnetic lens type of leak detector for focusing ions in the low m/e range is given by Cossutta and Steckelmacher (If 6). Two-stage instruments are used for nuclear physics applications (6141, for studying chemical reactions (477),and for isotopic analyses of uranium (138). Very high purity isotopes are prepared by a double magnetic deflection isotope separator (42). Organic structure analyses are performed by Ryhage (429) by improving a 180" instrument. Characteristics of a trochoid-type spectrometer with limited resolving power are given by Eberhardt (164). Simple yet versatile low resolution instruments are also described by Marcley (336, 337) and Bonnet (66). Nier (373) describes a small general purpose double-focusing mass spectrometer for gas and isotope analysis. The sensitivity and resolution of this instrument compare with larger units which use magnetic analysis. By judicious overhauling of a CEC 21-620, Landahl and Merryman (312) have obtained higher sensitivity and lower noise for studying trace quantities of materials. For major component analysis, Rohwedder (4S1) uses a spark source. Inhomogeneous magnetic field units are also used for gas analysis (2 2 ) . A crossed electric and magnetic field multichannel ion analyzer is described by Bailey (2f). Beckey and Schutte (35) discuss instrumentation problems in field ionization mass spectrometers. Mass spectroscopy provides thc necessary accuracy to supplement emission spectroscopy in metallurgical research (58). ,4 combination of methods is used in the analysis of complex hydrocarbon systems (f OS). Omegatron characteristics (994, 526) are studied and applied to determine the ratio elm of the proton (338),to analyze composition of the at'mosphere (386), and t o perform quantitative analyses of gases (693, 503). The energy distribution function of ions and the shape of the mass spectrum line are investigat,ed in a radio-frequency mass spectrometer(308). Brown, Reed, and Simpson (74) describe a magnetically operated mass marker; Wahlin (500) determines mass numbers automatically. Richards (417) VOL. 34, NO. 5, APRIL 1962

243 R

measures peak heights by a vernier scale arrangement. Emission regulators are designed using a chopper amplifier (113) and transistor circuitry (427), transistors also being used for the magnet current supply in the latter work. For obtaining and maintaining necessary vacuum, Karataev (276) describes a fast action vacuum sluice; Ebert (167) uses a getter-ion pump; Seris and Vernotte (447) provide for constant level feed t o the liquid nitrogen trap. Sample inlet systems are many and varied. Bazinet and Walsh (31) combine a gas sampler and fraction collector. h three-channel feeder simultaneously handles tn-o analyzed samples and a standard (96). Ebert (156) improves the sampling and recording systems on a time-of-flight mass spectrometer. Mumbach (362) constructs a liquid sampling device. Cook, Meyer, and Earnshaw (111) describe a dual inlet system for handling materials in the molecular weight range 150 to 700. Kendall (286) describes a new method of solid sample interchange based on effects of potential variations along the length of a filament. Lumpkin and Taylor (325) can introduce solid samples into an all glass system and heat them to 500" C. Shin et al. (449) using a cavity furnace with a heater thermally attached to the furnace body can heat samples to 1000" C. They discuss the pros and cons of their system with respect to the Knudsen cell. Perie and Chemla (386) determine traces of lithium by the isotope dilution method combined with mass spectrometry. A constant intensity thermal ion source decreases the fractionation of lithium isotopes (223). By collecting two ion beams simultaneously, Ridley and Silver (419) derive isotope ratios for lithium. Vetshtein, Demidenko, and Lechekhleb (493) devise an ion source for the isotopic analysis of traces of lead. Raiko, Ioffe, and Zolotarev (409) describe a surface ionization source for the separation of the alkaline element isotopes. Construction details are given for a high frequency ion source with discharge in salt vapors (306). Boron isotopes are studied more readily by mixing borax with powdered magnesium in a thermionic emission method (300). Akishin et al. (8) adapt their instrument for the determination of vapor composition and thermodynamic characteristics (pressure, heat of sublimation, or dissociation) of slightly volatile substances. Construction and operating conditions of a Fox-type source of monoenergetic electrons are discussed by Collin (108) with particular emphasis on its characteristics. Marmet and Morrison (341) employ an electron velocity selector to detect multiple processes in rare gas ionization efficiency curves.

244 R

ANALYTICAL CHEMISTRY

Koval'skii and Rodir (304) describe methods for accumulating isotopes of inert gases in an electromagnetic separator. Zaidel, Ostroskaya, and Petrov (524) give a method for determining the isotopic composition of nitrogen. Kirchner (289) combines a mass spectrometer 1YithaGeiger counter to achieve high sensitivity. Kubose and Hamill ($07) determine effects of repeller voltages on the ratio of analyzed ion current to total ionization for numerous gases. Galli, Giardini-Guidoni, and Volpi ($04) pulse the repeller voltage but neglect to phase the detector. Habfast (222) determines the relative abundance of isotopes with an absolute sensitivity better than one in a million. Ion detection is accomplished by an electron multiplier (87),ion transformer (439), and organic scintillator (126). Barton, Gibson, and Tolman (29), using lO-*-gram samples, detect ions and accumulate data before print out. Butement and Finkelstein (78) detect individual ions from two mass beams and compare them. iln analog system using selective gated input to measure simultaneously the areas under several mass peaks is devised by Betts and Paufve (43) for their time-of-flight mass spectrometer. Ezoe, Hayashi, and Katayama (167) use an a.c. amplifier for ion current measurements. Matsuda (348) constructs an electrostatic analyzer with variable focal length. The virtual collector slit width can be adjusted from 1 to 0.15 mm. and still maintain fair peak shape (63). Second-order aberrations are corrected by inserting a thin sheet of magnetic material between magnet pole faces (26). Gaudaire (206) describes apparatus and results on a mass spectrometer Fvith quadrupolar lenses excited a t high frequency. ANALYTICAL APPLICATIONS

Madorsky and Straus investigate the thermal stability of thermoset plastics (SSO), of poly (divinylbenzene), and of copolymers of styrene with divinylbenzene and trivinylbenzene (469). The thermal life of enameled wire is evaluated by Saito and Hino (435). Thermal decomposition products are also noted for hydrogen, oxygen, and water vapor (389), and for some cobalt amine azides (274). Deuterium content of labeled pentamethylbenzene is determined with a type IM-1305 mass spectrometer accurate within *570 (346). The volatile components of polyethylene are studied a t an inlet temperature of 150 to 330" C. (366). Takayashi studies the pyrolysis of toluene (474). In toluene-m-d and toluene-p-d (476), he concludes the reactivities of meta- and para-hydrogen atoms to be of the same order. The mass spectrometer is applied in

amino acid and peptide chemistry ( Y S ) , diagnosis of lung function (363), lipide research (4.39, and blood gas tension measurements (468). Noncondensable products of the photochemical decomposition of acetone in aqueous solutions of allyl alcohol a t 2537 A. are determined (496). Ropp, hIelton, and Rudolph (422) investigate the photochemical reaction between formic acid and chlorine. I t is used as a detector for gas chromatography (318) and also t o determine the amine acid sequence (56). Trent and Miller (485) analyze high molecular m-eight aliphatic acids and their methyl esters. Zlotowski and Wince1 (519) study the chemical processes occurring in a self-quenching Geiger-Muller counter filled with pentane, hexane, or heptane. The distribution of positive ions of 2-ethyl-, 2-propyl-, 2-butyl-, 2-amyl-, and 2-hexylthiophane is given by Zimina et al.(527). The composition of cigaret smoke is examined with respect t o different tobacco types (420) and with respect to normal long chain primary alcohols (112). Biemann and Friedmann (65) find evidence for the structure of iboxygaine and its tosylate. Sief and Severin (372) find that traces of oxygen in carbon dioxide are more dependably analyzed if the filament is first treated with acetylene. O11Bri-Virag and Cornides (378) give data on the variation of argon and nitrogen with oxygen purity on a Linde-Frankel-type air distillation unit used for oxygen production. Wang and Burris (501) follow the production of nitrogenous gases in silage. Tranchant and Moreau (484)give the analysis based on nitrogen oxides of various mixtures of gases of nitrogen, nitric oxide, carbon monoxide, carbon dioxide, and nitrous oxide and attain a maximum relative error of 4%. Schacher, Rippere, and Hill (437) analyze nitrogen for carbon monoxide concentrations of 0.1 to ~ 5 7 ~Istomin . (271) gives data on height distributions of singly charged atomic and molecular nitrogen ions a t altitudes between 100 and 500 kilometers as obtained from rocket flights. Nitrogen losses from nitrogen-fertilized soils are measured by Schwartzbeck, AIacgregor, and Schmidt (446). By observing changes of the mass spectrum with varying electron energy, Cornides (114, 115 ) analyzes carbon monoxide and nitrogen mixtures. I n analyzing organic compounds, Varsel et al. (492) find the lon- voltage method rapid and as accurate as normal methods. The major disadvantages are fragment ion interference and low sensitivity. Hoogen-Donk and Porsche (260) study by low voltage techniques the effectiveness of mercaptan removal from naphthas. Crable, Kearns, and Korris (118) report low voltage sensitivities for 64 aromatic compounds. Using a vacuum spark positive ion

source, Ahearn (7) distinguishes between bulk electrode impurities and surface contaminants. Surface contamination can be detected and identified when it is the equivalent in amount to less than 0.01 monolayer. Barbieri et al. (27) obtain consistent results in analyzing water containing up to 1% deuterium oxide. Castaing, Jouffrey, and Slodzian (83) obtain promising preliminary results on the possibilities of local analysis of a metal surface by analyzing its secondary ion emission. Determinations are made of very small quantities of lead (343),of plutonium using a plutonium-242 tracer (608), and of uranium in impure solutions (473). Improved uranium-255 measurements give an absolute precision !Tithin 10.00003 weight per cent relative t o unaltered uranium for uranium hexafluoride assaying 0.038% uranium235, and similarly within 0.02 weight per cent for uranium hexafluoride assaying 1.9Yc uranium-235 (467). Shively, Norris, and Roberts (460) describe the identification of components of four gasolines by a combination of methods. Franke gives type analysis of mineral oil products (193) and performs gasoline hydrocarbon group analyses on olefin-free products (191) and olefin products (192). The resolution of cyclopentanes from cyclohexanes is carried out by Howard and Ferguson (263),who along with Snyder (264) determine tetramethyllead and tetraethyllead in gasoline. Bokhoven (65) and Fusari (201) apply the mass spectrometer to hydrocarbon analyses. Oshima and Katsumata (380) obtain qualitative analysis by measurements of rearrangement ions. Biemann (64) determines the carbon skeleton of sarpagine by observing mass spectra. Mass spectra of coal samples suggest the presence of short chains of [-CH2--] units and a repetitive unit of molecular weight 180 (410). Holden and Robb (269) study the behavior of coal samples ranging in carbon content from 82.0 to 94.oyO by heating a t the entrance of the ionization chamber. LaLau (311) determines the distribution of pyridine-quinoline type compounds in concentrates from petroleum fractions. Dan and Oshima (128) discuss a method for the qualitative determination of paraffins, naphthenes, and aromatics in petroleum. Low and high voltage techniques are combined to allow total analysis of olefinic naphthas without the necessity of separation (196). Cousins, Clancy, and Crable (117) indicate a combination of techniques is valuable in the qualitative and quantitative analysis of naphthene mixtures. I n a sample of West Texas straight run asphalt having a molecular weight of 500 to 900, fragment ions indicate that heterocyclic and aromatic nuclei are predominant molecular structural groups (100). Herlan

