(760) l.asilenko, V. I)., Shanya, h l . V., Z h . .Inal. K h i m , 20, 636 (1963). (761) \*eiikate,warlll, P., Armstrong, W. I)., %tiger, L., Indian J . M e d . Res., 54, 4*;*;-i.
( 7 6 2 ) Cerachtert, IT., Fratew, J., Agricultura, 14, 83 (1966). (763) T-ercillo, A,, Grossi, 31. C., Boll. Lab. Chim. Provinciali (Bologna), 17,
413 (1966). (764) Vinkovetskaya, S. Y., Nazarenko, 1.. A., Z a ~ o d s kLab., . 32, 1202 (1966). (765) Vlacil, F., Chem. Listy, 61, 818 (1967).
(766j -17klkova, .4. L., Get’man, T. E., U k r . Khinz. Zh., 31, 1320 (196.5).
(767) Waterbury, G. R., Thorn, L. E., Kellv. 11. C.. A E C Accesszon S o . 18565, Repi LYo.LA-3465, 15 pp (1966). (768) Wawrzyczek, W.,Polak, K., Z. Anal. Chem.,, 228,433 (1967). (769) Wawschinek, O., Nikrochim. Ichnanal. Acta, 1965, 860-4. (770) Wear, J. I., Agronomy, 9, 1059 (1967). (771) !Teatherburn, AI. W., ASIL. CHEM., 39; 971 (1967). ( 7 7 2 ) Wehking, AI. W., Pflaum, R. T., Tucker, -E. S., 111, Ihid., 38, 1950-1 (1966) \ - - - - /
(773) Wendlandt, \V. IT., ITecht, 1%. B., Interscience Publisherb, Wiley, Kew York, 1966, 298 pp. (774) Wentworth, W.E., J . Chem. Educ., 43,262 (1966).
(773) Wernimorit, G., ANAL. CHEM.,39, 534 (1967). (776) West, T. S., Z h . Anal. Khim., 21, 913 (1966). 1777) Wiersma. J. H.. Lott.’ P. F.. A N ~ L . CHEM.,39, 674 (1967). (778) Wyszecki, G. W., Stiles, W. S., “Color Science, Concepts and Methods, Quantitative Data and Formation,” Wiley, New York, 1967. (779) Yamaji, I., ,Vippon Gomu Kyokaishi, 37,861 (1964). (780) Yamamoto, K., Ametani, K., Amagai, K., Bunseki Kagaku, 16, 229 (1967). (781) Yamamoto, Y., Kumamaru, T., Uemura, Y., Anal. C h i m Acta, 39, 51 (1967). (782) Yamamoto, Y., Tsubouchi,, AI., Okimura, I., Takaki, T., A z p p o n Kogaku Zasshi, 88, 745 (1967). (783) Yamauchi, AI., Tanaka, F., Botyu Kagaku, 30, 18 (1!)63). (784) Yamazaki, T., Goto, F., S i p p o n Xogei Kagaku Kaishi, 39, 463 (1965). (783) Yang, J. H., Cha, K . W., Daehan Hwahak Hwoejee, 11, 8 (1967). (786) Yonehara, N., Utsumi, S., Iwasaki, I., Bull. Chem. SOC.Japan, 38, 1887 (1965). ( 7 8 7 ) Yoshida, H., ITikime, S., Talanta, 11, 1349 (1964). (788) Yoshida, If., Taga, ll.,Hikime, S., Ibid., 13, 185 (1966). ~
(789) Young, J. P., Clark, G. W.,Rev. Sci. Inst?., 37, 234 (1967). (790) Yuasa, T., Bunseki Kagaku, 12, 511 (1963). (791) Yurash, B., Chemist-Analyst, 56, 28 11967). (792) ‘Yurchenko, E. I., Savvin, S. B., Subasheva, L. V., Garan, V. F., hlishinskaya, I. S., Zavodsk. Lab., 32, 12 (1966). (793) Zakharova, T’. F., Simonova, L. S . , Vestn. Mosk. Cniv., Ser. 11, 21, 115 (1966). (794) Zehner, J. M.,Sweet, T. R., Anal. Chim. Acta, 35, 13;i (1966). (795) Zharovskii, F. G., Sukhomlin, R. I., Zh. Anal. Khi~n.,21, 39 (1966). (796) Ziegler, M., Bitterling, D., Winkler, H., 2. Anal. Chem., 228, 15 (1967). (797) Ziegler, AI., Schroeder, H., Mikrochinz. Acta, 1967, 782-7. ($98) Ziegler, M., Schroeder, H., 2. Anal. Chem., 226,403 (1967). (799) Ziegler, M., Schroeder, H., 2. Saturforsch. B., 22! 552 (1967). (800) Ziegler, AI., \.T. inkler, I f . , Bitterling, I)., Z. Anal. Chem., 228,332 (1967). (801) Zigic, AI., Zivanovic, B., Kern. Ind., 15,345 (1966). (802) Zolotavin, 1.. L., Fedorova, X. D., T r . Vses. Sauch.-Issled. Inst. Stenk. Ohraztsov Spektr. Etanonov, 2, 92 (1965). (803) Zolotavin, V. L., Podchainova, T’. N., Federova, N. D., Dolgarev, A . T.’., Degrachev, V. Y.,Zhid., p 99.
Mass Spectrometry Robert W. Kiser a n d Richard E. Sullivan, Departments o f Chemistry, University of Kentucky, l e x i n g t o n , K y . , a n d Kansas State University, M a n h a t t a n , Kan.
T
of this review is similar to that used by McLafferty and Pinzelik (1007). Following a few short introductory remarks concerning the means of acquisition and selection of the material treated in this review, and thereby establishing some boundaries, a topical approach t o the subject matter is presented. The several thousand papers that appeared in the two-year period prior to December 31, 1967, were scanned, some by title, more by abstract, and many others in greater depth, in an effort to select for the present review that material which the authors believe is indicative of much of the activity during this period. The great increase of literature concerning some one or another phase of the very broad area of mass spectrometry nearly precludes staying abreast of all developments in this field. I n many cases mass spectra and/or other material relevant to this review were unearthed in papers that contained no mention of mass spectrometry or related topics either in their title or their abstract. The authors have made no effort to read the entire technical literature page by page for this was impractical, although selected journals were so treated. Therefore, certainly some important H E PATTLRN
work has gone unnoticed by us, and some issues of journals were unavailable to us because of delayed publication. I n the ensuing process of preparing this review, a subjective choice of material was demanded; it is hoped that this selection treats the subject sufficiently thoroughly to illustrate the significant developments in these two years and to point toward areas in which important new advances are occurring or are expected imminently. Thus, it is inevitable that some topics will not receive their due attention-e.g., the topics of ion optics, isotope separation, determination of precise nuclidic masses, measurement of iiuclear particles, gas phase radiolyses and photolyses, leak detectors, residual gas analysis, and atomic collision processes are not covered, and much of the theoretical work on ionization cross sections, radiation chemistry, condensed phase reactions, cosmochemistry, and organic molecular weight determinations are underemphasized. 4 somewhat arbitrary classification of papers into particular groups has been made; it is recognized that this is frequently artificial and that reports of work in one section often are relevant to studies described in another section. Yecessarily, the comments throughout
are brief, but hopefully sufficient information is transmitted to permit the reader to choose those papers of greater interest to him. The number of papers in a two-year period that are either related to or directly concerned with mass spectrometry, together with those utilizing this powerful tool, is rapidly approaching five digits. The brightest beacon for those with interests in this broad area is the new M a s s Spectrometry Bulletin (published by the Mass Spectrometry Data Centre, AWRE, Aldermaston, Berkshire, England) that is now efficiently culling the majority of the literature and presenting the retrieved information in a convenient format. Several new books also present current work in varying degrees of completeness. A book that presents a brief introduction to mass spectrometry (731), another on mass spectral methods (1368), and one that discusses the interpretation of mass spectra (999) have appeared. Several other books treat the mass spectrometry of organic compounds (184, 262, 1222, 1256) and structural analysis of organic compounds (1394). Two volumes have appeared that discuss mass spectrometric instrumentation (170, 787) and another concerns the mass spectrometric VOL. 40, NO, 5, APRIL 1968
0
273 R
analysis of solids (15). Results reported at two conferences on mass spectrometry (1047, 1256) and a compilation of mass spectral data (378) have been published. I n addition, several bibliographies of the mass spectrometry literature have been prepared (290, 1008, 1254). Reviews of several areas of mass spectrometry have been written (147, 746, 1139). Many others are presented in appropriate places later in this article but some reviews that are to be noted here concern applications of mass spectrometry to metallurgical research (1169), high resolution mass spectrometry (1001), organic applications (1667), laser utilization in mass spectrometry (1526),and the mass spectrometer as a research laboratory (1055). Two new journals that will publish papers on mass spectrometry have been announced : the International Journal of Jlass Spectrometry and I o n Optics, published by Elsevier Publishing Company, and Organic Jlass Spectrometry, published by Heyden and Son, Ltd. Additionally, two important data collection and information dissemination projects on mass spectrometry are described in recent publications (587,649). INSTRUMENTATION
High resolution mass spectrometers are now commonplace in many research laboratories. However, development of mass spectrometers to achieve even greater resolving power continues, and instruments with resolution of 500,000 (1042) and 1,200,000 (1043) have been described, as well as a hfattauch-Herzog mass spectrograph with corrected P-dependent image defects for all masses (1453), and another with &-focusing for all masses (1436), and high resolution mass spectrometers with multistage fields (1041, 1434). High resolution mass spectrometers have been compared and the optics of the Nier-Johnson and Mattauch-Herzog instruments discussed (1403). Other developments include a tandem double-focusing mass spectrometer for isotopic abundance ratios to (10' to 1) (1562), a tandem mass spectrometer for study of ion-molecule reactions (581), and a tandem isotope separator for the study of some collision processes (1093). Results obtained with a fourstage mass spectrometer for mass and energy resolution of both primary and secondary ions (1563) should prove quite interesting. il fast-scanning mass spectrometer is described (915), as is a small instrument for use as a detector for gas chromatography (249). Fast-scan high resolution mass spectrometers have been used in similar capacities (1018). Thirty-seven models of mass spectrometers produced by nine manufacturers are surveyed and compared (138). Mass spectrometers for space research are described (49,
274 R *
ANALYTICAL CHEMISTRY
%'a), as
are instruments for isotopic analysis of UFs (1512) and partial pressure measurements in the upper atmosphere (1138). Ion trajectory studies of both quadrupole (1236) and monopole units (956) have been made. Means are presented for continuous observation of several mass peaks with a quadrupole (51) and a design is given for simplified mounting of quadrupole mass filter rods (1106). Efficiency and errors encountered with omegatrons are noted (142, 1035) and an extended mass range operation of a monopole instrument is reported (615). Characteristics of a timeof-flight mass spectrometer (728) and a coincidence mass spectrometer (1519) are described. A coincidence mass spectrometer is used to determine energy distributions of molecular ion fragmentation probability (490). The performance and characteristic spectra of a miniature glass mass spectrometer (382) and a new radio-frequency mass spectrometer of a very small path length (1281) are discussed. Improvements in the sensitivity of flash photolysis and time-resolved mass spectrometry permit studies of fast bimolecular and termolecular gas phase reactions (1068), the detection of the hydroxyl radical (1066), and a study of the reactions of excited iodine atoms produced from methyl iodide (1067). Studies of the efficiency of molecular separation in gas chromatography-mass spectrometry combinations (1294) and of various molecular separators (616, 971) have been made. A refrigerated inlet arrangement for studies of unstable species at low temperatures (995) and a low temperature probe for direct introduction of mass spectrometric samples (6.45) are described. Another inlet system is designed to reduce thermal decomposition effects (247). controlled direct introduction of a mass calibrant into high resolution mass spectrometers is accomplished through use of a hollow probe (1343). A mass meter for an electromagnetic isotope separator (464) and a mass marker for the AEI MS-2H mass spectrometer (1487) are reported. Photoionization sources for mass spectrometers are described (150, 224, 1230), including one for studies of high temperature vapors (134). Gas analysis is accomplished with a n improved sensitivity photoionization mass spectrometer (1231). Use of a microwave plasma light source for photoionization mass spectrometers yields spectra of organic compounds that are similar to those obtained by electron impact at comparable energies (1165, 1166). A review of laser use in mass spectrometry is presented (1622). Laser sources have been used to vaporize and ionize as a source in mass spectrometers (625) for a variety of solid materials (137,300,498) and are important in the application of mass spectrometry to
metallurgy and materials science (513).
A time-of-flight mass spectrometer for laser surface interaction studies is described (136). An interesting application is the study of laser-induced breakdown of organic vapors (12). A simple ion source for the study of negative ions is described (452) and some characteristics of an electron impact ion source (334) are reported. The method of operation of a time-of-flight mass spectrometer in a continuous mode is revealed (1414). Another ion source is used in a modified manner for appearance potential determinations (1502). High transmission and dual electron beam ion sources are described (1051), and a field ion source with an elongated emitter is reported (124). A vacuum vibrator ion source has been developed for the production of ions from nonconductors, rocks and minerals (412). An emission current regulator for mass spectrometric applications is noted (280).
An ion detector of nearly 100% efficiency for use in a quadrupole mass filter has been reported (1033). Other types of detectors studied for use in mass spectrometers include barrier-layer counters (1457), a continuous dynode electron multiplier (1378), a 14-dynode secondary electron multiplier (1384), an aluminum electron multiplier for both positive and negative ions that requires no activation treatment (165), and a scintillation-type detector (911). A retardation lens has been used to improve the sensitivity of a mass spectrometer (568).
Ion intensity measurements from photoplates in spark source mass spectrometry have received attention (916). Characteristics of ion-sensitive emulsions have been studied (989, 990) and characteristic curves for photoplates are reported (1417). The mass and energy dependence of the sensitivity of photoplates has been determined (1558, 1585). A study has been made of the distribution of AgBr grains in photoplates for mass spectrometric use (1659) and vapor-deposited AgBr has been investigated as an ion detector (755). Gelatin-free ion-sensitive plates have been reported (747). Background reduction in photoplates has been considered (17) and an automatic position and intensity reader for photoplates has been described (686). An image converter has been employed to improve sensitivity twenty-fold in a hlattauchHerzog mass spectrometer (1024) and an internal image discriminating developer used with photoplates (857). SURFACE IONIZATION
Improvements in instrumentaCion for surface ionization studies include a reliable sample changer ( B O ) , a sequential sample changer (980),and a crucible sur-
face ionization source to increase the number of ions reaching the detector by a factor of twelve or more (1407). Surface ionization studies are reported for cesium (906, M I ) , tungsten and rhenium (1316), the rare earth elements (429,914)and alkali metal iodides (845). The ionization potential of uranium was determined by surface ionization (701) and the desorption of Uf ions from tungsten and rhenium surfaces noted (701). Bombardment of target materials by 12 keV Arf ions to give secondary positive ions is reported for 27 elements (143). The formation of negative ions by surface ionization (652) and their application to isotope analysis (1436) is discussed. Both positive and negative self-surface ionization results for molybdenum (637) and tungsten (1317) have appeared, with the results for tungsten being used to determine its electron affinity. SPARK SOURCE MASS SPECTROGRAPHY
Spark source mass spectrography continues to play an extremely important role in elemental and trace (436, 657, 1113) analysis. The great sensitivity for metals and non-metals makes studies by this method quite attractive. As a result, much effort has been expended in improving the quantitative aspects (656) of the analytical techniques. The instrumentation and methods, early work, and development since 1960 have been reviewed (1179). Recently the analysis of solids by this method also has been reviewed (16,266). A review and critical assessment of known evaluation methods of ion intensities from photographically-recorded spark source mass spectral analysis of solids is given (1334), and advances in precision of spark source mass spectrographic analysis of conducting materials are noted (566). The method has been used for the quantitative determination of impurities in solids (497), the determination of trace impurities in high purity liquids, such as mercury and liquid acids (325), the analysis of radioactive metals (805), and the determination of nitrogen, oxygen, and hydrogen (950). Applications of spark source mass spectrography have been made to the determination of boron in boronated graphite crystals (1463), an analysis of aluminum (1056) and aluminum alloys (1057), an examination of graphite (368), analysis of iron and low-alloy steels (853), an analysis of beryllium and uranium and impurities (190), an analysis of Ti02 pigments (771), analyses of dopants of known concentrations in gallium phosphide ( I @ , and the determination of light metalloids (189). Uses of this technique in a metal-analysis laboratory have been noted (1058) and a
spark source mass spectrograph analytical program has been described (1191). Improved spectral measurements are made possible through the use of transmittance areas in spark source mass spectrography (1382) and correction factors are studied in the determination of impurities in solids (1365). A spark source has been designed to operate without a high-frequency potential (791) and the use of a beam chopper leads to improved precision in this technique (772). The theory of aberrations and linewidths in a spark source mass spectrograph have been discussed (1402, 1503). Cooling samples in the spark source in inorganic trace analysis has been reported (1124). A promising technique is the utilization of a rotating electrode in the spark source (71) for studies of organic materials. With several aromatic hydrocarbons, this method was found to be applicable for semi-quantitative analysis (860), and the method has also been applied to analysis of metal-containing organic thin layers (1313) and several aromatic hydrocarbons from coal-tar pitch fractions (859). Composition determinations by spark source mass spectrography and ion microprobe mass spectrography have been made (706) and these two methods have been compared (104). FIELD IONIZATION
The interest in all areas of field ionization, but particularly in the interpretation and analytical use, continues to grow. The interpretation of mass spectra obtained by field ionization has been discussed (132). A combined field ionization-electron impact ion source is described (248) and simplified spectra from the use of a dual field ionizationelectron impact source are reported (1541). Field ionization and chemical ionization mass spectra of decane isomers have been compared (123). The use of thin wires in field ionization sources has been reported (1065),and it has been noted that the overall field ion current generated by thin wires or tips changes with the average work function of the metal if different organic substances are adsorbed (1063). The adsorption and surface diffusion dependence of neutral particle supply to the emission centers of a field ion emitter have been studied (1064). A field ion source with elongated emitter is described (124). Etched platinum and gold metal foils are found to be more efficient than a razor blade edge for the production of positive ions of oxygen and nitrogen (391). A resolution of >30,000 in field ionization has been achieved using a doublefocusing mass spectrometer (250). Metastable decompositions and fieldinduced decompositions have been reported (155, 1188), and the dependence
of association equilibrium for formic acid on the electrical field has been measured (171). Field ion mass spectra are reported for several alkenes and nitrogenous compounds (1278), a series of 11 alkenes (1188),diacetone, 3-tetrahydropyranyl ether, and other unstable organic compounds (250), and some aliphatic alcohols (126). Field ionization techniques have been used for the study of the pyrolysis of polydienesulfones and polybutadiene (1328) and the measurement of adsorption of oxygen on platinum by the flash-filament method (1510). DATA PROCESSING
Techniques for automation of the processes of obtaining, storing, and retrieving mass spectral data become more important as the use of high resolution mass spectrometers is continually expanded, and computer programs vary in complexity as the applications of the computer to various data reduction and presentation problems. A small, highspeed, on-line computer system is described for processing high resolution mass spectral data (191) and mass spectral data processing for digitized information using an on-line time-shared computer (646) is reported. Also, methods for digital recording (1550) and analysis (1492,1549) of mass spectra and for presentation of topographic element maps for display of high-resolution mass spectra (1516) are presented. Application of an electronic digital computer for the automation of mass spectrometric analyses provides for photoplate calibration and background subtraction; it is capable of effecting the data reduction of 160 spectra i n two minutes (1357). Improved precision in the evaluation of ion-sensitive photoplates can be handled with a computer program (567) and a means of evaluation of intensities and precise masses from photoplates from high resolution mass spectrographs is described (694). Computer interpretation of high resolution mass spectra (99) is described and a system for handling fast-scan high resolution mass spectrometric data obtained in conjunction with gas chromatography is noted (1018). Another automatic system for data reduction of high resolution mass spectra yields improved mass-measuring accuracy and resolution (1517). A simple tabulating system for assignment of molecular formulas in high resolution mass spectra of organic compounds is described (695) and methods of computer analysis for identification of organic compounds (1210) and aliphatic saturated normal and monomethyl substituted hydrocarbons (1209) from C6 to have been investigated. Computeraided interpretation of high resolution mass spectra for the determination of VOL 40, NO. 5, APRIL 1968
275 R
amino acid sequences of peptides (161, 1339, 1340) and oligopeptides (162) is described. An analog method for simulating ‘‘peak smearing” and for the deconvolution of real spectra improves the apparent resolution (854). Mathematical techniques and computers have also been used to improve the apparent resolution of time-of-flight mass spectra (981). The effect of peak shape during fast scanning of a mass spectrum has been investigated (97). Correlation of metastable peaks in high resolution mass spectra is aided by use of the computer (1028) and a program for the determination of the origin of metastable transitions is given (1069); applications of computer-aided metastable peak assignments in hydrocarbon spectra have been made (1266). Semi-automatic data collection systems for use with mass spectrometers (1094), and means for semiautomatically measuring and drawing mass spectra (1409) are described. A computerized procedure provides for editing data from a mass spectrometer digitizer (750) and a description is given of a computer-compatible digital data acquisition system for fast-scanning single-focusing mass spectrometers (737). A recorder chart-to-punched card converter and computer program is used for isotopic analysis (305),and a digital computer is used for least squares analysis and simplification of multi-isotopic mass spectra (218). A discussion concerning data retrieval and data reduction for mass spectrometry, held in Bonn on October 1, 1966, is summarized (696). HIGH TEMPERATURE CHEMISTRY
The high temperature mass spectrometry of various inorganic systems has been reviewed (465). The present review will be limited, therefore, to mentioning many of the systems recently investigated with no critical evaluation being attempted of the data reported. Sublimation studies have been made of alkali metal nitrates and phosphates (257),potassium and cesium oxides and carbonates (637), sodium and potassium perrhenate (1383), rubidium, cesium, cadmium, and lead chlorides (172, 173), titanium trifluoride (1605) and trititanium peiitoxide (1537), cerium (1571) and europium (593) carbides, rhenium trichloride and tribromide (255),cobalt oxide (625), the coinage metals (73), copper monofluoride (858), silver fluoride (1604), zinc phosphide (1322),boron (273), metal hexaborides (1482),aluminum trifluoride monomer and dimer (256),gallium oxyfluoride (1601), aluminum, gallium, and indium oxides (272), cyclododecasulfur (%9), other sulfur species (425) and various metal sulfides (308, 374), selenium (579), and selenides of mercury, cadmium, and strontium
276 R *
ANALYTICAL CHEMISTRY
(135). The sublimation of rare earth trifluorides has been reviewed (1606). High temperature studies of other systems include beryllium monofluoride (729),scandium and yttrium mono- and difluorides (1699), neodymium trifluoride (1598), samarium, europium, and gadolinium mono- and difluorides (1600), subfluorides of dysprosium, holmium, and erbium (1603), the samarium-carbon system ( 7 4 , uranium monophosphide (603), titanium dioxide and barium titanate (1061), titanium selenides (1422), the titanium-tellurium system (1421), zirconium-fluorine species (1116), gaseous platinum oxides (1153), metathioboric acid (480),the aluminum oxide-boron oxide system (269), the existence of the Si2N molecule (15979,disilicon tritelluride (512 ),the germaniumnickel system (833),the diatomic phosphorus molecule (602), and the sulfurselenium system (371). Electron impact studies have been made of cesium hydroxide and oxide vapors (500), and dissociation energies have been determined for gaseous aluminum monophosphide (419), diatomic chromium (834), and polyatomic bismuth species (908). The mass spectrum of sodium tetrafluorovanadate has been studied from the sodium fluoride-vanadium trifluoride system (1370). Activities have been determined in the liquid iron-nickel and iron-cobalt systems by mass spectrometry (127). Equilibria between mono- and diatomic palladium have been studied (604) and the thermodynamic stabilities of H&04 and H4B60, have been investigated (636). Observation has been made of W2C16and W&l3 by evaporation of various W,C1, compounds from graphite crucibles (1273) and nickel-fluorine surface reactions between 900’ and 1600’K have been studied (998). Other surface studies include those of adsorption and nucleation (752) and carbon monoxide on molybdenum by means of electron probe surface mass spectrometry (959). One of the problems of workers in high temperature mass spectrometry concerns absolute values of ionization cross sections. A cycloidal mass spectrometer is described that has 100% efficiency for collection of ions and is used for the absolute measurement of ionization cross sections (1323). Some additional notes of publications Concerning ionization cross sections will be found later in this article. Various thermal decomposition studies have been made that deserve a t least brief mention. The pyrolysis of tetraborane has been studied mass spectrometrically (116) as has the low pressure pyrolysis of diphosphine-4 (521). Investigations of the thermal decompositions of ethyl nitrite (350), acetone (347), and acetaldehyde (351) have employed mass spectrometry. The thermal decomposition of ammonium per-
chlorate (1045, 1518) has been reported, and the decomposition of nitrous oxide with shock waves has been followed with a quadrupole mass spectrometer (640, 641). Mass thermal analysis and applications of this technique have been discussed (938). Simultaneous differential thermal analysis-gas evolution analysismass spectrometric analysis equipment is described (1557). The degradation of phenol-formaldehyde polycondensates has been investigated by mass thermal analysis (1366),as has the sulfur trioxide production from fuming sulfuric acid, AuS04.5H20, and Au(NH3)4S04.H20 (607). DISCHARGES, FLAMES, AND FREE RADICALS
There has been much interest in the study of free radicals, flames, and species present in electrical discharges. The role of mass spectrometry in the analysis of these systems has assumed still greater importance. A book has appeared recently concerning electrical discharges in gases (239). The application of mass spectrometry to the study of gaseous plasmas is indicated (1101) and utilized in a study of decaying neon and helium-neon plasmas (1311). A mass spectrometric sampling probe for discharge plasmas has been designed for use with a quadrupole mass filter (179). Ion-molecule reactions have been studied in gaseous discharges (1344). A mass spectrometric study has been made of the anodic part of a hydrogen glow discharge (1401). The chain carrier Ha+ was observed mass spectrometrically in studies of the H2-D2 exchange reaction in a dc glow discharge (406), and various ionic species have been observed in a radio-frequency discharge in methane (510). Investigations of positive and negative ions in flow discharges have been made with a quadrupole unit (681) and the mass spectra of high energy components of a glow discharge in air have been obtained (180). Reactions of CO and OH have been observed in a discharge (699), and free radicals formed by pulsed electrical discharges have been studied mass spectrometrically (552). The role of impurities in thermal ionization in shock tube studies has been investigated (216). A time-of-flight instrument with cryosorption pumping has been employed with a shock tube so that the sampled gas is removed more efficiently from the ion source (1293). Another note of the use of a time-of-flight mass spectrometer for shock-wave studies has been made (1102).
