27 Mössbauer and Magnetic Studies of Bifunctional Medium-Pore Zeolite-Iron
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
Catalysts Used i n Synthesis Gas Conversion C A R Y LO—Physics Department, Pennsylvania State University, University Park, P A 16802 K. R. P. M . R A O and L . N . MULAY —Department of Materials Science and Engineering, 136 Materials Research Laboratory, Pennsylvania State University, University Park, P A 16802 1
2
V. U . S. R A O , R. T . OBERMYER , and R. J. GORMLEY—Pittsburgh Energy Technology Center, U.S. Department of Energy, P.O. Box 10940, Pittsburgh, P A 15236 3
Medium-pore (diameter ~ 6 Å) zeolites such as ZSM-5 and
Silicalite impregnated with Group VIII metals provide selective catalytic pathways for the conversion of coal derived synthesis gas to gasoline or olefins. Mössbauer and magnetic studies on these catalysts containing iron or iron plus cobalt are reported. The zeolites were impregnated with metal nitrate solutions, reduced, and carbided to yield the active catalyst. The freshly impregnated samples showed Fe type spectra. The ZSM-5 (14.7% Fe) and Silicalite (13.6% Fe) samples exposed to H (450°C) showed an approximate 85% reduction to the metallic state. The carbided ZSM-5 (14.7% Fe) revealed a spectrum of Hagg carbide (Fe C ), an active component of the catalyst. The used catalysts showed mixtures of Hagg carbide (Fe C ) and cementite (Fe C). It is suggested that the selectivity of ZSM-5 (5.6% Fe, 4.5% Co) resulted from iron-cobalt alloy formation. 3+
2
5
2
5
2
3
Current address: Bhabha Atomic Research Center, Trombay, Bombay, India. * Address inquiries to this author. Current address: Physics Department, Pennsylvania State University, McKeesport, PA 15132. 1
3
0065-2393/81/0194-0573$05.00/0 © 1981 American Chemical Society Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
574
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L A P P L I C A T I O N S
l
he interest of M u l a y ' s g r o u p ( P e n n State U n i v e r s i t y ) i n t h i s c h a l -
-•- l e n g i n g a r e a of catalysis r e s e a r c h s t e m m e d f r o m h i s e a r l i e r b a s i c r e s e a r c h (1-4)
o n s u p e r p a r a m a g n e t i c dispersions of a - F e 0 . 2
This dis
3
p e r s i o n w a s o b t a i n e d b y a n o v e l t e c h n i q u e , w h i c h c o n s i s t e d of d u c i n g v a p o r s of F e ( C O )
5
intro
[ m a x i m u m dimension ~ 9 A ] into the cage
s t r u c t u r e of L i n d e - 1 3 X z e o l i t e , v i a its a p e r t u r e of a b o u t 10 A . T h e s u p e r paramagnetism
of
the
dispersions
was
elucidated by
m e a s u r e m e n t s as a f u n c t i o n of t h e field (H) as
by
5 7
Fe
Mossbauer
spectroscopy.
magnetization
a n d t e m p e r a t u r e (T)
The
technological
as w e l l
interest
V . U . S. Rao's g r o u p ( P i t t s b u r g h E n e r g y T e c h n o l o g y C e n t e r )
of
centered
a r o u n d m a k i n g r e l a t i v e l y m o r e efficient z e o l i t e - S i l i c a l i t e - b a s e d catalysts Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
f o r synthesis gas c o n v e r s i o n .
T h e o v e r l a p p i n g of t h e interests of these
t w o r e s e a r c h g r o u p s has l e d to a f r u i t f u l c o l l a b o r a t i o n , w h i c h exemplifies i n t e r d i s c i p l i n a r y as w e l l as i n t e r o r g a n i z a t i o n a l efforts b e t w e e n a f e d e r a l and a university laboratory. T h e c a t a l y t i c c o n v e r s i o n of c o a l - d e r i v e d synthesis gas ( C O + to gasoline-range catalysts (5-7)
hydrocarbons
2
is of m u c h interest t o d a y . T h e m e d i u m - p o r e ( d i a m e t e r
6 A ) z e o l i t e Z S M - 5 i n c o m b i n a t i o n w i t h i r o n (5,6) (7)
H )
a n d olefins u s i n g b i f u n c t i o n a l z e o l i t e ^
or w i t h i r o n - c o b a l t
w a s s h o w n t o y i e l d a h i g h f r a c t i o n of a r o m a t i c s i n t h e p r o d u c t ,
resulting i n a favorable octane n u m b e r ( >
It was indicated
80).