(240) describes the preparation of a system of matrices for calculating mass spectrometric results with a digital computer. Up to 28 components can be present. Cseko presents a method for determining gas solubilities (120), and together with Cornides (121, 122) gives solubility data for argon and argonnitrogen mixtures in liquid ammonia a t various temperatures (0' to 25' C.) and pressures (25, 50, 75, and 100 atmospheres). Kishing (374) studies characteristic peaks and sensitivities for analyzing microcomponents by mass spectrometry. The trace impurities, 6.6 t o 19.1 p.p.m., in grade A helium are neon and nitrogen according to Kirkland, Brandt, and Deaton (290). In the electron bombardment of five glass types investigated, Todd, Lineweaver, and Kerr (483) find oxygen to be 95% of the evolved gas, with carbon monoxide and dioxide the other major components. Young (521) studies gases and ions evolved from different anodes under electron bombardment. Collins and Turnbull (110) determine evolution and absorption of gases in color television tubes. Residual gases in several types of high vacuum evaporators are determined and methods of removing them are given ( 8 4 ) . Pikus and Fiks present methods of calculating background currents (390) and discuss limits of sensitivity in analyzing trace components (174) in magnetic resonance mass spectrometers. Omegatron mass spectrometers are used in the analysis of residual gases in vacuum systems (26, 272, 292,519) and for studying the sorption and desorption of gases in a hot cathode ionization gage (24). Levine and Lichtman ($16) follow the hydrogen output of a titanium hydride gas generator using an omegatron. Lichtman (317) also determines parameters affecting limiting pressures in vacuum devices and finds the predominant residual gas in ion pumped systems is methane; in oil diffusionpumped systems, water and carbon monoxide. Gentsch (209) analyzes residual gases of high vacuum vapor-deposited metal films of iron, nickel, and platinum, I n a study of water vapor adsorption on a graphite surface, Inouye (268) determines the place of ion formation and estimates the kinetic energy of the ions. Erkelens, Galwey, and Kemball (162) follow the deuteration of some cyclic olefins on iron and other transition metal films. Krypton evolution from a thin uranium foil is dependent upon how the gas is placed in the metal (376). Evolution rates of rare gas atoms from various metal films and foils vary considerably from metal to metal (487). Amosov and Lank (14) examine gas evolution processes in

sintering tantalum and niobium, Bindernagal (69) of gases in metallurgy, Bogolepov, Grigorash, and Panov (64) of gases in metals. Polyanskii et al. (S96) find the gases extracted from aluminum powder under vacuum a t 170" to 450' C. consist of water vapor, hydrogen, and carbon monoxide. Bornkessel and Pilot (67) investigate the degassing products of hydrogen- and silicon-containing magnesium. Fergason, Seizinger, and McBride (172) determine hydrogen evolution from uranium by heating the sample to 900" C. while helium flows through the sample tube. The minimum amount of inert gas released from iron in a vacuum fusion system is 10-5 to 10-lO cc., with an error of 5 to 7% (523). Driving, Karasev, and Samarin (151) investigate steel decarbonization kinetics in vacuo. Helium permeation rates through 20 different glasses are determined over a temperature range 25' to 500" C. (13). Ahearn (6) presents mass spectral data on steatite and quartz showing the presence of bulk impurities and surface contamination. Hannay (227) presents similar data for various solids. Webster et al. (506), by using an uranium-233 tracer, find the mean precision of the isotope dilution method for uranium235 samples to be 0.37% for results based on six replicate analyses and 0.83% for one based on a single determination. A procedure is also given for determining the concentration ratio (total plutonium)/(total uranium) for solutions of natural uranium fuel elements (607). Searcy, Williams, and Schissel (446) examine the use of constant-boiling systems to calibrate mass spectrometers and other molecular beam instruments. Lumpkin and Beauxis (324) modify a commercial analytical instrument to allow direct instrumental measurement of total ionization proportional to the amount of sample introduced. Data on pure compounds indicate the observed peak height/total ionization ratio is more reproducible than replicate charges with a constant volume pipet. PRECISE MASS MEASUREMENTS AND ISOTOPE ABUNDANCE

Ogata, hfatsuda, and hIatsumoto (376) report the mass measurement work a t Osaka University, and Isenor, Barber, and Duckworth (270) the first atomic mass measurements with the McMaster University double-focusing mass spectrometer. New determinations of the masses of some isotopes of krypton and xenon are given (27S), as well as the mass of the plutonium-240 isotope (133). A new mass table gives a complete and consistent list of nuclidic masses calculated from all significant experimental data available, together with binding energies and B-decay energies derived from these masses (16.9). VOL 34, NO. 5, APRIL 1962

245 R

I n the mass range 174 to 239, calculations are made of the mass and binding energy of 66 radioactive nuclei (134). Atomic masses and binding energies are also reported in the region gadolinium to gold (61, 62). A new isotope, hafnium-182, is produced by double neutron capture (516). Isotopic compositions are reported for potassium (287),primordial xenon (415), boron (38), and uranium hexafluoride (60, 279). Horibe and Kobayakawa determine the deuterium content of several United States National Bureau of Standards isotope reference samples (261) and of natural waters (262). Lorant (319) discusses the work reported by Shields, Craig, and Dibeler (448) on the absolute abundance ratio (silver107)/(silver-109) of 1.0754 f 0.0013 and atomic weight of silver, 107.9028 =t 0.0013 on the physical scale and 107.8731 =t0.0020 on the chemical scale. NUCLEAR CHEMISTRY AND GEOCHEMISTRY

Smales and Wager (453) present methods in geochemistry including mass spectrometric analyses and isotope dilution techniques. For four samples of Polish native sulfur deposits, Zlotowski and Stroka (588) report a relative abundance ratio of S32/S34of 21.89 to 22.18 =t 0.16. Rafter, Kaplan, and Hulston (408) report the same ratio as 22.13 for 14 geothermal specimens from New Zealand and 22.36 for 20 volcanic specimens from White Island. Bl1/Blo ratios range from 4.040 to 4.072 for Searles Lake Borax (328), in excellent agreement with results of Collins. However, Goris, Morgan, and Nielsen (214) find the same ratio for natural boron to be 4.00. Zonov (530) obtains the ratio from elemental boron and HsBOa, Abernathey (1) from trimethyl borate. Baker and Collins (23) limit the natural abundance of erbium and ytterbium a t less than 0.0000008 and 0.000001 atom per cent, respectively. Flesch, Svec, and Staley (177) derive the absolute abundance of chromium from 18 chromites from world wide deposits and obtain a chemical atomic weight of 51.9985 =t 0.0013. I n 81 samples of natural occurrence, Hoering and Parker (667) find no significant variations in the C13'/Cla6 ratio. The relative abundances of rubidium and strontium in vitrain ashes from coals in Nova Scotia are reported by Tupper and Loring (490). Tudge (488) presents a method of analysis of oxygen isotopes in orthophosphate and discusses its use in the measurement of paleotemperatures. Hubner et al. (265) analyze respired air from animals t o determine 0 1 8 concentrations. Smirnov and Karpunin (454) find that 0 1 8 in sulfuric acid varies from 1.52 to 1.62 atoms per cent. Isotopic variations of deuterium and oxygen-18 are studied in meteoric waters (119), in

246 R

ANALYTICAL CHEMISTRY

a Greenland iceberg (130), and in the Philippine Trench from depths greater than 3830 meters (129). The deuterium content of hot spring waters of Japan (896) and of minerals and rocks of Hawaii and Japan (299) is reported. Fanale and Kulp (169) determine helium and uranium content of a number of specimens of marble, Iceland spar, and fossil shell of known age. Meteorite compositions are examined with respect to argon (495), neon and other inert gases (155),and helium, neon, and argon isotopes (438). Primordial argon and neon in carbonaceous chondrites and ureilites indicate a large fractionation between these gases as compared to the corresponding cosmic ratio (461). Reynolds (413) examines rare gases in tektites from several localities and concludes the Georgia tektites and moldavites do not seem to belong to the same fall. Park and Dunning (383) determine C13/C12ratios for several crude oils and porphyrin aggregates from them. The concentration of is nearly constant in rural and marine air, but the 0 1 8 abundance shows systematic variation with air and ocean water temperature or season (283). Richards and Benson (418) determine nitrogen to argon and nitrogen isotope ratios in two anaerobic environments, the Cariaco Trench in the Caribbean and Dramsfjord, Sorway. The elution and analysis of petroleum from the Athabasca deposit are reported by Nagy and Gagnon (364). The distribution of n-paraffins in source beds indicates that compounds with an odd number of carbon atoms predominate for a t least the first few thousand years after deposition (71). Hamer and Robbins (226) report that variations in the relative abundance of principal uranium isotopes are less than 0.05% within 95% confidence limits for 12 ore concentrates from world wide deposits. In the Swedish kolm and its associated shale, Cobb and KuIp (101) find the most probable age of formation to be 500 X lo6 years according to uraniumlead isotope measurements. Cherdyntsev et al. (94)also report the isotopic composition of uranium from minerals. Lead isotope ratios of samples from Broken Hill and Mount Isa are intercompared with increased precision by Kollar, Russell, and Ulrych (301). Austin and Slawson (17) make a detailed study of lead isotopes to evaluate variations in isotopic composition with respect t o the geologic environment of a single lead deposit. Some galenas are dated by their lead isotopic compositions (153, 426). The effects of regional metamorphism are studied on rocks from northern Michigan, the Karelian basement in Finland, and eastern Canada and United States (131). Isotopic lead compositions are also reported from the Munchberg gneiss

massif (348),Kazakhstan (366),and the Dniester region (489). Samples from Penn Haven Junction deposits in Carbon County, Pa., apparently contain common lead of 1.1 X 108 years and radiogenic lead of 3.5 to 4.7 X 106 years (464). Newton, Sanders, and Tyrrell (370) thermally ionize cesium silicate and give an isotopic analysis of silicon using the SiOt- ion. Diamond et al. (135) examine the heavy isotope abundances produced in the November 1,1952, thermonuclear explosion "Mike" which produced all uranium isotopes through U2S5multiple neutron capture by Uz". Some meteorites examined by Marshall and Hess (250, 344) indicate meteorite ages of about 4.7 X lo9 years. Komlev et al. (302) find granites from Ukrainian Precambrian to be 1.9 X lo9 years. Rubidium-strontium age determinations range from 1 x 10s years (249, 371) to 1.2 X lo9years (212). Yamaguchi (520) reviews dating by the potassium-argon method and includes 68 references. G 8 e n and Kulp (211) find the Precambrian Basement of Colorado to be older than 1.5 X l o 9 years. Hayden and Wehrenberg (236) date some samples from rocks of western Montana as do Moore et al. (360) rrith samples from northern Manitoba. Tektites from different localities between Indochina and Australia showed ages of 0.61 x lo6 years (208). Granitic rocks from Southern Era1 and Mugodzhar indicate the age of the Neplyuev massive to be 180,000 h 20 million years (205). Hurley et al. (267) question the reliability of glauconite for age measurements. Ages of granitic rocks from 27 areas of Nova Scotia are reported by Fairbairn et al. (168). The loss of argon from feldspars is discussed by Baadsgaard et al. (20) in terms of diffusion and lattice discontinuities. Radiogenic argon is quantitatively retained a t temperatures below 400' C. except possibly for the finest grain sizes and for sanidines with lattice irregularities. From the chondritic meteorite Richardton, which is heavily enriched in xenon-129, Reynolds (414)dates the age of the elements a t 4.95 X lo9 years. The articles in the following sections are grouped in a somewhat arbitrary fashion. QUASI-EQUILIBRIUM THEORY

Particularly near threshold, the classical approximation in the quasi-equilibrium theory of mass spectra contains a serious error (423). This error may account for the reduction in the number of effective oscillators which was required to explain a number of experimental results. Schug and Coggeshall (444)present a note on this theory. Wallenstein and Krauss (501) present some general considerations of the

theory with respect to determinations of minimum energy decomposition paths and also point out the importance of fluctuation effects. Their results are used in interpreting the observed appearance potentials of secondary and tertiary ions of neopentane, n-butane, and 1-butene. Eyring (166) with Kahrhaftig (166) examines the dependence of calculated and experimental propane mass spectra upon electron voltage. Kropf et al. (306) calculate the mass spectra of propane and propane2,2-dzand demonstrate by these calculations that metastable ions are a normal part of the spectrum. Burr, Scarborough, and Shudde (77) discuss in terms of the quasi-equilibrium theory primary and secondary isotope effects in the mass spect'ra of deuterated biphenyls. Futrell (202) applies the theory to calculate the molecular dissociation second, which occurs in propane in a time which approximates the collision time for propane at moderate pressures. Cassuto (82) studies the variation of moss spectra and ion formation probabilities with temperature in the range - 190 to 200' C. for argon, neon, carbon dioxide, nitrogen, oxygen, methane, ethane, propane, and n-butane and relates these with the quasi-equilibrium theory. Ehrhardt and Osberghaus (158) obtain the mass spectra of acetylene, ethylene, ethane, 1-butene, n-butane, 1-hexene, and n-hexane between 100' and 700" C. and evaluate the dat'a by the quasi-equilibrium theory. Chupka and Berkowitz (97) compare their results on the unimolecular decomposition of excited alkylamine ions with those predicted by the theory. Fueki and Hirota (199) calculate relative amounts of products of electron impact on acetic acid by this theory and find the values agree with mass spectrometric data. They also calculate by the equivalent orbital method the charge distribution of n-paraffins from butane to decane and find the probability of carbon-carbon bond break to be in agreement with the theoretical prediction (200). OTHER THEORY

