1 Mass Spectrometric Studies of Chemionization by Reaction of Electronically Excited Species J. L .
FRANKLIN
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
Rice University, Houston, Tex.
During
the last few
has been carried formation
years an increasing
number
out on a class of reactions
of ions in gases by reactions
or molecules.
The
t y p i c a l . Recently
reaction
Ar* +
of
of two neutral N
2
-->
ArN + 2
progress has been made toward
ing the rate constants be in the order of 10
-9
studies
involving
the atoms
+
e is
determin-
of these reactions,
which
cc./molecule/sec.
In some
instances
to take part in the
reaction.
several excited states are known
turn out
to
' " p h e o c c u r r e n c e of d i a t o m i c ions of the r a r e gases has b e e n n o t e d b y s e v e r a l experimenters (29, 30,43),
b u t f o r a n u m b e r of years t h e exact
n a t u r e o f the processes l e a d i n g to t h e i r f o r m a t i o n w a s not u n d e r s t o o d . I n 1951, H o r n b e c k a n d M o l n a r (18)
m e a s u r e d the a p p e a r a n c e p o t e n t i a l s
of t h e h o m o n u c l e a r d i a t o m i c ions for a l l of the rare gases.
T h e i r mass
spectrometer w a s not i d e a l l y s u i t e d to studies of mass spectra of gases at e l e v a t e d pressures. T h e i n s t r u m e n t h a d r e l a t i v e l y p o o r r e s o l v i n g p o w e r w i t h the result t h a t t h e i r a p p e a r a n c e p o t e n t i a l s w e r e not precise. N e v e r theless, t h e y d e m o n s t r a t e d t h a t the a p p e a r a n c e p o t e n t i a l s of t h e d i a t o m i c ions w e r e i n a l l cases 0.7 to 1.5 e. v. b e l o w the i o n i z a t i o n potentials of the c o r r e s p o n d i n g r a r e gas atoms.
T h e pressure d e p e n d e n c e
i n e a c h case
w a s f o u n d to b e s e c o n d order. B o t h of these results s h o w t h a t the r e a c t i o n d i d not i n v o l v e a t o m i c ions, a n d H o r n b e c k a n d M o l n a r c o n c l u d e d t h a t t h e r e a c t i o n i n v o l v e d a t t a c k of a n e x c i t e d a t o m u p o n a n a t o m i n t h e g r o u n d state—i.e. X* + X - > X
2
+
+ e
(1)
w h e r e the asterisk signifies electronic e x c i t a t i o n . R e a c t i o n s of t h i s k i n d , i n w h i c h a n i o n is f o r m e d b y the r e a c t i o n of t w o or m o r e n e u t r a l entities, 1 Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
2
MASS SPECTROMETRY I N INORGANIC
Table I.
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
Excited Atom, X*
2
CHEMISTRY
Appearance Potentials of Appearance
Lowest Excitation Energy
Ionization Potential
He
19.8
24.6
Ne
16.8
21.6
Ar
11.5
15.8
Kr
9.9
Xe
8.3
He 23.2 (18) 23.3 (35) 23.4 (22)
14.7 14.0" b
13.4 12.1 h
e
P / 2 state. 3
is c a l l e d c h e m i o n i z a t i o n . F o l l o w i n g the studies of H o r n b e c k a n d M o l n a r (18),
v a r i o u s w o r k e r s h a v e s t u d i e d m i x t u r e s of c e r t a i n of the r a r e gases
i n a n effort to a s c e r t a i n w h e t h e r h e t e r o n u c l e a r d i a t o m i c ions c o u l d formed.
T h u s , P a h l a n d W e i m e r (36,
d i s c h a r g e b u t f a i l e d to find H e A r F u c h s a n d K a u l (13)
or N e A r
+
studied N e A r
observed H e N e
37)
+
+
reported A r X e
+
in a
be
glow
i n m i x t u r e s of those gases.
a n d A r K r , a n d t h e latter w a s e x a m +
i n e d i n greater d e t a i l b y K a u l , L a u t e r b a c h , a n d F u c h s (21). T a u b e r t (22)
+
and KrXe . +
Kaul and
Munson, Franklin, and Field
m a d e a r a t h e r c o m p l e t e s t u d y of t h e d i a t o m i c ions of t h e r a r e gases t a k e n a l o n e a n d i n c o m b i n a t i o n (35).
