9 Mössbauer Effect Study of Victorian Brown Coal J. D . C A S H I O N and B. M A G U I R E
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
Department of Physics, Monash University, Clayton, Victoria, 3168, Australia L . T . KISS Herman Research Laboratories, State Electricity Commission, Richmond, Victoria, 3121, Australia
Mössbauer
spectra using
-sulfur brown
57
Fe were taken of low-rank, low
coals from the
Latrobe Valley, Victoria,
Australia, having a typical water content of 67%.
Spectra
at 78 Κ on bed-moist samples showed at least six poorly resolved quadrupole split doublets, one due to pyrite a n d / o r marcasite, and the others, which do not fit any known spectra, most probably due to different hydrolyzed iron carboxylates. D r i e d samples gave completely different spec tra with generally one intense quadrupole split doublet and one or more relaxed magnetic splittings. -1
typically moved +0.1-0.2 mm s
The isomer shifts
on drying. However, the
most dramatic change was an increase of nearly an order of magnitude in the absorption dip, showing that the water molecules are bonded intimately to the iron atoms in the bed-moist state.
' H p h e p r i n c i p a l a i m o f this i n v e s t i g a t i o n w a s t o d e t e r m i n e t h e c h e m i c a l state o r states o f n o n p y r i t i c i r o n i n v a r i o u s b r o w n coals f r o m t h e L a t r o b e V a l l e y i n V i c t o r i a , A u s t r a l i a . S a m p l e s w e r e selected to c o v e r t h e k n o w n v a r i a t i o n s f r o m the field, w i t h concentrations o f i r o n v a r y i n g f r o m 0.07 t o 1 . 8 % o n a d r y basis. T h e n a t u r e of a n y o r g a n i c a l l y b o u n d i r o n w a s of p a r t i c u l a r interest. L e f e l h o c z et a l . ( I ) t e n t a t i v e l y assigned o n e of t h e i r i r o n spectra t o o r g a n i c i r o n , b u t this w a s s u b s e q u e n t l y d e t e r m i n e d t o b e a c l a y site (2,3).
R e c e n t d e t a i l e d Môssbauer effect i n v e s t i g a t i o n s
(4,5,6,7)
on
coals f r o m t h e U . S . n o r t h e a s t e r n fields h a v e n o t s h o w n a n y e v i d e n c e of
©
0065-2393/81/0194-0209$05.00/0 1981 American Chemical Society
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
210
MOSSBAUER
SPECTROSCOPY A N D
ITS
CHEMICAL
APPLICATIONS
o r g a n i c a l l y b o u n d i r o n . S c h a f e r ( 8 ) s t u d i e d the o x i d a t i o n of carboxylates i n V i c t o r i a n b r o w n c o a l , b u t his r e p o r t does not c o n t a i n a n y d e t a i l s of the M o s s b a u e r spectra or p a r a m e t e r s o b t a i n e d . T h e coals u s e d i n this i n v e s t i g a t i o n are of m u c h l o w e r r a n k
(67%
c a r b o n ) t h a n the U . S . coals t h a t h a v e b e e n s t u d i e d . T h e V i c t o r i a n coals are m u c h h i g h e r i n p h e n o l i c a n d c a r b o x y l i c f u n c t i o n a l groups a n d h a v e a l o w s u l f u r c o n c e n t r a t i o n ( < 0 . 4 % ) , w i t h a l o w l e v e l of s u l f u r b e i n g present as p y r i t e or m a r c a s i t e , F e S . P o s s i b l y the largest difference f r o m 2
the U . S . samples is the h i g h w a t e r content of a b o u t 6 7 % as m i n e d , a n d care has b e e n t a k e n to m a i n t a i n the samples i n this c o n d i t i o n .
When
left o p e n to the a i r , the coals r a p i d l y lose m o i s t u r e d o w n to a c o n c e n t r a Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
t i o n of
about
15%.
Samples dried below
m o i s t u r e w h e n exposed to the a t m o s p h e r e . M o s s b a u e r spectroscopy
this v a l u e r e a d i l y
absorb
F o r the bed-moist samples,
is one of the f e w t e c h n i q u e s t h a t c a n a n a l y z e
the states o f the i r o n w i t h o u t r e q u i r i n g d r y i n g , d i s s o l u t i o n , or s o m e o t h e r c h a n g e to the s a m p l e . T h e w a t e r i n b e d - m o i s t c o a l is c o n t a i n e d i n several different forms a n d a n a p p r o x i m a t e classification i n o r d e r of d e c r e a s i n g ease of r e m o v a l is ( 9 ) :
free w a t e r i n m a c r o p o r e s a n d interstices, c a p i l l a r i e s , a n d w a t e r
o n the w a l l s of pores too s m a l l to h a v e a m e n i s c u s . T h i s last t y p e c a n b e d i v i d e d f u r t h e r i n t o m u l t i l a y e r a n d m o n o l a y e r w a t e r , w i t h the m o n o l a y e r w a t e r b e i n g b o n d e d to o x y g e n - c o n t a i n i n g h y d r o p h i l i c sites o n the c o a l b y hydrogen bonds.