Direct mass spectrometric sampling of free radicals in one-atmosphere flames has been described (1078), and techniques for the extraction of ions from a flame a t atmospheric pressure with sub-
sequent identification by time-of-flight mass spectrometry have been given (870). Ions of l o a ni/q ratios in hydrocarbon flames have been identified (369, 894),and the identify of ions created by electron impact in flames has been established ( W O ) . -1summary of ion-molecule reactions in flames is presented (285). Other studies of flames include the use of a quadrupole mass spectrometer (682),remarks on ionization in hydrocarbon flames (895), occurrence of alkali metal ions and hydrates in flames (680),and nucleation phenomena in nozzle beams (1080). A review of mass spectrometry of free radicals has been presented (1435). Another review, and one that is more readily available, discusses free radical studies (and also atoms and molecules in excited states, and unstable molecules) and gives a critical evaluation of the techniques used and the results obtained (551). The cross sections for production of free radicals by electrons have been studied (1064),and a flow reactor for study of free radicals has been described (545). Free radicals in the pyrolysis of selected organic compounds have been quantitatively detected by the use of a modified AEI AIS2 mass spectrometer (545). A value for the heat of formation of the allyl radical has been reported as a result of the study of the thermal decomposition of biallyl (745). The thermal instability of norbornyl aiid bicyclooctyl radicals in a mass spectrometer has also been described (984). Studies of free radical reactions have included H atoms with CzH2 in a flow system (1526), atomic oxygen with chlorine (11@),atomic oxygen with methane using a stirred-reactor technique (1583), and 5 atoms with olefins, with reaction rates and mechanisms discussed (700). The CFa radical has been studied by photoionization techniques (963), and the transient species in the catalytic decomposition of acetone have been reported (1049). Ionization potentials for CH2 (555),N H (652), CHZOH and (CH&N (544), and conjugated and non-conjugated radicals (1215) have been determined. A review of chemi-ionization is presented (578). Other studies of these reactions of excited atoms and radicals to produce ionized species have been reported in atomic nitrogen and oxygen mixtures ( 5 5 ~ 9 ,in reactions between C2F4 aiid atomic nitrogen-oxygen mixtures (554), and in reactions forming products behind reflected shock waves in ethylene-oxygen mixtures (592). ION-MOLECULE AND CHARGE EXCHANGE REACTIONS
Two very important contributions to the understanding and utilization of ionmolecule reactions have been made. One of these will be discussed in the next
section of this article. The other concerns the development by Baldeschwieler and colleagues (27, 118) of a method for the study of ion-molecule reactions using ion cyclotron single- and multiple-resonance techniques. This method specifically determines the reactant ions in a mixture. Application of an rfelectric field to ions of a given m / q ratio describing a circular motion of given frequency, w e , in B magnetic field serves as a mass spectrometer, since these ions will absorb energy (detected by using a marginal oscillatordetector) when the rf field is equal to w C . Fixing the rf frequency and sweeping the magnetic field produces a mass spectrum linear in m/q. For an ion-molecule reaction A+ B -+ C+ D, a second rf field applied a t the cyclotron frequency of A + can cause heating of A+ and thereby cause a change in the amount of the ion-molecule reaction. The first rf field detects the change in the amount of C+. By varying the second rf field (modulated), spectra dependent upon the reactant ion are obtained. This double resonance technique provides identification of reactant ions in a mixture, even in the presence of competing processes, for the modulation information necessary for the marginal oscillator and phase sensitive detector is transmitted only through an ion-molecule reaction. This method of ion cyclotron resonance spectroscopy has been described in detail and illustrated with applications in the study of ion-molecule reactions occurring in chloroethylene (118) and for the reaction CD4+ N? + KzD+ CD3 (87). This technique provides valuable information about mechanisms of high-order processes in ion-molecule reactions in complex systems and gives evidence of the nature of reactive intermediates. A review of theoretical and experimental aspects of ion-molecule studies and neutral-neutral reactions has been given in which reaction types, rates, and mechanisms are discussed (688). A bibliography of ion-molecule reactions covering the period 1900 to 1966 has appeared (655),and the rarity of certain ion-molecule reactions has been discussed (1437). A tandem isotope separator mass spectrometer has been designed for the study of ionic collision processes (1093). Computer calculations of ion-molecule reactions have been made (1578), and theoretical calculations are presented of rate constants of ion-molecule and radical recombination reactions involving polar species (1540). Reactions of thermal energy ions have recently been studied. These include hydrogen-transfer ion-molecule reactions (663), reactions in C H 3 0 H and CDIOH (1467), reactions in KH, and N2H4 (669),HzS (670),and HtO and D 2 0 (1468), and reactions of C + and CO+
+
+
+
+
with O2 and C 0 2 (623). Reactions of thermal energy ions by pulsed source mass spectrometry (667) and using monoenergetic ions (1892) are detailed. Other ion-molecule reactions studied include those of acetonitrile and propionitrile (564), cyclohexane (6), phosphine (650), noble gas molecular ions (851), Nz, CO, and O2 (954), gaseous amines (825, 1109), ethanol and methanol (1371), acetone-water mixtures (423), silane (1108), ammonia (1050),N3+and S 4 + formation (54, 587), reactions of D2f with D2 and HI (462), carbon dioxide ( 1 1 9 4 , methane (3), CH4+ with CD4 and CH4 (3, 4, 599), H 3 + with hydrocarbons (47) and cyclopropane (48), ethylene (1428), propane (181), C3H8+with C3 and Cq paraffins (1572), propylene and 1,Sbutadiene (922), butenes (45, M I ) , alkanes and cycloalkanes with unsaturated molecules ( 5 ) , isomeric ions (1108), and other hydrocarbons (1110). Ion-molecule reactions have been studied in various types of discharges (527, 561, 1320, 1544). Ion-molecule clusters have been observed in ion-solvent interaction studies in several systems (741, 847, 849, 852) and are compared with a-particle mass spectrometric results (847). Concurrent ionmolecule reactions of HC1 and H C N with D 1 and CD4 have been studied (668). Photoionization mass spectrometers have been employed in investigations of some ion-molecule reactions (921, 922, 1543-1545). Ion-molecule reactions involving negative ions that have been investigated include those in oxygen, carbon dioxide, water, and carbon monoxide and mixtures of these (1100), in acetone ( 4 2 4 , those in organic materials (1493), some involving ethyl nitrite and nitrate (777), reactions of OH-, "2(1625), and 0 - (778), and some in simple gases (1193). Charge transfer studies have been made a t translational energies to 2 kV (744) and ion-molecule reactions a t energies 30 eV have been investigated (538). .4toni transfer in endothermic ion-molecule reactions (1025), exothermic ion-molecule reactions (IO%?), and the kinetic energies of products of ion-molecule reactions (1399) are reported. Kinetic energy dependence of ion-molecule reaction rates (758) and kinetic energy transfer in ion-molecule reactions (570) are investigated. Also studied was the effect of translational energy on ion-molecule reaction rates (580) and collision mechanisms of ionmolecule reactions at energies of 1 eV (1044). Reactions of a variety of ions with Dz and CD4 have been reported (666). Ion-molecule reactions in the xenonsensitized ionization of ethylene (848) and noble gas-sensitized ionization of ethylene-nitric oxide mixtures (850)
l O - 9 see) indicates that the results of standard mass spectra are not always usable for calculations of mechanisms of complex radiation chemical reactions at high pressures (837). Elimination of HF from primary alkyl fluorides (295), electron impact induced 1,4-phenyl migrations (32 7 ) ,and specific hydrogen rearrangements in butyrophenones (1533) have been considered. Rearrangements of doubly-charged ions (1003) and double bond rearrangement under electron bombardment (1665) are noted. Variations of relative abundances of fragment ions in P-keto-esters are dependent upon whether the species
are obtained in one-step or sequential multi-step processes (1259). Kovel methyl radical eliminations from (C6H&C H f , C&CH&6H&H+, and stilbene ions are noted (818), and substituent effects upon decomposition pathways of ions formed from benzophenones have been studied (277, 279). A number of other studies have been made (72, 275, 410, 820, 836, 930, 1396, 1427, 1534). Decomposition processes in W(CO)6 have been reported (287), a linear free energy relationship between acyl ion intensities of substituted acylbenzenes was noted (276),and an aryl counterpart of the McLafferty rearrangement has been indicated (1548). A review of organic mass spectrometry and the AIcLafferty rearrangement is available (1305). McLafferty rearrangements in aliphatic ketones (263) and aldoximes and ketoximes (609) have been studied and various factors affecting this rearrangement in ketones have been discussed (673). Competitive McLafferty rearrangements in bifunctional compounds have been investigated (1015) and primary hydrogen isotope effects in the rearrangement noted (IOf 4). Additional studies are concerned with the suppression of this important rearrangement in even-electron systems (448, 923). IONIZATION CROSS SECTIONS AND IONIZATION EFFICIENCY CURVES
A review of ionization cross sections for atoms and diatomic molecules is given (866), and a bibliography of cross section data is available (865). Total ionization cross sections for electron impact at 75 eV were measured for a large number of molecules (665) and are cornpared to previous tabulations. Cross sections for various organic molecules (357) have been presented and other electron impact cross section data are noted (370, 1398). Individual and total cross sections for the production of positive ions, negative ions, and free radicals by electrons are given (1054). Additionally, electron impact cross sections have been reported for Zn, Cd, and Tea (1235), Ca, Ba, Sr, and T1 (994),P r and Gd (1214), Biz and 13i4 (908),alkali ions (748,969),and other metals (1196), metal tetraalkyls (421),He, Ne, H2,and CH, ( l o ) , acetylene (590) and various hydrocarbons (409). Semi-empirical data have also been given (617 ) . Photoionization cross sections have been determined for atoms (996), oxygen (621, 1299), Hao, DzO, Ce&, CHI, CzH4, and C7H16 (221), acetylene and deuterated acetylene (187, 221), and cZ&, C3H8,and C4H10(333). Cross sections were measured for Hz, Dz, 0 2 , and H20 by alpha-particle bombardment (1286), and the retarding potential difference method was employed to determine the ionization cross sections of
three hydrocarbons for electrons (960). One of the results of calculated ionization cross sections is also noted (1031). Charge exchange cross sections for Ar ions in H2and D2below 1 keV were measured and compared with other work (26). Ionization probabilities have been correlated with geometric charge cross sections (868). The effect of the source magnetic field upon the determination of ionization efficiency curves using a sector mass spectrometer has been studied (689). Formation probabilities are determined for neutral fragments formed upon electron impact (1136). A general formal theory for autoionization of molecules within a few electron volts of the ionization threshold is presented (139). Photoionization efficiency curves of SF6 are given (431), and autoionization states of Ca+ and S r + have been detected (929). An electron velocity selector was mated with a mass spectrometer to study ionization efficiency curves for argon and krypton (225). Ionization efficiency curves are analyzed and multiple ionization processes are studied (1341). Ionization efficiency curves have been determined for n-butane and isobutane by the R P D method (1084). A pulsed R P D technique has been used for a n analytical treatment of ioiiization efficiency data (1392). First differential ionization efficiency curves were obtained for fragment ions by electron impact (459). By use of the energy distribution difference technique, fine structure in ioiiization efficiency curves has been resolved (1574)* THEORY OF MASS SPECTRA
The theory of mass spectra has been reviewed (577) and applied to the decomposition of CeH6+and CzD6+(1239), the determination of radiation chemical yields of gas-phase radiolysis (1238),the decomposition of negative ions formed from metal carbonyls (1576),a n d to the mass spectra of five alkanes of C6 to Cs (1485). d molecular orbital theory of mass spectra has been reported (735). Theoretical calculations of the mass spectra of methyl pentanes have been made ( I d & ) , and a report concerning high pressure unimolecular rate tonstants and mass spectra has appeared (1073). The influence of symmetry species of normal modes of vibration of a molecular ion on its dissociative processes has been investigated (975). The effect of radiationless transitions between potential energy hypersurfaces on mass spectra, using alkyl halides as examples, has been discussed (976),and contour maps of potential energy hypersurfaces of the ethylamine ion in its ground and first excited state have been presented (946). The determination of decay times of VOL 40, NO. 5, APRIL 1968
0
279 R
molecule ions has been reported (704, 117 5 ) . Kinetics of unimolecular breakdown and mass spectral patterns are noted (957). The effect of temperature on the mass spectra of C2H4 and CIHB (913) and of C3Hs and C~HIO (912) are discussed with respect to the theory of mass spectra. NEGATIVE IONS
Positive ions and negative ions are formed in electron impact (and by photoionization) processes. Because of their greater abundance in the mass spectra, the positive ions receive much more study. I n the past two years, there appears to have been a somewhat greater effort to study negative ions. With these increased efforts and the greater availability and sensitivity of mass spectrometric instrumentation, it is quite possible that negative ion mass spectra yet may prove to be more useful in qualitative studies of certain classes of compounds. A simple ion source for the production of negative ions is described (456). Cross sections for the formation of negative ions by electron impact are discussed (1054), and the formation of negative ions by surface ionization is noted (652). Electron capture cross sections and negative ion lifetimes are reported (362). Electron attachment and detachment in oxygen is determined by the Towisend method (2419). The kinetic energy distribution of negative ions formed by dissociative attachment is derived and used to measure the electron affinity of oxygen (315 ) ; the results are found to be in excellent agreement with photodetachment values. Other measurements of the capture of thermal electrons by oxygen have been made (1410) and the electron affinity of oxygen determined (316). Xegative ionmolecule reactions of 0 - are described (7?8), and other work reports negative ion-molecule reactions in Oa, C02, H20, (30 and mixtures of these gases (2100). Electron resonances of the Hz- ion are given (101) and the H- negative ion observation in the mass spectrometer is discussed (542). Vibrational excitation and dissociative attachment in the scattering of electrons in H2has been determined (102),and geometrical considerations for negative ion processes are given (528). A theory of dissociative attachment (1164) and thermal energy dissociative attachment of negative ions (522) are presented. It is reported that doubly-charged negative ions have been formed and studied with an omegatron mass spectrometer (569, 141.2, l 4 l S ) , and the existence of negatively-charged beryllium and magnesium ions is noted (144). Lithium negative ions have been produced in a Penning discharge (114), and negative ions are produced from the ion bombardment of solid surfaces (76).