T h e y f o u n d that a l l of the possible r a r e
gas d i a t o m i c gas ions are f o r m e d , a n d t h e y m e a s u r e d a p p e a r a n c e p o t e n tials of a l l except H e X e , w h i c h w a s f o r m e d i n s u c h s m a l l a m o u n t s t h a t +
a n a p p e a r a n c e p o t e n t i a l c o u l d not b e d e t e r m i n e d satisfactorily. T a b l e I gives a l l of the results of these studies as w e l l as of the a p p e a r a n c e p o t e n tials m e a s u r e d f o r t h e r a r e gas d i a t o m i c ions f r o m t h e l i t e r a t u r e . I t is s u r p r i s i n g that, c o n s i d e r i n g t h e r e l a t i v e l y s m a l l intensities of these ions, t h e r e has b e e n s u c h g o o d agreement a m o n g the m e a s u r e d
appearance
potentials. B e f o r e d i s c u s s i n g these measurements i t w o u l d b e of interest to n o t e t h e shape of a t y p i c a l i o n i z a t i o n efficiency c u r v e for a r a r e gas d i a t o m i c ion (Figure 1).
T h i s c u r v e is r e m i n i s c e n t of the e x c i t a t i o n c u r v e
for
o p t i c a l l y f o r b i d d e n transitions b y e l e c t r o n i m p a c t a n d is q u i t e different
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
1.
FRANKLIN
Studies of
3
Chemionization
the Rare Gas Diatomic Ions in e.v. Potential
where Y is
of XY
+
23.4 (35) 22.6 (22)
17.9 19.9
(35) (35)
19.9 (35)
20.9 (18, 35)
16.8 16.5
(35) (13)
16.6
14.7 (35) 15.1 (18, 20) Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
Xe
Kr
Ar
Ne
16.0 (35)
(35)
14.0 (35)
13.5 (22,
13.0 (35) 13.2 (18,22)
12.2 (22) 12.3 (35)
35)
11.2 (35) 11.6 (22) » Pi/ 2
2
state.
f r o m the t y p i c a l i o n i z a t i o n efficiency c u r v e for the f o r m a t i o n of m o n a t o m i c ions b y electrons, also s h o w n i n F i g u r e 1 for c o m p a r i s o n . A s w i l l b e d i s c u s s e d i n m o r e d e t a i l later, the d i a t o m i c ions i n a l l cases w e r e s e c o n d o r d e r i n pressure.
F u r t h e r , the m o l e c u l a r - i o n f o r m a t i o n
was
i n d e p e n d e n t of field strength, a n d thus the p o s s i b i l i t y of t h e i r f o r m a t i o n b y i o n - m o l e c u l e reactions is e l i m i n a t e d . T h u s , w e c o n c l u d e that H o r n b e c k a n d M o l n a r ' s (18)
i n t e r p r e t a t i o n of
t h e i r observations
applies
b r o a d l y a n d t h a t the h e t e r o n u c l e a r d i a t o m i c ions are f o r m e d b y t h e f o l lowing generalized reaction: X* + Y - » X Y + e
(2)
+
It w i l l be of interest to note the a p p e a r a n c e potentials of the h e t e r o n u c l e a r ions i n T a b l e I. I n e a c h case the a p p e a r a n c e p o t e n t i a l is greater t h a n t h e i o n i z a t i o n p o t e n t i a l of the constituent a t o m of lowest i o n i z a t i o n p o t e n t i a l so that the r e a c t i o n m u s t a l w a y s i n v o l v e a n e x c i t e d state of the a t o m of highest i o n i z a t i o n p o t e n t i a l . P o s s i b l e exceptions to t h i s w o u l d b e A r K r , A r X e , a n d K r X e . I n the case of K r X e +
+
+
ance p o t e n t i a l is close to the l o w e r ( P^/ ) 2
respectively.
For ArXe
+
2
and A r K r
+
the a p p e a r -
state of x e n o n a n d k r y p t o n ,
the a p p e a r a n c e p o t e n t i a l is q u i t e close to the
h i g h e r ( P i / ) state of xenon. 2
2
+
If i n d e e d , a state of the a t o m of l o w e r
i o n i z a t i o n p o t e n t i a l is i n v o l v e d , it m u s t b e a n i o n i c state if the a p p e a r a n c e potentials are correct.
S i n c e the r e a c t i o n of a n i o n w i t h a n e u t r a l a t o m
w o u l d b e t h i r d o r d e r i n pressure a n d these reactions are s e c o n d order, it
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
4
MASS SPECTROMETRY
E L E C T R O N
Figure 1.
I N INORGANIC
CHEMISTRY
VOLTAGE
Ionization efficiency curves
seems c e r t a i n that the reactions l e a d i n g to the f o r m a t i o n of A r K r
+
and
ArXe
+
are reactions of the e x c i t e d a r g o n , a n d that for the f o r m a t i o n of
KrXe
+
involves excited krypton.