Schafer (10)
showed that carboxylic a c i d groups,
p a r t i c u l a r l y i n t h e salt f o r m , are the most significant h y d r o p h i l i c site, w i t h the F e
salt b e i n g the m o s t efficient, f o l l o w e d b y M g , C a , C u ,
2 +
2 +
B a , A l , F e , N a , and K 2 +
3 +
3 +
+
+
2 +
2 +
i n o r d e r . T h e p h e n o l i c h y d r o x y l g r o u p s are
less efficient t h a n the c a r b o x y l i c groups.
Sample Preparation and Experimental Details T h e b e d - m o i s t samples w e r e r e c e i v e d i n a i r - t i g h t containers. A b s o r b ers w e r e m a d e b y q u i c k l y s c r a p i n g off the outer, s l i g h t l y o x i d i z e d a n d b l a c k e n e d layers u n t i l a u n i f o r m b r o w n r e g i o n w a s o b t a i n e d . T h i s w a s s c r a p e d into L u c i t e containers to a thickness of 1//* ( w h e r e p is the a t o m i c a b s o r p t i o n coefficient) of t y p i c a l l y 3 - 4 m m , a n d t h e n sealed. T h e w h o l e o p e r a t i o n took a p p r o x i m a t e l y 2 - 3 m i n , a n d n o b l a c k e n i n g of t h e c o a l w a s o b s e r v e d i n this t i m e . Separate absorbers w e r e also m a d e of some of the outer b l a c k e n e d layers. O n e sample was received i n an already oxidized form a n d two samples h a d b e e n c r u s h e d , d r i e d , a n d c o m p r e s s e d i n t o b r i q u e t t e s . T h e s e samples w e r e a l l o w e d to r e m a i n i n e q u i l i b r i u m w i t h t h e a t m o s p h e r e . A l l the M o s s b a u e r r u n s w e r e t a k e n w i t h a C o R h source u s i n g a conventional constant-acceleration drive w i t h data collection into either a 1024 or 512 c h a n n e l a n a l y z e r . A l l the samples w e r e r u n at 78 K , w i t h some r u n s also b e i n g m a d e at r o o m t e m p e r a t u r e a n d at 4.2 K . C o u n t i n g t i m e for the b e d - m o i s t samples w a s u s u a l l y o n the o r d e r of 1 w e e k w i t h over 1 0 counts p e r c h a n n e l . H o w e v e r , for most of these spectra t h i s w a s 5 7
7
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
9.
CASHION
E T
Victorian
AL.
Brown
211
Coal
i n a d e q u a t e to resolve t h e m a n y s m a l l o v e r l a p p i n g lines, so t h e n u m b e r of d a t a p o i n t s w a s r e d u c e d to 170 b y s u m m i n g the d a t a i n groups of three adjacent c h a n n e l s . T h i s g a v e u p to 4 X 1 0 counts p e r c h a n n e l , c o r r e s p o n d i n g to a s t a n d a r d d e v i a t i o n of less t h a n 0 . 0 2 % . C u r v e fitting w a s t h e n c a r r i e d out b y s t a n d a r d least-squares t e c h n i q u e s u s i n g s i n g l e L o r e n t z i a n l i n e s , or i n some cases, m a g n e t i c - or q u a d r u p o l e - s p l i t spectra, w h e r e t h e y c o u l d be u s e d r e a s o n a b l y . 7
Results A list of the samples s t u d i e d together w i t h s o m e of t h e i r r e l e v a n t d a t a are g i v e n i n T a b l e I . C h e m i c a l analysis i n d i c a t e d t h a t o n l y three of t h e samples c o n t a i n e d d e t e c t a b l e a m o u n t s of F e S t h a t c o u l d b e i n t h e Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
2
f o r m of e i t h e r p y r i t e or m a r c a s i t e . parameters that corresponded
O u r s p e c t r a o n these samples g a v e
to p y r i t e , b u t w i t h t h e p o o r r e s o l u t i o n
o b t a i n e d w e w o u l d not r u l e o u t the p o s s i b i l i t y of s o m e m a r c a s i t e as w e l l . C o n s e q u e n t l y , w e s h a l l refer to t h e F e S
2
s o m e w h a t loosely as p y r i t e i n
this c h a p t e r , b u t w i t h t h e i n t e r p r e t a t i o n t h a t i t i n c l u d e s the p o s s i b i l i t y of b o t h p y r i t e a n d m a r c a s i t e . T h e t o t a l i r o n concentrations o n a d r y basis r a n g e d f r o m 0.07
to
1 . 7 7 % , b u t w e note t h a t w i t h a 6 7 % w a t e r content, t h e effective i r o n c o n c e n t r a t i o n is m u c h less. T h e p H of most of t h e d r i e d samples w a s not measured.