280 R
a
ANALYTICAL CHEMISTRY
Negative ion formation is reported in
H2O and D2O (359), and assignments are made for appearance potential data for negative ions from methane (976). Electrons are attached to KO2 (1023) and non-dissociative electron capture in complex molecules is discussed (361). Kegative ions formed by electron impact with diborane, tetraborane, and pentaborane-9 (1 f a r ) ,various boron hydrides (501), and perfluorocarbons (164, 620) are noted. Negative fragment ions from resonance capture processes (460) and studies of negative ions and negative ion-molecule reactions of various organic molecules (1493) are reported. Virtual negative ion spectra of hydrocarbons (186) and negative ions and negative ionmolecule reactions in ethyl nitrite and nitrate (777)are reported. Dissociative electron capture (332) and negative ion resonances in benzene and halogenated derivatives are discussed (360). Other studies report negative ions formed from H C S and C 2 S 2 (765), acrylonitrile (1418),acetone (424),some organic sulfur compounds (776), transition metal carbonyls (1575),and Xe02F2 (756). Xegative ion charge transfer reactions (1289) have been studied, and electron capture and loss in electron swarm experiments are described ( l 6 7 4 ) , A theory of atomic collisions with negative ions and associative attachment is presented (362). NEUTRAL FRAGMENTS AND MULTIPLY-CHARGED IONS
From appearance potential data, one may in some cases infer from the energetics the neutral fragments accompanying the fragmentation of a n ion. If metastable data are obtained, the nominal mass of the neutral fragment may be determined. However, relatively little work has been done in identifying with greater certainty the neutral fragments of ionic decompositions. A study of the formation of neutral fragments by electron impact (1136) has been made, and neutral fragments from aromatic molecules by electron impact (596) have been observed. .idditional studies of neutrals are desirable, particularly from the standpoint of the important data they would provide concerning decomposition mechanisms and the number of steps involved in various pathways. Multiple ionization of the noble gases by successive electron impacts has been studied (1253). Doubly-charged transition metal carbonyl ions have been observed (1576) and their intensities related to the normal singly-charged positive ion mass spectra. Doubly-charged negative ions (569, 1412, 1.413) are the subject of both experimental and theoretical interest. Triply-charged ions are observed in the mass spectrum of tripty-
cene (242) and metastable transitions of triply-charged ions (799) have been reported. ENERGETICS
Ionization and dissociative ionization
of molecules by mass spectrometry and other techniques continue to be studied for fundamental information concerning bonding. .ilthough correlations are made here and there with the molecular structure of molecules, very little is known yet of the structures of gaseous ions; energetic studies provide some hope for the establishment of structural correlations and their applications t o identification and structural problems. I t will not be possible to report all the determinations and studies of appearance potentials that have been made. However, the work listed should provide a satisfactory point of departure for those wishing to examine past work of this type in various chemical systems. Specific values of ionization and appearance potentials are not listed here in that the Mass Spectrometry Data Center of the National Bureau of Standards (587) provides numerical information of this nature as part of their services. Hopefully, we shall soon see some of the first efforts from the NBS program of critical review of this basic data collection. The ionization potentials of atoms and ions from hydrogen to zinc i\ere tabulated (977) and a comparison of different approaches concerning the theory of ionization energies of isoelectronic ions has been made (f 13 ) . Calculations of ionization potentials were performed for aromatic compounds (1155), monosubstituted benzenes (896),and alkyl free radicals and n-alkanes (1062). A review of methods of measuring ionization potentials and a discussion of the dependence of ionization potentials on niolecular structure of organic compounds have been presented (f494), and a study has been made of the molecular structural effects on ionization potentials for metasubstituted aromatic and X-CH2-R compounds (1816). In conjunctio~i with the rapidly increasing interest in the study of metastable transitions, the appearance potentials of some metastable molecular ions were reported (703). automatic voltage scanner for the rapid determination oi appearance potentials has been developed (586). X study of the magnetic effects on transniissioii of electrons in an RPD ion source (30) was extended to include a static electric field (69). The measurement of ionization potentials by deconvolution of ionization efficiency curves \vas discussed (432), and a method for resolution of fine structure in ionization efficiency curves by the energy distribution difference method has been presented (1574). An investigation relat-
iiig to the validity of standard appearance potential results was made based on the energy and angular distributions of S + ions from K2 upon electron impact which iiidicated the ions are produced in excited states (867). Observations concerning the negative ions produced in several systems led t o reports of appearance potentials for negative ions from metal carbonyls (1575), S H , upon radiolysis (105’4, ethyl nitrite and nitrate (777), glyoxal and biacetyl (358), and perfluorocarbon gases (254). Kegative ion research provided electron affinity values for benzoquinone, chloranil, and related cornpounds (618) and the hydroxyl radical by magnetron techniques (846). A semiempirical prediction of electron affinities of gaseous radicals was reported (583). X a n y of the positive ion investigations of the past two years produced values for ionization and/or appearance potentials. I n addition to the work noted above, a partial listing of other studies follows. Ionization and/or appearance potential measurements were iiicluded in studies of the following inorganic systems: ions above a liquid solution of Bi and Sb (907)) B2H6 and BH3 (1570), mixed halogenoboranes (95’9), CdC12 and CsCl (172), CO (394, 726), COP (994, 432, 1379), COS and CSz (,$Si?), He (454),Krl (1300), l l g and Na (134), NZ (464,7 d 6 ) , nitrogen using sequential mass spectrometry (393),KO (726, 909, 910, 937), SzO. (294, @O), SH3 (433), K H 4 (1053),radicals from the radiolysis of NH3 (1050), N H radical (552), multiple ionization of noble gases (1253),osygen (432, 1299, 1381), OnF and 02Fz (loss),Pd? (SO.$), I’hCl?, PbBr2, and PbCII3r (6773, PbCl? and RbPbCla (17 2 ) , silylarsiue (879), silylgermane ( l 2 9 6 ) , SiTe aiid Tes (512),T1 (134),H20 (433), H30 (1053), Xe2 (1300), ZrFz and ZrFs (1116), and various studies of rare earth metals (I 250,1602), D y aiid P r (428),Gd and Ho ( 4 H ) , E r (429), Kd-F systems (1598), scandium and yttrium fluorides (1599), uranium (702), and uranium monophosphide (603). I n the organometallic area, much interest was shown in the metal carbonyls and closely related compounds. Measurements of ionization and/or appearance potentials were a part of investigations of seyeral metal carbonyls (157, 664), dibeiizene chromium and benzene chromium tricarbonyl (1217 ) , arenechromium tricarbonyls from charge transfer spectra (757), lIns(CO)lo (158, 1425), nickel carbonyl (1318), Ni(PF3)4 (888),aiid Rez(CO)loand ReXn(CO)lo (1425). Other organometallic studies including ionization/appearaiice potentials were done for methyl-substituted boraziiies (934), triniethylsilyl compounds (94, 363, 364>404),trialkylsilyl compounds (405), organotin compounds
(1156), and assorted biscyclopentadienyl metal complexes (1105). Values for ionization and appearance potentials have been reported in the literature for the following organic compounds: acetaldehyde, acetone, and acetic acid (IS@?), acetylene (5’53), loiver aliphatic alcohols and ethylene (1261), poly-functional substituted alkanes (1424), aliphatic amines (S.54, 365), some aromatic compounds by R P D (1154), azulene (890), benzene derivatives (19), dehydrobenzene by R P D (631),various dienes (563),ethane and deuterated ethanes (458),ethane, propane, and n-butane (333),ethylene and 1,2-dideuteroethylene (188), C Z F ~ and C3Fs (1387),ethylene and benzene (454), C2F4 (1469), cis- and trans-di-tbutylethylenes (1127), cyclic polyethers ( 3 4 3 , some fluorinated hydrocarbons (321), methane (5’52), phenylmethanes (1232), methoxy- and halogen-substituted methanes (IO@), alkyl phosphates (79), various polyphenyls (584), purines and pyrimidines (962),pyridineiodine complexes (284, 348) conjugated and nonconjugated radicals (1215), CH3 and CzRa radicals (54S), CH:! radical (553), CF3 radical (963), CHIOH and (CH3)?S(544),thioformaldehyde (823), S-methylated thioureas (93), and Ymethylated ureas (89). Gas phase proton affinities for a number of carbonyl compounds are estimated from heats of formation derived from appearance potential data (664). The effect of translational energy on ionmolecule reaction rates has been investigated (580) and reports of measurements of translational energies of ions have been made with a time-of-flight mass spectrometer (562) have been published. The kinetic energy of fragment ions produced by electron impact has been studied with a retarding potential technique (335),and the kinetic energies of ions produced from Kz, CO and S O have been investigated (726). The kinetic energy of the autoionization of helium (344) and the kinetic energy release in metastable transitions (98) have received attention. Kinetic energy transfer in ion-molecule reactions (570), kinetic energies of products of ion-molecule reactions (1399), and the kinetic energy dependence of ion-molecule reaction rates (758) and cross sections (1034) have been determined. The kinetic energy of certain ionized hydrocarbon fragments provide support for the occurrence of some reactions of the Bz+ C + (576). The type kinetic energy distribution of negative ions formed by dissociative attachment has been investigated (316). Many details of molecular photoelectron spectroscopy (1496) are given, and a limit 6.0 the resolving power in photoelectron spectroscopy is discussed (1495). Photoelectron spectra and energetics are given for systems of water, ~
~
-
+
methanol, methane, and ethane (20), acetylene and diacetylene (89), halogens and hydrogen halides (575), and SF6 (574). Molecular photoelectron spectroscopy of the type just cited is not t o be confused with the promising new tool for structure and bonding studies described by various workers (75, 515, 1151) involving X-ray bombardment of solid sampleiB. ANALYTICAL DETERMINATIONS
The status of mass spectrometry in analytical chemistry has been reviewed (948). I n addition, the uses of mass spectrometry in industrial chemical analysis have been discussed (117, 1177). For a long time, the petroleum and petrochemical industries have used mass spectrometry widely (1408). The analysis of petroleum mixtures has continued to receive attention (862), including the applications of high resolution techniques (586). A combination of ozonolysis, gas chromatography, and mass spectrometry has been used for the analysis of coal (168). Mass spectral data for six coal t a r fractions is given (1367), and a method for analyzing coal derivatives and products from the Fischer-Tropsch synthesis is presented (1553). The mass defect of fluorine has been used as an aid in the identification of carboxylic acids in the presence of interfering substances through the yreparation of fluoroalcohol esters of the acids (1451). Mass spectrometric techniques have been used for structure-type analysis of hydrocarbon mixtures (1039), and a simple procedure for preparing epoxides from olefins to determine the positions of double bonds by mass spectrometry is described (36). Oxidation of organic deuterium to DC1 by HgCL with subsequent reduction of the DCl to D2 by zinc has been used for the quantitative mass spectrometric analysis of the deuterium content of aliphatic and aromatic compounds and amino acids (491j , High resolution mass spectrometry was used with low ionizing voltages in analyses of complex mixtures of aromatic compounds (815). Pesticide residues have been examined by mass spectrometry (8%). A procedure for i n vivo recording of partial pressures of gases in blood ha5 been used (1577), and minute amounts of volatile components in tissue respiration have heen detected and identified (1186). Mass spectrometric analysis has been used for the determination of impurities in oxygen (1592), including trace amounts of carbon dioxide (1885). d high-frequency mass spectrometer was used as a flowmeter for gas analysis (1381). A means of increasing the ionization of impurities in a mass spectrometer to give as much as a million-fold increase in sensitivity has VOL. 40, NO. 5, APRIL 1968
281 R
been patented (546). Gettering properties of Na-K alloys for residual gases are discussed (1279). Improved precision of spark source analysis of conducting materials has been noted (566). Spark source mass spectrography has been used to determine N, 0, and H (960) and to analyze TiOa pigments (771). Mass spectroscopy as applied to the analysis of metallic materials has been discussed (437). The use of a spark source mass spectrograph for the analysis of iron and low-alloy steel has been investigated (853),and the correction factors needed in the determination of impurities in solids with this instrumentation are reported (1366). Vacuum-fusion analysis by mass spectrometry was described (53) and used for analysis of gases in iron and steel (831). An ion-microprobe mass spectrometer was used for analytical determination of conductors and insulators (104). The determination of the half life of rubidium-87 has been made using mass spectrometry (1017 ) . Thallium content in the human body may be determined by isotope dilution methods (1553). Kuclear fuel burnup has been investigated by isotope dilution mass spectrometry (556) and reactor fuels analyzed by a combination of thermal ionization mass spectrometry and isotope dilution techniques (1584). Isotope dilution mass spectrometric analysis was used to determine lanthanide fission products (1036) and molybdenum (1037) from nuclear fuels and to determine the fission product xenon distribution in uranium ceramics (390). The extent of presence of Sr, Ba, and Ca in sodium salts has been found using isotope dilution followed by mass spectrometric analysis (1270). The instrumentation and procedures for isotope analysis (1360) and the application of mass spectrometry and isotope analysis in organic chemistry (579) are discussed. Some of the problems in isotope ratio measurements have been reviewed (1162), and the applications of negative ion surface ionization to isotope analysis are described (2492). Mass and abundance data for polyisotopic elements have been presented (299). A method for calculating isotope peak heights in mass spectra (1269) and another for the reduction of multi-isotopic to monoisotopic patterns (218) are described. The isotope peak intensities in the mass spectra of C,H,Ru,O,-type compounds were calculated (697). Peak matching has been employed for isotope ratio measurements (453). h recorder chart-topunched card converter and computer program for isotope analysis by mass spectrometry were developed (305). Techniques for isotope analysis of small samples using both electron and
282 R
ANALYTICAL CHEMISTRY
spark ion source (167) and solid-sample lead analysis using a triple filament (306) were reported. Isotope abundance ratios to (lo8 to 1) were determined using a tandem double-focusing mass spectrometer (1562), and a mass spectrometer for the precise assay of lithium isotopes was described (1423). The possibility of mass discrimination in some measurements of xenon isotopes was noted when slightly higher values for low mass isotopes were recorded using a quadrupole mass spectrometer (246). The absolute isotopic abundance ratios and atomic weights of magnesium (307) and chromium (1361) were determined. Thermionic emission was used for the isotope analysis of uranium (1167) and single isotope analysis using barium fluorosilicate (1019). An isotope analysis of rhenium was performed using a thermal ionization source (1271). Dual collectors were employed for precise strontium isotope abundance measurements (679). Trimethyl borate (1168) and boron trifluoride (7'49) were analyzed for boron isotope content. Various organic and inorganic compounds have been subjected to mass spectrometric analysis for 15N content by evolution of N2 from the compounds under study (634). Various methods of trace analysis have been discussed and compared (1284, 1393), and trace analysis by ion-microprobe mass spectrometry (104) and spark source mass spectrography (456) have been investigated. A description of the instrumentation, procedures, and sensitivities for the determination of trace impurities in metals has been provided (1416), and the determination of trace impurities in metal analysis reported (1058). The trace analysis of geological materials by spark source mass spectrography has been described (I135). Spark source mass spectrography for trace impurity determination in beryllium has been noted (2123) and determination of beryllium at the sub-nanogram level reported (997). Mass spectrometric methods were developed to establish the trace element content of dental tissues (653). An enrichment technique for the determination of trace impurities in hydrogen has been discussed ( i b f f ) and , the use of high pressure mass spectrometry for analysis of trace impurities in helium has been reported (1420). Impurities in mercury and some high purity liquid acids have been determined by spark source mass spectrometry (325). The analytical uses of mass spectrometry in the earth sciences have been reviewed (1180), and the organic sulfur compounds from the Orgueil meteorite have been identified (1117). Miniature mass spectrometers (80, 222), including a double-focusing magnetic mass spec-
trometer (1251), are described. Studies to improve filament lifetimes and to test response of rocket and satellite mass spectrometers to high velocity neutral particles were conducted (1252). The composition of the upper atmosphere has been studied with rocketborne mass spectrometers (684, 685, 1085, 1195), and the results of such investigations are reviewed (1140, 1530). Laboratory measurements of negative ion reactions of atmospheric interest have been conducted (524),and the ionic species of corona discharges in air at atmospheric pressures have been identified by mass spectrometric techniques (1345).
The direct coupling of gas chromatographs to mass spectrometers has continued to be one of the most popular and powerful combinations of tools for the identification and study of compounds that are difficult to isolate in measureable quantities. Such techniques also continue to prove most useful in correlations of molecular structure with mass spectral cracking patterns. One of the most stringent requirements of a mass spectrometer directly linked to a gas chromatograph is that of very rapid scanning. A 60" sector instrument that can scan 26-400 amu in 100 milliseconds (511) and a 180" magnetic instrument capable of scanning 2-100 amu in onetenth second (788) have been described, and the inherent problem of peak distortion due to the iapid scanning has been discussed (97). Another problem of the gas chromatograph-mass spectrometer combination is that of sample introduction into the mass spectrometer. -4comparison of some of the methods used for this sample introduction has been made (992). I n one instance, the gas chromatographic effluent was trapped on charcoal prior to introduction into the mass spectrometer (396). Various gas chromatographic-mass spectrometric combinations have been described (342, 496, 1499, 1524, i 5 2 5 ) , including the use of a small mass spectrometer as a detector for gas chromatographs (249). Ratio recording of mass spectra in a gas chromatograph-mass spectrometer system has been reported (866)and high resolution mass spectrometry has been used on compounds separated by capillary columns (693). The optimized coupling of a gas chromatograph and a mass spectrometer has been discussed (1454). Studies using the gas chromatographmass spectrometer combination have included a-olefins (I462),volatiles from oranges (1456), and pyrolysis products (1170). I n addition, the techniques of gas chromatography and mass spectrometry have been employed together in the investigations of the analysis of petroleum fractions (133), the determination of double bond positions in polyunsaturated fatty acids (I197), and
analysis of the pyrolysis products of isoprene (1171). The mass spectrometric determination of unresolved components in gas chromatographic effluents has been reported (1426). INORGANICS AND ORGANOMETALLICS
The past two years have evidenced a particular growth in the application of mass Spectrometric techniques to the investigation and characterization of inorganic compounds, particularly in the area of organometallic compounds. Those inorganic species that exist in a vaporized state only a t very high temperatures have been noted above. The following brief (and incomplete) mention of recent work on inorganic species a t or near room temperature reflects much of the present efforts in the mass spectrometric studies of inorganic molecules. Because of the rapid growth in this area, no attempt is made here to critically evaluate the data reported by various investigators; rather, some effort has been made to make this portion of the review a fairly complete documentation of recently published work. Xolecular geometry considerations have led to the determination of polarity and infrared geometry from mass spectrometric studies with inhomogeneous electric fields (258). A mass spectrometric molecular beam detector also has been described (1206). The mass spectra of some boranes (444), lower boron hydrides (1570), a boron-permethy 1 closo-carborane (1338), various labeled tetraboranes (1152), triboron pentafluoride (1471), intermediates in the oxidation of B6H9, B4H10, and BH&O (lor), difluorophosphine borane (1287), tetrafluorodiphosphine borane (1099) methylsubstituted borazines (954), and of azomethine derivatives of boron, aluminum, gallium, indium, thallium] and lithium (794, 795, 1535) have been reported, Diborane was pyrolyzed and the various boranes formed were identified by mass spectrometry (116). Kegative ions have been observed from electron impact studies with diborane, tetraborane, and pentaborane-9 (1107). Appearance potentials of halogeno- and amino-boranes have been reported (939). A mass spectrometric study of aluminum chloride (761) is noted. Mass spectra are reported for silane and disilane (706) silane and germane (940), silylarsine (1294, and trigermylphosphine (386), isocyanic acid (1591) hydrazine (1566), PZHz (519), triphosphine (520), phosphorus oxide (675), astatine compounds (44) noble gas compounds (1088), XeOZF2 (756), XeClz (1048), oxyacids of xenon and iodine (1416), nitric acid dimers (1079), OnF and 02F2 (1026), 03Fz (1027), Si2N (1597), and some bromophosphonitriles
(585). A photoionization mass spectrometric study of NO has been made (1260) and the mass spectrum of S ~ isZ given (259). The mass spectrum of Re03N03 (11) suggests the presence of dimeric species in the gas phase. Mass spectral studies of the mixed molecules (Re, Tc)&19 and Re3(Cl1Br)g are described (1272). The mass spectrometry of a number of transition metal compounds has been investigated (4%). hTi(PF& has been studied mass spectrometrically and compared to Ni(C0)d studies (888). A number of investigations of the mass spectra of metal acetylacetonates (970, 991, 1020, 1306), and of fluorinated acetylacetonate complexes (1262) have been made. The mass spectra of a large number of metal complexes have been studied. These include metal oxinates (795), binuclear metal complexes (467, 1240) o-phenylenediamine complexes of Co, Ni, Pd, and Pt (85), metal complexes of cis-112-ethylenedithiolate( 1 7 4 , pyrrolic nickel complexes (612), petroporphyrins (85, 84)I silicon etioporphyrins (215) some halogenated copper phthalocyanines (732), molybdenum phthalocyanine (750) chlorophyll and hemin (165), chlorophyll-c (461),the dimethyl ester of iron(II1) mesoporphyrin-IX chloride (IS&), and other metal chelates (792). High resolution mass spectra of metal chelates have also been reported (466)* Many metal carbonyl and substituted metal carbonyl systems have been examined mass spectrometrically. ilppearance potentials have been reported for studies of Coz(C0)~(157, 159, 1425), Mnp(CO),, (157, 158, 1495) and ReMn(C0)lo (1425), V(CO)a and others (157). Mass spectra reported and discussed include Mn, R u , and Os carbonyl hydrides (809), binary metal carbonyls (157), a polynuclear carbonyl oxide of osmium (811), HFeC03(CO)12 and H R U C O ~ ( C O )(1046), ~~ butatriene iron carbonyls (117.9, two benzyl iron carbonyls (245) polynuclear transitionmetal carbonyls (815, 958), carbonyl halides and thiols (478), manganese pentacarbonyl hydride (479) various substituted metal carbonyls (245), formylcyclopentadienylmanganese tricarbonyl (1472), various metal carbonyls and substituted metal carbonyls (1572) decomposition processes of W(CO)6 under electron impact (287), negative ion spectra of metal carbonyls (1575), Fe3(CO)gS2 (1390), substituted metal carbonyls (876), transition metal carbonyl cyclopentadienyls (1552), doublycharged metal carbonyl ions (1576) polynuclear metal carbonyls, hydrides] and derivatives (874, 1589) nickel carbonyl (1318), bridged nitrosyl complexes of Fe and Co (812), cyclopentadienyl carbonyl iron tetramer (871), transition metal nitrosyl compounds (550) I tris(tetracarbonylcoba1t) tin de]
rivatives (1187) metastable transitions in the mass spectrum of iron pentacarbonyl (1575'), a polynuclear ruthenium carbonyl hydride (782), tricarbonylhexamethylborazole chromium ( l 2 4 1 ) , trinuclear manganese and rhenium carbonyl hydrides (810), [(CFdzCk%Cb(CO)13 (8811, [(CFdzC2]3?Ji4(CO)3(879), binuclear metal carbonyls with phosphorus and sulfur bridges (802), and *-olefin iron tetracarbonyls (1529). X host of cyclopentadienyl metal compounds have been studied mass spectrometrically. Briefly mentioned] these are: isomeric ferrocenes (1385), titanocene and zirconocene chlorides (438), metal cyclopentadienyls (1672), cyclopentadienylvanadium diacetate (872), substituted metal cyclopentadienyls (877), cyclopentadienyl nitrosyl derivatives of molybdenum (873), biscyclopentadienyl metal compounds (1106), metallocene carbinols (48S), ferrocene derivatives (486), pentamethylcyclopentadienyl derivatives of various transition metals (878) isomers of bis(0-hydroxytetramethy1ene)-ferrocene (487), ferrocenyl ester3 (1277), carbonyl-substituted phenyl-ferrocenes (1276), halocyclopentadienyl M n and Re pentacarbonyls (244), ferrocene] benzene cyclopentadienyl manganese] and dibenzene chromium (4ZO), dibenzene chromium and benzene chromium tricarbonyl (1217) biscyclopentadienyltechnetium, hydride (539),halogen compounds of bis(cyclopentadieny1)titanium (583), and cyclopentadienylhydridozirconium borohydride (7'81). Also mass spectra of trisallylrhodium (120) and a number of olefinic and acetylenic derivatives of tungsten (880), and transition-metal *-allyl complexes (119) have been presented and discussed. Interest in organosilicon compounds has caused the mass spectra of many such compounds to be determined. Some of these concern electron impact data on organosilicon molecules (267), appearance potentials of ions from trimethylsilyl compounds (94, 363,364) and the mass spectra and appearance potentials of silylgermane (1296). Mass spectra are given also for various organometallics (341) silazanes (1373), silacyclobutane and silacyclopentane (935), organosilyl and organogermyl complexes of platinum(I1) (606) tetraethynyl-silane and -germane (403) silacycloalkanes (324), and alkylsilanes (323). Mass spectra of other organometallics that have been reported during the period covered by this review include lead tetramethyl (1267), hydrides and alkyls of group IV metals (707), organotin compounds (1156), tetramethyl and tetraethyl compounds of C, Si, Gel Sn, and P b (.dZ2), organometallics of T1, Pt, and Rh (844), (CH3).Sn(C2HS)4-,, compounds (687), isopropyl]
VOL. 40, NO. 5, APRIL 1968
* 283 R
germanes (298), phosphorus-bridged compounds of Cr, Mo, W, Mn, and Fe (814), organo-germanes and -stannaries (310) and plumbanes (311), bis(trimethylgermy1)mercury (477), hexamethylbenzene manganese cyclohexadienyl(540), trifluoromethylarsenic compounds (451) and other organoarsenic compounds (282, 283), triphenyl derivatives of group VA elements (254), phenylmercury thiocyanate (411),methylzinc alkoxide tetramers (22, 2 & ) , transition metal fluorocarbon complexes (875),organosilyl derivatives of Zr, Mo, and W (2I., Fitches, H. J. M., Method. Phys. Anal. 1966, 340. (497) Elliott, R. M., Swift, P., Appl. Spectry. 21, 312 (1967). (498) Eloy, J. F., Dumas, J. I., Method. Phys. Anal. 1966, 251. (499) Elyakov, G. B., Dzizenko, A. K., Elkin, Y. N., Tetrahedron Letters 1966, 141.