I n a l l of the h e t e r o n u c l e a r m o l e c u l a r rare gas ions the e n e r g y at w h i c h the i o n appears is greater t h a n one of its possible asymptotes.
decomposition
T h e r e is thus a p r o b l e m of u n d e r s t a n d i n g w h y s u c h a
m o l e c u l a r i o n s h o u l d be stable. T h e r e seems no d o u b t that t h e y are, a n d w e t h i n k t h a t F i g u r e 2 w i l l illustrate the reason. HeNe . +
P r e s u m a b l y , the i n t e r a c t i o n of N e
whereas that of H e
+
+
C o n s i d e r the case of
w i t h h e l i u m is r e p u l s i v e ,
w i t h N e is attractive. H o w e v e r , the n o n c r o s s i n g
r u l e , as i l l u s t r a t e d i n F i g u r e 2, results i n a m i n i m u m i n the p o t e n t i a l energy c u r v e w h i c h enables the i o n to exist i n spite of its energy. I n T a b l e I the H e A r
+
i o n has t w o a p p e a r a n c e potentials. T h e u p p e r
one at 19.9 e. v. corresponds closely to the energy of the h e l i u m metastable a t o m . T h e i o n i z a t i o n efficiency c u r v e shows a s h a r p c h a n g e i n slope at this p o i n t . T h e r e is, h o w e v e r , a r a t h e r l o n g t a i l to the c u r v e w h i c h has a l o w e r a p p e a r a n c e p o t e n t i a l at a r o u n d 17.9 e. v. T h i s occurs i n a n energy r a n g e for w h i c h there are no k n o w n states for either a r g o n or h e l i u m , a n d it is difficult to u n d e r s t a n d h o w a n i o n w i t h this a p p e a r a n c e p o t e n t i a l
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
1.
FRANKLIN
is f o r m e d .
Studies
of
5
Chemionization
T h i s was, however,
represented a real phenomenon.
a reproducible value and
presumably
T h e r e has b e e n some e v i d e n c e b y mass
spectrometrists e m p l o y i n g e l e c t r o n beams of n a r r o w energy s p r e a d w h i c h suggest that there are i n d e e d states of a r g o n i n the i o n i z a t i o n c o n t i n u u m , a n d one of these has b e e n i d e n t i f i e d i n the n e i g h b o r h o o d of 18 e. v .
(8).
P e r h a p s it is this state that is responsible for the l o w e r a p p e a r a n c e p o t e n t i a l of H e A r . +
A s i m i l a r result is f o u n d w i t h N e X e , w h o s e
appearance
+
p o t e n t i a l at 16.0 volts is w e l l a b o v e the i o n i z a t i o n p o t e n t i a l of x e n o n a n d d e f i n i t e l y b e l o w the lowest state of neon. P r e s u m a b l y , s i m i l a r c o n s i d e r a tions w o u l d a p p l y , b u t there h a v e b e e n n o e x c i t e d states of x e n o n r e p o r t e d to o u r k n o w l e d g e . Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
T h e f o l l o w i n g reactions thus a p p e a r to a c c o u n t for the v a r i o u s r a r e gas d i a t o m i c i o n s : He* + He - » H e
2
+ e
+
(3)
He* + Ne - » HeNe* + e
(4)
H e (2s»S) + A r - » H e A r + e
(5)
+
A r * + H e -> H e A r * + e
(6)
(?)
He(2s3S) + K r -> H e K r * + e
(7)
Ne* + Ne -> Ne * + e
(8)
2
Ne(3s»P) + A r -> N e A r + e
(9)
Νβ(3ί»Ρ) + K r - » N e K r * + e
(10)
+
X e * + N e - » NeXe* + e
(?)
(H)
A r * + A r -*• A r * + e
(12)
A r * + K r -> A r K r * + e
(13)
A r * + X e ->· A r X e + e
(14)
Kr* + Kr - » Kr * + e
(15)
Kr* + Xe - » KrXe + e +
(16)
Xe* + Xe - » X e
+ β
(17)
2
+
2
T h e strength of the b o n d i n H e
2
+
2
+
has b e e n e s t i m a t e d i n v a r i o u s w a y s
w i t h results v a r y i n g f r o m 0.05 e. v. to 2.2 e. v. R e c e n t l y , R e g a n , B r o w n e , a n d M a t s e n (38)
made a careful a n d apparently definitive calculation
w h i c h shows D ( H e
2
+
)
to b e at least 2.2 e. v.
T h i s b o n d strength, i f
correct, w o u l d suggest that the a p p e a r a n c e p o t e n t i a l of H e
2
+
should be
a b o u t 22.4 e. v. I n fact, as is seen i n T a b l e I , the a p p e a r a n c e p o t e n t i a l is a b o u t 23.2 e. v., a n d the q u e s t i o n arises as to w h y the p o t e n t i a l is not
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
6
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
l o w e r a n d nearer to 22.4 e. v. T h e f o l l o w i n g relevant states of h e l i u m a t o m a n d t h e i r energies ( i n e. v . ) are k n o w n
(33):
2*P, 21.22; 3»S, 22.72; 3 ^ , 22.92; 3*P, 23.01; 3*P, 23.09. A t least f o u r of these h a v e , sufficient energy to c o n t r i b u t e to the f o r m a t i o n of the d i a t o m i c i o n . R e c e n t l y , St. J o h n et al. ( 3 9 ) h a v e s t u d i e d the cross-section for e x c i t a t i o n of v a r i o u s electronic states of h e l i u m b y e l e c t r o n i m p a c t . T h e y find t h a t a l l of the relevant states except P states 1
d r o p p e d to v a n i s h i n g l y s m a l l values at a b o u t the i o n i z a t i o n p o t e n t i a l of helium.