T h e l a b e l i n g of the first six samples refers to t h e b o r e
holes f r o m w h i c h t h e y w e r e t a k e n . Bed-moist Samples.
A t t e m p t s to t a k e s p e c t r a of these samples a t
room temperature resulted i n very small absorption dips from w h i c h it w a s difficult to d i s c e r n a n y s t r u c t u r e . C o n s e q u e n t l y the m a j o r effort w a s p u t i n t o l i q u i d n i t r o g e n spectra, a l l of w h i c h gave at least five p o o r l y Table I.
Details of the Coal Samples
Form
M2275 LY1280 H1317 N3372 M2276 C92 Top-oxidized #15 #19
Bed-moist Bed-moist Bed-moist Bed-moist Bed-moist Partially dried Dried Briquette Briquette
0
Fe as FeS (Dry Basis (%))
Total Fe (Dry Basis (%))
pH
15.7-16.0 24.6-25.0 52.0-52.8 54.7-55.0 44.3-44.6 —
0.21 0.00 0.00 0.00 0.00 0.09
0.58 0.07 0.22 0.34 1.77 0.15
3.6 3.4 5.1 4.5 4.6 4.2
— —
0.36 0.00
0.42 0.80
2
Sample
Examined
Depth
(m)
* Dashes indicate that the information was neither known nor measured. concentrations are quoted on a dry basis.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Iroi
212
MOSSBAUER
Table II.
SPECTROSCOPY A N D
ITS
CHEMICAL
APPLICATIONS
Parameters of the Doublets Observed for the Bed-moist Samples at 78 K a
jg Site
Qg
(mms- )
(mms' )
1
1 2 3 4 5 6
Percentage M2275
1
+0.15(4) +0.16(6) +0.21(6) +0.22(2) +0.27(9) +0.38(5)
0.51(4) 1.20(6) 0.91(6) 0.00(4) 1.25(9) 0.61(5)
LY1280
Absorption
H1S17
NSS72
M2276
C92
60 — 11 22 — 7
67 — — 25 8 —
62 — 9 21 — —
37 19 19 19 — —
33 — — 18 16 —
43 10 18 14 — 8
— — — — —
— — — — —
— — — 7 —
7 — — — —
— 17 8 4 5
— — — 7 —
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
Single lines 7 8 9 10 11
-0.76(6) -0.21(6) -0.04(6) +1.02(6) +1.37(6)
° The single lines probably belong to doublets whose other member has not been positively identified. Isomer shifts are relative to iron metal at room temperature and the quadrupole splitting is l/2e qQ. The numbers in parentheses indicate the error in the last figure. 2
r e s o l v e d a n d o v e r l a p p i n g lines i n t h e r e g i o n b e t w e e n —0.04 a n d + 0 . 0 9 m m s"
1
w i t h respect to i r o n m e t a l . T h e d o m i n a n t a b s o r p t i o n p e a k for
e a c h s a m p l e v a r i e d b e t w e e n 0.1 a n d 0 . 4 % , d o w n to 0 . 0 3 % .
a n d peaks were identified
T y p i c a l l i n e w i d t h s ( F W H M ) w e r e a b o u t 0.32-0.35 m m
s" , w i t h o n l y a f e w lines b e i n g s i g n i f i c a n t l y n a r r o w e r t h a n this. 1
T w o sets o f peaks w e r e o b s e r v e d for a l l of the samples a n d d o m i n a t e d m o s t o f the s p e c t r a — a q u a d r u p o l e - s p l i t d o u b l e t w i t h a n i s o m e r shift of +0.15
m m s"
1
( a l l shifts w i l l b e q u o t e d w i t h respect to i r o n at r o o m
t e m p e r a t u r e ) a n d a s p l i t t i n g of 0.51 m m s' , a n d a s i n g l e - l i n e o r p o s s i b l y 1
a n u n r e s o l v e d q u a d r u p o l e - s p l i t d o u b l e t at + 0 . 2 2 m m s" . A t o t a l of 1
five
q u a d r u p o l e - s p l i t d o u b l e t s w e r e i d e n t i f i e d , a n d t h e i r p a r a m e t e r s are g i v e n i n T a b l e I I together w i t h details of t h e samples f o r w h i c h t h e y
were
o b s e r v e d . T h e p e r c e n t a g e a b s o r p t i o n values g i v e n are the f r a c t i o n of the t o t a l a b s o r p t i o n p r e s e n t i n t h a t resonance.