Geltman (goy), using the BornOppenheinier approximation, evaluates the cross section for detachment of an electron from H- by electron impact over the energy range from threshold (0.75 e.v.) to 75 e.v. Smith and Branscomb (466) use a crossed beam apparatus for studying the photodetachment of electrons from negative ions. Frost and McDowell (197) use their ionization and dissociation data on chlorine, bromine, iodine, iodine chloride, and iodine bromide to construct potential energy diagrams illustrating t h e dissociation processes leading to some of the negative ions which are observed. Fox studies ionization near

threshold in hydrogen chloride vapor (186) and multiple ionization in argon and krypton (187), and together with Curran, ionization processes in cc14 and SF6(189),and KO (126). Dorman and Morrison (147) discuss the possibility of obtaining relative electronic transition probabilities from ionization efficiency data. They also obtain further support for the previously proposed nth pon-er rule for n-fold ionization by electron impact and set limits to threshold values for multiple ionization in rare gases and mercury (148, 149). Together with Kicholson (150) they discuss the implications of the threshold law for the probability of excitation by electron impact with regard to the assignment of dissociation products and appearance potential measurements. Gur'ev, Tikhomirov, and TunitskiI (219) propose that the energy of the electron is not distributed through the whole molecule and that dissociation occurs in the region of excitation. He substantiates this suggestion by experiments on nonane having a C13 atom in the center. Lorquet (320) discusses for a n isolated molecule the probability of transition from the ground state to electronically excited states of the corresponding singly charged ion when the moleculc is bombarded n-ith monoenergetic electrons. With these empirical relations, he calculates the mass spectrum of 1,3-butadiene (sal),and, together with D'Or and Momigny ( I @ ) , he calculates the mass spectra of N2, 0 2 , KO, CO, Cop, and HpO. hfeyerson (363) discusses the effect of electron energy on some electron impact processes in two deuterated p-sylenes, two deuterated toluenes, and a deuterated benzyl chloride. Ratanabe (604) develops a theory of electron impact with respect to CH,, CD4,and CTI. Coggeshall (10.2) examines the mass spectra of n-paraffins in the Cg to C,a range for the quantitative relations that must be predicted by any theory of ion formation by electron impact. To correlate experimental data on hydrogen with potential energy curves, Stevenson (466) postulates that 15- to 100-volt electrons and hydrogen form a collision complex with a lifetime of the order of to second. Wacks and Krauss (497) use the computer program of Kicholls to calculate FranckCondon factors for the transitions 02+ OZ+,X O + NO+, and CO- CO+. Marmet and Kerwin (340) believe their measurements of the vibrational levels in Hz+are the first ones ever made by electron impact. Foner and Kall (184) study structure in the ionization near threshold of rare gases and find that their data favor a linear threshold law. Elementary processes in colli,'qions of slow ions with molecules are studied experimentally by pulse methods (476, 478)*

The threshold law for the probability of excitation by photon impact of discrete neutral levels above the ionization threshold approximates closely a delta function of the excess energy as is corroborated by studies on the photoionization efficiencies of Br2, Iz, HI, and CH31 (361). Akopian, Vilesov, and Terenin (11) investigate the relation between spectra and the photoionization efficiency of some benzene derivatives. Ultraviolet photolyses of the following molecules have been studied by mass spectrometry: formaldehyde (238), nitric oxide (268), ethane and molecular detachment of hydrogen (377),methanol and dimethyl ether (402), methyl ace)~ and butane (436), tate ( ~ $ 0 6ethylene hydrogen (440), and all saturatrd paraffins from Cp to C6,plus 11-heptane and n-octane (463). Correlations of molecular yields in gas phase hydrocarbon radiolyses with mass spectral data are carried out by Reinisch (412) and by Dorfman and Sauer (146). Gur'ev (218) discusses mass spectra and primary processes in the radiation chemistry of paraffins. MASS SPECTRA

Begun and Landau (36) discuss m a s spectra and metastable transitions in isotopic nitrous oxides. Using a double oven to analyze the undersaturated vapor, Berkowitz, Bafus, and Brown (39) find the hexamer and tetramer to be the predominant species in ethyllithium vapor. Saalfeld and Svec (434) report the mass spectrum of stannane along with appearance potentials and estimated bond energies. Porter (397) together with Zeller (401) gives mass spectra of aluminum(II1) halides and the heats of dissociation of aluminum fluoride vapor and lithium fluoridealuminum fluoride vapor. Glazunov, Kiselev, and Litvakov (213) report on the doubling of the mass spectrum of cesium. Loughran, Rlader, and -2IcQuistion (323) present mass spectra and appearance potentials of some borazoles and their benzene analogs. Mass spectra and structure are correlated for aromatic alcohols and phenols (S), methyl-substituted aromatics and aldehydes (4), metal vapors (347), some allenic hydrocarbons ( 3 9 4 , siliconcontaining vinyl acetylenes (392), and red phosphorus (80), Hanu5 and Dolej&ek (228) study fragmentation of C7Hs isomers as a function of electron energy and ion accelerating potential. Fritz et al. (196) investigate the mass spectra of silicon methylene compounds. Omura (379) gives the mass spectra a t low ionizing voltage and the bond dissociation energies of the parent and principal fragment ions of ethane, propane, n-butane, isobutane, ethylene, propylene, 1-butene, and cis-2-butene. Ryhage and Stenhagen (430-432) reVOL. 34, NO. 5, APRIL 1962

* 247 R

port on the mass spectra and interpretations of processes forming the most intense ions in 69 methyl esters of organic acids. Watalis reports the mass spectra of six cis- and trans-isomers of dimethylcyclohexane a t various electron energies (368), and of cycloalkanes from cj to CS and of c4,cs,and c6 perfluorocycloalkanes (369). Mass spectra are reported for deuterated diboranes (141), aromatic esters (161), lower boron trialkyls (239), N-formyl-a-amino acid methyl esters (251), mono- and digermane (284), cyclic fluorine compounds (331, 532), vinyl alkylacetylenes (S93), alkenynes containing a tertiary butyl group (395), ten aromatic ethers (513), and some deuteroethanes (406). Beynon et al., using high resolution techniques, obtain mass spectra of long-chain paraffins using CI3 labeling (46),trimethylhydrazine (49),five cyclic ketones (48), 27 aliphatic esters (47), and various quinones and polycyclic ketones (60). The high resolution of 2500 makes possible the determination of the structure of various ions in these compounds. Carlson et al. (81), using this technique on petroleum fractions, find evidence of several molecular types not previously reported or for which so far there has been only indirect evidence. Variations in the mass spectra of ethylene with pressure are related to the changing decomposition products of the primary ion (411). Unexpected peaks appear in the argon spectrum a t source pressures of 0.01 mm. (62). McGowan and Kerwin (327) examine some oxygen ions formed a t high pressures in a mass spectrometer. Pahl and Weimer (381) measure ion formation in inert gas discharges t o which hydrogen is added. (NeAr)+ and (ArKr)+ (198), (ArKr)+ (282), and (ArN2)+, (ArN)+, Arz+, (?P4N19+,(Ar37+, and Nf (281) are observed, appearance potentials being given for the ions in the last reference. Beck and Osberghaus (32) report the mass spectra of uncharged fragments formed by electron impact of propane and hexane. von Ardenne, Steinfelder, and Tummler determine the number of carbon atoms in organic molecules by the C13/C12 ratio (16), and present negative ion spectra of naphthalene, anthracene, tetracene, phenanthrene, pyrene, coronene, and fluorene (16). Negative ions (76) are observed and appearance potentials determined for nitrogen dioxide (186), ozone ( l 2 4 ) ,and CsFieO (256). Donahue and Hushfar find that the copious production of CO- ions by the reaction of CO with a fast atomic hydrogen beam contradicts the simple model of capture collision previously proposed (143) and conclude that charge transfer is the most effective process yet found for negative ion formation (1.42). W i t l o c k and Bounden 248 R

ANALYTICAL CHEMISTRY

(512) describe a simple source of 0ions suitable for accelerator applications. Surplice studies the emission of negative oxygen ions during the activation of oxide-coated cathodes (470), from cathodes of barium oxide in sintered nickel (471), and from cathodes of barium aluminate in sintered tungsten (472). ION-MOLECULE REACTIONS, CHARGE EXCHANGE, AND CROSS-SECTION MEASUREMENTS

Ion-molecule reactions are studied in the systems of methane, methanol, ivater, argon, and krypton with iodine (237),alkali halide salts (354),nitrogen, oxygen, carbon monoxide, sulfur dioxide, carbon dioxide, carbonyl sulfide, and carbon disulfide ( 8 9 ) ; sodium, potassium, rubidium, and cesium atoms with hydrogen, deuterium, and oxygen molecules (79), argon atoms by singly and doubly charged neon and argon ions (6), hydrogen, oxygen, water, and their binary mixtures (144); triethyl aluminum and 1-octene (387), nitrogen atoms with ozone (93), and hydrogen molecular ions with hydrogen, nitrogen, helium, argon, and krypton (391). Giese and Maier (210) study ionmolecule reactions in an apparatus in which the primary beam crosses longitudinally through the ionization chamber. Irsa and Friedman (269) study the collision-induced dissociation of HD +. Field (173) describes multiple order ion-molecule reactions and the ultrahigh pressure mass spectrum of ethylene. Beynon, Lester, and Saunders (4)study ion-molecule reactions using a wide range of organic compounds containing oxygen or nitrogen atoms and find that the most prominent peak is the parent-plus-one mass. Beckey (34) studies the association of water and ion-molecule reactions using a field-emission ion source. Henglein and Muccini (238) examine the significance of ion-molecule reactions in radiation chemistry. Methyl, methylene, and hydrogen radicals are produced by charge exchange in reactions of argon and methane (349). Rudolph and Melton study ion-molecule charge transfer reactions in the a-particle radiolysis of various hydrocarbons (425) and some ionic intermediates in the radiolysis of ethylene (351). Lavroskaya, Markin, and Tal'roze (313) examine data in the literature on charge transfer reactions and find that in the energy range 10 to 1000 e.v., the transfer of kinetic energy into internal energy during the charge transfer process is facilitated with increasing complexity of the ion. They include a list of 23 references on the subject. Karmohapatro (278) studies charge exchange between krypton ions and atoms, Franklin and Field (194) between rare gas ions and ethylene, Fite et al. (176) between protons and hydrogen atoms.

In their studies on the dissociation of ethyl alcohol molecule ions formed in charge exchange collisions with positive ions, von Koch and Lindholm (297) conclude that the low intensity of the ions formed by losing -HzO and -CHd indicates that in electron impact experiments these ions are formed from highly excited neutral molecules. Processes occurring in the collision chamber are discussed in terms of recombination energies of atomic ions and appearance potentials of molecular fragments (220). Cerm6,k and Herman (88) describe charge transfer reactions in the ion source of a mass spectrometer. hlartin and lllelton (346) investigate hydrogen atom abstraction reactions by cyanide ion radicals. Together with Ropp (360) they find evidence for hydrogen migration in negative ion molecule reactions. Watanabe (605) finds the additivity rule for ionization cross sections t o be theoretically valid (=kZO7,) for incident electron energies greater than 80 e.v. and internuclear distances greater than 2.5 A. for some hydrocarbons and fluorocarbons. Absolute cross sections for the ionization threshold energy region are given for helium, neon, argon, mercury, carbon monoxide, and nitrogen (188). Total cross sections for electron impact ionization of atomic hydrogen and atomic oxygen are measured by a modulated molecular beam technique (424). The cross section for formation of doubly ionized helium by electron impact is measured relative to that of singly charged helium between 100 and 2400 e.v. (460). Measurements are made of cross sections for electron capture by singly and multiply charged ions of neon, argon, krypton, and xenon (171). Determinations are made of the effective cross sections for the production of heavy fragments by 155-m.e.v. protons on 0l6(216). In some experiments of ionization by negative ions, the cross sections for ionization with D- and H - are found to be the same (180). Ionization cross sections for the removal of n electrons from an atom by H - and 0- are measured for helium, neon, argon, krypton, xenon, hydrogen, nitrogen, and oxygen (179). Potential measurements are made of the total effective cross sections for the formation of negative ions in a single collision of H- or 0- a t energy levels of 10 to 15 k.e.v. with 02, cc14, and SF6 (181). Multiply charged ions of neon, krypton, and xenon from an Ardenne-type ion source are separated as to composition, charge, and energy and made to collide with atoms of the same elements and cross sections obtained (170). Stebbings, Fite, and Hummer (462) obtain cross sections for charge transfer in collisions between atomic hydrogen and nitrogen and oxygen ions as measured in the range 400 to 10,000 e.v. Effective

cross sections for double charge exchange are measured for the alkali metal ions (182). Dickinson and Sayers (136) describe a method for measuring cross sections for charge exchange a t mean ion energies corresponding to a gas temperature near 25' C. I n measurements of resonant charge exchange of alkali metal positive ions, Chkuaseli, KikoleIshvili, and Guldamashvili (96) find that cross sections are smaller in atoms with* high ionization potentials.

IONIZATION POTENTIALS AND DISSOCIATION PROCESSES

Herron and Dibeler obtain appearance potentials of selected ions in CXCl, CXBr, and CKI (2&), and in NFz, KF3, N2F2, and NzF4 (246, 248); they measure the ionization potential of fluorine to be 15.83 0.05 e.v. (246). NzF4 readily dissociates a t a relatively low temperature and the dissociation is almost completely reversible (247) as indicated by a direct measurement by Colburn and Johnson (104) of 19.2 kcal. per mol for the F2K-NF2 bond dissociation energy. Previously Loughran and Mader (322) found this value to be 29.9 kcal. per mol. Appearance potentials and probable ionization and dissociation processes are given for ethylene oxide and propylene oxide (203). Appearance potentials are also obtained for acetic acid and deuteroacetic acid (255), the acetyl radical ion (SSS),and positive and negative ions in CFC13 (123). Ionization potentials are given for the methylene radical (99), cis- and trans-dihaloethylenes (356), pentaborane, iodopentaborane, decaborane, and ethyl decaborane (J39), and some organic dyes and a series of complex molecules in the gas phase (494). Kaufman and Koski (280) determine the effect of substitution on the ionization potentials of free radicals and molecules. Barrow (28) investigates the dissociation energies of the gaseous monohalides of boron, aluminum, gallium, indium, and thallium. Collin (109) determines excited states in the molecule ions of carbon dioxide and carbon disulfide. He also discusses dissociation processes in furfuryl and tetrahydrofurfuryl alcohols (106), and dioxolane, P-methyl-l,3-dioxolane, diosane, and 2,4,6-trimethyl-l,3,5-trioxane (107). Ackerman, Stafford, and Drowart ( 2 ) determine dissociation energies of the molecules silver-gold, silver-copper, and gold-copper. Blais and Mann (61) study ionization of copper, silver, and gold by the retarding potential difference method. Eliel et al. (169), studying the gas phase dissociation of benzyl alcohol, find several ionic dissociation paths besides the tropylium ion formation by loss of the hydroxyl radical.