The
1
P states s h o w a p p r e c i a b l e cross sections at voltages
con-
s i d e r a b l y b e l o w the i o n i z a t i o n p o t e n t i a l ; hence, one c o n c l u d e s t h a t i n a l l p r o b a b i l i t y it is the large cross section for e x c i t a t i o n of the P states t h a t Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
X
d e t e r m i n e the a p p e a r a n c e p o t e n t i a l of the d i a t o m i c i o n . T h u s , the 3 P , 3
the 3*S a n d 3 S , w h i l e b e i n g e n e r g e t i c a l l y c a p a b l e of r e a c t i o n , are present 3
at l o w energies i n s u c h s m a l l amounts as to be u n d e t e c t a b l e .
The 2 P 1
state is of too l o w a n e n e r g y to f o r m the d i a t o m i c i o n a n d t h u s , the a p p e a r a n c e p o t e n t i a l is l i m i t e d to the 3*P state w h o s e e n e r g y of 23.09 e. v. a b o v e the g r o u n d state corresponds
closely to the average
appearance
p o t e n t i a l d e t e r m i n e d b y various mass spectrometrists for the d i a t o m i c i o n . States of h i g h e r e n e r g y m a y c o n t r i b u t e b u t w o u l d not b e d e t e c t e d
at
onset. U n t i l n o w the d i s c u s s i o n has b e e n l i m i t e d to rare gases.
Although
t h e y h a v e i n d e e d p l a y e d a l a r g e p a r t i n the d e v e l o p m e n t of this
field,
several other reactions h a v e b e e n r e p o r t e d i n v o l v i n g the r a r e gases w i t h other m a t e r i a l s a n d i n d e e d , i n v o l v i n g atoms a n d m o l e c u l e s , exclusive of the r a r e gases. C e r m a k a n d H e r m a n ( 6 ) a n d C e r m a k (4)
have reported
several reactions of the rare gases w i t h m e r c u r y a n d of e x c i t e d m e r c u r y atoms w i t h a m m o n i a , m e t h a n e , acetylene, a n d m e t h a n o l , as w e l l as a r e a c t i o n w i t h n i t r o g e n i n w h i c h i t c o u l d not b e d e t e r m i n e d w h i c h r e actant was the e x c i t e d entity. T y p i c a l reactions i n v o l v i n g m e r c u r y are listed below. Xe* + H g - » X e H g + e
(18)
Kr* + H g
KrHg + e
(19)
A r * + H g -> A r H g + e
(20)
+
+
+
Hg* + H 0 - » H g H 0
+
+ e
(21)
H g * + N H * -> H g N H
+
+ e
(22)
+ e
(23)
2
2
H g * + C H -> H g C H 4
Hg* + C H 2
2
3
4
+
-> H g C H 2
2
Hg* + C H O H - » H g C H 0 3
(24)
+ e 4
+
+ e
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(25)
1.
FRANKLIN
Studies of
7
Chemionization
M o r e r e c e n t l y H e r m a n a n d C e r m a k (17)
h a v e f o u n d that t h e r e a c t i o n o f
a r g o n a n d m e r c u r y ( R e a c t i o n 20) i n v o l v e s the metastable state of a r g o n . M u n s o n , F i e l d , a n d F r a n k l i n (34)
h a v e s t u d i e d reactions of c e r t a i n
r a r e gases w i t h n i t r o g e n a n d c a r b o n m o n o x i d e , a n d F i e l d a n d F r a n k l i n (11)
h a v e s t u d i e d reactions of the rare gases w i t h m e t h a n e , acetylene,
a n d other s i m p l e gases. T h e latter o b s e r v e d the f o r m a t i o n , b y c h e m i o n i z a t i o n reactions, of c o m p o u n d s of x e n o n w i t h m e t h a n e , acetylene, o x y g e n , a n d w a t e r . T h e f o r m e r r e p o r t e d reactions of a r g o n , k r y p t o n , a n d x e n o n w i t h nitrogen and carbon monoxide.
I n e a c h case i t a p p e a r e d to b e the
e x c i t e d r a r e gas a t o m t h a t a t t a c k e d , a l t h o u g h this c o n c l u s i o n is s o m e w h a t
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
speculative.
EÎ
Figure 2.