Sample inhomogeneities i n
e v i t a b l e i n the s m a l l samples u s e d i n M o s s b a u e r spectroscopy c a n alter these n u m b e r s c o n s i d e r a b l y so t h a t t h e i r a c c u r a c y is c e r t a i n l y n o t better than
±10%. I n a d d i t i o n , T a b l e I I lists several o t h e r lines t h a t are u n d o u b t e d l y
t h e u n m a t c h e d halves o f f u r t h e r d o u b l e t s , b u t w h o s e o t h e r h a l f is e i t h e r s u p e r i m p o s e d o n a stronger l i n e o r h i d d e n i n the w i n g s . A p p a r e n t l y there are n o s t r o n g p e a k s at l a r g e r v e l o c i t i e s as w o u l d b e the case if, for example, high-spin F e
2 +
w e r e present, b u t some s p e c t r a d i d s h o w e i t h e r
v e r y w e a k p e a k s or r e l a x a t i o n effects.
F u r t h e r s p e c t r a , p r e f e r a b l y at 4.2
K , are r e q u i r e d to resolve this.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
9.
CASHION
E T
Victorian
AL.
Brown
213
Coal
F i g u r e 1 shows spectra of f o u r of t h e samples, a n d the d i f f e r i n g a n d g e n e r a l l y p o o r r e s o l u t i o n c a n b e seen c l e a r l y . T h e n u m b e r o f c h a n n e l s after f o l d i n g has b e e n r e d u c e d to 170 f o r a l l of these spectra. I n F i g u r e s l a a n d b w e see t w o of the c h a r a c t e r i s t i c spectra f r o m M 2 2 7 5 a n d L Y 1 2 8 0 d o m i n a t e d b y t h e t h r e e p e a k s m e n t i o n e d e a r l i e r . T h e s p e c t r u m of H 1 3 1 7 is s i m i l a r to these t w o .
F i g u r e l c shows t h e s p e c t r u m of N 3 3 7 2 w h i c h
h a d t h e poorest r e s o l u t i o n of a l l the samples s t u d i e d , w h i l e F i g u r e I d shows t h e s p e c t r u m of M 2 2 7 6 w h i c h contains m o r e t h a n three t i m e s t h e
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
i r o n c o n c e n t r a t i o n of a n y of the other samples. T h i s l a r g e r i r o n c o n c e n -
_l -12
I
I
I
I
I
-08
-04
0
04
08
L 12
VELOCITY (mm s-1)
Figure 1. Mossbauer spectra of bed-moist samples of (a) M227S (b) LY1280, (c) N3372, and (d) M2276 taken at 78 K (note the different vertical scales for each spectrum)
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
214
MOSSBAUER
SPECTROSCOPY A N D
ITS
CHEMICAL
APPLICATIONS
t r a t i o n is k n o w n to alter the types of i r o n c o m p o u n d s f o r m e d as w i l l b e d i s c u s s e d i n the next section. D r i e d Samples.
S a m p l e C 9 2 s h o w e d a s p e c t r u m s i m i l a r t o those of
t h e b e d - m o i s t samples a n d is i n c l u d e d w i t h t h e m i n T a b l e I I . Its spec t r u m is i n t e r m e d i a t e b e t w e e n those s h o w n i n F i g u r e s l b a n d c.
However,
t h e top o x i d i z e d s a m p l e ( F i g u r e 2 ) s h o w e d a c o m p l e t e l y different spec t r u m w i t h a m u c h l a r g e r recoilless f r a c t i o n . T h i s w a s c h a r a c t e r i s t i c of most of the d r i e d samples w h i c h g e n e r a l l y h a d a n i n t e n s e c e n t r a l d o u b l e t a n d a w e a k e r c o n t r i b u t i o n f r o m one or m o r e h y p e r f i n e fields, the l a t t e r u s u a l l y s h o w i n g signs of e l e c t r o n i c r e l a x a t i o n . I n a n effort to s h e d some l i g h t o n the m a r k e d difference b e t w e e n the Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
spectra of t h e b e d - m o i s t a n d d r i e d samples, w e r a n a n a b s o r b e r m a d e f r o m the outer b l a c k e n e d section of the M 2 2 7 6 s a m p l e w h i c h h a d s h o w n t h e largest p r e v i o u s d i p of 0 . 4 % .
T h e difference
between
this s p e c t r u m
( F i g u r e 3) a n d the bed-moist spectrum ( F i g u r e I d ) was startling.
The
m a x i m u m p e r c e n t a g e effect h a d i n c r e a s e d b y a l m o s t a f a c t o r of t e n to 3.5%
a n d t h e outer w i n g s n o w s h o w e d s t r o n g e v i d e n c e
relaxation
effects.