(500) Emel’yanov, A. &Gusarov, I., A. V., Gorokhov, L. N., Sadovnikova, N. A., Teor. Eksw. Khim. 3. 226 (1967). (501) Enridne, R. E.,’ Rosen, R:, Znorg. Chim. Acta 1, 169 (1967). (502) Entwistle, I. D., Johnstone, R. A. W., Millard, B. J., J. Chem. SOC.,C 1967, 302. ’ (503) Enzell, C., Arkiv Kemi 26,87 (1967). (504) Enzell, C. R., Tetrahedron Letters 1966, 2133. (505) Enzell, C. R., Ryhage, R., Arkiv Kemi 26,425 (1967). (506) Enzell, C. R., Thomas, B. R., Wahlberg, I., Tetrahedron Letters 1967, 2211. (507) Eppenberger, U Vetter, W., Reichstein, T., Helv. Chim. Acta 49, 1505 (1966). \ _ _ _ _
(508) Ektlinger, ?G., *I Kjaer, . A,, Thompson, C. P., Wagnibres, M., Acta Chem. S c a d . 20, 1778 (1966). (509) Evans, D. A,, Smith, G. F Wahid, ill. A,, J. Chem. SOC.,B 1967,’b90. (510) Evans, H. E., Jennings, P. P., J. Phys. Chem. 70, 1265 (1966). (511) Evans, S., J. Sci. Znstr. 44, 676 (1967). (512) Exsteen, G., Drowart, J., Vander Auwera-Mahieu, A., Callaerts, R., J. Phys. Chem. 71, 4130 (1967). (513) Fabian, D. J., Metals Mater. 1, 27 (1967). (514) Facchetti, S., Copet, A., Beyrich, W., NASA Accession No. N66-31081, Rept. No. EUR 2713.e, 19 pp. (1966). (515) Fadley, C. S., Hagstrom, S. B. M., Hollander, J. AI., Klein, 11.P., Shirley, D. A., Science 157, 1571 (1967). (516) Faizutdinova, Z. S., Yunusov, S. Y., Khim. Prir. Soedin. 3, 260 (1967). (517) Fales, H. X,ANAL.CHEM.38, 1058 11966). -, (518) Farragher, A. L., Page, F. M., Trans. Faraday SOC.62, 3072 (1966). (519) Fehlner, T. P., J . Am. Chem. SOC. 88, 1819 (1966). . (520) Zbid., p. 2613. (521) Ibid., 89, 6477 (1967). (522) Fehsenfeld, F. C., Ferguson, E. E., Schmeltekopf, A. L., J. Chem. Phys. 45, 1844 (1966). (523) Fehsenfeld, F. C., Schrneltekopf, A. L. Ferguson, E. E., Ibid., p. 23. (524) Fehsenfeld, F. C., Schmeltekopf, A. L., Schiff, H. I., Ferguson, E. E., Planetary Space Sci. 15, 373 (1967). (525) Fenner, N. C., Daly, N. R.,Rev. Sci. Znstr. 37, 1068 (1966). 526) Fenselau, C. L. C., “Hydrogen Rearrangements Induced by Electron Impact,” Doctoral Dissertation, Stanford University, Stanford, Calif., 1966, 278 pp., L‘niv. Microfilms Order No. 662552. 527) Ferguson, E. E., Fehsenfeld, F. C., Schmeltekopf, A. L., Am. Chem. SOC., Diu. Fuel Chem. Preprints, Part 1 11, 41 f 1967). 528) ‘Fergkon, E. E., Fehsenfeld, F. C., Schmeltekopf, A. L., J . Chem. Phys. 47, 3085 (1967). (529) FEtizon, M., Collop. Intern. Centre Natl. Rech. Sci. 144, 113 (1966). (530) Feugier, -4.,van Tiggelen, A., Combust. Flame 11. 234 (1967). (531) Field, F. H., Am.‘Chem. SOC.89, 5328 (1967). (532) Field, F. H., Hamlet, P., Libby, W.F., Zbid., p. 6035. (533) Field, F.- H., Munson, >I. S. R., Zbad., p. 4272. (534) Field, F. H., Alunson, 31. S. B., Becker. D. A.. Advan. Chem. Ser. 58. 167 (1966). ‘ (535) Fields, E. K., Meyerson, S., J. Am. Chem. SOC.88, 2836 (1966). (536) Filho, J. 31. F., Gilbert, B., Kitagawa, &I., Leme, L. A. P., Durham, L. J., J. Chem. SOC.,C 1966, 1260. \ - -
~
(,;si)Fine,
J., Scheer, 31. D., J . Chem. Phys. 47, 4267 (1967). (338) Fiirk, It. D., King, Jr., J. S., Ibid. p. 1Yt?7. (,j3!)) Fischer, E. O., Schmidt, hl. W., .\noew. Chem. Intern. Ed. E n d 6 , 93 (1967). (340) Fibcher, E. O., Schmidt, M. W., Chem. Ber. 100, 3782 (1967). (541) Fischer, hI., Djerassi, C., Ibid., 99, 1541 (1966). (34‘2) Fischer, R., Neuert, H., PeuckertKrnus, K., Vogt, D.. Z . Xaturforsch., A 21, 501 (1966). (543) Fisher. I. P.. J. Sci. Znstr. 43, 633 I 1966). ‘ (544) Fisher, I. P., Henderson, E., Trans. Faraday SOC.63, 1342 (1967). (545) Fisher, I. P., Homer, J. B., Roberts, B., Lossing, F. P., Can. J. Chem. 44, 2205 (19663: (546) Fite. W. L.. Snow, W. R.. Rutherford, J. A,,U . g. Patent 3254209 (1966). (347) Flath, R. A., Lundin, R. E., Teranishi, R., Tetrahedron Letters 1966, 295. (548) Flikweert, J. P., Heerma, W., Penders, T. J., Dijkstra, G., Arens, J. F., Rec. Trav. Chim. Pays-Bas 86, 293 (1967). (549) Flowers, W. T., Haszeldine, R. N., Henderson, E., Sedgwick, R. D., Trans. Faraday SOC.62, 1120 (1966). (550) Foffani, A,, Pignataro, S., Distefano, G., Innorta, G., J. Organometal Chem. 7 , 473 (1967). (551) Foner, S. S., Advan. At. Mol. Phys. 2, 383 (1966). (532) Foner, S. N., Hudson, R. L., J. Chem. Phys. 45, 40 (1966). (5.53) Zbid., p. 49. (554) Fontijn, A., Vree, P. H., Eleventh Svmposium (International) on Combustion,.~.343 (555) Fontijn, A., Vree, P. H., J . Phys. Chem. 70. 2071 (1966). (556) Fostgr, E., ‘Fudge, A. J., Steele, C. L., C . K . At. Energy Auth., Res. Group, At. Energy Res. Estab., Rept. AERE-R5310, 37 pp. (1967). (5,57) Foster, N. G., CT. S. Bur. Mines, Rept. Invest. No. 6741, 30 pp. (1966). (568) Franck, B., Banmann, G., Chern. Ber. 99, 3863 (1966). (559) Zbid., p . 3875. (560) Franck, B., Gottschalk, E.-M., Ohnsorge, V.,Huper, F., Chem. Ber. 99, 3842 (1966). (561) Franklin, J. L., Ghosh, P. K., Studniary, s., Am. Chem. SOC.,Diu. Fuel Chem. Preprints, Part 1 1 1 , 24( 1967). (562) Franklin, J. L., Hierl, P. M.,Whan, D. A., J. Chem. Phys. 47, 3148 (1967). (563) Franklin, J. L., Mogenis, A,, J. Phys. Chem. 71, 2820 (1967). (364) Franklin, J. L., Wada, Y., Natalis, P., Hierl, P. >I., Zbid., 70, 2353 (1966). (565) Franz, J. E., Dietrich, hL W., Henshall, A., Osuch, C., J. Org. Chem. 31, 2847 (1966). (566) Franzen, J., Schuy, K. D., 2. Anal. Chem. 225,295 (1967). (567) Franzen, J., Schuy, K. D., 2. Naturforsch., A 21, 1479 (1966). (568) Freeman, N. J., Daly, S . R., Powell, R. E.. Rev. Sci. Znstr. 38.945 (~, 1967). (569) Fremlin, J. II., Nhture 212, 1453 (1966). (570) Friedman, L., Advan. Chem. Ser. 58, 87 (1966). (571) Friedman, L., Leventhal, J. J., Moran, T. F., J. Am. Chem. SOC.88, ,5030 f 1966). (572) Friis, P., Kjaer, A., Acta Chem. Scand. 20, 698 (1966). (573). Fritz, H., Budzikiewicz, H., Djerassi, C., Chem. Ber. 99, 35 (1966). (574) Frost, D. C., ?*lcDowell, C. A,, Sandhu, J. S., Vroom, D. A,, J . Chem. Phys. 46, 2008 (1967). \ - -
~
(575) Frost, D. C., McDowell, C. A., Vroom. I).A.. Ibid.. D. 4255. (576) Fu‘chs, R’., 2. xaturforsch., A 21, 2069 (1966). (577) Fueki, K., Mass Spectry. (Japan) 14, 241 (1966). (578) Fueno, T., Kagaku To Kogyo (Tokyo) 19, 696 (1966). (579) Fujisaki, H., Westmore, J. B., Tickner, A. W., Can. J . Chem. 44, 3063 (1966). (580) Futrell, J. H., Abramson, F. P., Advan. Chem. Ser. 58, 107 (1966). (581) Futrell, J. H., Miller, C. D., Rev. Sci. Znstr. 37, 1521 (1966). (582) Gahagan, H. E., hlumma, R. O., Chem. Znd. (London) 1966, 1967. (583) Gaines, A. F., Page, F. M., Trans. Faraday SOC.62, 3086 (1966). (584) Gallegos, E. J., J. Phys. Chem. 71, 1647 (1967). (585) Gallegos, E. J., Green, J. W., Lindeman, L. P., LeTourneau, R . L., Teeter, R. %I.,ANAL.CHEM.39, 1833 (1967). (586) Gallegos, E. J., Klaver, R. F., J . Sci. Instr. 44, 427 (1967). (587) Garvin, D., Rosenstock, H. M., J . Chem. Doc. 7 , 31 (1967). (588) Gassman, P. G., Fentiman, A., J. Org. Chem. 32, 2388 (1967). (589) Gaudiano, G., Bravo, P., Quilico, A., Golding, B. T., Rickards, R. W., Gam. Chim. Ztal. 96, 1470 (1966). (590) Gaudin, A,, Hagemann, R., J . Chim. Phys. 63, 917 (1966). (591) Gaver, R. C., Sweeley, C. C., J . Am. Chem. SOC.88, 3643 (1966). (592) Gay, I. D., Glass, G. P., Kern, R . D., Kistiakowsky, G. B., J . Chem. Phys. 47, 313 (1967). (593) Gebelt, R. E., Eick, H. A., J. Chem. Phys. 44, 2872 (1966). (594) Geiger, U. P., Weiss, E., Reichstein, T., Helv. Chim. Acta 50, 194 (1967). (59.5) Gelpi, E., Orb, J., ANAL.CHEM.39, 388 (1967). (596) Genxel, H., Osberghaus, O., 2. Naturforsch., .A 22, 331 (1967). (597) Giannotti, C., Das, B. C., Lederer, E., Bull. Soc. Chim. France 1966, 3299. (598) Giannotti, C., Das, B. C., Lederer, E., Chem. Commun. 1966, 28. (599) Giardini-Guidoni, A , , Friedman, L., J . Chem. Phys. 45, 937 (1966). (600) Gibson, G. K. J., Lindsey, A. S., Paisley, H. ?*I., J. Chem. SOC.,C 1967, 1792. (601) Gillis, R. G., Occolowitz, J. L., Tetrahedron Letters 1966, 1997. (602) Gingerich, K. A., J . Chem. Phys. 44, 1717 (1Qfifi) ,- - --,. (603) Gingerich, K. A., Naturwissenschaften 53, 525 (1966). (604) h i d . , 54, 43 (1967). (605) Glen, A. T., Lawrie, W., McLean, J., Younes, M. E.-G., J . Chem. SOC.,C 1967, 510. (606) Glockling, F., Hooton, K. A., J . Chem. SOC.,A 1967, 1066. (607) Gohlke, R. S., Langer, H. G., Anal. Chim. Acta 36, 530 (1966). (608) Gold, E. H., Ginsburg, D., J. Chem. Soc., C 1967, 19. (609) Goldsmith, D., Becher, D., Sample, S., Djerassi, C., Tetrahedron, Suppl. No. 7, 145 (1966). (610) Goldsmith, D. J., Djerassi, C., J. Org. Chem. 31, 3661 (1966). (611) Golovkina, L. S., Chizhov, 0. S., T‘ul’fson, K. S., Izv. Akad. Nauk SSSR, Ser. Khim. 1966. 1915. (612) Gorfinkel, hk. I., Koptyug, V. A., zzv. Sibirsk. Otd. Akad. Xauk SSSR, Ser., Khim. Sauk No. 1, 109 (1967). (613) Goto, T., Tatematsu, A., Hat?, y., Nuneyuki, R., Tanida, H., Tori, K., Tetrahedron 22, 2213 (1966). (614) Govindachari, T.R., F’iswanathan, N., Pai, B. R., Rao, U. R., Srinivasan, M., Ibid., 23, 1901 (1967).
(615) Grande, R. E., Watters, R. L., Hudson, J. B., J . Vac. Sci. Technol. 3 . 329 (19661. (616) Grayson; M. A., Wolf, C. J., ANAL. CHEM.39, 1438 (1967). (617) Green, A. E. S., Dutta, 9. K., J . Geophys. Res. 72, 3933 (1967). (618) Green, M. M., Djerassi, C., J. Am. Chem. SOC.89, 5190 (1967). (619) Green, M. M., Weinberg, D. S., Djerassi, C., Zbid., 88, 3883 (1966). (620) Greenhaus, H. L., “Negative Ion Formation by Electron Impact, in Some Perfluoroalkanes,” Doctoral Dissertation, Rensselaer Polytechnic Institute, Troy, N. Y., 1968, 220 pp., Univ. Microiilms Order No. 66-7584. (621) G;igg, R., Jakobsen, H. J., Lawesson, S.-O., Sargent, M. V., Schroll, G., Williams, D. H., J. Chem. SOC., B 1966, 22 1
(6%f’Grigg, R., Johnson, A. W., Richardson, K., Shelton, K. W., Chem. Commun. 1967. 1192. (623) Grigg,’ R., Knight, J. A., Sargent, M. V., J . Chem. SOC.,C 1966, 976. (624) Grigg, R., Odell, B. G., J. Chem. soc., B 1966, 218. (625) Grimley, R. T., Burns, R. P., Inghram, M. G., J. Chem. Phys. 45, 4158 (1966). (626) Grostic, &I. F., Wnuk, R. J., MacKellar, F. A., J. Am. Chem. SOC. 88, 4664 (1966). (627) Grundon, M. F., McGarvey, J. E. B., J. Chem. SOC.,C 1966, 1082. (628) Grutzmacher, H.-F., Deut. Apotheker-Zto. 106. 377 (1966). (629) Ghitzmacher, ‘ H.-F., Arnold, W., Tetrahedron Letters 1966, 1365. (630) Grutzmacher, H.-F., Hevns. K.. Ann. 698, 24 (1966). (631) Grutzmacher, H.-F., Lohmann, J., Zbzd., 705. 81 (1967). (632) Grutzmacher, 8.-F., Winkler, J., Heyns, K., Tetrahedron Letters 1966, 6051. (633) Guinand, M., Vacheron, M. J., Michel, G., Das, B. C., Lederer, E., Tetrahedron,Suppl. No. 7, 271 (1966). (634) Gunther, H., Floss, H. G., Simon, H., 2. Anal. Chem. 218, 401 (1966). (635) Gupta, S. K., Jones, E. G., Harrison, A. G., Myher, J. J., Can. J . Chem. 45, 3107 (1967). (636) Gupta, S. K., Porter, R. F., J. Phys. Chem. 70, 871 (1966). (637) Gusarov, A. V., Gorokhov, L. N., Elec. MHD (iMagnetohydrodyn.), Proc. Symp., Salzburg, Austria 3, 89 (1966). (638)oGustafsson, B. E., Gustafsson, J.-A., Sjovall, J., Acta Chem. Scand. 20, 1827 (1966). (639) Guthrie, R. D., McCarthy, J. F., J . Chem. SOC.,C 1966, 1207. (640) Gutman, D., Belford, R. L., Hay, A. J., Pancirov, R., J . Phys. Chem. 70, 1793(1966). (641) Gutman, D., Hay, A. J., Belford, R. L.. Zbid.. 1786 (19661. ~, (642) Gutmiller, J., Djerassi, C., Helv. Chim. Acta. 49,2108 (1966). (643) Habermehl, G., Chem. Ber. 99, 1439 (1966). (644) Habermehl, G., Spiteller, G., 4 n n . 706, 213 (1967). (645) Haddon, W. F., Chait, E. XI.,LfcLafferty, F. W.,ANAL.CHEM.38, 1968 (1966). (646) Hagan, P. J., de Laeter, J. R., J . Sci. Instr. 43, 662 (1966). (647) Hall, E. S., McCapra, F., Money, T., Fukumoto, K., Hanson, J. R., Xootoo, B. S., Phillips, G. T., Scott, A. I., Chem. Commun. 1966, 348. (648) Hall, E. S., AlcCapra, F., Scott, A. I., Tetrahedron 23, 4131 (1967). (649) Hall, R. hI. S., J. Chem. SOC.7, 18(1967). “
I
’
VOL 40, NO. 5, APRIL 1968
293 R
I
(650) Halmann, M., Platzner, I., J . Phys. Chem. 71. 4522 (1967). (651) Hanissian, S., J‘. Org. Chem. 32, 163 (1967). (652) Harden, C. S., “Formation of Negative Ions by Surface Ionization,” Doctoral Dissertation, The University of Florida, Gainesville, 1966, 45 pp., Univ. Microflms ,Order No. 67-3477. (653) Hardwick, J. L., Martin, C. J., Helv. Odontol Acta 11, 62 (1967). (654) Harley-Mason, J., Toube, T. P., Williams, D. H., J . Chem. SOC.,B 1966, 396. (655) Harllee, F. N., Rosenstock, H. hl., Herron, J. T., Natl. Bur. Std. ( U . S,), Tech. iCbte No. 291, 38 pp, (1966). (656) Harrington, W. L., “Quantitative Aspects of Spark Source Mass Spectrometry,” Doctoral Dissertation, Corne11 University, Ithaca, N. y., 1966, 108 pp., Univ. Microfilms Order N o . 6611,036.
(657) Harrington, W. L., Skogerboe, R. K., Morrison, G. H., ANAL.CHEM. 38, 821 (1966). (658) Harris, H. H., “The Study of Collision-Induced Phenomena with a Dempster-Type Mass Spectrometer,” Doctoral Dissertation Michigan State University, E. Lansing, 1967, 93 pp., Univ. Microfilms Order iVo. 67-10,528. (659) Harris, H. H., Russell, M. E., J . Chem. Phys. 47, 2267 (1967). (660) Ibid.,, p. 2270. (661) Harris, R. L. N., Komitsky, F., Jr., Djerassi, C., J . Am. Chem. SOC. 89, 4765 (1967). (662) Zbid.,. p. 4775. (663) Harrison, A. G., Ivko, A., Shannon, T. W., Can. J . Chem. 44, 1351 (1966). (664) Harrison, A. G., Ivko, A., Van Raalte, D., Zbid., p. 1625. (665) Harrison, A. G., Jones, E. G., Gupta, S. K., Nagy, G. P., Ibid., p. 1967. (666) Harrison, A. G., Myher, J. J., J . Chem. Phys. 46, 3276 (1967). (667) Harrison, A. G., hlyher, J. J., Thvnne, J. %. J., Advan: Chem. Ser; 58,- 1.50 (1966). ’ (668) Harrison, A. G., Thynne, J. C. J., Can. J . Chem. 45, 1321 (1967). (669) Harrison, A. G., Thynne, J. C. J., Trans. Faraday SOC.62, 2804 (1966). (670) Ibid., p. 3345. (671)Hartwell, G. E., Brown, T. L., Znorg. Chem. 5, 1257 (1966). (672) Harvey, G. R., Ratts, K. W., J . Org. Chem. 31, 3907 ( 1966). (673) Hashizume, A, Wasada, N., Tsuchiya, T., Bull. Chem. SOC. Japan 39, 150 (1966). (674) Haelam, E., Carbohydrate Res. 5 , 161 (1967). (675) Haslam, E., J . Chem. SOC.,C 1967, 1734. (676) Hassall, C. H., Thomas, J. O., Tetrahedron Letters 1966, 4485. (677) Hastie, J. W., Bloom, H., Morrison, J. D., J . Chem. Phys. 47, 1580 (1967). (678) Haszeldine, R. N., Tipping, A. E., J . Ckem. SOC.,C 1966, 1236. (679) Hayatsu, A., Farquhar, R. M.,J . Sci. Instr. 44, 141 (1967). (680) HaTFurst, A. N.,in “The Alkali Metals, Chem. SOC.(London) Special Publ. AVO. 22, pp. 13946 (1967). (681) Hayhurst, A. N., Padley, P. J., Trans. Faraday SOC. 63, 1620 (1967). (682) Hayhurst, A. N., Sugden, T. hf., Proc. Roy. SOC.,Ser. A 293, 36 (1966). (683) Haynes, R. M., Kebarle, P., J . Chem. Phys. 45, 3899 (1966). (684) Hedin, A. E., “A Determination of the Xeutral Composition, Density, and Temperature of the Upper Atmosphere from 120 to 200 Kilometers with RocketBorne Mass Spectrometers,” Doctoral Dissertation, Gniversity of Minnesota, ’
294 R
ANALYTICAL CHEMISTRY
hlinneapolis, 1966, 141 pp., Uniu. Microfilms Order N o . 66-12,206. (685) Hedin, A. E., Nier, A. O., J . Geophys. Res. 71, 4121 (1966). (686) Heinecke, K., 2. Znstrumentenk. 74, 242 (1966). (687) Heldt, E., Hoeppner, K., Krebs, K. H., 2. Anorg. Allgem. Chem. 347, 95 (1966). (688) Henchman, AI. J., Ann. Rept. Progr. Chem. (Chem. SOC.London) 62, 39 (1965) (Pub. 1966). (689) Henderson, E., Riley, P. N. K., Sedgwick, R. D., J . Sci. Instr. 43, 726 (1966). (690) Henderson, W. R., Mentall, J. E., Fite, W. L., J . Chem. Phys. 46, 3447 (1967). (691) Hendricker, D. G., J . Heterocyclic Chem. 4, 385 (1967). (692) Henglein, A,, Advan. Chem. Ser. 58, 63 (1966). (693) ’Henneberg, D., ANAL.CHEM.38, 495 (1966). (694) Henneberg, D., 2. Anal. Chem. 221, 321 (1966). (695) Henneberg, D., Casper, K., Zbid., 227, 241 (1967). (696) Henneberg, D., Schomburg, G., Ibid., 220, 192 (1966). (697) Herlan, A., Brennst.-Chem. 47, 150 (\-l__,. I Qfifi).
(698) Herman, Z., Kerstetter, J. D., Rose, T. L., Wolfgang, R., J . Chem. Phys. 46, 2844 (1967). (699) Herron, J. T., Ibid., 45, 1854 (1966). (700) Herron, J. T., J . Phys. Chem. 70, 2803 (1966). (701) Hertel, G. R., J . Chem. Phys. 47, 133 (1967). (702) Ibid., p. 335. (703) Hertel, I., Ottinger, C., 2. Naturforsch., A 22, 40 (1967). (704) Zbid., p. 1141. (705) Herzog, L. F., 11, Mineral Znd., Penn. State Univ. 36, 1 (1966). (706) Hess, G. G., Lampe, F. W., J . Chem. Phys. 44, 2257 (1966). (707) Hess, G. G., Lampe, F. W., Yergey, A. L., Ann. N . Y . Acad. Sci. 136, 106 (1966). (708) -Hesse, &I., Fortschr. Chem. Forsch. 8, 608 (1967). (709) Hesse, AI., Helv. Chim. Acta 50, ( 42 (1967). (710) Hesse, M., Bild, N., Schmid, H., Ibid., p. 808. Ibic (711) Hesse, M., Bodmer, F., Schmid,, H.,. Ibid., 49, 964 (1966). (712) Hesse, M., Renner, U., Zbid., p. 187.5. (713) Hesse, M., Schmid, H., Ann. 696,85 (1966). (714) Heyns, K., Staerke 18, 261 (1966). (715) Heyns, K., Baltes, W., Chem. Ber. 99, 3477 (1966). (716) Heyns, K., Grutzmacher, H. F., Fortsch. Chem. Forsch. 6 , 536 (1966). (717) Heyns, K., Grutzmacher, H. F., Scharmann, H., Muller, D., Ibid., 5,448 (1966). (718) Heyns, K., Kiessling, G., Muller, D., Carbohydrate Res. 4, 452 (1967). (719) Heyns, K., Muller, D., Tetrahedron Letters 1966, 449. (720) Ibid., p. 617. (721) Ibid., p. 6061. (722) Heyns, K., Muller, D., Stute, R., Paulsen, N., Chem. Ber. 100, 2664 (1967). (723) Heyns, K., Scharmann, H., Carbohydrate Res. 1, 371 (1966). (724) Heyns, K., Scharmann, H., Chem. Ber. 99, 3461 (1966). (725) Heyns, K., Stute, R., Scharmann, H., Tetrahedron 22, 2223 (1966). (726) Hierl, P. hl., Franklin, J. L., J . Chem. Phys. 47, 3154.(1967). (727) Higgins, W., Jennings, K. R., Trans. Faraday SOC.62, 97 (1966). ,
(728) Hikita, T., Tsuchiya, S., Sueyasu, S., Ishihara, F., Fujii, N., Tanaka, C., Yamaguchi, F., Mass Spectry. (Japan) 14, 157 (1966). (729) Hildenbrand, D. L., Murad, E., J. Chem. Phys. 44, 1524 (1966). (730) Hill, H. A. O., Norgett, M. M., J . Chem. SOC.,A 1966, 1476. (731) Hill, N. C., “Introduction to Mass Spectrometry,” Heyden and Son, Ltd., London, 1966, 135 pp. (732) Hill, N.C., Reed, R. I., Appl. Spectry. 21, 122 (1967). (733) Ninge, V. K., Paknikar, S. K., Das, K. G., Bose, A. K., Bhattacharyya, S. C., Tetrahedron 22, 2861 (1966). (734) Hirota, K., Hatada, M., Kinetika i. Kataliz 8, 748 (1967). (735) Hirota, K., Hatada, >I., Nippon. Hoshasen Kobunshi Kenkyu Kyokaz Nempo 7, 175 (1965-1966). (736) Hirota, K., Hatada, AI., Sci. Papers Znst. Phys. Chem. Res. (Tokyo) 60, 78 (1966). (737) Kites, R. A., Biemann, K., ANAL. CHEM.39, 965 (1967). (738) Hoffman, D. R., J . Org. Chem. 31, 792 (1966). ~----,(739) Hoffman, S., Weiss, E., Reichstein, T., Helv. Chim. Acta 49, 1855 (1966). (740) Hoffmeister, H., Grutzmacher.’ H.-F., Tetrahedron Letters 1966, 4017. (741) Hogg, A. RI., Haynes, R. >I., Kebarle, P., J . Am. Chem. SOC.88, 28 (1966). ~~.-.,
(742) Holman, R. T., Deubig, M.,Hayes, H., Lipids 1, 247 (1966). (743) Holtzman, J., Gillette, J. R., Milne, G. W. A.. J . Am. Chem. Soc. 89. 6341 (1967). (744) Homer, J. B., Lehrle, R. S., Robb, J. C., Thomas, D. W.,Trans. Faraday SOC.62, 619 (1966). (745) Homer, J. B., Lossing, F. P., Can. J . Chem. 44, 2211 (1966). (746) Honig, R. E., Ann. LV. Y . Acad. Sci. 137, 262 (1966). (747) Honig, R. E., Woolston, J. R., Kramer, D. A., Rev. Sci. Instr. 38, 1703 (1967). (748) Hooper, J. W., Lineberger, W. C., Bacon, F. M., Phys. Rev. 141, 165 (I!’““ (749
I
(754) Huneck, S., 2. Naturforsch., B 22, 462 (1967). (755) Hunt, &I. H., ANAL.CHEM.38, 620 (1966). (756) Huston, J. L., J . Phys. Chem. 71, 3339 (1967). (757) Hiittner, G., Fischer, E. O., J . Organometal. Chem. 8, 299 (1967). (758) Hyatt, D. J., Dodman, E. A,, Henchman, AX. J., Advan. Chem. Ser. 58, 131 (1966). (759) Hynes, J. B., Bishop, B. C., Bigelow, L. A., Inorg. Chem. 6 , 417 (1967). (760) Hynes, J. B., Price, R. C Brey, W. S., Jr., Perona, hl. J., Pr‘kchard, G. O., Can. J . Chem. 45, 2278 (1967). (761) Ibuka, T., Irie, H., Kato, A., Uyeo, S., Kotera, K., Nakgawa, Y., Tetrahedron Letters 1966, 4745. (762) Imanaka, T., Bull. Chem. Soc. Japan 40, 2182 (1967). (763) Imbach, J.-L., Doomes, E., Cromwell, pu’. H., Baumgarten, H. E., Parker, R. G., J. Org. Chem. 32, 3123 (1967). (764) Inhoffen, H. H., Fuhrhop, J.-H., von der Haar, F., Ann. 700,92 (1966).