Schematic representation for non-crossing for states of R ^ R /
rule
P e r h a p s the earliest studies of c h e m i o n i z a t i o n w e r e those of M o h l e r et al. (31, 32) of C s
2
+
a n d R b . I n these studies m o n o c h r o m a t i c r a d i a t i o n 2
+
f r o m l i n e spectra w e r e passed i n t o the v a p o r of C s or R b , a n d i o n i z a t i o n w a s d e t e c t e d at energies d e f i n i t e l y b e l o w the i o n i z a t i o n p o t e n t i a l of the a l k a l i a t o m i n q u e s t i o n . S i m i l a r studies e m p l o y i n g r a d i a t i o n h a v e r e c e n t l y b e e n m a d e b y L e e a n d M a h a n ( 2 7 ) , w h o c o n f i r m e d the results of M o h l e r et al. a n d also o b s e r v e d the f o r m a t i o n of K
2
+
by chemionization.
I n f u r t h e r studies M u n s o n , F i e l d , a n d F r a n k l i n (34) and C 0 2
2
+
respectively i n nitrogen and carbon monoxide.
observed N
4
+
Both exhibited
i o n i z a t i o n efficiency curves h a v i n g the c h a r a c t e r i s t i c s h a r p m a x i m u m a f e w volts a b o v e the onset for f o r m i n g the p r o d u c t i o n . F r o m the shape of the c u r v e i t w a s suspected that a n e x c i t a t i o n process w a s i n v o l v e d a n d
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
thus that the ions r e s u l t e d f r o m a c h e m i o n i z a t i o n r e a c t i o n . T h e s e ions e x h i b i t e d second-order d e p e n d e n c e o n pressure, a n d t h e i r intensities w e r e independent
of
field
s t r e n g t h ; hence,
chemionization reaction. T h e N
4
t h e y are c l e a r l y f o r m e d
and C 0
+
2
2
by
a
ions w e r e present i n r a t h e r
+
s m a l l intensities e v e n at 300 m i c r o n s pressure. W h e n the pressure was r e d u c e d to 7 0 - 8 0 m i c r o n s , they c o u l d no l o n g e r b e detected. If, at this p r e s sure of n i t r o g e n , a r g o n was t h e n a d d e d i n a p p r o x i m a t e l y e q u a l a m o u n t s , N
+
4
reappeared a n d along w i t h it A r N
s h o w e d that A r N
2
w a s observed.
+
2
A pressure s t u d y
d e p e n d e d o n the first p o w e r of the pressure of e a c h
+
reactant a n d t h a t N
4
+
depended
o n b o t h the first p o w e r of t h e a r g o n
pressure a n d s e c o n d p o w e r of n i t r o g e n pressure. F u r t h e r , N
+
4
formation
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
d e p e n d e d u p o n field strength, suggesting t h a t a n i o n - m o l e c u l e r e a c t i o n w a s i n v o l v e d . C l e a r l y t h e n , the N the A r N
2
+
4
+
appears to h a v e b e e n f o r m e d f r o m
i o n . T h e a p p e a r a n c e potentials a l l c o r r e s p o n d to that of A r , 2
a n d i n d e e d the A r
2
+
T h u s , i t is e v i d e n t t h a t t h e same states w h i c h l e a d to A r ArN
2
+
.
+
i o n is r e d u c e d as the n i t r o g e n pressure increases. 2
l e a d also to
+
T h e sequence of reactions w o u l d t h e n a p p e a r to b e as f o l l o w s : A r * + A r -> A r
2
+ e
+
A r * + N -> A r N 2
ArN
2
2
(26)
+ e
+
+ N -> A r + N
+
2
(27) 4
(28)
+
S i m i l a r considerations a p p l y to reactions of k r y p t o n a n d C O . A l o n g s i m i l a r lines C e r m a k ( 5 ) has r e p o r t e d the f o r m a t i o n of i o n b y a c h e m i o n i z a t i o n process i n v o l v i n g r e a c t i o n of e x c i t e d N
N 0 3
+
with
2
N O a c c o r d i n g to R e a c t i o n 29. N * + NO -» N 0 2
8
+ e
+
(29)
T h e i o n i z a t i o n efficiency c u r v e s h o w e d the same g e n e r a l shape as t h a t for N
4
+
, r e p o r t e d b y M u n s o n , F i e l d a n d F r a n k l i n (34).
C e r m a k (17)
Herman and
h a v e also r e p o r t e d the r e a c t i o n of e x c i t e d C O w i t h s o d i u m
a n d p o t a s s i u m vapors to give the ions C O N a R e c e n t l y K e e n a n a n d C l a r k e (23) H * + H 2
+
or C O K
+
by chemionization.
h a v e r e p o r t e d R e a c t i o n 30. 2
^ H / + H + e
(30)
T h i s w a s a q u i t e s u r p r i s i n g result since the f o r m a t i o n of H
8
+
had previ-
o u s l y b e e n c o n s i d e r e d to arise o n l y f r o m the r e a c t i o n : H
2
+
+ H -» H 2
3
+
+ H
S i m i l a r l y , K o y a n o et al. ( 2 5 ) , u s i n g p h o t o e x c i t a t i o n h a v e o b s e r v e d f o r m a t i o n i n acetylene of C H ^ 4
+
and C H 4
2
+
w e l l b e l o w the i o n i z a t i o n p o t e n t i a l of acetylene.