Clearly
the water molecules
of
electronic
h a d been intimately
b o n d e d to the i r o n atoms to p r o d u c e s u c h a l a r g e c h a n g e , a n d t h i s w i l l b e discussed f u r t h e r i n the next section. T h e b r i q u e t t e d samples s h o w e d s p e c t r a s i m i l a r to e a c h other, c o n s i s t i n g of a v e r y intense d o u b l e t ( 4 %
d i p ) , a n d r e l a x a t i o n effects c o r r e
s p o n d i n g to a m a g n e t i c h y p e r f i n e s p l i t t i n g .
S a m p l e 15 also h a d a l a r g e
100
£
9 8 -
96 -
-12
-4
0
4
1
1
12
mm/s
Figure 2.
Mossbauer
spectrum of the top-oxidized sample taken
at78K
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
9.
CASHION
Figure
3.
E T A L .
Victorian
Brown
215
Coal
Mossbauer spectrum taken at 78 K of a sample of which had been slightly oxidized on exposure to the air
M2276
a d d i t i o n a l l i n e of i n t e n s i t y 1 % a t + 2 . 7 m m s" c l e a r l y associated w i t h 1
another line near zero velocity superimposed o n the m a i n doublet. T h e o b s e r v e d p a r a m e t e r s f o r a l l o f these samples are g i v e n i n T a b l e III. Table III.
Parai
O b s e r v e d f o r t h e D r i e d C o a l Samples*
Temp (K)
IS (mm s' )
QS (mm s' )
#15
300
0.45(4) 2.8(1)
#29
300
0.34(4) 1.3(1) 0.3(2) 0.35(4) 0.3(2) 0.51(4) 0.4(2) 0.6(3) 0.57(3) 0.4(2) 0.5(1) 0.3(3) 0.20(4) 0.31(4) 0.46(2) 0.48(3)
Sample
Dried M2276
78
Top-oxidized
78
Partially dried cleaned coal
300
1
1
0.60(4) 0.78(4)
0.32(3) -0.5(2) -0.5(1) 0.40(4) 0.62(4) 0.89(3) 0.96(5)
Hyperfine Field (T) 0 0 probably ~ 3 3 0 34(4) 0 43(2) ) 55(2) i 0 33(4) 48(1) 55(3) 0 0 0 0
Absorption (%) 54 8 38 30 70 30 70 /U
36 9 35 20
• Values marked (*) could not be determined but are not necessarily zero. F o r other explanations, see Table II.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
216
MOSSBAUER
SPECTROSCOPY A N D
ITS
CHEMICAL
APPLICATIONS
Interpretations and Discussion C h e m i c a l m e a s u r e m e n t s o n L a t r o b e V a l l e y coals h a v e s h o w n
(8)
that, at l o w c o n c e n t r a t i o n s , the n o n p y r i t i c i r o n is u s u a l l y present as l o w s p i n i r o n ( I I ) b o n d e d to c a r b o x y l a t e s , b u t at h i g h e r c o n c e n t r a t i o n s , o x y h y d r o x i d e s m a y start f o r m i n g . I t w a s e x p e c t e d t h a t S a m p l e M 2 2 7 6 w a s t h e o n l y one to b e i n this r e g i m e . I t w a s a s s u m e d i n i t i a l l y t h a t the s p e c t r a of o u r coals s h o u l d c l o s e l y r e s e m b l e those f r o m t h e U . S . coals, so a s s i g n m e n t of t h e p e a k s menced b y considering b o t h the parameters obtained there a n d d a t a o n oxides a n d h y d r o x i d e s (11)
a n d clays ( 1 2 ) .
com
(4,5,6,7)
T h e o n l y site
i n T a b l e I I t h a t d e f i n i t e l y c o u l d b e a s s i g n e d o n this basis w a s Site 6, Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
w h i c h is c l e a r l y a t t r i b u t a b l e to p y r i t e . Its o b s e r v a t i o n i n S a m p l e s M 2 2 7 5 a n d C 9 2 c o r r e l a t e d w i t h t h e i n i t i a l c h e m i c a l analyses c a r r i e d out at t h e H e r m a n R e s e a r c h L a b o r a t o r i e s , a l t h o u g h o u r q u a n t i t a t i v e v a l u e is m u c h lower presumably because of a n inhomogeneous distribution. Sites 1-5 c o u l d not b e a s s i g n e d to a n y of m o r e t h a n 50
compounds
c o n s i d e r e d , a n d this i n d i c a t e d either n e w types of i r o n c o m p o u n d s
such
as o r g a n i c a l l y b o n d e d i r o n o r a l t e r a t i o n of t h e p a r a m e t e r s f r o m k n o w n c o m p o u n d s r e s u l t i n g f r o m t h e h i g h w a t e r content. S i t e 4 c o u l d c o r r e s p o n d to F e
3 +
i n a symmetric electronic environment or perhaps chalcopyrite
( C u , F e ) S , a l t h o u g h this c o m p o u n d c o m m o n l y p r o d u c e s a m a g n e t i c a l l y 2
s p l i t s p e c t r u m at 78 K . O n e o r g a n i c a l l y b o n d e d c o m p o u n d of the f o r m e r t y p e t h a t has the same p a r a m e t e r s is h y d r a t e d f e r r i c oxalate, Fe
2
(C 0 )3 2
4
•5 H 0 . 2
T h e r e m a i n i n g sites d o n o t c o r r e l a t e w i t h k n o w n p a r a m e t e r s f o r o t h e r c a r b o x y l a t e s , a l t h o u g h most h y d r o l y z e d i r o n ( I I I ) c a r b o x y l a t e s h a v e i s o m e r shifts of 0.2-0.5 m m s"* a n d q u a d r u p o l e s p l i t t i n g s of 0.2-1.0 m m s" 1
1
(see,
e.g., R e f s . 13-20).