THERMODYNAMICS

Levina (314) reviews the work on the use of the mass spectrometer to study thermodynamics of vaporization and shows that this method can be used to study structure of vapors under equilibrium conditions and to determine partial pressures of vapor components as well as thermodynamic constants. Elevated temperature studies are made of the cesium halides (9),heats of dimerization of the five alkali chlorides (355), the boron-sulfur system (468), chlorinated and fluorinated C1and CZcompounds on graphite (53), HzO and HC1 with NazO and LizO (442); UF, ( I O ) , lead selenide and lead telluride systems (398), sodium cyanide (399), bismuth selenide, bismuth telluride, and antimony telluride (400), molybdenum, tungsten, and uranium oxides (1%) ; calcium sulfide and sulfur (105),sulfur (526), molybdenum dioxide (76), zinc and cadmium (334), nickel oxide (217), lithium oxide with water vapor (41), uranium monosulfide (86, 86) ; neodymium, praseodymium, gadolinium, terbium, dysprosium, holmium, erbium, and lutetium (611), beryllium chloride (428), alkali metal fluorides and hydroxides from pure and mixed condensed phases (441), boric acid with water vapor (352), alumina (162); ferrous chloride, beryllium fluoride, and equimolar mixtures of lithium fluoride and beryllium fluoride and of lithium chloride and ferrous chloride (do), osmium and oxygen (216), and of indium-phosphorus, indium-antimony, gallium-arsenic, indium-phosphorus-arsenic, and zinc-tin-arsenic compounds (221). Harrison et al. in a rather extensive study of free radicals by mass spectrometry present ionization potentials, heats of formation, and resonance energies of the radicals cyclopentadienyl and cycloheptatrienyl (230),some metaand para-substituted benzyl (231), vinyl (232), conjugated hydrocarbon and carbonium ( 2 3 4 , cycloalkyl and cycloalkanes (403), and benzyl and benzyla-dz-benzyl (404). Rabinovitch et al. (407) study the unimolecular decomposition of chemically activated ethyl-& radicals. Bradley and Kistiakowsky describe shock wave studies of the thermal decomposition of nitrous oxide (69) and the polymerization and oxidation of acetylene (70). Knewstubb and Sugden (296) apply the mass spectrometer to the study of ionization in hydrogen flames. Herron determines the rate of the reaction NO h'* (242),of nitrogen atoms with ethylene (%'&I), and some heterogeneous reactions observed in the ion source (243).

+

KINETIC ENERGY

Hall observes high kinetic energy oxygen ions in carbon dioxide mass spectra (225) and NBOH+ions in mix-

tures of nitrous oxide and excess hydrogen (%%$), Stanton (469) measures the kinetic energy distribution of secondary positive ions obtained from positive ion bombardment of a beryllium target, and together with Monahan (358), the distribution of ions from some hydrocarbons. CHEMISTRY

Kuppermann and Larson (310) examine the nonmolecular nature of the nitric oxide-inhibited thermal decomposition of n-butane. Hydrazoic acid is thermally decomposed and the formation of the imine radical or a polymer (NH)s is suggested (416). The main products of the decomposition of methane by low energy electrons are found to be ethane, ethylene, and acetylene (336). Kingery, Hill, and Nelson (288) determine oxygen diffusion coefficients for polycrystalline samples of nickel chromate and a-ferric oxide by exchange measurements with oxygen containing O1*. Brederlow (73) investigates charge carriers effusing and extracted from the positive column of oxygen glow discharges. A dimer of cyclobutadiene is formed by electron impact of the product of the decomposition of the complex C a d .AgK03 (18). Determinations are made of the position of carboncarbon double bonds in the methyl esters of cis-petroselinic, oleic, and elaidic acids (140). Natalis (367) reports that the mechanism for ring opening in cyclopentanol and 2,2,5,52Hrcyclopentanol is cleavage of the a carbon-carbon bond. Hughes (266) measures the purification and vapor pressure of nitric oxide. SPUTTERING AND SURFACES

Fistul (176) derives equations for calculating diffusion coefficients and concentrations of gases in metals and presents a graphical method to determine both values mass spectrometrically by comparison with a group of theoretically derived curves. He verifies the method experimentally with systems of mixtures of aluminum, hydrogen, copper, nickel, and nitrogen. %'olsky and Zdanuk (618) study the reaction of oxygen on germanium surfaces and discuss the oxidation of ion bombarded surfaces, pointing out difficulties in interpreting results. Harris et al. (229) report on the quantitative addition and recovery of oxygen isotopes in niobium. I n the deuterium exchange reaction between p-xylene and deuterium oxide catalyzed with nickel, Hirota, Kuwata, and Ueda (254) find that the hydrogen atoms of the p-xylene methyl groups exchange with deuterium more readily than do those of the benzene ring. Becker, Becker, and Brandes (33) study reactions of oxygen with pure tungsten and with tungsten containing carbon. XIeasurements are made of VOL. 34,

NO. 5, APRIL 1962

249 R

rates and isotherms for the adsorption

of hydrogen on tungsten, rate of desorption of hydrogen from tungsten, and the rate of formation of atomic hydrogen by an incandescent tungsten filament (256). McCracken and Love (326) measure the diffusion coefficients of Li6 and Li7 in tungsten. Levine and Berry (325) obtain the energy distribution of negative hydrogen ions produced by positive hydrogen ion bombardment of a tungsten surface. Positive alkali halide ions are used to bombard refractory targets and the resultant secondary particles are analyzed in a mass spectrometer (19). Yuasa (622) studies gaseous ions of semiconductive, semimetallic, and metallic elements formed in a high frequency spark. Using a pulsed mass spectrograph, Belyakov and Ionov (37) investigate the desorption of hydrogen and deuterium from palladium. Studying the dissociation by slow electrons of carbon monoxide adsorbed on molybdenum and tungsten surfaces, Moore (5.59)finds that oxygen ions are formed 50 to 100 times more readily from the surfaces than from space. Fluit et al. (178) investigate isotopic fractionation of lithium in sputtering and conclude that evaporation of the type observed in ordinary distillation experiments plays only a minor role in the sputtering process. Batanov (30) determines a binding energy of 3.5 to 4.0 e.v. between an electron and No. 46 glass. Fogel, Slabospitskii, and Karnaukhov (183) determine the dependence of secondary positive and negative ionic emission on the energy of the primary particles and target temperature for a molybdenum surface and neon, argon, and krypton ions. Bradley, Arking, and Beers (68) investigate secondary positive ion emission from platinum. ISOTOPES

Panchenkov, Makarov, and Pechalin (386) follow the separation of boron isotopes in the reaction of boron trifluoride with &P’-dichlorodiethyl ether and find that the separation factor increases with column temperature from 20” to 60” C. The vapor pressures of isotopically substituted nitrous oxides are > Iv4isi50i6 in the sequence N14N14016 > ~ ~ 4 0 >1 ~ 61 4 ~ 1 4 0 1(57). 8 1s0tope effects are determined for the free radical arylation and alkylation of benzene-d and of benzene-benzene-ds mixtures with a variety of peroxides (160). Isotope exchange processes are observed in the reaction of solid nitrogen with electrons (291). Hydrogen-deuterium exchange and hydrogen redistribution are demonstrated during catalytic deuteration of some methyl octadecenoates (139). The first observation of a kinetic isotope effect in a reaction of an organolithium compound is reported

250 R

ANALYTICAL CHEMISTRY

in the reaction of ethyllithium with benzyl chloride (509). Carbon isotope fractionation is observed during photosynthesis (384). Isotopic labeling enables Wilson and Shapiro (515) to identify fragments and establish the occurrence of alkyl rearrangements in 18 dialkyldiboranes. The application of the Bigeleisen theory of the isotope effect to the hydrogen atom-formaldehyde reaction suggests a loosely bound activated complex (329). ACKNOWLEDGMENT

The author thanks Henry Rosenstock for his assistance in preparing this review and Vernon H. Dibeler for his literature survey. LITERATURE CITED

(1) Abernathey, R. M., U. S. Atomic

A , Veraino, B., Comit. nazl. ricerche nucleari CNI-42, 1961. (28) Barrow, R. F., Trans. Faraday Soc.

56,952 (1960). (29) Barton, G. W.,Jr., Gibson, L. E., rolman, L. F., ANAL.CHEM.32, 1599 (1960). (30) Batanov, G. &I., Fiz. Tverd. Tela, S.S.S.R. Sbornik Statei Akad. ,\‘auk 2,2048 (1960). (31) Bazinet, M. L., Kalsh, J. T., Rev., Sci. Instr. 31, 346 (1960). (32) Beck, D., Osberghaus, O., 2. Physik. 160,406 (1960). (33) Becker, J. A., Becker, E. J., Brandes, R. G., J . Bppl. Phys. 32,411 (1961). (34) Beckey, H. D., 2. Naturjorsch. 15a, 822 (1960). (35) Beckey, H. D., Schutte, D., 2. Znstrum Kde 68,302 (1960). (36) Begun, G. M., Landau, L., J . Chein. Phys. 35, 547 (1961). (37) Belyakov, Y. I., Ionov, N. I., Zhur. Tekh. Fiz. 30,216 (1960). (38) Bentley, P. G., J . Sci. Instr. 37, 323 11960). (39) Berkowitz, J., Bafus, D. A., Brown, T. L., J . Phys. Chem. 65,1380 (1961). 140) Berkowitz, J., Chupka, W. A., Ann. iV. Y . Bcad. fici.’79, 16?3(1960). (41) Berkowitz, J., Meschi, D. J., Chupka, W.A., J . Chem. Phys. 33, 533 (1960). (42) Bernas, R., Sarrouy, J. L., Camplan, J., Rtv. Sci. Instr. 32, 96 (1961). (43) Betts, J. F., Paufve, E. H., )Gley, W. C., Appl. Spectroscopy 14, 119 (1960). (44) Beynon, J. H., “Mass Spectrometry and Its Use in Organic Chemistry,” Van Kostrand, Princeton, N. J., 1960. (45) Beynon, J. H., Lester, G. R., Saunl‘rans. Faraday SOC.57, 1259 ders, R. A4., (1961). (46) Beynon, J. H., Saunders, R. A., Topham, A., Williams, A. E., J . Phys. C‘hem. 65, 114 (1961). (47) Beynon, J. H., Saunders, R. A., Killiams, A. E., AKAL.CHEY.33, 221 (1961). (48) Beynon, J. H., Saunders, R. -4., R‘illianis, A. E., -4ppl. Spectroscopy 14, 95 (1960). (49) Bevnon, J. H., Saunders, R. -4., Williams, A. E., J . Am. Chem. Soc. 82, 288 (1‘360). (50) Beynon, J. H., Willianis, A. E., Appl. Spectroscopy 14, 156 (1960). (51) Bhanot, V. B., Dissertation Abstr. 20. 4145 11960).