(7)
t h a t t h e b i m e t a l l i c i r o n - c o b a l t o n Z S M - 5 c o u l d a l t e r t h e p r o d u c t selec t i v i t y , m a i n l y i n r e d u c i n g t h e shift c o n v e r s i o n of C O + H 0 to C 0 2
2
from
t h e h i g h shift y i e l d s of i r o n o n Z S M - 5 . T h e a r o m a t i c s i n t h e p r o d u c t d e c r e a s e d b y the a d d i t i o n of c o b a l t to t h e z e o l i t e
(7).
I n contrast t o Z S M - 5 , S i l i c a l i t e l a c k s a l u m i n u m , a l t h o u g h t h e t w o a p p e a r to possess s i m i l a r c r y s t a l structures ( 8 , 9 ) . T h e y c r y s t a l l i z e w i t h t h e o r t h o r h o m b i c space g r o u p P n m a or Pn2ia w i t h a = A; c =
13.4 A . T h e f r a m e w o r k s t r u c t u r e consists of
20.1 A ; b =
five-membered
19.9 rings
of S i ( A l ) - 0 t e t r a h e d r a . T h e p o r e s t r u c t u r e ( F i g u r e 1) consists of i n t e r -
Elliptical 10-ring straight channel (5.7 % x 5.1 1)
Near-circular 10-ring zig-zag channel (dia 5.4,
Figure 1.
Possible model of the pore structure of ZSM-5
and
Silicalite
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
27.
Medium-Pore
LO ET AL.
Table I .
Zeolite-Iron
Catalysts
575
Comparison of Z S M - 5 and Silicalite ZSM-5
Composition
Na,(A10 ).(Si0 )ioo-. x = 1 t o 25
Absent
Orthorhombic a = 20.1 A b = 19.9 A c = 13.3 A
Orthorhombic a = 20.06 A 6 = 19.80 A c = 13.36 A
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
Structure
Structure
Sorption
of
Thermal
4
+
+
S t r a i g h t channels a l o n g b - a x i s . Zig-zag along a-axis. Pore diameter = 6 A .
H0 2
Stability
2
x = 0
Present EXCH Calcine Na >NH > H _ +
Pore
Si0
2
2
Ion Exchange properties Crystal
Silicalite
Same as Z S M - 5
L o w for h i g h s i l i c o n content
Low
Increases w i t h s i l i c o n content
High
s e c t i n g c h a n n e l s d e f i n e d b y t e n rings of o x y g e n atoms.
T h e elliptical
s t r a i g h t c h a n n e l s of cross section 5.7 A X 5.1 A a l o n g t h e &-axis a n d t h e c i r c u l a r z i g z a g channels
of d i a m e t e r
5.4 A i n t e r c o n n e c t
the straight
channels. W h i l e the s i l i c o n / a l u m i n u m ratio i n Z S M - 5 can be varied from 3 to o v e r 100, S i l i c a l i t e has essentially n o a l u m i n u m . H e n c e i t appears t h a t S i l i c a l i t e is t h e l i m i t i n g f o r m of Z S M - 5 w h e n t h e a l u m i n u m c o n c e n t r a t i o n is v a n i s h i n g l y s m a l l .
A comparison
of t h e p r o p e r t i e s
of Z S M - 5 a n d
S i l i c a l i t e is s h o w n i n T a b l e I . O w i n g to t h e absence of cations t h a t c a n b e e x c h a n g e d w i t h p r o t o n s , S i l i c a l i t e has n o a c i d i t y , w h i l e H Z S M - 5 is a h i g h l y a c i d i c zeolite.