T h e p a r a m e t e r s f o r these sites also c o v e r t h e r e g i o n of
low-spin iron (II)
compounds.
W e b e l i e v e t h a t a l l of these sites c o r r e
s p o n d to o r g a n i c a l l y b o n d e d i r o n a n d t h a t the h i g h m o i s t u r e content a n d m u l t i p l i c i t y of different l i g a n d s are a l t e r i n g p a r a m e t e r s f r o m the p r e v i o u s l y o b s e r v e d v a l u e s f o r these c o m p o u n d s .
T h i s b e l i e f is s u p p o r t e d b y
m e a s u r e m e n t s t h a t w e h a v e c a r r i e d o u t o n a separate p r o j e c t i n v o l v i n g c a t a l y t i c h y d r o g e n a t i o n of s o m e L a t r o b e V a l l e y coals t h a t h a v e
been
d r i e d , c r u s h e d to —60 m e s h , a n d floated w i t h C C 1 to r e m o v e most of t h e 4
m i n e r a l m a t t e r (21). + 0 . 3 1 ( 4 ) m m s"
1
I n a d d i t i o n to t h e p y r i t e p e a k s at a n i s o m e r shift of
a n d a q u a d r u p o l e s p l i t t i n g of 0 . 6 2 ( 4 ) m m s" , these 1
coals s h o w e d three o t h e r d o u b l e t s w h i c h are also l i s t e d at t h e b o t t o m of T a b l e I I I a n d no e v i d e n c e of Sites 1-5 i n T a b l e I I . T y p i c a l a b s o r p t i o n dips were about 3 % , but the linewidths w e r e broader than the bed-moist samples, b e i n g b e t w e e n 0.35-0.50 m m s' . 1
T h e c h a r a c t e r i s t i c s i x - c o o r d i n a t e d b o n d i n g of i r o n p r o b a b l y a l l o w s considerable competition between water a n d carboxylate ligands.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
The
9.
CASHION
E T
Victorian
AL.
changes o b s e r v e d
Brown
217
Coal
b e t w e e n the spectra of b e d - m o i s t a n d d r i e d M 2 2 7 6
also i n d i c a t e t h a t t h e w a t e r m u s t b e i n t i m a t e l y b o n d e d to t h e i r o n .
The
c h a n g e of a n o r d e r of m a g n i t u d e i n the D e b y e - W a l l e r f a c t o r for a 1 4 - k e V g a m m a r a y is t o t a l l y u n e x p e c t e d a n d shows t h a t the i r o n e n v i r o n m e n t i n the b e d - m o i s t coals m u s t b e d e c i d e d l y " s l o p p y . " T h e q u a d r u p o l e - s p l i t d o u b l e t s of the d r i e d samples are a l l s h i f t e d to m o r e p o s i t i v e i s o m e r shifts t h a n those of t h e b e d - m o i s t samples. t r e n d is also e v i d e n t f r o m t h e other p r o j e c t measurements.