Energy Comm. IDO-14503 (1960). (2) Ackerman, M., Stafford, F. E., Drowart, J., J . Chem. Phys. 33, 1784 (1960). (3) Aczel, T., Lumpkin, H. E., ANAL. CHEM.32,1819 (1960). (4) Zbid., 33, 386 (1961). (5) Afrosimov, V. V., I l k , R. N., Oparin, V. A,, Solovjov, E. S., Fedorenko, N. V., Zhur. Eksptl. i Teoret. Fia. 41, 1048 (1961). (6) Ahearn, A. J., J . Appl. Phys. 32, 1195 (1961). (7) Z b i d . , p. 1197. ( 8 ) Akishin, P. A., Gorokhov, L. N., Nikitin, 0. T., Khodeev, Y. S., Pribory i Tekh. Ekspt. 4,98 (1960). (9) Akishin, P. A., Gorokhov, L. N., Sidorov, L. N., Doklady Akad. Naulc S.S.S.R. 135. 113 (1960). (10) Akishin, ‘P. A,, Khodeev, U. S., Zhur. F i z. Khim. 35, 1169 (1961). (11) Akopian, M. E., T‘ilesov, F. I., Terenin, A. N., Dokladii Akad. Nauk S.S.S.R. 140, io37 (1961j. (12) Alekseevskii, K.E., Dubrovin, A. V., Karstens, G. E., Zhur. Fiz. Khim.34, 1275 (1960). (13) Altemose, V. O., J . Appl. Phys. 32, 1309 (1961). (14) Amosov, V. M., Lank, V. A., Zhur. Priklad. Khzm. 34, 84 (1961). (15) Ardenne, hI. von, Steinfelder, K., Tummler, R., Angew. Chem. 73, 136 Bidinosti, L). R., (1961). J . Am. Chem. SOC.83, S (16) Ardenne, M. von, Steinfelder, K., (54) Biemann, K., Tetrahedron Letters Tummler, R., Saturwissenschaften 47, 15,9014 (1960). 492 (1960). (55) Bieniann, K., Friedmann, S. M., (17) Austin, C. F., Slawson, W. F., Zbzd., 2 , 68 (1961). ,4m.Mzneralogzst 46, 1132 (1961). (56) Biemann, K., Vetter, W.,Biochem. (18) Avram, M., Mateescu, G., Dinulescu, Baophys. Research Commms. 3, 578 I. G., Marica, E., Senitzescu, C. D., (1960). Tetrahedron Letters 1961, 21. (57) Bigeleisen, J., Ribnikar, S. V., J . (19) Ayukhanov, A. K., Iskbakov, G. I., Chem. Phys. 35, 1297 (1961). Zzvest. Akad. Nauk S.S.S.R., Ser. Fiz. (58) Bills, E;. M., Metullurgzu 63, 45 24, 715 (1960). 1 1961). (20) Baadsgaard, H., Lipson, J., Folins,,,,,,rnagal, H., Technik (Berlin) bee. R. E.. Geochim. et Cosmochim. Acta 16, 28 (1961). 25,’147 (1961). (60) Elishop, J., Davidson, D. F., Evans, (21) Bailey, L. E., Rev. Sci. Znstr. 31, P. B. F1, Hamer, A. N., McKnight, 1147 (1960). J. A., Robins, E. J., J . Sci. Znstr. (22) Bainbridge, K. T., Moreland, P. E., 38, 109 ( 1----,. 461) Jr., Proc. Intern. Conf. Nuclidic iMasses (61) Blais, N. C., Mann, J. B., J . Chem. 2,460 (1960). Phys. 33,100 (i960). . (23) Baker, P. S., Collins, T. L., Nuclear (62)Block, h., J . chim. phys. 58,289 (1961). Sei. & Eng.9, 98 (1961). 1631 Boerboom. A. J. H.. 2. Naturforsch. (24) Baker, F. A., Giorgi, T. A., J . Appl 15,350 (1960). Phys. 11, 433 (1960). (64) Bogolepov, M. G., Grigorash, R. S . , (25) Baker, F. A,, Giorgi, T. A,, Vucuum Panov, A. N., Izvest. Vysshikh Ucheb. 10, 58 (1960). Zavedenif, Chernaya Met. 1, 183 (1960). (26) Balestrim, 8. J., White, F. A., (65) Bokhoven, C., Chem. Weekblad 56, Rev. Sci. Instr. 31,633 (1960). 693 (1960). (27) Barbieri, W., Chiesa, A., Colombo, > - - ,

(66) Bonnet, M., Vide 16, 134 (1961). (67) Bornkessel, K., Pilot, J., 2. Naturforsch. 16A, 432 (1961). (68) Bradley, R. C., Arking, A., Beers, D. S., J . Chem. Phys. 33,764 (1960). (69) Bradley, J. N., Kistiakowsky, G. B., Ibid., 35, 256 (1961). (70) Ibid., 35, 264 (1961). (71) Bray, E. E., Evans, E. D., Geochim. et Cosmochim. Acta 22, 2 (1961). (72) Brederlow, G., Ann. Physik [7], 5, 414 (1960). (73) Bremann, K., Chimia (Switz.)14,393 (1960). (74) Brown, J. J., Reed, R. I., Simpson, W.,J . Sci. Instr. 37, 236 (1960). ( 7 5 ) Bucel’nikova, N. S., Fort:&. Physik 8, 626 (1960). (76) Burns, R. P., Dehlaria, G., Drowart, J., Grimlcy, R. T., J . Chem. Phys. 32, 1363 (1960). (i7) Burr, J. G., Jr., Scarborough, J. AI., Shudde, R. H., J . Phys. Chem. 64, 1359 (1960). (78) Butement, F. D. S., Finkelstein, K.P., J . Sci. Instr. 37,328 (1960). (79) Bydin, Y. F., Bukhteev, A. M., Soviet Phys.-Tech. Phys. 5 , 512 (1960). (80) Carette, J. D., Kerwin, L., Can. J . Phys. 39, 1300 (1961). (81) Carlson, E. G Paulissen, G. T., Hunt, R. H., O’%eal, M. J., ANAL. CHEW32, 1489 (1960). (82) Cassuto, A, Compl. rend. 252, 1311 (1961). (83) Castaing, R., Jouffrey, B:, Slodzian, G., Compt. rend. acad. m. (France) 251, 1010 (1960). (84) Caswell, H. L., I. B. hl., J . Research Deuelop. 4 , 130 (1960). (85) Cater, E. D., Gillee, P. W.,Thorn, R. J., J . Chem. Phys. 35, 608 (1961). (86) Cater, E. D., Rauh, E. G., Thorn, R. J., Itid., 32,619 (1961). (87) Cathey, L., U. S. Atomic Energy Comm. DP-498 (1960). (88) brmcik, V., Herman, Z., Collection Czechoslov. Chem. Communs. 25, 1210 (19GO). (89) Cermcik, V., Herman, Z., Jadernh ener i e 6, 347 (1960). (90) c ! esar, H. L., Delfosse, J. ?*I.,Ann. soc. sci. Bruzelles SBr. I. 74. 69 11960). (91) Chantreau, J., Compt.’ rend. acad. sci. (France)252, 695 (1961). (92) Charles, I)., Ann. Radioelect. 15, 253 (1960). (93) Chen, RI. C., Taylor, H. A., J . Chem. Phys. 34, 1344 (1961). (94) Cherdyntsev, 1’. V , Orlov, D. P., Isabajev, E. .4.,Ivanov, V. I., Ceohhimaya 1961, 840. (95) Chkuaseli, D. V., iYikoleKshvili, 17. D., Guldamashvili, A. I., Izvest. Akad. ‘$*auk S.S.S.R. Ser. Fiz. 24, 970 (1960). (96) Chupakhin, M. S., Zhur. Anal. Iihzm. 15, 155 (1960). (97) Chuplta, W. A., Berkowite, J., J . C hem. Phys. 32, 1546 (1960). (98) Clark, G. L., “Encylopedia of Spectroscopy,” Keinhold, Sew York, 1960. (99) Clarke, E. W.C., McDowell, C. A, €’roc. Chern. Soc. 1960, p. 69. (100) Clerc, R. J , O’Seal, M. J., ANAL. GHEV 33,380 (1961). (101) Cobb, J. C., Kulp, J. L., Geochzm. et Costnochzm. Acta 24, 226 (1961). (102) Coggeshall, K. D., J . Chem. Phys. 33, 1247 (1960). (103) Coggeshall, N. D., Hubis, W., Am. Soc. Testang Materzals, Spec. Tech. E’ubl. A-o. 269, 195 (1960). (104) Colburn, C. B., Johnson, F. A,, J . Chem. Phys. 33,1869 (1960). (105) Colin, R., Goldfinger, P., Jeunehomme, hl., Nature 187, 408 (1960). (106) Collin, J., Bull. SOC. chim. Belges

69,575 (1960). (107) Ibid., p. 585.

(108) Collin, J., J . chim. phys. 57, 416 (im). --,\ - -

(109) Ibid., p. 424. (110) Collins, R. H., Turnbull, J. C., Vacuum 10, 27 (1960). (111) Cook, G. L., Meyer, R. A,, Earnshaw, D. G., U . S.Bur. Mines, Rept. Invest. KO.5663 (1960). (112) Cook, L. C., Rodgman, A., Young, G. W., Tobacco Sci. 5, 6 (1961). (113) Corfield, W., hIcCullough, H., Lipson, J., Rev. Sci. Instr. 31, 1153

(ism). \_.__,_

(114) Cornides, I., Acta Chim. Acad. Sci. Hung. 27,385 (1961). (115) Cornides. I., 2. anal. Chem. 171, . 43’1 (1960). (116) Cossutta. D.. Steckelmacher., W.. , J.’Sci. Instr. 37, 404 (1960). (117) Cousins, L. R., Clancy, D. J., Crable, G. F., A x . 4 ~ .CHEM.33, 1875 (1961). (118) Crable, G. F., Kearns, G. L., Xorris. M. S..Ibid.. 32. 13 11960). (119) Craig, H.’, Science i33, ‘1702 11961). (120) Cseko, G., Magyar KBm. Folyhrat 67,306 (1961). (121) Cseko, G., Cornides, I., Acta Chim. Acad. Sci. Hung. 27,463 (1961). (122) Cseko, G., Cornides, I., J . Inorg. & A‘uclear Chem. 14, 139 (1960). (123) Curran, R. K., J . Chem. Phys. 34, 2007 (1961). (124) Curran, R. K., Ibid., 35,1849 (1961). (125) Curran, R. K.. Fox. R. E., Ibid., 34. I590 (1961’). (126) Daly, K. R., Rev. Sci. Instr. 31, 264 (1960). (127) Ibid., p. 720. (128) Dan, T., Oshima, S.,Bull. Japan Petrol. Inst. 2 , 25 (1960). (129) Dansmard. W.,Deev-Sea Research 6,846 (1g60). ’ ’ (130) Dansgaard, W.,Nief, G., Roth, E., Nature 185, 232 (1960). (131) Davis, G. L., Tilton, G. R., Aldrich, L. T., Wetherill, G. W.,Bass, hf. N., I

,

~

~I

~

Ann. Rept. Director, Geophys. Lab. 1959-60, Carnegie Inst. Washington Year Book 59, 147 (1960). (132) De Maria, G., Burns, R. P., Drowart, J., Inghram, hl. G., J . Chem. Phys. 32,. 1373 (1960). (133) Demirkhanov, R. A , , Dorokhov, V. V., Zhur. Eksptl. i Teoret. Fiz. 40, 1033 f1961’). (134)bkmirkhanov, R . il., Gutkin, T. I., Dorokhov, V. V., Izvest. Akad. .Yauk S.S.S.R. Ser. Fiz. 25, 124 (1961). (135) Diamond, H., Fields, P. R., Stevens, C. S.. Studier. M. H.. Fried, S. M. Inghram, hf. ’G., Hess, D. C., Pyle, G. L., hfech, J. F., llanning, IT. M. (hrgonne Nat’l Lab.), Ghiorso, A., Thompson, S. G., Higgins, G. H., Seaborg, G. T., Bron-ne, C. I., Smith, H. L., Spence, R. W.,Phys. Rev. 119,

2000 (1960). (136) Dickinson, P. H. G., Sayers, J., Proc. Phys. Sac. (London) 76, 137 (1960). (137) Dietz, L. A., Rev. Sci. Instr. 31, 1229 (1960). (138) Dietz, L. A., Pachucki, C. F., Sheffield, J. C., Hance, 4.B., Hanrahan, L. R., A v . 4 ~ .CHEM.32, 1276 (1960). (139) Dinh-?\‘guyen, E.,Ryhage, R., J . Research Inst. Catalusis. “ , Hokkaado Univ. 8, 73 (1960). (140) Dink-Sgugen, N., Ryhage, R., Stallberg-Stenhagen, S., Arkiv Kemi 15,433 (1960). (141) Ditter, J. F., Klusmann, E. B., Perrine. J. C.. Shatiro., I.., J . Phus. Chern.- 84, 1682’(1966). (142) Donahue. T. hI., Hushfar,. F.,, ‘ Nature 186, 1038 (1960). (143) Donahue, T. M., Hushfar, F., Phys. Rev. 124, 138 (1961).

(144) D h g , P., Cottin, hl., J . chim. phys. 57,557 (1960). (145) D’Or, L., Lorquet, J. C., Momigny, J., Bull. classe sci. Acad. roy. Belge 46, 65 (1960). (146) Dorfman, L. M., Sauer, M. C., Jr., J . Chern. Phys. 32, 1886 (1960). (147) Dorman, F. H., Morrison, J. D., Ibid., 34, 578 (1961). (148) Ibid., p. 1407. (149) Ibid., 35, 575 (1061). (150) Dorman, F. H., Morrison, J. D., Nicholson, A. J. C., Ibid., 32, 378 (1960). (151) Driving, N. Y., Karasev, It. A., Samarin, A. M., Primenenie Vakuumu v . Met. Akad. Nauk S.S.S.R., Inst. Xet. im. A. A. Balkova Trudy Soveshchaniya 1960, 243. (152) Drowart, J., De hlaria, G., Burns, R. P., Inghram, LI. G., J . Chem. Phys. 32, 136y (1960). (153) Durand, G., Compt. rend. 250, 4018 (1960). (154) Eberhardt, P., Helz;. Phys. Acta 33,588 (1960). (155) Eberhardt, P., Eberhardt, 4.,Ibid., p. 593. (156) Ebert, A. A., Jr., ANAL. CHEM.33, 1865 (1961). (157) Ebert, A. A,, Jr., A p p l . Spectrosc o m 15. 152 (1961).