T h e s e ions h a d p r e v i -
o u s l y b e e n o b s e r v e d o n l y i n i o n - m o l e c u l e reactions b e t w e e n C H 2
C H . 2
the
b y c h e m i o n i z a t i o n at energies
2
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
2
+
and
1.
FRANKLIN
Studies of
9
Chemionization
Rates of Chemionization
Reactions
I n studies o f i o n - m o l e c u l e reactions it is r e l a t i v e l y s i m p l e to o b t a i n e x p l i c i t d e t e r m i n a t i o n s of r e a c t i o n rate because the mass
spectrometer
c l e a r l y identifies a n d p r o v i d e s q u a n t i t a t i v e analysis for b o t h reactant a n d p r o d u c t ions. U n f o r t u n a t e l y , i n c h e m i o n i z a t i o n processes the reactant is not c h a r g e d a n d , h e n c e , cannot b e o b s e r v e d d i r e c t l y . T h e reactant m u s t b e i n f e r r e d f r o m other observations, a n d its q u a n t i t a t i v e m e a s u r e m e n t m u s t b e o b t a i n e d i n d i r e c t l y . T h e most o b v i o u s a p p r o a c h is to relate t h e i n t e n s i t y of the d i a t o m i c i o n to that of the m o n a t o m i c i o n w h i c h c a n n o t u n d e r g o r e a c t i o n at m o d e r a t e pressures.
D a h l e r et al. (10)
employed
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
this d e v i c e i n s t u d y i n g the rates of c h e m i o n i z a t i o n reactions of h e l i u m , n e o n , a n d a r g o n to f o r m the d i a t o m i c ions. T h e y c o n s i d e r e d the r e a c t i o n m e c h a n i s m to b e i s f o l l o w s . κ Ar + e->Ar* + e
(31)
A r + e - » A r + 2e
(32)
+
(33) Ar*
->
U
Ar + h
Κ Ar* + Ar - » A r
2
+
v
+ e
A s s u m i n g the steady state to a p p l y to A r * w e
(34) find
= ί £ τ $ £ )
( 3 5 )
W h e r e L refers to electron c u r r e n t
«£2
_
W
A , ) d(Ar') dt
(36, = *&(Ar)
(37)
D i v i d i n g ( 3 6 ) b y ( 3 5 ) a n d r e c a l l i n g that jr = — w h e r e σ is cross-section, we
find d(Ar
+
d(Av
+
2
S i n c e ( A r ) a n d ( A r ) are i n d e p e n d e n t of e a c h other, w e c a n w r i t e +
2
+
(Ar ) 2
+
σ.|_
WAr)J
'Ar * 2
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
v
10
MASS SPECTROMETRY I N INORGANIC
CHEMISTRY
w h e r e w e assume the o b s e r v e d i o n intensities are p r o p o r t i o n a l to c o n c e n t r a t i o n a n d w i t h the same constant of p r o p o r t i o n a l i t y . 7
Ar
+
F r o m E q u a t i o n 39 it w i l l b e o b s e r v e d that a p l o t of - r — - against the 7
r e c i p r o c a l of pressure s h o u l d give a straight l i n e w h o s e i n t e r c e p t is — a n d w h o s e slope is — .
P l o t s of e x p e r i m e n t a l d a t a d i d i n d e e d g i v e
straight lines, a n d i n T a b l e I I the results of D a h l e r et al. (10) the r a t i o of cross sections a n d . the p r o d u c t of k r r
n
these results, h o w e v e r , there is no w a y to d e t e r m i n e r
and k
n
R e a s o n a b l e values of t
r
From
separately.
w o u l d b e i n the r a n g e of 10" to 10" seconds so 6
u
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
for b o t h
are r e p o r t e d .
that k w o u l d necessarily b e i n the r a n g e of 1 0 " r
10
8
to 10" c c . / m o l e c u l e 8
sec.
S u c h rate constants w o u l d b e c o m p a r a b l e to those for i o n - m o l e c u l e r e a c tions or at the u p p e r l i m i t w o u l d exceed b y a factor of 10 the rates of the fastest i o n - m o l e c u l e reactions. Table II.