This
However,
a s s i g n i n g the peaks is a g a i n difficult w i t h o r g a n i c a l l y b o n d e d i r o n p r o b a b l y p r o d u c i n g the intense c e n t r a l d o u b l e t s i n the s p e c t r a f r o m S a m p l e s 15 a n d 29. T h e d o u b l e t w i t h the s p l i t t i n g of 2.8 m m s" i n S a m p l e 15 is 1
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
a t t r i b u t a b l e to s z o m o l n o k i t e , F e S 0
4
• H 0 a r i s i n g f r o m o x i d a t i o n of the 2
sulfide. N o t e t h a t t h e p r o m i n e n t d o u b l e t i n t h e o x i d i z e d M 2 2 7 6 s p e c t r u m does not c o r r e s p o n d to a n y of the d o u b l e t s i n the o r i g i n a l sample. F o u r values of h y p e r f i n e field c o u l d b e d i s c e r n e d i n the r e l a x e d w i n g s of these samples, w i t h o n l y the t o p - o x i d i z e d s a m p l e g i v i n g a n y c l e a n s p l i t t i n g s . I n S a m p l e 15, t h e d i p w a s so w e a k a n d r e l a x a t i o n sufficiently fast t h a t the field v a l u e is o n l y a n estimate, b u t S a m p l e 29 s h o w e d
a
m a x i m u m v a l u e of 34 T . T h e o x i d i z e d M 2 2 7 6 s h o w e d s p l i t t i n g s o u t to 5 5 T w h i l e the t o p o x i d i z e d s a m p l e s h o w e d three fields of 33 T , 48 T , a n d 55 T , w i t h the 4 8 - T field b e i n g w e l l r e s o l v e d ( F i g u r e 2 ) .
We
believe
that the 4 8 - T field results f r o m geothite, a - F e O O H , w i t h a s m a l l p a r t i c l e size, s i m i l a r to t h a t o b s e r v e d b y G o o d m a n a n d B e r r o w ( 2 2 ) i n t h e i r s t u d y of S c o t t i s h peats. T h e c r i t i c a l size for s u p e r p a r a m a g n e t i s m i n « - F e O O H is a b o u t 4 n m , a n d x - r a y d i f f r a c t i o n measurements are consistent w i t h t h e conjecture of s m a l l p a r t i c l e sizes. T h e 5 5 - T field is p r o b a b l y a t t r i b u t a b l e to h e m a t i t e , a - F e 0 , a l t h o u g h l i q u i d h e l i u m experiments are r e q u i r e d 2
3
to r u l e o u t m a g n e t i t e , F e 0 . 3
4
T h e 3 3 - T field p r o b a b l y results f r o m t r i -
v a l e n t i r o n b o n d e d to o r g a n i c m a t e r i a l , w i t h the i r o n - i r o n s e p a r a t i o n b e i n g the r i g h t d i s t a n c e to g i v e r e l a x a t i o n effects at l i q u i d n i t r o g e n t e m peratures. S u r p r i s i n g l y , a s p e c t r u m of the o x i d i z e d M 2 2 7 6 s a m p l e t a k e n at 4.2 K f a i l e d to s h o w a n y s h a r p e n i n g of the r e l a x a t i o n . Conclusions T h e i n i t i a l a i m of this p r o j e c t w a s to i n v e s t i g a t e t h e usefulness
of
M o s s b a u e r s p e c t r o s c o p y for c h a r a c t e r i z i n g coals i n t h e b e d - m o i s t c o n d i t i o n . T h e results s h o w a c l e a r l y o b s e r v a b l e difference b e t w e e n t h e s a m p l e e x p e c t e d to c o n t a i n o x y h y d r o x i d e s a n d those l o w e r i n i r o n w h i c h o n l y c o n t a i n carboxylates.
T h e s p e c t r a o b s e r v e d are m a r k e d l y different f r o m
those o b t a i n e d o n h i g h e r - r a n k U . S . coals for w h i c h o n l y i n f o r m a t i o n o n m i n e r a l s a n d clays has b e e n o b t a i n e d . T h e d r y i n g of the c o a l a l t e r e d t h e o b s e r v e d completely,
Mossbauer
spectrum
i n c r e a s i n g b o t h the D e b y e - W a l l e r factor a n d the
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
isomer
218
MOSSBAUER
SPECTROSCOPY A N D ITS C H E M I C A L APPLICATIONS
shift. T h e s e changes are consistent w i t h a c h a n g e f r o m a l a b i l e , loosely b o u n d e n v i r o n m e n t t o a t i g h t l y c o n s t r a i n e d site. T h e e n o r m i t y of t h e c h a n g e b o t h i n t h e shape o f t h e s p e c t r u m a n d t h e size of t h e D e b y e - W a l l e r f a c t o r w h e n t h e c o a l is d r i e d opens u p t h e p o s s i b i l i t y t o s t u d y o n a m i c r o s c o p i c scale t h e p o o r l y u n d e r s t o o d process of t h e d r y i n g o f c o a l .