Meverson S., Rvl Chem. Soc. 83,2481 (1961). (160) Eliel, E. L., Meyerson, S., Welvart, Z.. Wilen. S. H.. Ibid.. 82. 2936 11960). (161) Emergy, E.’ M., ’ANAL.CHEM.32, 1495 (1960). (162) Erkelens, J., Galwey, A. K., Kemball, C., Proc. Roy. SOC.(London) A260, 273 (1961). (163) Everling, F., Konig, L. A., Mattauch, J. H. E., Wapstra, A. H., h’uclear Phys. 18,529 (1960). (164) Ewald, H., Proc. Intern. Conf. Nucladic Masses 2, 491 (1960). (165) Evrina, E. hf., Dissertation Abstr. . 21; 77”l (1360). ’ (166) Eyring, E. X., Wahrhaftig, A. L., J . Chem. Phys. 34, 23 (1961). (167) Ezoe, H., Hayashi, T., Katayama, Y., Rika Gaku Kenkyilsho HBkoku 37, 135 (1961). (168) Fairbairn, H. W.,Hurley, 1’. M., Pinson, W. H., Jr., Cormier, R. F., Bull. Geol. Soc. Am. 71, 399 (1960). (169) Fanale, F., Kulp, J. L., Am. Mineralogist 46, 155 (1961). (170) Fedorenko, N. V., Flaks, I. P., Filippenko, L. G., Zhur. Eksptl. i Teoret. Fiz. 38, 719 (1960). (171) Fedorenko, iY. V., Flaks, I. P., Filippenko, L. G., Solov’ev, E. S., Proc. Intern. Conf. Ionization Phenomena Gases, 4th, Uppsala, 1959, 1, 41 (1960). (172) Fergason, L. A., Seizinger, D. g., McBride, C. H., U. S. Atomic Energy Comm. MCW-1462 (1961). (173) Field, F. H., ,f. A&. Chem. SOC.

83, 1523 (1961). (174) Fiks, V. B., Pilrus, G. E., Fiz. Tverd. Tela Akad Nauk S.S.S.R. Sbornik Statel 2. 716 (1960). (175) Fistul, V. I., Trudg Komissii Anal. Khim., Akad. ,Vauk S.S.S.R., Inst. Geokhim. i Anal. Khim. 10, 71 (1960). (176) Fite, IT, L., Stebbings, It. F., Hummer, D. G., Brackmann, R. T., Phys. Rev. 119, 663 (1960). (177) Flesch, G. D., Svec, H. J., Staley, H. G., Geochim. et Cosmochim. Acta 20,300 (1960). (178) Fluit, J. hI., Friedman, L., Boerboom, A. J. H., Kistemaker, J., J . Chem. Phys. 35, 1143 (1961). (179) Fogel, Y. M., Koval, A. G., LevVOL. 34, NO. 5 , APRIL 1962

e

251 R

chenko, Y. Z., Khodyachikh, A. F.,

Zbzd., 39, 548 (1960).

(180) Fogel, Y. M., Koval, A. G., Levchenko, Y. Z., Zhur. Eksptl. i Teoret Fiz. 38. 1053 11960). (181) Zbid., 40, ‘13 (1961). (182) Fogel, Y. M., Kozlov, V. F., Polyakova, G. K.,Ibid., p. 1186. (183) Fogel, Y. M., Slabospitskii, R. P., Karnaukhov, I. M., Zhur. Tekh. Fiz. 30,824 (1960). (184) Foner, S. N., Nall, B. H., Phys. Rev. 122,512 (1961). (185) Fox, R. E., J . Chem. Phys. 32, 285 (1960). (186) Zbid., p. 385. (187) Ibid., 33, 200 (1960). (188) Ibid., 35, 1379 (1961). (189) Fox, R. E., Curran, R. K., Ibid., 34, 1595 (1961). (190) Frahn, W. E., Rautenbach, W. L., Wahlin, L., Nuclear Instr. & Methods 7,253 (1960). (191) Franke, G., Erdtil u. Kohle 13, 263 11960). (192) Zbid., p. 850. (193) Ibid., 14, 816 (1961). (194) Franklin, J. L., Field, F. H., J . Am. Chem. SOC.83, 3555 (1961). (195) Frisque, A. J., Grubb, H. M., Ehrhardt, C. H., Vander Haar, R. W., ANAL.CHEY.33,389 (1961). (196) Fritz, G., Buhl, H., Grobe, J., Aulinger, F., Reering, W.,2. Anorg. u. Allgem. Chem. 312, 201 (1961). (197) Frost, D. C., McDowell, C. A., Can. J . Chem. 38, 407 (1960). (198) Fuchs, R., Kaul, W., 2. Naturforsch. 15a. 108 (19601. (199) Fueki, K., Hirota, K., J . Chem. Soc. Japan 81, 356 (1960). (200) Fueki, K., Hirota, K., Nippon Kagaku Zasshi 81,212 (1960). (201) Fusari, G., Chim. e ind. (Milan) 42. 745 (1960). \----,. (202j Futrell, J. H., J . Chem. Phys. 35, 353 (1961). (203) Gallegos, E. J., Kiser, R. W., J . Am. Chem. SOC.83,773 (1961). (204) Galli, A,, Giardini-Guidoni, A., Volpi, G. G., Indian J . Phys. 34, 537 11960). (205) Garris, &I. A., Shanin, L. L., Ust uzhanina, L. S., Dyadin, N. N., Sodatenkov, S. S., Trudy 7-oi (Sed’moi) Sessii Komissii PO OpredeleniyuAbsolyut, \ - - - - , -

I

Vozrasta Geol. Formatsii, Akad. Nauk

S.S.S.R., Otdel, Geol-Geograf. Xauk 1960. 166. (206) Gaudaire, M., J . phys. radium 21, Suppl. 7OA-72A (1960). (207) Geltnian, S.. Proc. Phus. SOC. (London) 75,’ 67 (’1960). (208) Gentner, W., Zahringer, J., Z. Naturforsch. 15a, 93 (1960). (209) Gentsch, H., 2. physik. Chem. 24, 55 (1960). (210) Giese, C. F., Maier, W. B. 11, J . Chem. Phys. 35, 1913 (1961). (211) Giffen, C. E., Kulp, J. L., Bull. Geol. SOC.Am. 71, 219 (1960). (212) Giletti, B. J., Damon, P. E., Zbid., 72, 639 (1961). (213) Glazunov, M. P., Kiselev, V. A,, Litvakov, V. L., 2. Anal. Khim. 16, 498 (1961). (214) Goris, P., Morgan, T. D., Nielsen, R. A., U. S. Atomic Energy Comm. IDO-14549 (1961). (215) Gradsztajn, E., J . phys. radium 21, 761 (1960). (216) Grimley, R. T., Burns, R. P., Inghram, M. G., J . Chem. Phys. 33,308 I

(19601.

(2i7j -Zdib., 35,551 (1961). (218) Gur’ev, M. V., Doklady Akad. Nauk S.S.S.R. 136, 856 (1961). (219) . . Gur’ev. M. V.. Tikhomirov. M. V.. TunitskiI, ’N. N.,’ Zzvest. Akad. N a u i S.S.S.R., Ser. Fiz. 24,975 (1960).

252 R

ANALYTICAL CHEMISTRY

(220) Gustafson, E., Lindholm, E., Arkiv Fyszk 18, 219 (1960). (221) Gutbier. H.. 2. Naturforsch. 16A. 268 (1961). (222) Habfast, K., Znstrum Kde 68, 82 I

,

~

I 1 960). \----,-

(223) Habfast, K., 2. Naturforsch. 15a, 273 (1960). (224) Hall, R. M. S.. Chem. & Znd. (Lbndonj 1961, p. 369. (225) Hall, R. M. S., Nature 187,683 (1960). (226) Hamer, A. N., Robbms, E. J., Geochim. et Cosmochim. Acta 19, 143 (1960). (227) Hannay, X, B., Science 134, 1220 (1961). (228) Hand, V., DolejSek, Z., Jadernd energie 6,350 (1960). (229) Harris, W. F., Hickam, W. hl., Loeffler, 1K. H., Shaffer, D. H., Trans. A I M E 218, 625 (1960). (230) Harrison, A. G., Honnen, L. R., Dauben, H. J., Jr., Lossing, F. P., J . Bm. Chem. SOC.82,5593 (1960). (231) Harrison, A. G., Kebarle, P., Lossing, F. P., Ibid., 83,777 (1961). (232) Harrison, A. G., Lossing, F. P., Can. J . Chem. 38, 544 (1960). (233) Harrison, A. G., Lossing, F. P., Zbid., 82, 519 (1960). (234) Ibid., p. 1052. (235) Hasted, J. B., L‘Advancesin Electronics and Electron Physics,” p. 1, Academic Press, N. Y., 1960. (236) Hayden, R. J., Wehrenberg, J. P., J . Geol. 68,94 (1960). (237) Henglein, A,, Muccini, G. A., 2. Naturforsch. 15a, 584 (1960). (238) Henglein, A., Muccini, G. A., 2. Electrochem. 64, 1015 (1960). (239) Henneberg, D., Damen, H., Koester, R., Ann. Chem. Liebigs 640, 52 (1961). (240) Herlan, A., 2. anal. Chem. 180, 321 (1961). (241) Herron, J. T., J . Chem. Phys. 33, 1273 (1960). (242) Ibid., 35, 1138 (1961). (243) Herron, J. T., J . Research Natl. Bur. Standards 65A (Phys. and Chem.), 411 (1961). (244) Herron, J. T., Dibeler, V. H., J . Am. Chem. SOC.82, 1555 (1960). (245) Herron, J. T., Dibeler, V. H., J. Chem. Phys. 32, 1884 (1960). (246) Ibid., 33, 1595 (1960). (247) Ibid., 35, 747 (1961). (248) Herron, J. T., Dibeler, V. H., J . Research A’atl. Bur. Standards 65A (Phys. and Chem.), 405 (1961). (249) Herzog, L. F., Pinson, W. H., Jr., Hurlev. P. M.. Am. J . Scz. 258. 191 (1960j.’ (250) Hess, D. C., Marshall, R. R., Geochim. et Cosmochim. Acta 20, 284 (1960). (251) Heyns, K., Grutzmacher, H. F., 2. Naturforsch. 16B, 293 (1961). 1252) Hickmott. T. W.,J . Chem. Phvs. 32; 810 (1960j. (263) Hintenberger, H., Mattauch, J., Muller-Warmuth, W., Voshage, H., Wende, H., Proc. Intern. Conf. Nuclidic Masses 2 , 387 (1960). (254) Hirota, K., Kuwata, K., Ueda, T., Nippon Kagaku Zasshi 81,362 (1960). (255) Hirota, K., Nagoshi, K., Hatada, hl., Bull. Chem. SOC.Japan 34, 226 (1961). (256) Hoene, J. von, Hickam, W. M., J . Chem. Phys. 32,876 (1960). (257) Hoering, T. C., Parker, P. L., Geochim. et Cosmochim. Acta 23, 186 (1961). (258) Hoffman, M. Z., Bernstein, R. B., J . Phys. Chem. 64,1769 (1960). (259) Holden, H. W.,Robb, J. C., Fuel ’ 39,39 (1960). (260) Hoogen-Donk, W. P., Porsche, F. W., ANAL.CHEM.32, 941 (1960). ~

~

(261) Horibe, Y., Kobayakam, hI., Bull. Chem. SOC.Japan 33, 116 (1960). (262) Horibe, Y., Kobayakawa, M., Geochim. et Cosmochim. Acta 20. 273 (1960). (263) Howard, H. E., Ferguson, W. C., ANAL.CHEM.33, 1870 (1961). (264) Howard, H. E., Ferguson, W. C., Snyder, L. R., Ibid., 32,1814 (1960); (265) Hubner, G., Ludewig, R., Gorisch, V., Birkenfeld, H., 2. Naturforschung 156, 128 (1960). (266) Hughes, E. E., J . Chem. Phys. 35, 1531 (1961). (267) Hurley, P. hl., Corniier, R. F., Hower, J., Fairbairn, H. LT., Pinson, W. H.. Jr.. Bull. Am. Assoc. Petrol. Geologzsts 44, 1793 (1960). (268) Inouye, H., Bull, Cheilz. SOC.Japan 34, 643 (1961). (269) Irsa, A. P., Friedman, L., J . Chem. Phys. 34, 330 (1961). (270) Isenor, S. R., Barber, R. c., Duckworth, H. E., Proc. Intern. Conf. Nuclidic Masses 2, 439 (1960). (271) Istomin, V. G., Doklady Akad. A’auk S.S.S.R. 137, 1102 (1961). (272) Janatka, M., UrgoBik, B., Czechoslov. J . Phys. 10, 461 (1960). (273) Johnson, K,H., Jr., Ries, R. E., Damerow, R. A,, Proc. Intern. conf. Nuclzdzc Masses 2, 446 (1960). (274) Joyner, T. B., F’erhoek, F. H., J . Am. Chem. SOC.83, 1069 (1961). (275) Kadota, N., Ishida, S.,Nem. Fac. Eng. Kyoto Univ. (Japan)22,41(1960). (276) Karataev, V. I., Pribory i tekh. Ekspt. 6, 162 (1961). (277) Karmohapatro, S. B., Indian J . Phys. 34, 407 (1960). (278) Karmohapatro, S. B., J . Chem. Phys. 35, 1524 (1961). (279) Kauffman, G. F., Christopher, N. F., U. S. Atomic Energy Comm. GAT-291, 1 (1960). (280) Kaufman, J. J., Koski, W. s., J . Am. Chem. SOC.82,3262 (1960). 1281) Kaul. W.,Fuchs. R.,’ 2. Naturfoisch. ls’a, 326 (1960): (282) Kaul, W.,Lauterbach, F’., FUChB, R., hTaturwissenschaften47, 353 (1960). (283) Keeling, C. D., Geochim. et Cosmochim. Acta 24, 277 (1961). (284) Kelen, G. P. van der, Vondel, D. F. van de. Bull. soc. chim. Belaes 69, 504 (1960).’ (285) .pl’man, V. M., Knyaz’kov, L. G., Vasil eva, E. K., Zhur. Tekh. FZZ. 30, 1193 (1960). 1286) Kendall, B. R. F., J . Sci. Znstr. ~