(765) Inoue, Ll., J . Chim. Phys. 1966, 1061. (766) Itagaki, Y., Kurokawa, T., Sasaki, S.. Chane. C.-T.. and Chen. F.-C.. Bill. Cheti. SOC.Japan 39, 538 (1966): (767) Jackson, A. H., Kenner, G. W., Budzikiewicz, H., Djerassi, C., Wilson, J. Ai., Tetrahedron 23.603 (1967). (768) Jackson, A. N.,'hIartin, J. A., J . Chem. Soc.. C 1966. 2181. (769) Jackson, B., ' Locksley, H. D., Scheinmann, F., Zbid., 1967, 785. (770) Jackson, B., Locksley, H. D., Scheinmann, F., Wolstenholme, W. A., Tetrahedron Lelters 1967, 3049.' (771) Jackson, P. F. S., Whitehead, J., Analyst (London) 91, 418 (1966). (772) Jackson, P. F. S., Whitehead, J., Vossen, P. G. T., ANAL.CHEM.39, 1737 (1967). (7i3) Jacobs, T. L., Mihailovski, A., Tetrahedron Letters 1967, 2607. (774) Jacobson, A. T., J . Org. Chem. 31, 1569 (1966). (775) Jaeggi, K. A., Weiss, E., Wehrli, W., Reichstein, T., Helv. Chim. Ada 50, 1201 (1967). (776) Jager, K., Henglein, A., Z. Katurjorsch., A 21, 1251 (1966). (777) Zbid., 22, 700 (1967). (778) Jager, K., Simic, AI., Henglein, A. Ibid., p. 961. (779) Jakobsen, H. J., Lawesson, S.-O., Mar.shall, J. T. B., Schroll, G., Williams, 1). II., J . Chem. SOC.,B 1966, 940. (780) Jakobsen, H. J., Schroll, G., Lawesson, Y.-O., Lightner, L). A,, Duffield, A. AI., Djerassi, C., .4rkiv Kemi 26, 199 ( 1 Mi). (781) James, B. D., Nanda, R. K., Wallbridge, Af. G. H., Znorg. Chem. 6, 1979 (1967). (782) Jamieson, J. W. S., Kingston, J. V., Wilkinson, G., Chen;. Commun. 1966, ,569. ( 7 8 i ) Janik, G. S., Conway, D. C., J . Phys. Chem. 71, 823 (1967). (784) Jaiiot, AI.-ll., Longevialle, P., Gotitarel, It., Bull. SOC.Chini. France 1966, 1212. (785) Janot, hI.-,11., Lufinchi, X., Labler, L., and Goutarel, R., Zbzd., p. 3276. (786) Janot, AI.-pII., Aionneret, C., Monsertr, X., Khuong-Huu, Q., Goutarel, R., Ibzd., p. 3472. (787) Jayaram, R., "Mass Spectrometry," Plenum Press, New York, 1966, 223 pp. (788) Jefferies, D. K., J . Sci. Znstr. 44,587 11967). (7&) Jefferson, W. E.,Jr., Biochemistry 6 , 3479 (1967). (790) Jellum, T., Tidsskr. Kjemi, Bergvessen Met. 27, 85 (1967). (i91) Jenckel. L.. German Patent 1214437 \ - - -
I
(ih)Jenkins, A. E.,blajer, J. R., Ta(anta 14 , 777 (1967). (793) Jen kins, A. E.,Majer, J. R., Reade, A i . J. A.,Zbid., p . 121:3.
(794) Jennings, J. R., Pattison, I., Wade, K., Wyatt,-B'. K., J . Chem. Soc., A 1967, 1608. (793) Jennings, J. R., Wade, K., Zbid., p. 1333. (796) Jennings, K. R., Chem. Commun. 1966, 283. (797) Jennings, K . R., Z. Naturjorsch., A 22, 4.54 (1967). (798) Jennings, K. R., Futrell, J. H., J . Chem. Phys. 44, 4315 (1966). (799) Jennings, K. R., Whiting, A. F., C h m . Conimun. 1967, 820. (800) Jensen, K. A., Holm, A., Wentrup, C., Mdler, J., Acta Chem. Scand. 20, 2107 (1066). (801) Job, B. E.,Chem. Commun. 1967, 44. (802) Job, B. E., McLean, R. A. N., Thompson, D. T., Zbid., 1966, 895.
(803) Johns, S. R., Lamberton, J. A., Occolowiiz, J. L., Australian J. Chem. 19, 1951 (1966). (804) Zbid., 20, 1463 (1967). (805) Johnson, A. J., Kozy, A., Morris, R. N., AEC Accession No. 40816, Rept. KO.RFP-699, 33 pp. (1966). (806) Johnson, A. L., Simmons, H. E., J. Am. Chem. SOC.89, 3191 (1967). (807) Johnson, A. P., Pelter, A., J . Chem. SOC.,C 1966, 606. (808) Johnson, A. P., Pelter, A., Stainton, P., Zbid., p. 192. (809) Johnson, B. F. G., Johnston, R. D., Lewis, J., Robinson, B. H., Chem. Commun. 1966, 851. (810) Johnson, B. F. G., Johnston, R. D., Lewis, J., Robinson, B. H., J . Organometal. Chem. 10, 105 (1967). (811) Johnson, B . F. G., Lewis, J., Williams, I. G., Wilson,. J.,. Chem. Commun. 1966,'391.
(812) Johnson, B.,F. G.,Lewis, J., Williams. I. G.. Wilson. J. M.. J. Chem. SOC..A 1967: 338. ' (813) ?bid., p. 341. (814) Johnson, B. F. G., Lewis, J., Wilson, J. M., Thompson, D. T., Zbid., p. 1445. (815) Johnson,-B. 'H., Aczel, T.; ANAL. CHEM.39, 682 (1967). (816) Johnson, C. B., Holman, R. T., Lipids 1 , 371 (1966). (817) Johnstone, R. A. W., Millard, B. J., J . Chem. SOC.,C 1966, 1955. (818) Johnstone, R. A. W.. Millard, B. J.. ~ . ' ~ u t u r f o r s c hA. ,21, 604 (1966j. (819) Johnstone, R. A. W., Millard, B. J., Dean, F. M., Hill, A. W., J. Chem. SOC., C 1966, 1712. (820) Johnstone, R. A. W., Millard, B. J., Millington, D. S., Chem. Commun. 1966, 600. (821) Johnstone, R. A. W., Millard, B. J., Wise, E. J., Carruthers, W., J . Chem. SOC.,C 1967, 307. (822) Johnstone, R. A. W., Payling, D. W., Prox, A., Chem. Commun. 1967, 826. (823) Jones, A., Lossing, F. P., J . Phys. Chem. 71, 4111 (1967). (824) Jones; D. F., J . C'hem. Soc., C 1967, 479. -. -.
(825) Jones, E.G.,Harrison, A. G., Can. J . Chem. 45, 3119 (1967). (826) Jones. J. I.. Paislev. " , H. M.. Chem. ' Commun.'1967,'128. (827) Jorg, J., Houriet, R., Spiteller, G., Monatsh. Chem. 97, 1064 (1966). (828) Joynt, V. P., Arndt, R. R., Jordaan, A., Biemann, K., Occolowitz, J. L., J . Chem. SOC.,B 1966. 980. (829) Kaiser, E.M., 'Work, S. D., Wolfe, J. F., Hauser, C. R., J . Org. Chem. 32, 1483 (1967). (830) Karnetani, T., Shibuya, S., Kibayashi, C., Sasaki, S., Tetrahedron Letfers 1966, 3215. (831) Kammori,. O., Yamaguchi, N.,. Kanno, H., Azppon Kinzoku Gakkazshz 31, 679 (1967). (832) Kaneko, Y., Megill, L. R., Hasted, J. B., J . Chem. Phys. 45, 3741 (1966). (833) Kant, A., Zbid., 44, 2450 (1966). (834) Kant, A., Strauss, B., Zbid., 45, 3161 (1966). (835) Kantner, T. R., Mumma, R. O., Residue Rev. 16, 138 (1966). (836) Karachevtsev, G. V., Tal'roze, V. L., Kinetika i Kataliz 8,5 (1967). (837) Ibid., p. 447. (838) Karanjgaokar, C. G.,Radhakrishnan, P. V., Venkataraman, K., Tetrahedron Letters 1967, 3195. (839) Karliner, J., "A Mass Spectrometric Investigation of Some Organic Molecules: Part I : Mass Spectral Fragmentation Patterns and Hydrogen Transfer
Reactions of 8-Hydrindanones, Part 11: The Electron Impact Induced Elimination of Water from 3-Hydroxy Steroids. Part 111: Mass Spectral and Nuclear Magnetic Resonance Studies of Pentacyclic Triter enes," Doctoral Dissertation, Stanford fJniversity, Stanford, Calif., 1966, 121 pp., Univ. Microfilms Order No. 66-8626. (840) Karliner, J., Budzikiewicz, H., Djerassi, C., J. Org. Chem. 31, 710 (1966). (841) Karliner, J., Djerassi, C., Zbid., p. 194.5.
(842)-Karlsson, K.-A., Acta Chem. Scand. 20, 2884 (1966). (843) Kasymov, S. Z., Yuldashev, P. K., Yunusov, S. Y., Khim. Prirodn. Soedin., Akad. Na,uk Uz. S S R 2,260 (1966). (844) Katz, T.J., Mrowca, J. J., J. Am. Chem. SOC.89, 1105 (1967). (845) Kawano, N.,Inouye, N., J. Phys. Chem. 71, 712 (1967). (846) Kay, J., Page, F. M., Trans. Faraday SOC.62, 3081 (1966). (847) Kebarle, P., Collins, G. J., Haynes, R. M., and Scarborough, J., Amer. Chem. SOC.,Diu. Fuel Chem. Preprints, Part 1 11, 66 (1967). (848) Kebarle, P., Haynes, R. M., J . Chem. Phys. 47, 1676 (1967). (849) Kebarle, P., Haynes, R. M., Collins, J. G., J . Am. Chem. SOC.,89, 5753 (1 \ -967). - _ .,.
(850) Kebarle, P., Haynes, R. M., Searles, S., Advan. Chem. Ser. 58,210 (1966). (851) Kebarle, P., Haynes, R. M., Searles, S. K., J . Chem. Phys. 47, 1684 (1967). (852) Kebarle, P., Searles, S. K., Zolla, A., Scarborough, J., and Arshadi, M., J. Am. Chem. SOC.89,6393 (1967). (853) Keene, B. J., Talanta 13. 1443 ( 1966). (854) Kendall, B. R. F., J. Sci. Znstr. 43, 215 (1966). (855) Kendall, R. F., Eccleston, B. H., U . S. Bur. Mines, Rept. Invest. No. 6854, 107 pp. (1966). (856) Kennett, B. H., ANAL.CHEM.39, 1506 (1967). (857) Kennicott, P. R., Zbid., 38, 633 (1966). (858) Kent, R. A., McDonald, J. D., Margrave, J. L., J . Phys. Chem. 70, 874 ( 1966). (859) Kessler, T. Friedel, R. A,, Sharkey, A. G., Jr., U . S. Bur. Mines Rept. Znvest. No. 6951, 11 pp. (1967). (860) Kessler, T., Sharkey, A. G., Jr., Hickam, W. M., Sweeney, G. G., Appl. Spectry. 21, 81 (1967). (861) Khan, Z. M.,Hesse, M., Schmid, H., Helv. Chim. A d a 50, 1002 (1967). (862) Khmel'nitskii, R. A., Polyakova, A. A., Khavkin, V. A., Osipov, L., Khim. Tekhnol. Topl. Masel. 12, 56 (1967). (863) Khmel'nitskii, R. A., Terent'ev, P. B., Polyakoa, A. A., Kost, A. N., Dokl. Akad. Nauk SSSR 167, 1066 (1966). (864) Kiang, A. K., Tan, E. L., Lim, F. Y., Habaguchi, K., Nakanishi, K. Fachan, L., Ourisson, G., Tetrahedron Letters 1967, 3571. (865) Kieffer, L. J., Natl. Bur. Std. ( U . S.) Misc. Publ. No.289, 87 pp. (1967). (866) Kieffer, L. J., Dunn, G. H., Rev. Mod. P h p . 38, 1 (1966). (867) Kieffer, L. J., Van Brunt, R. J., J . Chem. Phys. 46, 2728 (1967). (868) King, A. B., Zbid., 47, 2701 (1967). (869) King, I. R., Kirby, G. W., J . Chem. SOC..C 1966. 1334. (870) King, L'R., Scheurich, J. T., Rev. Sci. Znslr. 37, 1219 (1966). (871) King, R.. B., Zn'org. Chem. 5, 2227 (1966). (872) Zbid., p. 2231. VOL 40, NO. 5 , APRIL 1968
e
295 R
(873) Zbid., 6, 30 (1967). (874) Kina. R. B., J . Am. Chem. SOC.88. ‘ 2075 (1G6). ’ (875) Zbid., 89, 6368 (1967). (876) King, R. B., J . Organometal. Chem. 8, 139 (1967). (877) King, R. B., Bisnette, M. B., Znorg. Chem. 6,469 (1967). (878) King, R. B., Bisnette, AI. B., J . Organumetal. Chem. 8, 287 (1967). (879) King, R. B., Bruce, M.I., Phillips, J. R., Stone, F. G. A., Znorg. Chem. 5, 684 (1966). (880) King, R. B., Fronzaglia, A., Zbid., p. 1837. (881) King, R. B., Korenowski, F. T., Chem. Commun. 1966, 771. (882) Kingston, D. G. I., Lord Todd, Williams, D. H., J . Chem. SOC.,C 1966, 1669. (883) Kinstle, T. H., Munta, R. L., Tetrahedron Letters 1967, 2613. (884) Kinstle, T. H., Stark, R. E., J . Org. Chem. 32, 1318 (1967). (885) Kinstle, T. N., Wildman, W. C., Brown, C. L., Tetrahedron Letters 1966, 4659. (886) Kiryushkin, A. A., Burikov, V. &I., Rosinov, B. V., Zbid., 1967, 2675. (887) Kiryushkin, A. A., Ovchinnikov, Y. A., Shemyakin, M. AI., Bochkarev, V. N., Rozinov, B. V., Wulfson, N. S., Ibid., 1966, 33. (888) Kiser, R. W., Krassoi, &I.A., Clark, R. J., J.Am. Chem. SOC.89,3653 (1967). (889) Kishi, Y., Goto, T., Eguchi, S., Hirata, Y., Watanabe, E., Aoyama, T., Tetrahedron Letters 1966, 3437. (890) Kitagawa, T., Inokuchi, N., Kodera, K., J . Mol. Spectry. 21,267 (19!6). (891) Kitahara, Y., Murata, I., Shirahata, K., Bull. Chem. SOC.Japan 39, 629 11966). (892) Klayman, D. L., Milne, G. W. A., J . Org. Chem. 31,2349 (1966). (893) Klemm, R. F., Blades, A. T., Natule 212, 920 (1966). (894) Knewstubb, P: F., Hayhurst, A. N., Telford. N. R.. Zbzd.. a. 504. (895) Knjghts, &. A.,*J. Gas Chromatog. 5 , 273 (1967). (896) Knowlton, P., Carper, W. R., Mol. Phys. 11, 213 (1966). (897) Koch, &I.,Plat, AI., Das, B. C., Le Men. J.. Tetrahedron Letters 1966. 2353. (898) Ibid., 1967, 3145. (899) Kochetkov, N. K., Chizhov, 0. S., Advan. Carbohydrate Chem. 21, 39 39 (1966). (900) Kochetkov, N. K., Chizhov, 0. S., Zolotarev, B. ?VI., Carbohydrate Res. 2, 89 (1966). (901) Kochetkov, N. K., Chizhov, 0. S., Zolotarev, B. AI., Izv. Akad. aVauk SSSR, Ser. Khim. 1967, 537. (902) Kochetkov, N. K., Chizhov, 0. S., Zolotarev, B. SI.,Khim. Prirodn. Soedin., Akad. Nauk U z . S S R 2, 152 (1966). (903) Kochetkov, N. K., Chizhov, 0. S., Zolotarev, B. AI., Zh. Obshch. Khim. 36, 2105 (1966). (904) Kochetkov, Y. K., Chizhov, 0. S., Zolotarev, B. M., Sheinker, V. S., Izv. Akad. L\-auk SSSR, Ser. Khim. 1967, 543. (905) Kodera, K., Makita, T., Kagaku To Kogyo (Tokyo) 19, 670 (1966). (906) Koenig, D. R., AEC Accession No. 41681, Rept. No. UCRL-11857, 305 pp. ( 1966). (907) Kohl, F. J., Prusaczyk, J. T., Carlson, K. D., J . Am. Chem. SOC.89, 5501 (1967). (908) Kohl, F. J., Uy, 0. M., Carlson, K. D., J . Chem. Phys. 47, 2667 (1967). (909) Kohout, F. C., 111, “A Mass Spectrometer Investigation of the Nitroxyl (“0) hlolecule,” Doctoral Dissertation, Pennsylvania State University,
296 R
ANALYTICAL CHEMISTRY
University Park, 1967, 123 pp., Univ. Microfilms Order No. 67-5932. (910) Kohout, F. C., Lampe, F. W., J . Chem. Phys. 45, 1074 (1966). (911) Kolchin, A. AI., Kolesnikov, B. Y., Pribory i Tekhn. Eksperim. 11,99 (1966). (912) Komarov, V. N., Tikhomirov, hI. V., Zh. Fiz. Khim. 40, 1951 (1966). (913) Ibid., p. 2967. (914) Komori, T., Tamura, S., Gunji, K., Toida, K., Mass Spectry. (Japan) 14, 15 (1966). (915) Kondo, T., Watanabe, K., Zbid., p. 257. (916) Konishi, F., Kusao, K., Nakamura, N., Ibid., p. 275. (917) Koshar, R. J., Husted, D. R., RIeiklejohn, R. A., J. Org. Chem. 31, 4232 (1966). (918) Koshar, R. J., Husted, D. R., Wright, C. D., Ibid., 32, 3859 (1967). (919) Kossanyi, J., AIorizur, J. P., Furth, B., Vandewalle, >I., Bull. SOC.Chim. France 1967, 2180. (920) Kostyanovskii, R. G., Nechiporenko, V. P., Teor. Eksperimen. Khim. 2, 558 (1966). (921) Koyano, I., J. Chem. Phys. 45, 706 (1966). --, (922) Koyano, I., Ornura, I., Tanaka, I., Ibid.,44, 3850 (1966). (923) Kraft, AI., Spiteller, G., Chem. Conimun. 1967, 943. (924) Krouf. €1.. Lambeck. 11..Ann. 700.1 (1966). (92.5) Kngajevdky, I., “Synthetic and Spectral Stiidies on Amidines,” Doctoral Disswtation, Stevens Institute of Technologv, Hoboken, N. J., 1966, 183 pp, cniu.”JficrofiZm Order A 0. 66-12,793. (926) Kiinesch, N., Das, B. C., Poisson, J., 13~11.Soc. Chiin. France 1967, 2155. (927) Kirristmaiin, 11.P., Alitscher, L. A., Bohonos, N., Tetrahedron Letters 1966, 839. (928) Kripcharr, S. X.!Cassady, J. M., Kelsey, J. E., Schnoes, H. K., Smith, D. H., Burlitlgame, A. L., J . Am. Chem. Soc. 88, 5292 (1966). (929) Kupriyaiiov, S. E., Zh. Eksperim. Teor. Fiz., Pis’ma Redaktsiyu 4, 345 (1966). (930) Kupriyanov, S. E., Zh. Tekh. Fiz. 36, 2161 (1966). (931) Kiiskevics, G., Thompson, B., Rev. Sci. Instr. 37, 710 (1966). (932) Kutney, J. P., Brown, R. T., Tetrahedron 22, 321 (1966). (933) Kutney, J. P., Vlattas, I., Eigendorf, G., Ibid., 23, 4587 (1967). (934) Kuznesof, P. AI., Stafford, F. E., Shriver, D. F., J . Phys. Chem. 71, 1939 (1967). j - _ _ . ,. (933) Laane, J., J. Am. Chem. SOC.89, 1144 (1967). (936) LaLonde, R. T., Ding, J., Tobias, M. A., J . Am. Chem. SOC. 89, 6651 (1967). (937) Lambert, R. >I., Chem. Commun. 1966, 850. (938) Langer, H. G., Gohlke, R. S., Fortschr. Chem. Forsch. 6, ,515 (1966). (939) Lappert, XI3 F., Pedley, J. B., Riley, P. K. K., Tweedale, .4.,Chem. Commun. 1966, 788. (940) Larin, N. V., Devyatykh, G. G., Agafonov, I. L., Zh. Anal. Khim. 22, 283 (1967). (941) Lavie, D., Jain, M.K., Kirson, I., J . Chem. Soc., C 1967, 1347. (942) Lavie, D., Kashman, Y Glotter, E., Danieli, N., Ibid., 1966, lf57. (943) Lawesson, S.-O., Madsen, J. @., Schroll, G., Bowie, J. H., Grigg, R., Williams. D. H.. Acta Chem. Scand. 20, 1129 (1966). ‘ (944) Lawesson, S.-O., Madsen, J: 0., Schroll, G., Bowie, J. H., Williams, D. H., Acta Chem. Scand. 20, 2325 (1966). \ - -
.