Recent
i n v e s t i g a t i o n s ( 7 ) h a v e s h o w n t h a t t h e difference i n s e l e c t i v i t y f o r s y n thesis gas c o n v e r s i o n b y Z S M - 5 ( i r o n )
a n d Silicalite (iron)
results f r o m t h e p r e v i o u s l y m e n t i o n e d difference
i n acidity.
catalysts The main
influence w a s o n t h e p r o d u c t i o n of a r o m a t i c s a n d olefins; the f o r m e r w e r e d o m i n a n t w i t h t h e a c i d i c Z S M - 5 ( i r o n ) catalyst a n d t h e latter w i t h t h e n o n a c i d i c S i l i c a l i t e ( i r o n ) catalyst. M o s s b a u e r a n d m a g n e t i c i n v e s t i g a t i o n s , d e s c r i b e d i n this c h a p t e r , were conducted
to d e t e r m i n e t h e state of i r o n a n d i r o n - c o b a l t i n t h e
z e o l i t e c a t a l y s t at different stages of catalyst p r e p a r a t i o n a n d use. A m o n g t h e several a i m s of t h e i n v e s t i g a t i o n w e r e t h e d e t e r m i n a t i o n of: 1. t h e v a l e n c e state of t h e t r a n s i t i o n m e t a l i n t h e f r e s h l y i m p r e g n a t e d state; 2. t h e extent of r e d u c t i o n o n exposure t o H ; 2
3.
t h e a c t i v e c a t a l y t i c species after c a r b i d i n g w i t h synthesis gas;
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
576
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L A P P L I C A T I O N S
4.
the species present i n t h e u s e d c a t a l y s t ; a n d
5.
i n t h e case of i r o n - c o b a l t , t h e p o s s i b l e f o r m a t i o n of b i m e t a l l i c o r a l l o y clusters a n d t h e i r influence o n t h e selec t i v i t y of t h e catalyst.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
Experimental Preparation of Samples. Z S M - 5 and Silicalite were prepared using methods described i n the literature (10,11). X - r a y powder diffraction pat terns revealed no phases other than Z S M - 5 or Silicalite. T h e metal component was introduced b y gradually adding the metal nitrate solution to the zeolite until incipient wetness was reached. T h e impregnation w i t h the metal ( F e or F e + C o ) nitrate solution was carried out for 1 h under vacuum to enable the nitrate solution to enter the pore of the zeolite. T h e material is dried initially w i t h constant stirring over a boiling water bath, and further dried i n air at 110°C for 12 h . T h e amount of iron and cobalt i n the samples was determined b y standard wet chemical techniques and atomic absorption. T h e zeolite impregnated w i t h iron or iron plus cobalt was reduced i n flow i n g H at 450°C for 24 h . It was then carbided i n flowing synthesis gas at 250°C for 24 h to yield the active catalyst. T h e catalysts were tested (7) for synthesis gas conversion i n both a fixed-bed microreactor and a Berty (continuous-flow stirred-tank) reactor. F o r catalytic testing, these steps on the metal-impreg nated zeolite were all carried out i n the reactor. F o r Mossbauer studies, a l l the samples except the used catalysts were prepared separately under the condi tions just described. In the ensuing discussion such samples w i l l be described variously as (a) freshly impregnated, (b) reduced, (c) carbided, and (d) used catalysts. T h e last mentioned was taken from the reactor after its use for periods lasting from one to three weeks under synthesis gas under temperatures ranging from 280° to 320°C. X - r a y diffraction studies were carried out on the samples after steps (a) and ( d ) . Characterization Techniques. T h e apparatus used for Mossbauer spec troscopy and magnetic measurements is described separately under the corre sponding sections. 2
Results and Discussion Mossbauer Studies. Table II were recorded spectrometer
T h e M o s s b a u e r s p e c t r a of catalysts l i s t e d i n utilizing a conventional
made b y N u c l e a r Science
constant-acceleration
and Engineering Corporation
and Nuclear D a t a N D - 1 0 0 multichannel analyzer i n M C S mode. spectra were calibrated w i t h a standard N B S i r o n foil. background observed
i n t h e s p e c t r a arose f r o m t h e g e o m e t r y
M o s s b a u e r setup. A least-squares p r o g r a m
fitting,
The
The parabolic of
the
i n progress, has j u s t i
fied o u r i n t e r p r e t a t i o n s . T h e s p e c t r a w e r e r e c o r d e d at r o o m t e m p e r a t u r e using an 8 0 - m C i C o i n R h matrix. T h e spectra were analyzed, i n gen 5 7
e r a l , o n the basis of the studies o n c a r b i d e s b y R a u p p a n d D e l g a s s
(12).