I C

(k,

Sel 473 1289) ‘ 53’ (1961). (290) Kirkland, C. G., Brandt, L. iJ7., Deaton, W. M., U. 8.Bur. Mznes, Rept. Znuest. No. 5644 (1960). (291) Klein, R., Horl, E. hr., J . Chem. Phys. 32,307 (1960). (292) Klopfer, A., Garbe, S., Schmidt, W., Vacuum 10,7 (1960). (293) Kloufer, A., Schmidt, W.,Philips Tech. Reo. 22,195 (1960). (294) Klopfer, A., Schmidt, \T., Vacuum 10, 363 (1960). (295) Knewstubb, P. F., Sugden, T. Lf., Proc. R o y . SOC.(London) A255, 520 11960). (296) Kobayakawa, M., Sippon Kagaku Zasshi 81, 1682 (1960). (297) Koch, H. von, Lindholm, E., Arkiv Fysik 19, 123 (1961). (298) Kohler, R., Paul, W.,Schmidt, K., Zahn. U. von. Proc. Intern. Conf. A\rucZidic Masses’2, 507 (1960). ~

(299) Kokubu, N., hlayeda, T., Urey, H. C., Geochim. et Cosmochim. Acta 21, 247 (1961). (300) Kolchin, A. M.,Malakhov, V. F., Panchenkov, G. M., Zhur. Fiz. Khim. 34, 2124 (1960). (301) Kollar, F., Russell, R. D., Ulrych, T. J., Nature 187, 754 (1960). (302) Komlev, L. V., Danilevich, S. I., Ivanova, K. S., Kuchina, G. N., Savonenkov, S. I., Filippov, M. S.,

(337) Ibid., p. 418. (338) Ibid., 29,90 (1961). (339) Margrave, J. L., J . Chem. Phys. 32. 1889 (1960).

Trudy 7-0; (Sed’moi)Sessii Komissii PO Opredeleniyu Absolyut. Vozrasta, Geol. Formatsii, Akad. Nauk S.S.S.R., 0tdel.Geograf. Nauk 1960, 91. (303) Konig, L. A., Proc. Intern. Conf. Nuclidic Masses 2, 498 (1960). (304) Koval’skil, G. A,, Rodir, A. bl., Pribory i Tekh. Ekspt. 6,84 (1960). (305) Kozlov, V. F., hlarchenko, V. L., Fogel, Y . M., Ibid., p. 25. (306) Kropf, A., Eyring, E. M., Wahrhaftig, A. L., Eyring, H., J . Chem. Phys.

(343) -M’arshall, R. R., Hess, D. C., Ax.4~. CHEM.32,960 (1960). (344) Marshall, R. R., Hess, D. C., Geochim. et Cosmochim. Acta 21. 161 (1961). (345) Martalogv, N., Mumvianv, D., Magda, M., Balaban, T., Acad. rep.

32. 149 11960). (307) Kubose, b. A., Hamill, W. H., J . Phys. Chem. 65, 183 (1961). (308) Kuchkov, E. M., Soviet Phys.-Tech. Phys. 5, 890 (1961). (309) Kuchkov, E. M., Zhur. Tekh. Fiz. 30, 568 (1960). (310) Kuppermann, A., Larson, J. G., J . Chem. Phys. 33, 1264 (1960). (311) La Lau, C., Anal. Chim. Acta 22, 239 (1960). (312) Landahl, C. E., Merryman, R. G., U. S. -4tomic Enerev Comm. LAMS-” 2491 (1961). (313) Lavroskaga, K., Markin, M. I., Tal’roze, V. L., Kinetika i Kataliz 2, 21 21 (1961) (1961). (314) Levina, L. E., Zhur. Fiz. Khim. (0 34,456 (1960). (315) Levine, L. P., Berry, H. W., Phys. Rev. 118, 158 (1960). (316) Levi Levine, L., Lichtman, D., Rev. Sci. Inst -1- , 731 (1960). Instr. 3 (317) Lichtman, D., J . Appl. Phys. 31, 1213 121: (1960). (318) Lindman, L. P., Annis, J. L., ANAL. CHEM.32, 17‘ (1960). 32,1742 (319) Lorant, 1M., Chem. Rundschau (Solothurn) 13, 32 321 (1960). (320) Lorquet, J. C., J . chim. phys. 57, 1078 (1960). (321) Ibid.. o: 1085. (322) Lougliran, E. D., Mader, C., J . Chem. Phys. 32, 1578 (1960). (323) Loughran, E. D., Mader, C. L., McQuistion, W. E., U. S. Atomic EneFgy Comm. LA-2368 (1960). (324) Lumpkin, H. E., Beauxis, J. O., ANAL.CHEM.32, 1815 (1960). (325) Lumpkin, H. E., Taylor, G. R., Ibid.. 33.476 (1961 i. (326) hlcCrkken, G. M., Love, H. M., Phys. Rev. Letters 5 , 201, (1960). (327) RIcGowan, W., Kerwin, L., Can. J . Phys. 38, 642 (1960). (328) McMullen, C. C., Cragg, C. B., Thode, H. G., Geochim. et Cosmochim. Acta 23, 147 (1961). (329) McNesby, J. R., Scheer, M. D., Klein, R., J . Chem. Phys. 32, 1814 \ - - - - I

”-.,.

I,iqcn) -1

(330) Madorsky, S. L., Straus, S., Modern Plastics 38, 134, 136, 138, 143, 145, 147, 207. 210 (1961). (331) ’Majer, J. R., Advances in Fluorine Chemistry 2 (1961). (332) Majer, J. R., J . Appl. Chem. 11, 141 (1961). (333) Majer, J. R., Patrick, C. R., Robb, J. C., Trans. Faraday SOC. 57, 14 (,-l Q - -6- l,l. (334) Mann, K. H., Tickner, A. W., J. Phys. Chem. 64,251 (1960). (335) Manton, J. E., Tickner, A. W., Can. J . Chem. 38. 858 (1960). (336) Marcley, R. ’G., Am. J: Phys. 28, 380 (1960).

> - - - - ,

populaire Romtni Studii cencetdri chim.

8,329 (1960). (346) Martin, T. n7.,Melton, C. E., J . Chem. Phys. 32,700 (1960). (347) Martynkevich, G. M., Izvest. Akad.

Nauk S.S.S.R., Otdel. Tekh. Nauk, Met.

i. Toplivo 6, 145 (1960). (348) Matsuda, H., Rev. Sci. Instr. 32, 850 (1961). (349) Melton, C. E., J . Chem Phys. 33, 647 (1960’1. (350) hlelton, C. E., Ropp, G. A., Martin, T. W., J . Phys. Chem. 64,1577 (1960). (351) Melton, C. E., Rudolph, P. S., J . Chem. Phys. 32,1128 (1960). (352) Meschi, D. J., Chupka, W. A., Berkowitz, J., Ibid., 33, 530 (1960). (353) Meyerson, S., Ibid., 34, 2046 (1961). (354) Milne, T. A,, Ibid., 32, 1273 (1960). (355) Milne, T. A., Klein, H. M., Ibid., 33, 1628 (1960). (356) Momigny, J., Bull. classe sci., Acad. roy. Belg. 46, 65 (1960). (357) Momigny, J., Ind. chim. belge 25, 133 (1960). (358) Monahan, J. E., Stanton, H. E., Bull. Am. Phys. SOC.11, 6, 356 (1961). (359) Moore, G. E., J . Appl. Phys. 32, 1241 (1961). (360) Moore, J. M., Jr., Hart, S. R., Barnett, C. C., Hurley, P. M., Bull. Geol. Soc. ,4m. 71, 225 (1960). (361) Morrison, J. D., Hurzeler, H., Inghram, M. G., Stanton, H. E., J . Chem. Phys. 33,821 (1961). (362) Mumbach, N. R., ANAL.CHEM.33, 318 (1961). (363) hluysers, K., Siehoff, F., Worth, G., Klin. Wochschr. 38.490 (1960). (364) Kagy, B., Gagnon, G. C‘, Geochim. et Cosmochim. Acta 23, 155 (1961). (365) Nagakawa, K., J . Phys. SOC.Japan 16,741 (1961). (366) Karbutt, K. I., Bespalova, I. D., Laputina, I. P., Kardakov, K. A., Samoilov, G. P., Trudy 7-0; (Sed moY)

Sessii Komissiipo Opredeleniyu Absolyut. Vozrasta Geol. Formatsii, Akad. ,?‘auk S.S.S.R., Otdel. Geol-Geograf. nTauk

1960, 250. (367) Natalis. P., Bull. soc. chim. Beloes ‘ 69,224 (1960). ’ (368) Ibid., p. 519. (369) Natalis. P.. Bull. SOC. rou. sci. ‘ Li&ge29,94 (1960). (370) Newton, D. C., Sanders. J., Tvrrell. ‘ A.’C., Nature 187, 683 (1960). (371) Nicolaysen, L. O., Burger, A. J., Tatsumi, T., Ahrens, L. H., Geochim. et Cosmochim. Acta 22,94 (1961). (372) Nief, G., Severin, M., Comm. dnergie at. (France), Rappt. N o . CEA 1941 (1961). (373) Nier, A. O., Rev. Sci. Instr. 31, 1127 (1960). (374j Nishing, Y., Bunseki Kagaku 10, 591 (1961). (375) Pl’orton, F. J., Tucker, C. W., Jr., J . Nuclear Materials 2,350 (1960). (376) Ogata, K., Matsuda, H., MatsuI



I

nioto, S.,Proc. Intern. Conf. Nuclidic Masses 2, 474 (1960).

(377) Okabe, H., McNesby, J. R., J . Chem. Phys. 34, 668 (1961). (378) Ollkri-Virag, E., Cornides, I., Acta Chim. Acad. Sci. Hung. 27, 469 (1961). (379) Omura, I., Bull. Chem. SOC.Japan 34, 1227 (1961). (380) Oshima, S., Katsumata, A,, Sekiya Gakkai Shi 4. 24 (19611. (381) Pahl, M.; Weimer,’ U., Proc. Intern. Conf. Ionization Phenomena Gases, 4th Uppsala, 1969, 1, 293 (1960). (382) Panchenkov, G. M., Makarov, A. V., Pechalin, L. I., Zhur. Fiz. Khim. 34, 2489 (1960). (383) Park, R., Dunning, H. X., Geochim. et Cosmochim. Acta 22, 99 (1961). (384) Park, R., Epstein, S.,Ibid., 21, 110 (1960). (385) Pavlenko, V. ii., Rafal’son, ,4.E., Slutskii. M. E.. Tsveiman. G. A.. Shu 6, 8‘ (386) 252, 417 (387) Perr, 25, 1685 (388) Pete (1960). \----,-

(389) Pham, D., Cottin, M., J . chim. phys. 58,803 (1961). (390) Pikus, G. E., Fiks, V. B., Fiz.