/
1
I
,
(945) Lawrie, W., McLean, J., Younes, RZ.E.-G., J . Chem. SOC.,C 1967, 851. (946) Leclerc, J. C., Lorquet, J. C., J . Phys. Chem. 71,787 (1967). (947) Lednicer, D., Grostic, M. F., J . Org. Chem. 32, 3251 (1967). (948) Lefebvre, J. C., Mises Point Chim. Anal. Org. Pharm. Bromatol. 1967, 187. (949) Legler, G., Quiring, B., Tetrahedron 23, 2683 (1967). (950) Leipziger, F. D., Guidoboni, R. J., Appl. Spectry. 21, 165 (1967). (951) Le Moan, G., Valdener, G., Chaigneau, M., Chim. Ind. Genie Chim. 95, 162 (1966). (952) Leonard, N . J., Durand, D. A., Uchimaru, F., J . Org. Chem. 32, 3607 (1967). (953) Letcher, R. I f . , Eggers, S. H., Tetrahedron Letters 1967, h 4 1 . (954) Leventhal, J. J., Friedman, L., J . Chem. Phys. 46,997 (1967). (955) Leventhal, J. J., Moran, T. F., Friedman, L., Zbid., 4666. (956) Lever, R. F., ZBM J. Res. Develop. 10, 26 (1966). (957) Levine, R. D., J. Chem. Phys. 44, 2046 (1966). (958) Lewis, J., Manning, A. R., Miller, J. R., Wilson, J. AI., J . Chem. SOC.A , 1966, 1663. (959) Lichtman, D., McQuistan, R. B., Kirst, T. It., Surface Sci. 5, 120 (1966). (960) Lifshitz, C., Israel J . Chem. 4, 47 (1966). (961) Lifshitz, C., J . Chem. Phys. 47, 1870 (1967). (962) Lifshitz, C., Bergmann, E. D., Pullman, B., Tetrahedron Letters 1967, 4583. (963) Lifshitz, C., Chiipka, W. A., J . Chem. Phys. 47, 3439 (1967). (964) Lifshita, C., Shapiro, XI., Ibid., 45,4242 (1966). (965) Ibid.,46,4912 (1967). (966) Lindgren, B. O., Svahn, C. AI., Acta Chem. Scand. 20, 1720 (1966). 1967) Zbid.. D. 1763. (968) LindKolrn, E., Advan. Chem. Ser. 58, l(1966). (969) Lineberger, W. C., Hooper, J. W., McDaniel, E. W., Phys. Rev. 141, 151 (1966). (970) Lippard, S. J., J. Am. Chem. SOC. 88,4300 (1966). (971) Lipsky, S. R., Horvath, C. G., McMurray, W. J., ANAL.CHEM. 38, 1.585 (1966) (972) Locht, R., Bull. SOC. Roy. Sci. Liege 35, 764 (1966). (973) Logothetis, A. L., Sausen, G. N., J.Org. Chem. 31. 3689 (1966). (974) Longevialle, P., Bull. SOC. Chim. France 1966, 437. (975) Lorqiiet, J. C., M o l . Phys. 10, 489 (1966). (976) Ibid., p. 493. (977) Lotz, W., J . O p t . SOC.Am. 57, 873 11967). (978) Lown, J. W., Ma, J. C. N., Can. J . Chern. 45, 939 (1967). (979) Ibid.,p. 953. (980) Lubiii, AI. D., Hamby, K. O., ltosenlof, K. D., Gieszelmann, E., Appl. Spectry. 20, 40 (1966). (981) Luenberger, D. G., Dennis, U. E., AN IL. CHEM.38, 715 (1966). (982) Lundqiiist, It. T., Ruby, A., Appl. Spectry. 20, 238 (1966). (983) Lythgoe, D., Vernengo, 11. J., Tetrahedron Letters 1967, 1133. (984) Mchllister, T., DolejSek, Z., Lossing, F. P., Gleiter, R., von Rag& Schleyer, P.. J . Am. Chem. SOC.89, 5982 11967). (985j licCarthy, E. R., J. Org. Chem. 31, 2042 (1966). (986) LlcCloskey, J. A,, Law, J. H., Lipids 2, 225 (1967).
(9s;) McCloskey, J. A,, Lawson, A. AI., Leeniniis, F. A. J. M.,Chem. Commun. 1967, 2S$;). (08s) lIcCormick, A., Jenseii, S. L., Acta Chon. Scand. 20, 1989 (1966). (9S9) McCrea, J. X,Appl. Spectry. 20, 181 (19GG). (990) Ibid., 21, 303 (1967). (991) lIacl)onald, C. G., Shannon, J. S., .lustralzan J. Chem. 19, 1545 (1966). (992) McFadden, W. H., Separation Sci. 1, 723 (1966). (993) McFadden, W. H., Boggs, L. E., Buttery, It, G., J . Phys. Chem. 70, 3516 (19G6). (994) McFarland, R. H., Phys. Rev. 159, 20 (1967). (993) LIcGee, €1. A., *Jr., Malone, T. L., Martin, W.J., Rev. Sci. Instr. 37, 561 (1966). (9915) McGuire, E. J., Phys. Rev. 161, 51 (1967). (997) JIcHugh, J. A., Sheffield, J. C., A N ~ LCHEM. . 39, 377 (1967). (998) RlcKinley, J. D., J . Chem. Phys. 45, 1690 (1966). (999) NcLafferty, F. W.,“Interpretation of 11ass Spectra: An Introduction,” Fir. -4. Benjamin, New York, 1966, 229 PP. (1000) IIcLafferty, F. R., Chem. Commun. 1966, 78. (1001) LIcLafferty, F. W.,Science 151, 641 (1966). (1002) RIcLafferty, F. IT7., Bryce, T. A., Chem. Commun. 1967, 1215. (1003) IIcLafferty, F. R., Bursey, RI. RI., Ibid., p. 533. (1004) NcLafferty, F. W.,Bursey, AI. M., Kimball, S. >I., J. Am. Chem. SOC. 88, 3022 (1966). (1005) hIcLafferty, F. W.,Pike, W. T., J . A m . Chem. SOC.89. 5951 11967). (1006) Ibzd., p. 5953. (1007) llcLafferty, F. W., Pinzelik, J., ANAL.CHEM.38,350R (1966). (1008) NcLafferty, F. W., Pinzelik, J., “Index and Biblicigraphy of Mass Spectrometry, 1963-1 965,” Interscience, New York, 1967. (1009) MacLean, D. B., CurcumelliItodostamo, lI., Can. J. Chem. 44, 611 (1966). (1010) AIcLean, S., Harrison, A. G., llivray, L).G ,Ibzd., 45, 7Sl (1967). (1011) McLean, S., Lin, M.-S., Nanske, li. H. F., Ibzd., 44, 2449 (1966). (1012) JlacLeod, J. K., Becher, D., Djerassi, C., J . Org. Chem. 31, 4050 (1966). (1013) NacLeod, J. K., Djerassi, C., J . A m . Chem. Soc. 8 8 , 1840 (1966). (1014) Ibzd., 89, 5182 (1967). (1015) MacLeod, J. K., Djerassi, C., J . Org. Chem. 32, 3485 (1967). (1016) Macllillan, J., Pryce, R. J., Egliiiton, G., McCormick, A,, Tetrahedion Letters 1967, 2241. (1017) lIcMullen, C. C., Fritze, K., Tomlinsoii, Iky, S. It., ANAL.CHEY. 38, 1194 (1966). (1019) Macasek, F., Acta F a k . Rerum Kat. Cnm. Comenaanae, Chamza S o . 10, 603 (1966). (1020) lIacklin, J., Dudek, G., Inorg. .Yuc2. Chem. Letters 2, 403 (1966). (1021) Madding, G. D., “Mass Spectrt! Study of Alkyl Alkanesnlfonates, Doctoral Dzssc rtation, Purdue University, IT. Lafayetie, Ind., 1966, 238 pp., liniv. Macrofilms Order 67-5464. (1022) Madsen, J. g.,Lawesson, S.-O., Duffield, A. M.,Djerassi, C., J . Org. Chem. 32, 2054 (1967).
(1023) Mahan, B. H., Walker, I. C., J. Chem. Phys. 47,3780 (1967). (1024) Mai, H., Wagner, H., J. Sci. Instr. 44,883 (1967). (1025) blaier, W. B., 11, J . Chem. Phys. 46.4991 (1967). (1026) Malone, ’T. J., McGee, H. A., Jr., J. Phys. Chem. 70, 316 (1966). (1027) Ibid., 71, 3060 (1967). (1028) hIancuso, N. It., Tsunakawa, S., Biemann, K., ANAL. CHEM.38, 1775 (1966). (1029) RIandelbaum, A., Israel J . Chem. 4, 161 (1966). (1030) Rlanhas, 11.S., Ghosh-Mazumdar, B. N., Bose, A. K., Chem. Commun. 1967, 349. (1031) Mann, J. B., J . Chem. Phys. 46, 1646 (1967). (1032) Maquestiau, A., Lejeune, P., Bull. SOC.Chim. Belges 76, 133 (1967). (1033) Marchard, P., Paquet, C., Marmet, P., Rev. Sci. Znstr. 37, 1702 (1966). (1034) Markin, 11. I., Tal’roze, V. L., Kinetika i Kataliz 7, 3 (1966). (1035) Alarklund, I., Danielsson, H., Rev. Sci. Instr. 37, 319 (1966). (1036) Marsh, S. F., ANAL. CHEM. 39, 641 (1967). (1037) Ibid.. D. 696. (1038) Marsh‘all, J. T. B., Williams, D. H., Tetrahedron 23, 321 (1967). (1039) Martin, K., Chem. Tech. (Berlin) 18, 635 (1966). (1040) Alartin, R. H., Lampe, F. W., Taft, K. W., J. Am. Chem. SOC.88, 1353 (1966). (1041) hfatsuda, H., M a s s Spectry. (Japan)14, 78 (1966). (1042) Matsnda, H., Fukumoto, S., Kuroda, Y., Nojiri, >I., 2. Naturforsch., A 21, 25 (1966). (1043) lllatsuda, H., Fukumoto, S., Rlatsuo, T., Sojiri, AI., Ibid., p. 1304. (1044) llatus, L., Hyatt, D. J., Henchman, 31. J., J . Chem. Phys. 46, 2439 (1967). (1045) ilaycock, J. X., Pai Verneker, V. R., Jacobs, P. W.hl., Ibid., p. 2857. (1046) Mays, 31. J., Simmon. R. N. F.. Chem. Commun. 1967, 102:. ’ (1047) hlead, W. L., Ed., Advances in M a s s Spectrometry,” 5’01. 3, The Institute of Petroleum, London, 1966, 1064 pp. (1048) Xeinert, H., 2. Chem. 6, 71 (1966). (1049) Melton, C. E., J. Catal. 5, 234 (1966). (1050) Melton, C. E., J. Chem. Phys. 45,4414 (1966). (1051) Melton, C. E., J . Sci. Znstr. 43, 927 11966). (1052) ‘Jlelton, C. E., Joy, H. W., Can. J. Chem. 44, 1455 (1966). (1053) AIelton, C. E., Joy, H. W., J. Chem. Phys. 46,4275 (1967). (1054) Melton, C. E., Rudolph, P. S., Ibid., 47, 1771 11967). ClOq5) Melton, C. E., Rudolph, P. S., ~’luturwissenschaftm54. ~ .(1967‘ _ ). -~ , 297 (1056) Menetrier, h l . , Mem. Sci. Rev. Met. 64, 241 (1967). (1057) Nenetrier, M., Method. Phys. Anal. 1966, 257. (1058) Ibid., p. 328. (1059) Merlini, L., Llondelli, R., Nasini, G., Hesse, RI., Tetrahedron 23, 3129 (1967). (1060) llerritt, C., Jr., Robertson, D. H., J . Gas Chromatog. 5, 96 (1967). (1061) Mesnard, G., Uzan, It., Cabaud, B., Rev. Phys. Appl. 1, 123 (1966). (1062) Nester, L., Schimpl, A., Senn, M,, Tetrahedron Letters 1967, 1697. (1063) JIetzinger, H. G., Beckey, H. D., Z. Saturjorsch., A 22, 1020 (1967). (1064) Ibid., p. 1029. (1065) Metzinger, H. G., Beckey, H. D., Z . Phys. Chem. (Frankjurt am Main) 52, 27 (1967). i
\ _ _ _ _
(1066) Meyer, R. T., J . Chem. Phys. 46, 967 (1967). (1067) Ibid.,p. 4146. (1068) Meyer, K. T., J . Sci. In&. 44, 422 (1967). (1069) Meyerson, S., Fields, E. K., Chem. Commun. 1966.275. (1070) Meyerson, S., Fields, K., J . Chem. Soc. B 1966, 1001. (1071) Meyerson, S., Leitch, L. J . Am. Chem. SOC.88, 56 (1966). (1072) Neyerson, S., Puskas, Fields, E. K., Ibid., p. 4974. (1073) Mies, F. €I., Krauss, M . Chem. Phus. 45. 4455 (1966). (1074) hlil’lard, B. J.,’ Shaw, I). F., J . Chem. SOC.,B 1966, 664. (1075) Miller, J. M.,J . Chem. SOC.,A 1967, 828. (1076) hlilne, G. W. A., Cohen, L. A,, Tetrahedron 23. 65 (19671. (1077) Milne, G.’ W. ‘A., Plimmer, J. R., J . Chem. SOC.,C 1966, 1966. (1078) RIilne, T. A., Greene, F. T., J . Chem. Phys. 44,2444 (1966). (1079) Ibid., 47, 3668 (1967). (1080) Zbid., p. 4095. (1081) Minnikin, D. E., Polgar, N., J . Chem. SOC.,C 1966, 2107. (1082) Ibid., 1967, 803. (1083) Mirtov, B. A., Starkova, A. G., Shirshov, It. P., Kosm. Issled., Akad. Kauk SSSR 5, 101 (1967). (1084) Mitani, E., Okamoto, J., Omura, I., Mass Spectry. (Japan) 1 5 , l (1967). (1085) Xoeller, J., Buchardt, O., Acta Chem. Scand. 21, 1668 (1967). (1086) Momigny, J., Mem. SOC.Roy. Sci. Liege, Collection in -8” 13, 1 (1966). (1087) Mondon, A., Ehrhardt, XI., Tetrahedron Letters 1966, 2557. (1088) Moody, G. J., Thomas, J. D. R., Rev. Pure Appl. Chem. 16, 1 (1966). (1089) Moore, It. E., Singh, H., Chang, C. W. J., Scheuer, P. J., J . Org. Chem. 31, 3638 (1966). (1090) Moore, 11. E., Singh, H., Chang, C. W. J., Scheuer, P. J., Tetrahedron 23. 3271 (1967). (l09i) RIoore, k.E., Singh, H., Scheuer, P. J., J. Org. Chem. 31,3645 (1966). (1092) Moran, T. F., Friedman, L., J . Chem. Phys. 45, 3837 (1966). (1093) Moran, T. F., Friedman. L.. Rev. Scz. Instr. 38, 668 (1967). (1094) lloreland, P. E., Jr., Stevens, C. >I., Walling, D. B., Ibid., p. 760. (1095) hloriarty, R. JI., Kirkien-Konasiewicz, A. M., Tetrahedron Letters 1966, I
,
41 2.1
(1096) Rlorimoto, H., Shima, T., Imada, I., Sasaki, M.,Ouchida, A., Ann., 702, 137 (1967). (1097) Morita, K., Kobayashi, S., Tetrahedron Letters 1966, 573. (1098) Morita, Y., Chem. Pharm. Bull. (Tokyo) 14,426 (1966). (1099) Morse, K. W.,Parry, R. W., J.Am. Chem. SOC.89. 172 11967). (1100) Moruzzi, J. L:, Phelps, ’ A. V., J . Chem. Phys. 45,4617 (1966). (1101) llosharrafa, M., Oskam, H. J., Physica 32,1759 (1966). (1102) lIoulton, D. lI., “Shock-Wave Studies by Time-of-Flight Mass Spectroscopy,” Doctoral Dissertation, Harvard University, Cambridge, Mass., 1964, 304 pp., Cnzv. Micro$lms Order .YO.65-5481. (1103) Mueller, W. H., Rubin, R. RZ., Butler, P. E., J. Org. Chem. 31, 3537 (1966). (1104) lluggler-Chavan, F., Viani, R., Bricoiit, J., Reymond, D., Egli, K. H., Helv. Chim. Acta 49, 1763 (1966). (1105) Muller, J., D’Or, L., J. Organometal. Chem. 10. 313 11967). (1106) llunro, D’. F., Rev. hi.Instr. 38, 1532 (1967). VOL. 40, NO. 5, APRIL 1968
297 R
(1107) Munro, D. F., Ahnell, J. E., Koski, W. S., Am. Chem. Soc., Diu. Fuel Chem. Preprints, Part 1 11, 75 (1967). (1108) Munson, M. S. B., J. Am. Chem. Soc. 89, 1772 (1967). (1109) Munson, M. S. B., J . Phys. Chem. 70, 2034 (1966). (1110) Ibid., 71, 3966 (1967). (1111) Munson, M. S. B., Field, F. H., Am. Petrol. Znst. Preprints No. 27, 6 pp. (1966). (1112) Munson, M. S. B., Field, F. H., J. Am. Chem. SOC.88.2621 (1966). (1113) Zbid., p. 4337. ’ (1114) Zbid,, 89, 1047 (1967). (1115) Muraca, R. F., Whittick, J. S., Daves, G. D., Jr., Friis, P., Folkers, K., Zbid., p. 1505. (1116) Murad, E., Hildenbrand, D. L., J . Chem. Phys. 45,4751 (1966). (1117) Murphy, M. T. J., Nagy, B., J. Am. Oil Chemists’ SOC.43, 189 (1966). (1118) Nakano, T., Terao, S., Saeki, Y., Jin, K. D., J. Chem. SOC.,C 1966, 1805. (1119) Nakata, H., Tatematsu,. A.,. Chem. Commun. 1967, 208. (1120) Nakata. H.. Tatematsu. A,. Mass Spectry. (Japan)’l5,5 (1967): ’ (1121) Nakata, H., Tatematsu, A., Tetrahedron Letters 1967, 4101. (1122) Nakata, H., Tatematsu, A., Tsuyama, H., Doi, H., Mass Spectry. (Japan) 15, 112 (1967). (1123) Nalbantoglu, M., Chim. Anal. (Paris)48, 85 (1966). (1124) Ibid., p. 148. (1125) Namis, A. J., Cortes, E., Collera, O., Walls, F., Bol. Znst. Quim. Univ. Nul. Auton. Mez. 18,64 (1966). (1126) Natalis, P., Bull. SOC. Chim. Belges 75,668 (1966). (1127) Natalis, P., Franklin, J. L., Zbid., p. 328. (1128) Nelson, P. F., A P P I T A 20, 15 (1968). (1129) Nencini, G., Met. Ztal. 58, 265 (1966). (1130) Neuner-Jehle, N., Schumann, D., Spiteller, G., Monatsh. Chem. 98, 836 (1967). ( l l 3 i ) Neuss, N., Huckstep, L. L., Cone, N. J., Tetrahedron Letters 1967, 811. (1132) Newton, A. S., J . Chem. Phys. 44,4015 (1966). (1133) Newton, A. S., Sciamanna, A. F., Ibid., p. 4327. (1134) Newton, A. S., Sciamanna, A. F., Clampitt, R., Ibid., 46, 1779 (1967). (1135) Nicholls, G. D., Graham, A. L., Williams, E., Wood, M., ANAL.CHEM. 39, 584 (1967). (1136) Niehaus, A,, 2. Naturforsch., A 22,690 (1967). (1137) Niehaus, W. G., Jr., Ryhage, R., Tetrahedron Letters 1967, 5021. (1138) Niemann, H. B., Kennedy, B. C., Rev. Sci. Instr. 37, 722 (1966). (1139) Nier, A. 0.. Am. Scientist 54, 359 (1966). ’ (1140) Nier, A. O., Mass Spectry. (Japan) 15,67 (.1967). (1141) Nigam, I. C., Komae, H., J . Pharm. Sci. 56, 1299 (1967). (1142) Niki, H., Weinstock, B., J . Chem. Phys. 47, 3249 (1967). (1143) Nishikawa, K., Hirata, Y., Tetrahedron Letters 1967, 2591. (1144) Nishiwaki, T., J. Chem. Soc., B 1967, 885. (1145) Nishiwaki, T., Tetrahedron 22, 1383 (1966). (1146) Zbid., 3117. (1147) Zbid., 23, 1153 (1967). (1148) Zbid., p. 2181. (1149) Zbid., p. 2979. (1150) Nitta, K., Yamamoto, Y., Tsuda, Y., Tetrahedron Letters 1967, 3013. (1151) Nordberg, R., Albridge, R. G., Bergmark, T., Ericson, U., Fahlman, ~I
\ - - - - I -
298 R
ANALYTICAL CHEMISTRY
A., Hamrin, K., Hedman, J., Johansson, G., Nordling, C., Siegbahn, K., Lindberg, B., Nature 214,481 (1967). (1152) Norman, A. D., Schaeffer, R., Baylis, A. B., Pressley, G. A., Jr., Stafford, F. E., J . Am. Chem. SOC.88, 2151 (1966). (1153) Norman, J. H., Staley, H. G., Bell. W. E.. J . Phvs. Chem. 71. 3686 (1967). (1154) Nounou, P., J . Chim. Phys. 1966, 994. (1155) Ibid., 1967, 276. (1156) Occolowitz, J. L., Tetrahedron Letters 1966, 5291. (1157) Occolowitz, J. L., Swan, J. M., Australian J . Chem. 19. 1187 (1966). (1158) Ochiai, M., Obayashi, hi, blorita, K., Tetrahedron 23, 2641 (1967). (1159) Ogden, P. Ii., Mitsch, R. A,, J . Am. Chem. SOC.89,5007 (1967). (1160) Ognyanov, I., Pyuskyulev, B., Bozjanov, B., Hesse, M.,Helv. Chim. Acta 50. 754 (1967). (1161) Ohashi, ~ M . ,’Kagaku To Kogyo (Tokyo)20, 126 (1967). (1162) Okano, J., Mass Spectry. (Japan) 14, 105 (1966). (1163) Oliver, J. P., Rao, U. V., J . Org. Chem. 31, 2696 (1966). (1164) O’Malley, T. F., Phys. Rev. 150, 14 11966). (1165) Omka, I., Doi, H., Bull. Chem. SOC.Japan 40, 1090 (1967). (1166) Omura, I., Doi, H., Japan. J . Appl. Phys. 6, 275 (1967). (1167) Opauszky, I., Matus, L., KFKI (Kosp. Fiz. Kut. Int.) Kozleman. 14, 39 (1966). (1168) Opauszky, I., Matus, L., Kiss, I., Magy. Kem. Folyoirat 72,346 (1966). (1169) Orlov, V. AI., Akopyan, bI. E., Varshavskii, Y. AT., Dokl. Akad. Nauk SSSR 166, 1223 (1966). (1170) Or6, J., Han, J., J . Gas Chromatog. 5.480 (1967). lf’l) Orb, J., Han, J., Zlatkis, A., ANAL.CHEM.39,27 (1967). 172) Oshima, S., Fujii, K., Nakai, M., Mass Spectry. (Japan) 14, 209 (1966). 173) Otsuka, S., Nakamura, A., Yoshida, T., Bull. Chem. SOC.Japan40, 1266 (1967). --, (1174) Ottinger, C., J . Chem. Phys. 47, 1452 (1967). (1175) Ottinger, C., 2. Naturforsch. A , 22, 20 (1967). (1176) Zbid., p. 1157. (1177) Oudin, J.. Eneroie Nucl. 8. 465 (1966). (1178) Ovchinnikov, Y. A., Kiryushikin, A. A., Vinogradova, E. I., Itozynov, B. V., Shemyakin, M. M.,Biokhimiya 32,427 (1967). (1179) Owens, E. B., Appl. Spectry. 21, 1 (1967). (1180) Ozima, M., Mass Spectry. (Japan) 14, l(1966). (1181) Pais, M., Jarreau, F.-X., Lusinchi, X., Goutarel, R., Ann. Chim. (Paris) 1, 83 (1966). (1182) Pakrashi, S. C., Ali, E., Tetrahedron Letters 1967, 2143. (1183) Pan’shin, 0. A. Nechiporenko, V. P., Kostyanovskii, h. G., Izv. Akad. Nauk SSSR, Ser. Khim. 1966,228. (1184) Paoloni, L., Yencini, G., Tosato, M. L., Salvatori, T., Gazz. Chim. Ital. 97. 635 (1967). (1185) Paquettk, L. A., Wise, L. D., J . Am. Chem. SOC.89,6659 (1967). (1186) Parker, D. J., Ruliffson, W. S., Anal. Biochem. 19,418 (1967). (1187) Patmore, D. J., Graham, W. A. G., Inorg. Chem. 5 , 2222 (1966). (1188) Patterson, B. C., Seakins, AT., Trans. Faraday SOC.63, 1863 (1967). (1189) Paudler, W. W., Herbener, R. E., J . Heterocyclic Chem. 4, 224 (1967). \ -
.