Steady State Values for Rates of Diatomic Ion Formation
Rare Gas
k „ Χ
^/
σ
He Ne Ar
σι
r T
0.06 0.01 0.055
10
16
0.58 11. 3.6
I n the studies of D a h l e r et al. (10)
there w a s n o w a y to v a r y the
t i m e of r e a c t i o n , a n d this necessarily l i m i t e d the i n f o r m a t i o n that c o u l d b e o b t a i n e d c o n c e r n i n g rates. a n d L a m p e ( J , 2)
L a m p e a n d H e s s (26)
a n d later Becker
e x t e n d e d the s t u d y of a r g o n b y u s i n g a time-of-flight
mass spectrometer c a p a b l e of p u l s i n g the electron b e a m a n d i o n d r a w - o u t p o t e n t i a l . I n this s t u d y t h e y c o u l d , at v a r i o u s pressures, d e l a y t h e d r a w out p u l s e a n d h e n c e v a r y r e a c t i o n t i m e i n the i o n i z a t i o n c h a m b e r .
As a
result t h e y c o u l d o b t a i n e x p l i c i t measurements of r e a c t i o n rates.
The
f o l l o w i n g equations d e v e l o p e d this r e l a t i o n s h i p , b a s e d u p o n the m e c h a n i s m of D a h l e r et al. (10)
( E q u a t i o n s 31-34).
S i n c e the e l e c t r o n p u l s e
is of short d u r a t i o n , it c a n r e a s o n a b l y b e a s s u m e d that e x c i t e d atoms are f o r m e d w i t h o u t r e a c t i o n a n d t h e n d e c a y b y R e a c t i o n s 33 a n d 34. W e c a n then write ~ ^ d
r > )
=[*«- -*r(Ar)](Ar*) |
(40)
w h i c h integrates to (Ar*) =
( A r * ) o exp [ - [ * „
+
MAr)]f]
d(Ar ) =fe (Ar*) 2
+
r
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
(41) (42)
1.
FRANKLIN
Studies of
11
Chemionization
s u b s t i t u t i n g E q u a t i o n 41 i n t o E q u a t i o n 42 a n d i n t e g r a t i n g (Ar +) = 2
[1 - exp [*. + * ( A r ) ] f ]
*jg£jt2^
(Ar*) = ^ ( A r - ) Kl 0
Ar
+
(43)
r
0
= ^(Ar*) σι
(44)
b e i n g i n c a p a b l e of r e a c t i o n at the l o w pressures e m p l o y e d .
Finally,
then
^ = i ^ 0 B ^ n ( Ar ) O b v i o u s l y , studies of ^ r ) ( A r )
l
^
l
l
k
"
+
l
A
M
m
( 4 5 )
+
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
+
p e r m i t s e p a r a t i o n of k
against t i m e at v a r i o u s pressures w i l l
^ and k.
u
r
the v a l u e of σ / σ * D a h l e r et al (10)
L a m p e a n d H e s s (26)
employed
o b t a i n e d b y the steady-state m e t h o d ,
Γ
together w i t h t h e i r o w n results to o b t a i n values of k
=
molecule"
sec.
T h e p r o d u c t is i n
(10).
Cermak and Her
r
1
cm."
1
and r
u
=
4.76 ±
0.45 Χ
10"
reasonable agreement w i t h that of D a h l e r et al
7
4.3 Χ
10"
10
cc.
m a n ( 7 ) , u s i n g a b e a m of e x c i t e d rare gas atoms f o u n d a p p r e c i a b l e n u m bers of l o n g l i v e d ( ^ 1 0 * sec.)
e x c i t e d atoms w i t h states a p p r o a c h i n g
i n e n e r g y to the i o n i z a t i o n p o t e n t i a l . Q u a l i t a t i v e l y this supports t h e o b servations of L a m p e (1, 2, Table III.
26).
Rate Constants for Various States Leading to A r k Χ 10 cc/molecule/sec.
Electron Energy, e.υ.