Tverd. Tela Akad. Nauk S.S.S.R. Sbornik State; 2,3120 (1960). (391) Pivovar, L. I., Tubaev, V. M., Novikov, hl. T., Zhur. Eksptl. i Teoret. Fiz. 40, 34 (1961). (392) Polyakova, A. A., Zimina, K. I., Petrov, 8. A., Khmel’nitskii, R. A., Doklady Akad. Xauk S.S.S.R. 134,

833 (1960). (393) Polyakova, A. A., Zimina, K. I., Petrov, A. A., Khmel’nitskii, R. A., Zhur. Obshchei Khim. 30, 912 (1960). (394) Ibid., p. 2977. (395) Ibid., p. 3499. (396) Polyanskii, I-. M., Bogolepov, hl. G., Litvintsev, -4.I., Panov, A. V.,

Izvest. V ysshikh Ccheb. Zavedenii, Tsvetnaya Met. 4, 112 (1961). (397) Porter, R. F.. J . Chem. Phus. 33,

(398) Ibid., 34, 583 (1961). (399) Ibid., 35, 318 (1961). (400) Porter, R. F., Spencer, C. W., Ibid., 32, 943 (1960). (401) Porter, R. F.. Zeller, E. E., Ibid., 33,858 (1960). ‘ (402) Pottie, R. F., Harrison, A. G., Lossing, F. P., Can. J . Chem. 39, 102 (1961). (403) Pottie, R. F., Harrison, A. G., Lossing, F. P., J . Am. Chem. SOC.83, 3204 (1961). (404) Pottie, R. F., Lossing, F. P., Ibid., p. 2634. (405) Pottie, It. F., Lossing, F. P., Can. J . Chem. 39, 1900 (1961). (406) Quinn, E. I., Mohler, F. L., J . Research Xatl. Bur. Standards 65A (Phys. and Chem.), 93 (1961). (407) Rabinovitch, B. S., Dills, D. H., McLain, TI-. H., Current, J. H., J . Chem. Phys. 32, 493 (1960). (408) Rafter, T. A,, Kaplan, I. A., Hulston, J. R., A‘ew Zealand J . Sei. 3, 209 (1960). (409) Raiko, 1‘. I., Ioffe, hl. S.,Zolotarev, V. A4.,Pribory i Tekh. Ekspt. 6, 29 (1961). (410) Reed, R. I., Fuel 39,341 (1960). (411) Reinisch, L., Compt. rend. 251, 1379 (1960). (412) Reinisch, L., J . chim. phys. 57, 1064 (1960). (413) Reynolds, J. H., Geochim. et Cosmochim. Acta 20, 101 (1960). (414) Reynolds, J. H., Phys. Rev. Letters 4, 8 (1960). ~

VOL. 34, NO. 5 , APRIL 1962

253 R

J . Am. Chem. Soc. 82,2681 ( (417) Richards. J. R. ’ (1960). (418) Richards, F. A,, Benson, B. B., Deep-sea Research 7,254 (1961). (419) Ridley, R. G., Silver, D. E. P., J . Sei. Instr. 38, 47 (1961). (420) Rodgman, A., Cook, L. C., ChapDell. C. K.. Tobacco Sci. 5. 1 (1961). (421) ’Rohwedder, W. K.; Dissehation Abstr. 21, 2094 (1961). (422) Ropp, G. -4., Melton, C. E., Rudolph, P. S.,J . Chem. Phys. 34, 688 (1961). (423) Rosenstock, H. RI., Zbzd., p. 2182. (424) Rothe, E. W., Marino, L. L., Neynaber, R. H., Trujillo, S. M., Bull. Am. Phys. SOC.I I 6 , 357 (1961). (425) Rudolph, P. S., Melton C. E., J . Chem. Phys. 32,586 (1960). (426) Russell, R. D., Farquhar, R. M., Geochim. et Cosmochim. Acta 19. 41 i1960). (427) Russell, R. D., Kollar, F., Can. J . Phys. 38, 616 (1960). (428) Ryabchikov, L. Ti., Tikhinskii, G. F., Fiz. Metal. i Aletalloved., Akad. AVaukS.S.S.R. 10.635 11960). (429) Ryhage, R . , ‘ A r k i v Kemi 16, 19 (1960). (430) Ryhage, R., Stenhagen, E., Arkiu Kemi 15,291 (1960). (431) Ibid., p. 333. (432) Zbid., p. 545. (433) Ryhage, R., Stenhagen, E., J . Lipid Res. 1,361 (1960). (434) Saalfeld, F. E., Svec, H. J., J . Inorg. & Nuclear Chem. 18,98 (1961). (435) Saito, Y., Hino, T., Power App. and Systems 1960,653. (436) Sauer, M. C., Jr., Dorfnian, L. M., J . Chem. Phys. 35,497 (1961). (437) Schacher, G. P., Rippere, R. E., Hill, J. A., Appl. Spectroscopy 14, 79

,----,.

( 1 sfin)

(438) Schaeffer, D. A., Zahringer, J., Geochim. et Cosmochim. Acta 19, 94 (1960’1. (439) Schonheit, E., 2. Naturforsch. 15a, 839 (1960). (440) Zbid., p. 841. (441) Schoonmaker, R. C., Dissertation Abstr. 20, 3972 (1960). ‘ (442) Schoonmaker, R. C., Porter, R. F., J . Phys. Chem. 64, 457 (1960). (443) Schuchhardt, G., Vacuum 10, 373 (1960). (444) Schug, J. C., Coggeshall, N. D., J . Chem. Phys. 35, 1146 (1961). (445) Schwartzbeck, R. A., Macgregor, J. M., Schmidt, E. L., Soil Sci. SOC.Am. Proc. 25., -186 - - 11961 ). \ - - - -

(446) Sea&, A. 1V.Y Williams, W. S., Schissel, P. O., J . Chem. Phys. 32, 957 (1960). (447) Seris, G., Vernotte, P., Vide 15, 109 (1960). (448) Shields, W. R., Craig, D. N., Dibeler. V. H., J . A m . Chem. Soc. 8 2 , 5033 (1960). (449) Shin, H. M., Hahm, H. K., Kwon, S. I., Jo, S. H., Hong, S. B., Rev. Sci. Instr. 31, 1200 (1960). (450) Shively, J. H., Norris, T. A., Roberts, F. M., Petrol. ReJner 39, 171 (1960). (451) Shustrov. B. K.. ’ Zhur. tekh. Fiz. ‘ 30; 860 (1960). (452) Shvuttse, V., Demirkanov, R. A.. Gutkig, T. ’I., ’Samadashvili,‘ 0. A.; Karpenko, I. K., Priboiy i Tekh. Ekspt. 4,92 (1960). (453) Smales, A. A., Wager, L. R., “Methods in Geochemistry,” Interscience, New York, 1960. (454) Smirnov, V. M., Karpunin, V. I., Zavodskaya Lab. 26, 831 (1960). ~

254 R

ANALYTICAL CHEMISTRY

(455) Smith, L. G., Proc. Intern. Cod. Nuclidic Masses 2, 418 (1960). (456) Smith, S. J., Branscomb, L. M., Reu. Sci. Znstr. 31, 733 (1960). (457) Smith, R. F., Elby, R. E., Turok, C. W.,U. S. Atomic Energy Comm. KY-349 (1960). (458) Sommer, A., Walsh, P. K., White, D., J . Chem. Phys. 33,296 (1960). (459) Stanton, H. E., J . Appl. Phys. 31, 678 11960). (460) Stantdn, H. E., Monahan, J. E., Phys. Rev. 119, 711 (1960). (461) Stauffer, H., Geochim. et Cosmochim. Acfa 24, 70 (1961). (462) Stebbings, R. F., Fite, W. L., Hummer. D. G.. J . Chem. Phus. 33. 1226 11960’1. (463) Sieiner; B., Giese, C. F., Inghram, 31.G., Ibid., 34, 189 (1961). (464) Stern, T. W.,Stieff, L. R., Klemic, H., Delevaux, H., U . S.Geol. Survey, Projess. Paper 400-B, B45 (1960). (465) Stevens, C. M., Terande, J., Lobell, G., Wolfe, J., Beyer, N., Lewis, R., Proc. Intern. Conf. Nuclidic Masses 2, 403 (1960). (466) Stevenson, D. P.. J . Am. Chem. SOC. . 82,5961 (1960). (467) Stewart, D. W., “Ehysical Methods of Organic Chemistry, Vol. I, Part IV, Interscience, New York, 1960. (468) Strang, L. B., J . Appl. Physiol. 16,562 (1961). (469) Straus. S.. Madorskv. S. L.. J . Research Natl.’ Bur. of f%ndards‘65A (Phys. and Chem.), 243 (1961). (470) Surplice, N. A., Brit. J . Appl. Phys.

(492) Varsel, C. J., hlorrell, F. A., Resnik, F. E., Powell, W. A, AXAL. CHEY.32, 182 (1960). ’ (493) Vetshtein, V. E., Demidenko, S.G., Lechekhleb. V. R.. Priborv i Tekh. Ekspl. 6 , 130 (1961).’ (494) Vilesov, F. I., Doklady Akad. A’auk S.S.S.R. 132, 632 (1960). (495) Vinogradov, A. P., Zadorozhyny, I. K., Knorre. K. G.. Xeteoritika 18. 92 11960). ‘ (496)’Volman, D. H., Swanson, L. W., J . A m . Chem. Soc. 82,4141 (1960). (497) Wacks, RI. E., Krauss, >I J. . Chem. , Phys. 35, 1902 (1961). (498) Wagner, G., Forsch. Gebiete Ingenieur. 26, 185 (1960). (499) Wahlin. L. NucZPur Inst. R. Methods ‘ 7,’269 (1960). ’ (500) Zbid., 9, 21 (1960). (501) Wallenstein, M. B., Kraus, M., J . . 1. rris. R. H.. J . Aar.

~

11,430 (1960). (471) Zbid., 12, 214 (1961). (472) Zbid., p. 220. (473) Tabor, C. D., Kauffman, G. F., Voss, F. S., U. S. Atomic Energy Comm. Chemistry GAT-292 (1960). (474) Takayashi, M., Bull. Chem. SOC. Japan 33, 801 (1960). (475) Ibid., p. 808. (476) Tal’roze, V. L., Izvest. Akad. Nauk S.S.S.R., Ser. Fiz. 24, 1001 (1960). (477) Tal’roze, V. L., Dekabrun, L. L., Tantsyrev, G. D., Frankevich, E. L., Vetrov, 0. D., Lyubimova, A. K., Lavroskaya, G. K., Erofeev, V. I., Grishin, V. D., Pribory i Tekh. Ekspt. 6,78 (1960). (478) Tal’roze, V. L., Frankevich, E. L., Zhur. Fiz. Khim. 34,2709 (1960). (479) Tasman, H. A., Boerboom, A. J. H., Z . Naturforsch. 15, 78 (1960). (488) Zbid., 15a, 736 (1960). (481) Thode, J. G., McMullen, C. C., Fritze, K., Advances i n Inory. Chem. Radiochem. 2,315 (1960). (482) Thorburn, R., Robbins, E. J., U. K. Atomic Energy Authority, and Eng. Group, DEG Rept. 1960. (483) Todd, B. J., Lineweaver, J. L., Kerr, J. T., J . Appl. Phys. 31, 51

2:%7; (1960).

(484) Tranchant, J., Moreau, &Mem. I., poudres 42, 445 (1960). (485) Trent, F. M., Miller, F. D., -4ppl. Spectroscopy 15, 64 (1961). (486) Tsuchiva, T., Hashizume. A.. Someno, K.,’Bunseki Kagaku (dnnual Review) 9, 19R (1960). (487) Tucker, C. W..Jr., Norton. F. J.,’ ’ J.’Nuclear Materials 2,’329 (1960). (488) Tudge, A. P., Geochim. et Cosmochim. Acta 18, 81 (1960). (489) Tugarinov, A. I., Shcherbakova, R. N., Bedrinov, V. P., Geokhimiya 1960, 298. (490) Tupper, W. M., Loring, D. H., Geochim. et Cosmochim. Acta 24, 314 (1961). (491) Valentini, H. B., Esptl. Tech. Physik 8, 65 (1960). ~

, --- ,-_ --,. F. A., Rourke, F. M., Sheffield, J. C., Dietz, L. A.. I R E Trans. on Nuclear Sci.’8, 13 (1961).‘ (511) White, D., Walsh, P. K.,Goldstein, H. R., Dever, D. F., J . Phys. Chem. 65, 1404 (1961). (512) Whitlock, W. S., Bounden, J. E., Proc. Phus. SOC. (London) , 77,. 845 (1961). ” (513) Wilson, J. M., Experientia 16, 403 (1960). (514) Gilson, H. W.,Munro, R., Hardy, R. W. D., Daly, N. R., Nuclear Instr. & Methods 13, 269 (1961). (515) Wilson, C. O., Jr., Shapiro, I., ANAL.CHEM.32, 78 (1960). (516) Wing, J., Swartz, B. A., Huizenga, J. R., Phys. Rev. 123, 1354 (1961). (517) Wollnik, H., Ewald, H., 2. Naturforsch. 15a, 265 (1960). (518) Wolsky, S. P., Zdanuk, E. J., Phys. and Chem. Solids 14, 124 (1960). (519) Wolskv. S. P.. Zdanuk. E. J.. ’ Vucuum 16; 13 (1960). (520) Yamaguchi, hl., Kagaku 30, 44i

(5i6) White,

( 1 960). \ - - - - I .

(521) Young, J. R., J . S p p l . Phys. 31, 921 (1960). (522) Yuasa, T., Nippon Kagaku Zasshi 81, 1643 (1960). (523) ZadorozhnvL I. K.. Meteoritika. Akad. Nauk S%:S.R., Kornztet Meteorit. 18, 141 (1960). (524) Zaidel, A . S . , Ostroskaya, G. V., Petrov, A. A., Optihz i Spektrosopiya 10, 673 (1961). (525) Zdanuk, E. J., Bierig, R., Rubin, L. G., Wolsky, S. P., Vacuum 10, 382 (1960). (526) Zietz, M. C., U.S. Atomic Energy Comm. UCRL-9277 (1960). (527) Zimina, K. I., Polyakova, A. A., Khmel’nitskif, R. A., Obelentsev, R. D., Zhur. Obshchei Khim. 30, 1264 (1960). (528) Zlotowski, I., Stroka, A4., Nuklemika 5 , 243 (1960). (529) Zlotowski, I., Wincel, H., Zbid., p. 261. (530) Zonov, Y. A., Zhur. Snal. Khim. 15, 643 (1960). ~