T h e M o s s b a u e r s p e c t r a of t h e different catalysts w e r e r e c o r d e d v a r i o u s stages; n a m e l y , ( a ) after i m p r e g n a t i o n w i t h F e ( N 0 ) ; 3
reduction i n H
2
at 4 5 0 ° C f o r 2 4 h ; ( c )
3
(b)
at on
o n c a r b i d i n g i n 1:1 H / C O s y n 2
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
27.
Medium-Pore
LO ET AL.
Zeolite-Iron
thesis gas at 2 5 0 ° C f o r 2 4 h ; a n d ( d )
577
Catalysts finally
after u t i l i z a t i o n of
the
c a t a l y s t i n t h e c o n v e r s i o n of t h e synthesis gas t o g a s o l i n e - r a n g e h y d r o carbons.
T h e s p e c t r a h a v e r e v e a l e d t h e existence of v a r i o u s
phases,
f o r m e d at different stages, a n d h a v e g i v e n clues to t h e n a t u r e of
the
a c t i v e c o m p o n e n t ( s ) r e s p o n s i b l e f o r the efficient c o n v e r s i o n of synthesis gas i n t o gasoline. T h e s p e c t r u m of a f r e s h c a t a l y s t , i n g e n e r a l , c o n s i s t e d of a d o u b l e t w i t h a n i s o m e r shift of a b o u t + 0 . 3 5 m m / s a n d a q u a d r u p o l e s p l i t t i n g of a b o u t 0.75 m m / s , w h i c h i n d i c a t e t h a t t h e v a l e n c e state of i r o n i n t h e s t a r t i n g m a t e r i a l is F e .
A t y p i c a l s p e c t r u m f o r a f r e s h c a t a l y s t of
3 +
Silicalite impregnated w i t h 13.6%
iron using F e ( N 0 ) 3
3
is s h o w n i n
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
F i g u r e 2. A s d i s c u s s e d i n a l a t e r section, t h e m a g n e t i z a t i o n ( M ) vs. m a g n e t i c field
m e a s u r e m e n t s o n t h e f r e s h c a t a l y s t gave a m a g n e t i c m o m e n t
(H)
of a b o u t 5.96 /x , w h i c h f u r t h e r c o n f i r m e d t h a t t h e i r o n i o n is i n a h i g h B
spin F e
3 +
state. I t s h o u l d b e n o t e d t h a t t h e m a g n i t u d e of t h e q u a d r u p o l e
s p l i t t i n g a n d i s o m e r shift s i g n i f i c a n t l y d e p e n d u p o n t h e n a t u r e of t h e s u p p o r t u s e d a n d the size of t h e i r o n p a r t i c l e s ( 1 3 ) . T h e s p e c t r u m of a r e d u c e d c a t a l y s t c o n s i s t e d of a s i x - l i n e p a t t e r n c o r r e s p o n d i n g m o s t l y to i r o n m e t a l , i n a d d i t i o n t o i n d i c a t i n g t h e p r e s e n c e of a s m a l l q u a n t i t y of a n o x i d e , i f the c a t a l y s t c o n t a i n e d o n l y i r o n , o n
« *4l
3 3
1
1
1
H5
DOPPLER VELOCITY
Figure
2.
Mossbauer
1
J
1
1
3
'
^
(am/sec.)
spectrum of Silicalite impregnated iron using Fe(NO )
with
s s
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
13.6%
578
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L A P P L I C A T I O N S
Table II.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
Sample
No.