r
18 28 65
9
1.7 ± 0.2 2.0 ± 0.1 1.3 ± 0.2
τ„, micro sec. 0.77 ± 0.07 0.55 ± 0.03 0.33 ± 0.05
2
+
N 2
2Ν + N O * - » N
2
N * + NO* - » N 2
2
+ ΝΟ + e
+ NO 2
+
+ e
+
+ NO
+
+ e
(48) (49) (50)
G a t z et al. (14) h a v e also o b s e r v e d c e s i u m ions w h e n c e s i u m w a s present in the nitrogen afterglow a n d attribute i t to Reaction 51. 2N + Cs - » N
2
+ Cs + e +
(51)
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
I n this l a b o r a t o r y w e h a v e f o u n d that i o n i z a t i o n occurs w h e n b e n z e n e i s a d d e d to t h e n i t r o g e n a f t e r g l o w , b u t n e i t h e r t h e ions n o r t h e process of t h e i r f o r m a t i o n has b e e n i d e n t i f i e d . Ions also o c c u r i n shock w a v e s a n d p r o b a b l y are f o r m e d b y c h e m i o n i z a t i o n . H o w e v e r , t h e scope o f this p a p e r does n o t p e r m i t a d i s c u s s i o n of these processes. Literature
Cited
(1) Becker, P. M., Lampe, F. W., J. Am. Chem. Soc. 86, 5347 (1964). (2) Becker, P. M., Lampe, F. W., J. Chem. Phys. 42, 3857 (1965). (3) Calcote, H. F., "Progress in Astronautics and Aeronautics," Vol. 12, pp. 107-144, Academic Press, New York, 1963. (4) Cermak, V., Proc. Intern. Conf. Phys. Electron At. Collisions, 3rd, Univ. Coll. London, 1963, 1080. (5) Cermak, V., J. Chem. Phys. 43, 4527 (1965). (6) Cermak, V., Herman, Z., Mass Spectrometry Conf., ASTM Committee E-14, New Orleans, La. (June 3-8, 1962). (7) Cermak, V., Herman, Z., Collection Czech. Chem. Commun. 29, 953 (1964). (8) Comes, F. J., Proc. Intern. Conf. Ionization Phenomena Gases, 6th, Paris, 1963, 159. (9) Comes, F. J., Lessman, W., Z. Naturforsch 16A, 1396 (1961). (10) Dahler, J. S., Franklin, J. L., Munson, M. S. B., Field, F. H.,J.Chem. Phys. 36, 3332 (1962). (11) Field, F. H., Franklin, J. L., J. Am. Chem. Soc. 83, 4509 (1961). (12) Fontijn, Α., Baughman, G. L., J. Chem. Phys. 38, 1784 (1963). (13) Fuchs, R., Kaul, W., Z. Naturforsch 15A, 108 (1960). (14) Gatz, C., Young, R. Α., Sharpless, R. L., J. Chem. Phys. 35, 1500 (1961). (15) Gatz, C., Smith, F. T., Wise, H., J. Chem. Phys. 40, 3743 (1964). (16) Gatz, C., Young, R. Α., Sharpless, R. L., J. Chem. Phys. 39, 1234 (1963). (17) Herman, Z., Cermak, V., Collection Czech. Chem. Commun. 31, 649 (1966). (18) Hornbeck, J. Α., Molnar, J. P., Phys. Rev. 84, 621 (1951). (19) Kaul, W., Proc. Intern. Conf. Ionization Phenomena Gases, 6th, Paris, 1963, 169. (20) Kaul, W., Fuchs, R., Z. Naturforsch 15A, 326 (1960). (21) Kaul, W., Lauterbach, U., Fuchs, R., Naturwiss 47, 353 (1960). (22) Kaul, W., Taubert, R., Z. Naturforsch 17A, 88 (1962). (23) Keenan, D. J., Clarke, Ε. M., Ann. Conf. Mass Spectrometry, 14th, Dal las, May 22-27, 1966, 42.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
14
MASS SPECTROMETRY IN INORGANIC CHEMISTRY
Downloaded by 80.82.77.83 on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch001
(24) Knewstubb, P. F., "Mass Spectrometry of Organic Ions," F. W. McLafferty, ed., p. 255, Academic Press, New York, 1963. (25) Koyano, I., Tanaka, I., Omura, I.,J.Chem. Phys. 40, 2734 (1964). (26) Lampe, F. W., Hess, G. G.,J.Am. Chem. Soc. 86, 2952 (1964). (27) Lee, Y. T., Mahan, B. H., J. Chem. Phys. 42, 2893 (1965). (28) Melton, C. E., Hamill, W. H., J. Chem. Phys. 41, 1469 (1964). (29) Meyerott, R., Phys. Rev. 66, 242 (1944). (30) Ibid., 70, 671 (1946). (31) Mohler, F., Foote, P., Chenault, R., Phys. Rev. 27, 37 (1926). (32) Mohler, F., Boeckner,C.,J.Res. Nat. Bur. Stds. 5, 51, 399 (1930). (33) Moore, C. E., Natl. Bur. Std. Circ. 467, I (1949). (34) Munson, M. S. B., Field, F. H., Franklin, J. L.,J.Chem. Phys. 37, 1790 (1963). (35) Munson, M. S. B., Franklin, J. L., Field, F. H.,J.Phys. Chem. 67, 1541 (1963). (36) Pahl, M., Weimer, U., Naturwiss. 44, 487 ( 1957). (37) Pahl, M., Weimer, U., Z. Naturforsch 12A, 926 (1957). (38) Regan, P. N., Browne, J. C., Matsen, F.A.,Phys. Rev. 132, 1304 (1963). (39) St. John, R. M., Miller, F. L., Lin, Chun C., Phys. Rev. 134A, 888 (1964). (40) Shuler, R. E., Fenn, J. B., ed., "Progress in Astronautics and Aeronautics," Vol. 12, Academic Press, New York, 1963. (41) Sugden, T. M., "Progress in Astronautics and Aeronautics," p. 145, Vol. 12, R. E. Shuler and J. B. Fenn, eds., Academic Press, New York, 1963. (42) Symp. Combust., 10th, Combust. Inst., 1965. (43) Tüxen, Ο., Z. Physik 103,463 (1936). RECEIVED October 11, 1966.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.