I
(1190) Paudler, W. W., Kress, T. J., J . Org. Chem. 32, 2616 (1967). (1191) Paudler, W. W., Kuder, J. E., Ibid.. I). 2430. 192)’Paulsen, P. J., Branch, P. E., NASA Accession No. N67-10449, Rept. NO.NBS-TN-286, 19 PP pp (1966). 193) Paulson, Paulson, J. F., F., Adt’un. Adt>un.Chem. Ser. 58, 28 (1966): (1966). 194) Paulson, J. F., Mosher, R. L., Dale, F., J . Chem. Phys. 44, 3025 (1966 - -)., \ -
(1195) Pavlenko, V. A., Zarkhin, B. I., Rafal’son, A. E., Slutskii, M. E., Kosm. Issled., Akad. JYauk SSSR 4, 457 (1966). (1196) Pavlov, S. I., Rakhovskii, V. I., Fedorova, G. M., Zh. Eksperim. i Teor. Fiz. 52, 21 (1967). (1197) Pavlova, L. A., Polyakova, A. A,, Zh. Org. Khim. 3, 601 (1967). (1198) Pearl, I. A., Darling, S. F., Tetrahedron Letters 1967, 1869. (1199) Peers, A. ?VI., J . Chem. Phys. 47, 1557 (1967). (1200) Peers, A. AI., Cottin, AI., J . Chim. Phys. 1966, 1346. (1201) Pelletier, S. W., Aneja, R., Tetrahedron Letters 1967, 557. (1202) Pelter, A., J. Chem. Soc., C 1967, 19mc 13dU.
(1203) Pelter, A., Stainton, P., Zbid., p. 1933. (1204) Pelter, A., Stainton, A. P., Barber, N.,J . Heterocyclzc Chem. 3, 191 (1966). (1205) Penders, T. J., Copier, H., Heerma, W., Dijkstra, G., Arens, J. F., Rec. Trav. Chim. Pays-Bas 85, 216 (1966). (1206) Pendlebury, J. M., Smith, K. F., J . Scz. Instr. 43, 6 (1966). (1207) Peterson, D. J., Collins, J. H., J . Org. Chem. 31,2373 (1966). (1208) Petersson, G., Samuelson, O., Anjou, K., von Sydow, E., Acta Chem. Scand. 2 1 , 1251 (1967). (1209) Pettersson, B., Ryhage, R., ANAL. CHEY.39. 790 11967). (1210) Pettkrsson, B.,’Ryhage, R., Arkiv K e m i 2 6 , 2 9 3 (1967). (1211) Pfaender, P., Ann. 707, 209 (1967). (1212) Pfaender, P., Weland, T., Ibid., 700, 126 (1966). (1213) Pfeifer, S., hlann, I., Dolejs, L., HanuS, V., Cross, A. D., Tetrahedron Letters 1967, 83. (1214) Piacente, 1’ Malaspina, L., Ann. Chim. (Rome)56,‘:524 (1966). (1215) Pignataro, S., Cassuto, A., Lossine, F. P., J . Am. Chem. SOC.89, 3693 (1967). ‘ (1216) Pignataro, S., Foffani, A., Innorta, G., Distefano, G., Z. Phys. Chem. (Frankfurt am Main) 49, 291 (1966). (1217) Pignataro, S., Lossing, F. P., J . Organometal. Chem. 10, 531 (1967). (1218) Pike, W. T., AlcLafferty, F. W., J . Am. Chem. SOC.89, 5954 (1967). (1219) Plat,, AI., Kunesch, S., Poisson, J., Djerassi, C., Budzikiewicz, H., Bull. SOC.Chim. France 1967, 2669. (1220) Pnevmaticakis, G. A., Stathis, E. C., Fields, E. K., J . Znorg. iVucl. Chem. 28, 2039 (1966). (1221) Poisson, J., Plat, AI., Budzikienicz, H., Durham, L. J., Djerassi, C., Tetrahedron 22, 1075 (1966). (1222) Polyakova, A. A., Khmel’nitskii, R. .4., “Introduction to Mass Spe?; troscopy of Organic Compounds, Khimiya, Leningrad, 1966, 203 pp. (1223) Polyakova, A. A., Khmel’nitskii, R. A., Doshlov, 0. I., Skvarchenko, V. R., Levina, It. Y., Zh. Org. Khim. 3, 608 (1967). (1224) Polyakova, A. A., Khmel’nitskii, Rt A., Grandberg, I. I., Doshlov, 0. L., Khrolova, 0. It., Zbid., p. 836. (1225) Polyakova, A. A., Khmel’nitskii,
R. A,, Petrov, A. A., Usp. Khim. 35, 1671 (1966). (1226) Polyakova, A. A., Popova, T. I., Khotimskaya, hl. I., lyeftekhimiya 6, 150 (1966). (1227) Popelak, A., Haack, E., Spingler, H., Tetrahedron Letters 1966, 5077. (1228) Poroshin, K. T., Denisov, Y. V., Burichenko, V. K., Davidyants, S. B., Dokl. Akad. Sauk Tadzh. S S R . 9, 23, (1966). (1229) Porter, Q. N., d4ustralianJ . Chem. 20, 103 (1967). (1230) Poschenrieder, W. P., Barrington, A. It., NASA Accession No. N66-27231, Eept. S o . NASA-CR-66100, 67 pp. (1966). (1231) Poschenrieder, W., Warneck, P., J . A p p l . Phys. 37, 2812 (1966). (1232) Potapov, 1’. K., Shigorin, D. pu’., Filyugina, A. D., Sorokin, 1’. V., Zh. F z z . Khzm. 40, 2332 (1966). (1233) Potier, P., Das. B. C., Bui, A.-M., Janot, ll.-ll.,Pourrat, A., Ponrrat, H., Bull. SOC.Chim. France 1966, :3458. (1234) Potier, P., KaI?, ,C.,, Le Men, J., Janot. 11.-1\1..BudLikiewicz., H.., Dier” &mi,C., Ibid., p. 2309. (1233) Pottie, It. F., J . Chena. Phys. 44, 916 (1966). (1236) ,Powell, H. X,“Ion Trajectory Stitdies and Experiments for a Quadrupole Mass Spectrometer,” Doctoral Disscrfafion, Vanderbilt University, Nashville, Tenn., Univ. Microfilms Order -Vo. 66-10,996. (1237) Prager, J. H., J . Org. Chem. 31, 392 (1966). 11238) PrBsil. Z.. Collection Czech. Chem. Commun. 31, 3252 (1966). (1239) Prisil, Z., Forst, W.,J . Phys. Chem. 71, 3166 (1967). (1240) Preston, F. J., Reed, R. I., Chem. Commun. 1966, 51. (1241) Prinz, R., Kerner, H., Angew. Chem. Intern. Ed. Engl. 6, 91 (1967). (1242) Prinzbach, H., Kitzing, R.,Druckrey, E., Achenbach, H., Tetrahedron Letters 1966, 4265. (1243) Pritchard, J. G., Funke, P. T., J . Heterocuclic Chem. 3, 209 (1966). (1244) Proxy A., Sun, K. K., Z. Al’aturforsch., B 21, 1028 (1966). (1245) Pryce, 11. J., lIacMillan, J., hlcCormick, A,, Tetrahedron Letters 1967, 5009. (1246) Rahamin, Y., Sharvit, J., Alandelbaum, A., Sprecher, &I., J . Org. Chem. 32, 3836 (1967). (1247) Rall, G. J. H., Smalberger, T. AI., de Wad, H. L., Arndt, R. R., Tetrahedron Lefters 1967, 3465. (1248) Razakov, It., Abduazimov, K. A., Vul’fson, N , S., Yunusov, S. Y., Khim. Przrod. Soedzn. 3, 23 (1967). (1249) Raznikov, V. V., Tal’roze, V. L., Dokl. Akad. IYauk SSSR, 170, 379 (1966). (1250) Header, J., Sugar, J., J . Opt. SOC. Am. 56, 1189 (1966). (1251) Iieber, C. A., Hall, L. G., SASA Accession Yo. N66-18431, Rept. KO. NASA-TN-D-3211, 24 pp (1966). (1252) Reber, C. A., Harpold, D. Tu’., KASA Accession S o . N66-35929, Rept. SO. NASA-TM-X-1268, pp 181-2 (1966). (1253) Itedhead, P. A., Can. J . Phys. 45, 1791 (1967). (1254). Redman, J. D., “A Literature Review of Mass Spectxometric-Thermochemical Technique,” (ORNL-TM-989, Suppl. l), CFSTI, Springfield, Va., 1966, 41 pp. (1285) Reed, R. I., “Applications of hlass Spectrometry to Organic Chemistry,” Academic Press, New York, 1966, 256 PP.
(1256) Reed, R. I.? Ed., “Mass Spectrornetry,” Academic Press, New York, 1965,463 pp. (1257) Reed, R. I., Quart. Rev. (London) 20, 527 (1966). (1258) Reed, R. I., Takhiatov, V. V., Tetrahedron 23. 2807 (1967). - , (1259) Ibid., p. 4425. (1260) Reese, R. AI., Rosenstock, H. hl., J . Chem. Phys. 44,2007 (1966). (1261) Refaey, K. 11. A., “A. Energy DeDendence of Cross Section for CollisiokInduced Dissociation and Endothermic Ion-Molecule Reactions. B. Photoionization of the Lower Aliphatic Alcohols and Ethylene,” Doctoral Dissertation, Illinois Institute of Technology, Chicago, 1966, 168 pp, Univ. Microfilms Order X o . 67-352. (1262) Keichert, C., Westmore, J. B., Gesser, H. D., Chem. Commun. 1967, 782. (1263) Reid, W. K., ANAL.CHEM.38, 445 (1966). (1264) Reusch, W., Djerassi, C., Tetrahedron 23, 2893 (1967). (1265) Rhodes, R. E., Barber, M., Anderson, R. L., ANAL.CHEM.38, 48 (1966). (1266) Rice, J. hl., Dudek, G. O., J . Am. Chem. Soc. 89, 2719 (1967). (1267) Richards, J. R., Vacuum 16, 310 \ -
(1966).
(l268j -Richter, W., Vecchi, &I., Vetter, W., Walther, W., Helv. Chim. Acta 50, 364 (1967). (1269) Riedel, 0.. 2. Anal. Chem. 217. 1 (1966). (1270) Riepe, W., Kaiser, H., Zbid., 223, 321 (1966). (1271) Riley, G. H., J . Sci. Instr. 44, 769 (1967). (1272) Rinke, K., Klein, hl., Schaefer, H., J. Less-Common Metals 12, 497 (1967). (1273) Kinke, E., Schafer, H., Angew. Chem. Intern. Ed. Engl. 6, 637 (1967). (1274) Ritchie, R. H., Turner, J. E., Z. Phys. 200, 259 (1967). (1275) Ris, XI. J., Wakefield, A. J. C., Webster. B. R., Chem. Commun. 1966. 748. (1276) Roberts, D. T., Jr., Little, W.F., Bursey, 11. AI., J . Am. Chem. SOC. 89,4917 (1967). (1277) Ibid., p. 6156. (1278) Robertson, A. J. B., Viney, B. W., J . Chem. SOC.,A 1966, 1843. (1279) Roboz, J., AXAL.CHEY.38, 1629 (1966). (1280) Roepstorff, P., Dan. Kemi 48, 22 (1967). (128lj-R;gersJ A. J., Boyd, R. L. F., J . Sci. Instr. 43,791 (1966). (1282) Ronavne, J.. Williams. D. H.. Bowie. J. H.. j.A h . Chem. Soc. 88.4980 (1966j. (1283) ROSS,P. J., A N ~ LCHEW . 38, 1436 I
,
. .um,“X. S., Tartakovskii,’ V. Onishchenko, A. A., Novikov. S. S.; Dokl. Akad. Nauk SSSR 123 I., Bull. SOC.Chim. Belges 75, 539 (1966). (1315) Scharf, H.-D., Metzinger, G., Tetrahedron 23, 3067 (1967). (1316) Scheer, 11. D., Fine, J., J . Chem. Phys. 46, 3998 (1967). (1317) Scheer, >I. D., Fine, J., Phys. Rev. Letters 17, 283 (1966). (1318) Schildcrout, S. ll.,Pressley, G. A,, Jr., Stafford, F. E., J . Am. Chem. SOC. 89, 1617 (1967). (1319) Schimbor, It. F., “The Microbiological Incorporation of Labeled Intermediates into the Neomycin Antibiotics. Mass Spectral Studies of Nacetyl Derivatives of Amino Sugars and Related Compounds,” Doctoral Dzssertation, University of Illinois, Urbana, 1966, 242 pp, Univ. Microfilms Order No. 66-7808. (1320) Schmidt, AI., Beitr. Plasmaphys. 1966, 147. (1321) .Schoenhuber, 11.J., Trans. Intern. Vac. Congr. Srd, Sluttgart, 1966 2 , 121 (Pub. 1966). (1322) Schoonmaker, R. C., Venkitaraman, A. R., Lee, P. K., J . Phys. Chem. 71, 2676 (1967). (1323) Schram, B. L., Adamczyk, B., Boerboom, A. J. H., J . Sci. Znstr. 43, 638 (1966). (1324) Schroepfer, G. J., Jr., J . Biol. Chem. 241, 5441 (1966). VOL. 40, NO. 5 , APRIL 1968
299 R
Ovchinnikov, Y. A., Kiryushkin, A. A,, (1325) Schroll, G., Jakobsen, H. J., Ivanov, V. T., Vinogradova, E. I., Lawesson, S.-O., Brown, P., Djerassi, Feigina, M. Y., Itv. ilkad. Nauk SSSR, C., Arkiv. Kemi 26, 279 (1967). Ser. Khim. 1966, 1539. (1326) Schroter, H.-B., Neumann, D., (1360) Shields, W. R.,Natl. Bur. Std. Katritzky, A. R., Swinbourne, F. J., ( U . S.), Tech. Note 277,99 pp (1966). Tetrahedron22,2895 (1966). (1361) Shields, W. R., Murphy, T. J., (1327) Schuddemage, H.-D. R.,Hummel, Catanzaro, E. J., Garner, E. L., J . Res. D. O., Kolloid-Z. 2. Polurn. 210, 103 Natl. Bur. Std. A 70, 193 (1966). (1966j. (1362) Shigorin, D. N., Filyugina, A,. D., (1328) Ibid., 220, 133 (1967). Potapov, V. K., Teor. Eksperamen. (13291 Schulz. G.. Tetrahedron Letters Khim. 2. 554 (1966). 1967, 1803. (1363) S h h - H . , Adban. Chem. Ser. 58, (1330) Schulz, G., Wiechert, R.,Chem. 44 (1966). Ber. 99, 1128 (1966). (1364) Shoppee, C. W., Johnson, F. P., (1331) Schumacher, E., Taubenest, R., Lack, R. E., Shannon, J. S., Sternhell, Helv. Chim. Acta 49, 1439 (1966). S.. Tetrahedron, S u p.. p l . No. 8 (Part 2). (1332) Ibid., p. 1447. (1966). (1333) Ibid., p. 1455. (1365) Short, H. G., Keene, B. J., Talanta (1334) Schuy, K. D., Franzen, J., 2. 13, 297 (1966). Anal. Chem. 225, 260 (1967). (1366) Shulman, G. P., Am. Chem. SOC., (1335) Seibl, J., Z. Anal. Chem. 221, 342 Diu. Org. Coatings Plast. Chem., Pre(1966). prints 26, 149 (1966). (1336) Seibl, J., Helv. Chim. Acta 50, 263 (1367) Shultz, J. L., Friedel, R. A,, (1967). Sharkey, A. G., Jr., U . S. Bur. Mines, (1337) Seidl. H.. Biemann. K..‘ J . Rept. Invest., No. 7000, 14 pp. (1967). ‘ He&rocycl&Chem. 4, 209 (1967). (1368) Shumulovskii, N. N., Stakhovskif: (1338) Seklemian, H. V., Williams, R. E., R. I., “Mass Spectral Methods, Inorg. Nucl. Chem. Letters 3, 289 (1967). Energiya, Moscow, 1966, 160 pp. (1339) Senn, M., McLaffertv. F. W.. (1369) Siddiqui, S., Ahmad, Y., Baig, Biochem. ’Biophys. Res. Cimmun. 23; I. RI., Pakistan J. Sci. Ind. Res. 9, 97 381 (1966). (1966). (1340) ‘Senn: M., Venkataraghavan, R., McLafferty, F. W., J . Am. Chem. SOC. (1370)-Sidorov, L. N., Korenov, Y. M., Shol’ts, V. B., Akishin, P. A., Frolov, 88,5593 ( ~ 1 6 6 ) . V. P., Zh. F i t . Khim. 41,718 (1967). (1341) Shadoff, L. A., “Analyses of (1371) Sieck, L. W., Abramson, F. P., Ionization Efficiencv Curves and MulFutrell, J. H., J . Chem. Phvs. 45, 2859 tiple Ionization Pyocesses,” Doctoral (1966): Dissertation. Kansas State Universitv. (1372) Sieck, L. W., Futrell, J. H., Ibid., Manhattan,’ 1966, 146 pp, Univ. Mic& p. 560. films Order No. 66-10,738, (1373) Silbiger, J., Lifshitz, C., Fuchs, J., (1342) Shadoff, L. A., ANAL.CHEM.39, 1 4 ~ ,. 7) 1902 1\-“I. Mandelbaum, A., J. Am. Chem. SOC. 89,4308 (1967). (1343) Shadoff, L. A., Westover, L. B., (1374) Silverstein, R. &I.,Rodin, J. O., Ibid.. D. 1048. Wood, D. L., Browne, L. E., Tetra(1344) ‘shahin, 51.M., Advan. Chem. Ser. hedron 22, 1929 (1966). 58, 315 (1966). (1375) Simon, W., 2. Anal. Chem. 221, (1345) Shahin, M. Ll., J . Chem. Phys. 368 (1966). 45, 2600 (1966). (1376) Singer, L. A., Davis, G. A., J. Am. (1346) Shamma, hl., Dudock, B. S., Chem. SOC.89, 598 (1967). Cava, AI. P., Rao, K. V., Dalton, D. R., (1377) Ibid., p. 941. DeJongh, D. C., Shrader, S. R., Chem. (1378) Siprikov, I. V., Lyubitov, Y. N., Commun. 1966, 7. Pribory i Tekhn. Eksperamen. 11, 173 (1347) Shamma, hI., Foley, K. F., J . (1966). Org. Chem. 32, 4141 (1967). (1379) Sjogren, H., Arkiv F y s i k 3 2 , 529 (1348) Shamma, X,Shine, R. J., Du(1966). dock. B. S.. Tetrahedron 23. 2887 (1380) Ibid., 33, 597 (1967). (1967). (1381) Sjogren, H., Lindholm, E., Ibid., (1349) Shannon, J. S., Letham, D. S., 32, 275 (1966). Ai. Z. J . Sci. 9,833 (1966). (1382) Skogerboe, R. K., Harrington, (1350) Shannon, T. W., LlcLafferty, W. L., Morrison, G. H., ANAL.CHEM. F. W., J. Am. Chem. SOC.88. 5021 38, 1408 (1966). (1966): (1383) Skudlarski, K., Drowart, J., Exs(1351) Shannon, T. W., McLafferty, teen, G., vander Auwere-Mahieu, A., F. W., McKinney, C. R., Chem. ComTrans. Faraday SOC.63, 1146 (1967). mun. 1966, 478. (1384) Slabodenyuk, G. I.,. Titov, A. I., (1352) Shannon, T. W., Mead, T. E., Pribory i Tekhn. Eksperamen. 12, 155 Warner, C. G., hlclafferty, F. W., (1967). ANAL.CHEM.39, 1748 (1967). (1353) Sharkey, A. G., Jr., Shultz, J. L., (1385) Slocum, D. W., Lewis, R., Mains, Friedel, R. A., U . S. Bur. Mines Bull. G. J., Chem. Ind. (London) 1966, 2095. 634, 74 pp (1967). (1386) Smale, T. C., Waight, E. S., (1354) Sharvit, J., Mandelbaum, A., Chem. Commun. 1966,680. IsraelJ. Chem. 5, 33 (1967). (1387) Smith, D., Kevan, L., J . Chem. (1355) Shasha, B. S., Doane, W. &I., Phys. 46, 1586 (1967). Itohwedder, W. K., Tetrahedron Letters (1388) Smith, D. H., Schnoes, H. K., 1966, 1479.’ Burlingame, A. L., NASA Accession NO. (1356) Shaw, hI. A,, Tebby, J. C., N66-34629, Rept. No. NASA-CR-77309, Ronayne, J., Williams, D. H., J . Chem. 11 pp. (1966). Soc. C 1967. 944. (1389) Smith, J. AI., Mehner, K., Kaesz, (1357) SheiniAa, G. A., Sheinin, A. B., H. D., J. Am. Chem. SOC.89, 1759 Zh. Prikl. Spektrosk. 6, 264 (1967). (1967). (1358) Shemyakin, hl. -M., Ovchinnikov, (1390) Smith, S. R., Krauss, R. A., Y. A., Kiryushkin, A. A:, Vinogradova; Dudek, G. O., J . Inorg. Nucl. Chem. E. I., Miroshnikov, A. I., Alakhov, 29, 1533 (1967). Y. B., Lipkin, V. M., Shvetsov, Y. B., (1391) Smith, S. R.,Jonassen, H. B., Wulfson, N. S., Rosinov, B. V., BochJ. Inorg. Nucl. Chem. 29,860 (1967). karev, V. N., Burikov. V. M.. Nature (1392) Sparrow, G. R., “An Analytical 211, 361 (1966). Treatment of Ionization Efficiency (1359) Shemyakin, M. M., Puchkov, Data for Xenon from a Pulsed RetardV. A., Vul’fson, N. S., Bochkarev, V. N., I
,
I
300 R
ANALYTICAL CHEMISTRY
ing-Potential Ion Source,” Doctoral Dissertation, Iowa State University, Ames, 1966, 225 pp, Univ. Microfilms Order No. 67-2099. (1393) Specker, H., 2. Anal. Chem. 221, 33 (1966). (1394) Spiteller, G., “Massenspektrometrische Strukturanalyze Organischen Verbindungen,” Verlag, Chemie, G.m.b.H., Weinheim, 1966, 354 p (1395) Spiteller, G., Spiteller-hedmann, M., Angew. Chem. Intern. Ed. Engl. 5 , 517 (1966). (1396) Spiteller, G., Spiteller-Friedmann, M., Houriet, R., Monatsh. Chem. 97, 121 (1966). (1397) Spiteller-Friedmann, M.,Spiteller, G., Chem. Ber. 100, 79 (1967). (1398) Stafford, F. E., J . Chem. Phys. 45, 859 (1966). (1399) Stanton, H. E., Wexler, S., Zbid., 44, 2959 (1966). (1400) Starcher, B. C., Partridge, S. hl., Elsden, D. F., Biochemzstry 6, 2425 (1967). (1401) Starodubtsev, S. V., Knopov, V. N., Pozharov, S. L., Chernov, I. G., Izv. Akad. Nauk Uzb. SSR, Fit.-Mat. Nauk 10, 49 (1966). (1402) Stefani, R., Methods Phys. Anal. 1966, 144. (1403) Ibid., p. 285. (1404) Stenhagen, E., Chimia 20, 346 11966). \_.__,
(1405) Stermitz, F. R.,Chen, L., White, J. I., Tetrahedron 22,1095 (1966). (1406) Stermitz, F. R.,Seiber, J. N., J. Org. Chem. 31, 2925 (1966). (1407) Stevens, C. M.,Harkness, A. L., U . S . Patent 3229157 (1966). (1408) St. George, B., Zakaib, D. D., Can. Spectry. 11, 133 (1966). (1409) Stillwell, R. N., ANAL. CHEM. 38,940 (1966). (1410) Stockdale, J. A., Christophorou, L. G., Hurst, G. S., J. Chem. Phys. 47, 3267 (1967). (1411) Strickler, H., Ohloff, G., sz. Kov&ts, E., Helv. Chim. Acta 50, 759 (1967): . (1412) Stuckey, W. K., “The Formation and Study of Gaseous Doubly-Charged Negative Ions in an Omegatron Mass Spectrometer,” Doctoral Dissertation, Kansas State University, Manhattan, 1966, 121 pp., Univ. Microfilms Order A‘o. 66-10,740. (1413) Stuckey, W. K., Kiser, R. W., ,Vature 211. 963 (1966). (1414) Studier, >i. HI, U . S. Patent 3296434 (1967). (1415) Studier, M. H., Huston, J. L., J . Phys. Chem. 71,457 (1967). (1416) Sudo, E., Takahashi, T., Ohkochi, H.. Proc. Mem. Lect. Meet. Annav. Foknd. h’at. Res. Inst. Metals, loth, Tokyo 1966, 198. (1417) Sudo, E., Takahashi, T., Yasuda, >I,, Mass Spectry. (Japan) 14, 45 (1966). (1418) Sugiura, T., Arakawa, K., MatsuD. 187. moto. A.. Ibid..,. (1419) Sukhum, N., Prasad, A. N., Craggs, J. D., Brit. J. Appl. Phys. 18, 785 (1967). (1420) ‘Suttle, E. T., Emerson, D. E., Burfield, D. W., ANAL.CHEM.38, 51 (1966). (1421) Suzuki, A., Wahlbeck, P. G., J . Phys. Chem. 70, 1914 (1966). (1422) Suzuki, A., Wahlbeck, P. G., Trans. Met. SOC. A I M E 236, 1375 (1966). (1423) Svec, H. J., Anderson, A. R.,J . Sci. Instr. 43, 134 (1966). (1424) Svec, H. J., Junk, G. A,, J . Am. Chem. SOC.89, 790 (1967). (1425) Ibid., p. 2836. (1426) Sweeley, C. C., Elliott, W. H.,
Fries, I., Rhyage, R., ANAL.CHEM.38, 1549 (1‘366). (1427) Szabo, I., Arkiv Fysik 31, 287 (1966). (1428) Ibid., 33, 57 (1966). (1429) Szabo, I., Phiis. Letters 24A, 702 (1967). (1430) Takahashi, X,, Murofushi, N.,
Tamura, S., Wasada, N., Hoshino, H., Tsuchiya, T., Aoyama, T., Jlorita, H., Tetrahedron Letters 1967, 895. (1431) Takahashi, N., Murofushi, N., Yokota, T., Tamura, S., Ibzd., p. 1065. (1432) Takeshita, I., hlass Spectry. (Japan) 14, 59 (1966). (1433) Takeshita, I., Rev. Scz. Instr. 38, 1361 (1967). (1434) Takeshita, I., Z. iYaturforsch., A , 21, 14 (1966). (1435) Tal’roze, V. L., Dodonov, A. F.,
Lavrovskaya, G. K., Zh. Vses. Khim. Obshchestva am. D. I . Mendeleeva 11,
154 (1966). (1436) Taniguchi, S., Mass Spectry. (Japan) 14, 139 (1966). (1437) Tannenwald, L. >I., Proc. Phys. SOC.87, 109 (1966). (1438) Tatematsu, A., Mass Spectry. (Japan) 14, 225 (1966). (1439) Ibzd., 15, 37 (1967). (1440) Ibzd., p. 122. (1441) Tatematsu, A., Goto, T., Matsuura, s., ,Yippon Kagaku Zasshi 87, 71 (1966). (1442) Ibid., p. 1226. (1443) Tatematsu, 8., Goto, T., Naka-
mura, T., Yamaguohi, S., Yakugaku Zasshi 86, 195 (1966). (1444) Tatematsu, A,, Inoue, S., Goto, T., Tetrahedron Letters 1966, 4609. (1445) Tatematsu, A,, Inoue, S.,Sugiura, S., Goto, T., n’ippon Kagaku Zasshi 87, 66 (1966). (1446) Tatematsu, A., Nndai, T., Goto,
T., Nakajima, Y., Tsuyama, H., Doi,
H., Yakugaku Zasshi 87, 329 (1967). (1447) Tatematsu, A., Nakata, H., Naka-
jima, Y., Tsuyama, H., Doi, H., Mass Spectry. (Japan) 14, 201 (1966). (1448) Tatematsu, A., Yoshizumi, H., Hayashi, E., Nakata, H., Tetrahedron Letters 1967, 2985. (1449) Taylor, D. R., Chem. Rev. 67, 317 (1967). (1450) Teeter, R. ll., ANAL.CHEM.38, 1736 (1966). (1451) Ibid., 39, 1742 (1967). (1452) Teeter, R. hl., Spencer, C. F.,
Green, J. W., Smiths,on, L. H., J. Am. Oil Chemzsts’ SOC.43, 82 (1966): (1453) Temnikova, T. I., Takhistov, V. V., Zh. Org. Khim. 3, 287 (1967). (1454) ten Soever de Brauw, M. C., BrunnBe, C., Z . AnaL Chem. 229, 321
(1967). (1455) Teranishi,
R., Flath, R. A,, Guadagni, D. G., Lundin, R. E., Mon, T. It., Stevens, K. L., J . Agr. Food Chem. 14, 253 (1966). (1456) Teranishi, R., Lundin, R. E., McFadden, W. H., hlon, T. R., Schultz, T. H., Stevens, K. I,., Wasserman, J., Ibid., p. 447. (1457) Thieme, G., Natuwissenschaften 53,428 (1966). (1458) Thomas, A. F., Willhalm, B., Helv. Chim. Acta 50, 826 (1967). (1459) Thomas, A. F., Willhalm, B., J . Chem. SOC.,B 1966,219. (1460) Thomas, A. F., Willhalm, B., Bowie, J. H., J . Chem. SOC.,B 1967, 392. (1461) Thomas, D. W., Achenbach, H., Biemann, K., J . Am. Chem. SOC.88, 1537 (1966). (1462) Thomas, D. W., Biemann, K.,
Kiang, A. K., Amarasingham, R. D.,
Zbid., 89, 3235 (1967). (1463) Thomas, J. hI., Roscoe, C., Cook-
son, C. G., Owen, T. H., Tushingham, R., Carbon (Ozford)4,457 (1966). (1464) Thompson, P. G., J . Am. Chem. Soc. 89. 4316 (1967). (1465) Thomsoni J.’ B., Brown, P., Djerassi, C., Ibid., 88, 4049 (1966). (1466) Thowe, S. R., Sweelev, ” . C. C., Biochemisirid, 887 (1967). (1467) Thynne, J. C. J., Amenu-Kpodo,