S u m m a r y of
Sample
Mossbauer State
M l
Z S M - 5 (14.7% Fe)
Reduced
M2
Z S M - 5 (14.7% Fe)
Carbided
M3
Z S M - 5 (14.7% Fe)
Used
M4
Z S M - 5 (5.4% F e +
1.3 % C o )
Reduced
M5
Z S M - 5 (5.4% F e +
1.3 % C o )
Carbided
M6
Z S M - 5 (5.4% F e + 4.5% Co)
Used
M7
Silicalite (13.6% Fe)
Fresh
M8
Silicalite (13.6% F e )
Used
M9
Silicalite (4.4% F e +
3% C o )
Reduced
M10
Silicalite (4.4% F e +
3%
Used
Co)
t h e one h a n d ; w h e r e a s t h e s p e c t r u m of a c a t a l y s t c o n s i s t i n g of b o t h i r o n a n d c o b a l t c l e a r l y i n d i c a t e d t h e f o r m a t i o n of a n i r o n - c o b a l t a l l o y o n r e d u c t i o n , o n t h e o t h e r h a n d . T h e s p e c t r u m of r e d u c e d Z S M - 5 c o n t a i n i n g 1 4 . 7 % i r o n , s h o w n i n F i g u r e 3 A , essentially c o r r e s p o n d s to t h a t of m e t a l l i c i r o n . H o w e v e r , t h e r e is a s m a l l a m o u n t of u n r e d u c e d i r o n i n t h e f o r m of a n o x i d e , p r o b a b l y a - F e 0 . T h e r e d u c t i o n i n t h i s case is a b o u t 8 5 % . 2
3
T h i s is also c o n f i r m e d b y t h e m a g n e t i z a t i o n m e a s u r e m e n t s , w h i c h i n d i cated an approximate 1 5 %
l o w e r i n g i n the observed saturation m a g
n e t i z a t i o n of i r o n . T h e s p e c t r u m of r e d u c e d Z S M - 5 c o n t a i n i n g 5 . 4 %
iron and
1.3%
cobalt, shown i n F i g u r e 3 B , revealed a six-line pattern corresponding to a n average i n t e r n a l m a g n e t i c field of a b o u t 340 k O e , a n d i n d i c a t e s t h e f o r m a t i o n of a n i r o n - c o b a l t a l l o y . A t y p i c a l s p e c t r u m of r e d u c e d S i l i c a l i t e c o n t a i n i n g 4 . 4 % 3.0%
c o b a l t is s h o w n i n F i g u r e 4.
iron and
T h e s p e c t r u m consists of a w e l l -
defined six-line pattern corresponding to a n internal magnetic
field
of
345 db 3 k O e , w h i c h is m u c h l a r g e r t h a n t h e 3 3 0 - k O e field e x p e c t e d f o r m e t a l l i c i r o n . S e c o n d , t h e i s o m e r shift o b s e r v e d is 0.18 m m / s w i t h respect t o i r o n m e t a l , w h i c h i n d i c a t e s t h a t the e l e c t r o n d e n s i t y at t h e i r o n n u c l e u s is s m a l l e r i n t h e i r o n - c o b a l t a l l o y t h a n i n i r o n m e t a l . T h i s decrease i n t h e e l e c t r o n d e n s i t y i n t h e i r o n - c o b a l t a l l o y is consistent w i t h t h e e x p e r i m e n t a l results r e p o r t e d b y V a n d e r W o u d e a n d S a w a t s k y (14).
T h e for
m a t i o n of a n i r o n - c o b a l t a l l o y is s u p p o r t e d f u r t h e r b y t h e m a g n e t i z a t i o n
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
27.
LO ET A L .