C h e m i c a l measurements u s u a l l y d e t e r m i n e t o t a l
w a t e r content o r changes i n w a t e r content, a n d as p o i n t e d o u t b y A l l a r d i c e a n d E v a n s ( 9 ) , c a r e m u s t b e t a k e n n o t t o c o n f u s e t h e r m a l release o f chemically combined water w i t h accelerated diffusion o f water o u t of m i c r o p o r e s because o f a n increase i n t e m p e r a t u r e . W i t h i r o n carboxylates b e i n g t h e most a c t i v e h y d r o p h i l i c site, i t appears t h a t M o s s b a u e r s p e c Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
troscopy
is w e l l p l a c e d to i n v e s t i g a t e selectively a t least o n e o f t h e
different varieties o f b o u n d w a t e r . F u r t h e r e x p e r i m e n t s at l i q u i d h e l i u m t e m p e r a t u r e s a n d i n a p p l i e d m a g n e t i c fields are r e q u i r e d to a i d i n t h e i n t e r p r e t a t i o n o f t h e b e d - m o i s t spectra a n d to c o n f i r m t h e assignments o f t h e m a g n e t i c a l l y s p l i t spectra. A n o t h e r possible extension of this w o r k w o u l d b e a s t u d y of t h e changes i n t h e c o a l d u r i n g t h e b r i q u e t t i n g process.
Acknowledgments T h i s w o r k w a s c a r r i e d o u t u n d e r c o n t r a c t t o t h e V i c t o r i a n State Electricity Commission a n d w a s supported b y the Australian Research Grants Committee.
T h e c o a l samples w e r e s u p p l i e d b y courtesy o f t h e
Victorian B r o w n C o a l Council. W e wish to thank P . E . Clark, F . P . L a r k i n s , a n d K . S. M u r r a y f o r h e l p f u l discussions.
W e are grateful to
G . P . H u f f m a n f o r f o r w a r d i n g a c o p y o f his r e v i e w b e f o r e p u b l i c a t i o n . Literature
Cited
1. Lefelhocz, J. F . ; Friedel, R. A . ; Kohman, T . P. Geochim. Cosmochim. Acta 1967, 31, 2261—2273. 2. Kohman, T. P.; Ulmer, J. D. U S A E C Report NYO-844-81, Sec.II.A.4, 1970, pp. 31-36. 3. Kohman, T . P.; Karol, P. J.; Kamarchik, P. U S A E C Report COO-3236-3, Sec.II.A.1, 1971, pp. 5-16. 4. Huffman, G . P.; Huggins, F . E. Fuel 1978, 57, 592-604. 5. Huggins, F . E.; Huffman, G . P. "Analytical Methods for Coal and Coal Products"; Karr, C., Jr., E d . ; Academic: New York, 1979; Vol. 3, pp. 371—423. 6. Jacobs, I. S. Levinson, L . M . ; Hart, H. R., Jr. J. Appl. Phys. 1978, 49, 1775-1780. 7. Russell, P. E.; Montano, P. A. J. Appl. Phys. 1978, 49, 4615-4617. 8. Schafer, H . N . S. Fuel 1977, 56, 45-46. 9. Allardice, D . J.; Evans, D . G . "Analytical Methods for Coal and Coal Products"; Karr, C., Jr., E d . ; Academic: New York, 1978, Vol. 1, pp. 247—262. 10. Schafer, H. N. S. Fuel 1972, 51, 4-9. 11. Bowen, L . H. Mössbauer Eff. Ref. Data J. 1979, 3, 76-94. ;
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch009
9.
CASHION
E T
A L .
Victorian
Brown
Coal
219
12. Ericsson, T . ; Wappling, R.; Punakivi, K . Geol Foeren. Stockholm Foerh. 1977, 99, 229—244. 13. Duncan, J. F . ; Kanekar, C . R.; Mok, K. F. J. Chem. Soc. 1969, A , 480-482. 14. Malathi, N . ; Puri, S. P. J. Phys. Soc. Jpn. 1970, 29, 108-111. 15. Takano, M . J. Phys. Soc. Jpn. 1972, 33, 1312-1317. 16. Lupu, D . ; Barb, D . ; Filoti, G . ; Morariu, M . ; Tarina, D . J. Inorg. Nucl. Chem. 1972, 34, 2803-2810. 17. Rumbold, B. D . ; Wilson, G . V . H. J. Phys. Chem. Solids 1973, 34, 18871891. 18. Long, G . J.; Robinson, W . T . ; Tappmeyer, W . P.; Bridges, D . L. J. Chem. Soc. Dalton 1973, 573-579. 19. Dezsi, I.; Pardavi Hordath, M . ; Molnar, B. Chem. Phys. Lett. 1973, 22, 384-386. 20. Steger, H . F . J. Inorg. Nucl. Chem. 1975, 37, 39-43. 21. Cashion, J. D . ; Clark, P. E.; Cook, P. S.; Larkins, F . P.; Marshall, M . In "Nuclear and Electron Resonance Spectroscopies Applied to Materials Science"; Kaufmann, E . N . ; Shenoy, G . K., Eds.; North-Holland: New York, 1981; in press. 22. Goodman, B. A . ; Berrow, M . L. J. Phys. (Paris) 1976, 37(C6), 849-855. R E C E I V E D June 27, 1980.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.