F. K., Harrison, A. G., Can. J. Chem.
44, 1655 (1966). (1468) T h nne, J. C. J., Harrison, A. G., Trans. d r a d a y SOC.62, 2468 (1966). (1469) Tikhomirov, J L V., Komarov, V. N., Zh. Fiz. Khim. 40, 1392 (1966). (1470) Ibid., 41, 1065 (1967). (1471) Timms, P. L., J . Am. Chem. SOC. 89, 1629 (1967). (1472) Tirosh, N., hlodiano, A., Cais, hI., J . Organometal. Chem. 5, 357 (1966). (1473) Tobey, S. W., West, R., J . Am. Chem. SOC.88, 2481 (1966). (1474) TokBs, L. G., “Mass Spectrometric
Fragmentation Mechanisms in the Steroid Series,” Doctoral Dissertation, Stanford University, Stanford, Calif., 1966, 245 pp, Univ. Microfilms Order h’o. 66-6391. (1475) Tokh, L., LaLonde, R. T., Djerassi, C., J . Org. Chem. 32, 1012 (1967). (1476) Ibid., p. 1020. (1477) Tokuyama, T., Senoh, S.,Sakan, T., Brown, K. S., Jr., Witkop, B., J . Am. Chem. SOC.89, 1017 (1967). (1478) Tomita, &I., Furukawa, H., Kikuchi, T., Kato, A., Ibuka, T., Chem. Pharm. Bull. (Tokyo)14, 232 (1966). (1479) Tomita, M., Kato, A., Ibuka, T., Furukawa, H., Asada, S., Kozuka, M., Mass Spectry. (Japan)15, 104 (1967). (1480) Tomita, AI., Kikuchi, T., Fujitani, K., Kato, A., Furukawa, H., Aoyagi, Y., Kitano, M.,Ibuka, T., Tetrahedron Letters 1966, 857. (1481) Tomko, J., Bauerova, O., Voticky, Z., Goutarel, R., Longevialle, P., Ibid., p. 915. (1482) Torshina, V. V., Smolina, G. N., Dobvchin, S. L.. Zh. Prikl. Khim. 39, 1468 (1966). ‘ (1483) Torssell, K., Wahlberg, K., Acta Chem. Scand. 21, 53 (1967). (1484) TOU,C., “I. Theoretical Calcula-
tion of Mass Spectra-Methyl Pentanes. 11. An -4pproach to the Photo-Induced Dissociation of Ions in a Mass Spectrometer,” Doctoral Dissertation, University of Utah, Salt Lake City, 1966, 126 pp, Univ. Microfilms Order No.
66-1744. .. (1485) Tou, J. C., Hills, L. P., Wahrhaftig, A. L., J . Chem. Phys. 45, 2129 (1966). (1486) Toube, T. P., Murphy, J. W., Cross, A. D.. Tetrahedron 23. 2061 (1967). (1487) Tromp, F. AI., Wijnbergen, J. J., J . Sci. Instr. 44, 209 (1967). (1488) Truce, W. E., Campbell, R. W., hfadding, G. D., J . Org. Chem. 32, 308 (1967). (1489) Tschesche, R., Schwang, H., Fehl~
haber, H.-W., Snatzke, G., Tetrahedron 22, 1129 (1966). (1490) Tschesche, R., Werner, W., Ibid.,
23, 1873 (1967). (1491) Tsuchiya, X.,, hlatsuhira, S., Ishido, S., Bunsekz Kagaku 16, 210 11967). (1492) Tsuda, hf., Mass Spectry. (Japan) 14, 35 (1966). (1493) Tummler, R., Steinfelder, K., 2. Chem. 7, l ( 1 9 6 7 ) . (1494) Turner, D. W., Advan. Phys. Org. Chem. 4 .,~ 31 11966). (1495) Turner, D. W., Nature 213, 795 (1967). (1496) Turner, D. W., htay, D. P., J . Chem. Phys. 46, 1156 (1967).
(1497) Turro, K. J., Weiss, D. S., Haddon,
W. F., hlclafferty, F. W., J. Am. Chem. SOC.89, 3370 (1967). (1498) Ukai, S., Hirose, K., Tatematsu, A., Goto, T., Tetrahedron Letters 1967,
4999. (1499) Updegrove, W. S., Orb, J., Zlatkis, A., J . Gas Chromatog. 5 , 359 (1967). (1500) Urushibara, T., Sato, H., Goto, XI,, Nippon Kagaku Zasshi 87, 972 (1966). (1501) Uyeo, S., hie, H., Harada, H., Chem. Pharm. Bull. (Tokyo) 15, 768 (1967). (1502) Valdener, G., Chaigneau, hl., Le Moan, G., Method. Ph,ys. Anal. 1966, 304. (1503) Valeriano, P., Cavard, A., Stefani,
R., Bourgillot, R., Desjardins, M., Ibid.,
D. 266.
(1604) Valoroi! V. A., Polyakova, A. A., Zh. Org. Khzm. 3, p. 842 (1967). (1505) Ibid., 960. (1506) Vandewalle, M., Schamp, N.,
De Wilde. H., Bull. SOC.Chim. Beloes
(1507) 76, 111 Ibid., (1967): p. 123.
0.-
(1508) van Heijenoort, J., Bricas, E.,
Das, B. C., Lederer, E., Wolstenholme, W. A., Tetrahedron 23, 3403 (1967). (1509) Van Horn, A. R., Djerassi, C., Steroids 9, 163 (1967). (1510) Vanselow, R., Schmidt, W. A,, Z. Xaturforsch., A 22, 717 (1967). (1511) Vasil’eva, E. K., Zakomornyi, A. G., Zavodsk. Lab. 33, 471 (1967). (1512) Vastel, J., Coulon, A l . , Energie Nucl. 8, 33 (1966). (1513) Vecchi, hl., Tetter, W., Walther, W., Jermstad, S. F., Schutt, G. W., Helv. Chim. Acta 50, 1243 (1967). (1514) Veldre, V. Ya., Damburg, R. Ya., PeterfSop, R. K., Eds., “Atomic Collisions, The NIT Press, Cambridge, Mass., 1966, 136 pp. (1515) Vember, P. A., Terent’eva, I. V., Lazur’evskii, G. V., Khim. Prir. Soedin
3. 249 (1967). (15i6) Venkaiaaraghavan, R., McLafferty, F. W., ANAL.CHEM.39, 278 (1967). (1517) Venkataraghavan, R., McLafferty, F. W., Amy, J. W., Ibid., p. 178. (1518) T’erneker, V. R. P., Maycock, J. N., J . Chem. Phys.47,3618 (1967). (1519) Vestal, AI. L., U . S . Patent 3307033 (1967). (1520) Vetter, W., Schill, G., Tetrahedron 23, 3079 (1967). (1521) Vilkas, E., Itojas, A,, Das, B. C., Wolstenholme, W. A., Lederer, E., Ibid., 22, 2809 (1966). (1522) Vilnat, J., Bull. SOC.Franc. Ceram. 70, 11 (1966). (1523) Vogt, D., Neuert, H., Z. Phys. 199, 82 (1967). (1524) Vollmin, J. A., Omura, I., Seibl, J.,
Grob, K., Simon, W.,Helv. Chim. Acta
49, 1768 (1966). (1525) Vollmin, J. A., Simon, W., Kaiser, R., Z . -4nal. Chem. 229, 1 (1967). (1526) Volpi, G. G., Zocchi, F., J . Chem. Phvs. 44, 4010 (1966). . , (1527) von Buenau, G., Schade, G., Gollnick, K., Z . Anal. Chem. 227, 173 (1967). (1528) Ibid., p. 270. (1529) von Gustorf, E. K., Henry, 11.C., hIcAdoo, D. J., Ann. 707, 190 (1967). (1530) von Zahn, U., J . Geophys. Res. 72, 5933 (1967). (1531) Vul’fson, N. S., Chizhov, 0. S., Golovkina, L. S., Khim. Prirodn. Soedin., Akad. LVauk Uz. S S R 2, 77 (1966). (1532) Vul’fson, N. S., Puchkov, V. A.,
Denisov, Y. V., Rozynov B. V., Bochkarev, V. N., Shemyakin, 11. lI., Ovchinnikov, Y. A., Antonov, V. K., Khim. Geterotsikl. Soedin, 1966, 614. VOL. 40, NO. 5, APRIL 1968
301 R
(1533) Wachs, T., McLafferty, F. W., J . Am. Chem. SOC.89, 5043 (1967). (1534) Ibid., p. 5044. (1535) Wade, K., Wyatt, B. K., J . Chem. SOC.A 1967, 1339. (1536) Wagner, R. I., Freeman, L. D., Goldwhite, H., Rowsell, D. G., J . A m , Chem. SOC.89, 1102 (1967). (1537) Wahlbeck, P. G., Gilles, P. W., J . Chem. Phys. 46, 2465 (1967). (1538) Waller, G. I%.,Kyhage, R., RIeyerson, S.,Anal. Biochem. 16,277 (1966). (1539) Walter, W., Voss, J., Ann. 698, 113 (1966). (1540) Walton, J. C., J . Phys. Chem. 71, 2763 (1967). (1541) Wanless, G. G., Glock, G. A,, Jr., ANAL.CHEM.39, 2 (1967). (1542) Ward, J. A., Hamill, W. H., J . Am. Chem. SOC.89, 5116 (1967). (1543) Warneck, P., J. Chem. Phys. 46, 502 (1967). (1544) Ibid., p. 513. (1545) Ibid., 47,4279 (1967). (1546) Wasada, N., Tsuchiya, T., Yoshii, E., Watanabe, E., Tetrahedron 23, 4623 (1967). (1547) .Weber, J . ,H., “hlass Spectrcmetric Investigations of Some Organic Esters,’’ Doctoral Dissertation, Kansas State University, Manhattan, 1966, 169 pp, Univ. MicrofLlms Order Eo. 66-10,743. (1548) Webster, B. R., Chem. Commun. 1966, 124. (1549) Weichert, D. H., “Digital Analysis of Mass Spectra,” Doctoral Dissertation, The University of British Columbia, Vancouver, 1965. (1550) Weichert, D. H., Russell, R. D., Blenkinsop, J., Can. J . Phys. 45, 2609 (1967). (1551) Weinberg, D. S., Djerassi, C., J . Org. Chem. 31, 115 (1966). (1552) Ibid., I). 3832. (1553) Weinig, E., Zink, P., Arch. Toxikol. 22, 255 (1967). (1554) Weininger, S . J., Thornt,on, E. R., J . Am. Chem. SOC.89,2950 (1967). (1555) Ibid., p. 2950. (1556) Weiss, F., Bonnard, G., Isard, A., Serpinet, J., Lante, A., Bull. SOC. Chim. France 1966, 1149. (1567) Wendlandt, W. W., Southern, T. AI., Williams, J. R., Anal. Chim. Acta 35. 254 (1966). (1558) Werner, H. W., Philips Res. Rept. 21, 63 (1966). (1559) Werner, H. W., Kieuwenhuizen, J. JI., 2. Naturforsch., A 22, 1035 (1967). (1560) Wexler, S., Lifshitz, A., Quat-
302 R
ANALYTICAL CHEMISTRY
trochi, A., Advan. Chem. Ser. 58, 193 (1966). (1561) Wheeler, D. M. S., Kinstle, T. H., Rinehart, Jr., K. L., J . Am. Chem. SOC. 89, 4494 (1967). (1562) White, F. A., Forman, L., IEEE (Inst. Elec. Electron. Eng.,) Trans. A’ucl. sci. 14, 211 (1967). (1563) White, F. A., Forman, L., Rev. Sci. Instr. 38, 355 (1967). (1564) Whitten, D. G., Bentley, K. E., Kuwada, D., J . Org. Chem. 31, 322 (1966). (1565) Willhalm, B., Thomas, A. F., Helv. Chim. Acta 50, 383 (1967). (1566) Willhoft, E. h4. A., Robertson, A. J. B., Chem. Commun. 1967, 385. (1567) Williams, D. H., Cooks, R. G., Bowie, J. H., Madsen, P., Schroll, G., Lawesson, S.-O., Tetrahedron 23, 3173 (1967). (1568) Williams, D. H., Horsfield, A., Ann. Rept. Progr. Chem. (Chem. SOC. London) 62, 213 (1965) (Pub. 1966). (1569) Williams, D. H., Ronayne, J., Chem. Commun. 1967, 1129. (1570) Wilson, J. H., NcGee, H. A., Jr., J . Chem. Phys. 46,1444 (1967). (1571) Winchell, P., Baldwin, N. L., J . Phys. Chem. 71,4476 (1967). (1572) Winters, R. E., “A hlass Spectrometric Study of Some Organometallic Compounds,” Doctoral Dissertation, Kansas State University, hlanhattan, 1965, 183 pp, Univ. Microfilms Order NO.65-15,497. (1573) Winters, R. E., Collins, J. H., J . Phys. Chem. 70,2057 (1966). (1574) Winters, R. E., Collins, J. H., Courchene, W. L., J . Chem. Phys. 45, 1931 11966>. (1575) WintLrs, R. E., Kiser, R. W., Ibid., 44, 1964 (1966). (1576) Winters, 1%. E., Kiser, R. W., J . Phus. Chem. 70, 1680 (1966). (1577) Woldring,,. S., Owens, G., Woolford, D. C., Sczence 153,885 (1966). (1578) Wolf, F. A,, J . Chem. Phys. 44, 1619 (1966). (1579) Wolff, G., Wolff, R. E., McCloskey, J. A., Tetrahedron Letters 1966, 4335. (1580) Wolff, 31. E., Cheng, S.-Y., J . Org. Chem. 32, 1029 (1967). (1581) Wolff, R. E., Wolff, G., 31~Closkev. J. A.. Tetrahedron 22. 3093 (1966): ’ (1582) Wolstenholme, W. A., Vining, L. C., TetrahedronLetters 1966, 2785. (1583) Wong, E. L., Potter, A. E., Jr., Can. J . Chem. 45, 367 (1967). (1584) Woodward, H., At. Energy Australia 10, 16 (1967).
(1585) Woolston, J. R., Honig, R. E., Botnick, E. X, Rev. Sci. Instr. 38, 1708 (1967). (1586) Wright, W. G., Warren, F. L., J . Chem. SOC.,C 1967,284. (1587) Wudl, F., Lightner, D. A., Cram, D. J., J . Am. Chem. SOC.89, 4099 (1967). (1588) Wulfson, N. S., Bochkarev, V. N., Rozinov, B. V., Shemyakin, M. M., Ovchinnikov, Y. A., Kiryushkin, A. A., Miroshnikov, A. I., Tetrahedron Letters 1966, 39. (1589) Wulfson, N. S., Zaretskii, V. I., Sadovskaya, V. L., Ananchenko, S. N., Rzheznikov, V. M., Torgov, I. V., Tetrahedron 22, 1885 (1966). (1590) Wulfson, N. S., Zaretskii, V. I., Sadovskaya, V. L., Semenovsky, A. V., Smit, W. A., Kucherov, V. F., Ibid., p. 603. (1591) Wulfson, N. S., Zaretskii, V. I., Sadovskaya, V. L., Zakharychev, A. V., Ananchenko, S. N., Torgov, I. V., Ibid.. 23.3667 (1967). 392) ’Yamaguchi, N:, Araki, S., Bunseki Kagaku 16, 348 (1967). .593) Zaretskii, V. I., Wulfson, N. S., Sadovskaya, V. L., Tetrahedron Letters 1966, 3879. (1594) Zaretskii, V. I., Wulfson, N. S., Zaikin, V. G., Tetrahedron 23, 3683 (19671. (1g95) Zaretskii, V. I., Wulfson, N. S., Zaikin, V. G., Kogan, L. >I.,Voishvillo, N. E., Tor.gov, I. V., Ibid., 22, 1399 (1966). (1596).Zaretskii, V. I., Wulfson, N. S., Zaikin, V. G., Leonov, V. N., Ananchenko, S. N., Torgov, I. V., Tetrahedron Letters 1966, 347. (1597) Zmbov, K. F., Margrave, J. L., J . Am. Chem. SOC.89, 2492 (1967). (1598) Zmbov, K. F., Margrave, J. L., J . Chem. Phys. 45, 3167 (1966). (1599) Zmbov, K. F., hIargrave, J. L., Ibid.. 47. 3122 11967). (1600) ’Zmbov, Kl F.; Margrave, J. L., J . Inorg. iYucl. Chem. 29, 59 (1967). (1601) Ibid., p. 2649. (1602) Zmbov, K. F., Margrave, J. L., J . Phys. Chem. 70,3014 (1966). 11603) Ibid.. w. 3379. (1604) Ibid.; 31, 446 (1967). (1605) Ibid., p. 2893. (1606) Zmbov, K. F., Margrave, J. L., U . S. At. Energy Comm. 0R0-2907-36, 58 pp. (1966). (1607) Zvenigorosky, A., C. R. Acad. Sci., Paris, Ser. C 264, 1340 (1967). (1608) Zyakun, A. M.,Puchkov, V. A,, Stepanov, V. M., Vul’fson, N. S., Zzv. Akad. iVauk SSSR, Ser. Khim. 1966, 1713.