Medium-Pore
Zeolite-Iron
579
Catalysts
R e s u l t s of V a r i o u s C a t a l y s t s Remarks I r o n m e t a l a n d s m a l l a m o u n t of a n oxide ( a - F e 0 ) 2
Fe C 5
2
and F e C 3
F e C , F e C , and F e 0 5
2
Fe C 5
2
3
3
3
4
has been r e l a t i v e l y reduced as c o m p a r e d to t h a t i n S a m p l e N o . 2
Iron-cobalt alloy Fe C , Fe C 5
2
3
a n d a strong d o u b l e t
7
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
Iron-cobalt alloy C o b a l t seems to have i n h i b i t e d the f o r m a t i o n of carbides. S t r o n g d o u b l e t c o r r e s p o n d i n g to F e Fe C 5
2
3 +
and F e C 3
Iron-cobalt alloy F e C , F e C , a n d a s t r o n g doublet. F e C a n d F e C are c o n s i d e r a b l y s m a l l c o m p a r e d to those observed i n S a m p l e 8. Presence of c o b a l t seems to h a v e i n h i b i t e d the f o r m a t i o n of carbides. 5
2
3
5
2
3
measurements o n this catalyst, w h i c h i n d i c a t e d a m a g n e t i c m o m e n t i n t e r m e d i a t e b e t w e e n t h e m o m e n t s c o r r e s p o n d i n g to i r o n a n d c o b a l t . T h e s p e c t r a of c a r b i d e d catalysts consist of s u p e r p o s i t i o n of at least t w o a p p a r e n t s i x - l i n e patterns c o r r e s p o n d i n g to at least t w o
different
i r o n - c a r b o n phases. A t y p i c a l s p e c t r u m of c a r b i d e d Z S M - 5 w i t h 1 4 . 7 % is s h o w n i n F i g u r e 5 A . T h i s s p e c t r u m represents the p r e s e n c e of H a g g c a r b i d e ( F e C ) a n d c e m e n t i t e ( F e C ) . T h e f o r m e r has three i n e q u i v a 5
2
3
l e n t i r o n sites, w h e r e a s the l a t t e r has o n l y one.
T h e p o s s i b i l i t y of t h e
p r e s e n c e of s m a l l q u a n t i t i e s of less stable e' a n d c c a r b i d e s ( F e F e C ) c a n n o t b e r u l e d out. A d o u b l e t d u e to F e 2
3 +
2 2
C and
was not apparent i n
F i g u r e 5 A ; f u r t h e r l o w - t e m p e r a t u r e studies are i n progress to d i s c e r n a n y superparamagnetic behavior. T h e s p e c t r u m of c a r b i d e d Z S M - 5 c o n t a i n i n g 5 . 4 %
iron and
c o b a l t , s h o w n i n F i g u r e 5 B , i n d i c a t e s t h e presence of b o t h F e C 5
F e C i n a d d i t i o n to a s t r o n g d o u b l e t . 3
1.3% 2
and
A p p a r e n t l y fewer carbides have
b e e n f o r m e d i n this catalyst t h a n i n those c o n t a i n i n g n o c o b a l t ; i t a p p e a r s t h a t the presence of c o b a l t has s o m e w h a t i n h i b i t e d t h e f o r m a t i o n of c a r bides.
T h e d o u b l e t m a y b e a t t r i b u t a b l e p a r t l y to
superparamagnetic
b e h a v i o r . S i m i l a r s p e c t r a also h a v e b e e n o b s e r v e d i n the case of S i l i c a l i t e b a s e d catalysts as w e l l . F u r t h e r l o w - t e m p e r a t u r e studies are u n d e r w a y to i d e n t i f y t h e n a t u r e of the d o u b l e t . T h e s p e c t r a of u s e d catalysts are i n g e n e r a l v e r y c o m p l i c a t e d a n d s e e m to consist of three or m o r e m a g n e t i c a l l y s p l i t h y p e r f i n e spectra.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
A
580
MOSSBAUER
SPECTROSCOPY
A N D ITS C H E M I C A L
APPLICATIONS
A
Fe-
metal
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
°< - F e
-1 0
-8
-6
-4
-2
0
DOPPLLR VLLOCITY
„„ g> ee
_ se.ee M
tee.ee
ise.ro
aro.ee
2
0
3
2
4
b
8
10
(mm/sec.)
CHANNEL NUMBER 2se.ee 3ee.ee 3se.ee
4ea.ee
4se.ee
sea.ee
sse.oe
s
ect? i
-2 0 2 DOPPLER VELOCITY (ran/sec.)
Figure
3.
Mossbauer
spectrum 5.4%
of
reduced
Fe,1.3%
Z S M - 5 (A)
14.7
Fe
and
Co
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
(B)
27.
Medium-Pore
LO ET AL.
Zeolite-Iron
581
Catalysts
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
eog.ee
i Figure 4.
i
i
J i DOPPLER VELOCITY (••/••c.)
i
i
Mossbauer spectrum of reduced Silicalite (4.4%
i
?r
Fe, 3%
Co)
t y p i c a l s p e c t r u m of u s e d Z S M - 5 w i t h 1 4 . 7 % i r o n is s h o w n i n F i g u r e 6. T h i s s p e c t r u m c a n b e e x p l a i n e d i n terms of the presence of H a g g c a r b i d e , c e m e n t i t e , a n d F e 0 . I t is n o t e w o r t h y t h a t t h e c e m e n t i t e c o n t e n t has 3
4
r e l a t i v e l y i n c r e a s e d at the expense of t h e H a g g c a r b i d e i n t h e c a t a l y s t as c o m p a r e d to t h a t f o u n d i n t h e c a r b i d e d catalyst.
(See
used the
lines m a r k e d b y a r r o w s i n F i g u r e 5 A a n d F i g u r e 6.) T h e s p e c t r u m of u s e d Z S M - 5 w i t h 5 . 6 % i r o n a n d 4 . 5 % c o b a l t s h o w n i n F i g u r e 7 c o n s i s t e d of a s i x - l i n e p a t t e r n c o r r e s p o n d i n g to a n i n t e r n a l m a g n e t i c field of 344 zb 3 k O e a n d a n i s o m e r shift of + 0 . 1 5 m m / s w i t h respect to i r o n m e t a l , a n d a p p e a r s to i n d i c a t e t h e f o r m a t i o n of a n i r o n c o b a l t a l l o y . I t is t o b e n o t e d t h a t t h e c a r b i d e s , w h i c h w e r e present i n t h e case of u s e d Z S M - 5 c o n t a i n i n g o n l y i r o n , are s u r p r i s i n g l y absent i n this case. O n c e a g a i n , the presence of a l a r g e a m o u n t of c o b a l t a p p e a r s t o i n h i b i t the f o r m a t i o n of c a r b i d e s i n these samples. T h e x - r a y p o w d e r p a t t e r n s s h o w e d t h e presence of a b c c i r o n - c o b a l t a l l o y p h a s e i n a d d i t i o n to the Z S M - 5 phase. T h e s p e c t r u m of u s e d S i l i c a l i t e c o n t a i n i n g 1 3 . 6 % i r o n is s h o w n i n F i g u r e 8. I t consists of b o t h H a g g c a r b i d e a n d c e m e n t i t e a n d is s i m i l a r t o t h a t o b s e r v e d f o r Z S M - 5 w i t h 1 4 . 7 % i r o n , except t h a t t h i s s p e c t r u m does n o t i n d i c a t e t h e presence Silicalite containing both 5 %
of a n y o x i d e .
iron and 5 %
T h e s p e c t r u m of
used
c o b a l t is s h o w n i n F i g u r e 9.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
582
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L A P P L I C A T I O N S a
a
°
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
150.00
200.08
i
2S0.B0
380.00
358.60
408.08
4S0.06
660.00
656.60
r
5
OPPLER VELOCITY ( a m / s e c . )
1
1
1
n D O m i l VELOCITY
Figure
5.
Mossbauer
T
1
i
w
r
(H/MC.)
spectrum of carbided ZSM-5 (B)5.4% Fe,1.3% Co
(A) 14.7%
Fe and
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
27.
Medium-Pore
LO ET AL.
Zeolite-Iron
Catalysts
583
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
s
DOPPLER VELOCITY (on/sec.)
Figure 6.
Mossbauer spectrum of used ZSM-5 (14.7% Fe)
DOPPLER VELOCITY
Figure 7.
(mm/sec.)
Mossbauer spectrum of used ZSM-5 (5.4% Fe, 4.5% Co)
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
584
MOSSBAUER SPECTROSCOPY A N D ITS C H E M I C A L A P P L I C A T I O N S
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch027
CHANNEL NUMBER 3sa.ee
ee$.o
4se.ee see.ee
DOPPLER VELOCITY («•»/••