22 Tantalum-181 Mössbauer Studies of the Alkali Tantalates Ferroelectric Phase Transition in L i T a O
3
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
G. W O R T M A N N , M . L Ö H N E R T , and G. K A I N D L Institut für Atom- und Festkörperphysik, D-1000 Berlin 33, West Germany
Freie Universität Berlin,
The application of the high-resolution 6.2-keV Mössbauer resonance of (M =
Ta
181
to the study of alkali tantalates MTaO
3
Li, Na, K)is reviewed. Emphasis is placed on a recent
study of the ferroelectric phase transition in LiTaO . 3
In
this case, a dramatic variation of the electric field gradient tensor with temperature is observed, which is closely related to the ferroelectric displacement. The
Mössbauer results
are compared with electric field gradient data of Li 7
Nb in LiNbO
93
3
and
and
LiTaO . 3
nnhe 6.2-keV g a m m a t r a n s i t i o n of T a belongs to the f e w M o s s b a u e r resonances w i t h lifetimes T i n t h e m i c r o s e c o n d r e g i o n . T h e h i g h r e s o l v i n g p o w e r of these resonances is b a s e d m a i n l y o n t h e r e l a t i v e size of t h e hyperfine i n t e r a c t i o n energy, as c o m p a r e d to t h e m i n i m a l l i n e w i d t h W = 2 • h/r, or, w h a t is m o r e r e l e v a n t f r o m a n e x p e r i m e n t a l p o i n t of v i e w , t o the a c t u a l l y o b s e r v e d l i n e w i d t h W (1,2). For T a , t h e l i f e t i m e of the 6.2-keV l e v e l ( T = 9.8 /*s) corresponds to W = 1.34 • 10" e V , or 6.5 fim/s i n v e l o c i t y units. A l t h o u g h t h e best e x p e r i m e n t a l l i n e w i d t h o b s e r v e d so far, W = 53(1) / r n i / s (3), is r o u g h l y one o r d e r of m a g n i t u d e l a r g e r t h a n W , the T a resonance has m a d e p o s s i b l e a v a r i e t y of n e w a p p l i c a t i o n s i n t h e field of solid-state p h y s i c s (1,2,4,5). W h e n compared w i t h o t h e r n a r r o w - l i n e M o s s b a u e r resonances, n a m e l y those i n Z n (93 k e V ; r = 13.5 lis) (6, 7) a n d i n G e (13.3 k e V ; r — 6.2 (8,9), t w o factors m a y be m e n t i o n e d i n f a v o r of the T a r e s o n a n c e : (1) T h e r e l e v a n t n u c l e a r parameters are e x t r e m e l y l a r g e , g i v i n g rise to l a r g e hyperfine i n t e r a c t i o n energies. T h i s is d e m o n s t r a t e d b y t h e p r e s e n t l y 1 8 1
0
1 8 1
10
0
Q
1 8 1
6 7
7 3
1 8 1
©
0065-2393/81 /0194-0481$05.00/0 1981 American Chemical Society
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
482
MOSSBAUER
SPECTROSCOPY
A N D
o b s e r v e d r a n g e of i s o m e r shifts (110 m m / s ) t h e v a l u e of W just g i v e n ( 2 ) .
The
1 8 1
ITS
CHEMICAL
APPLICATIONS
w h i c h is a b o u t 2000 t i m e s
T a resonance is r e l a t i v e l y easy to
h a n d l e m a i n l y b e c a u s e of the l o w g a m m a energy. I t a l l o w s m e a s u r e m e n t s at r o o m t e m p e r a t u r e ( o r e v e n u p to t h e m e l t i n g p o i n t of t h e r e f r a c t o r y metals ( J O ) ) , a n d i n most cases o n l y a s t a n d a r d M o s s b a u e r s p e c t r o m e t e r is n e e d e d .
A p r o p o r t i o n a l c o u n t e r c a n b e u s e d f o r the d e t e c t i o n of the
g a m m a r a y s , a n d the source a c t i v i t y
1 8 1
W has a c o n v e n i e n t h a l f - l i f e of
140 d a y s . T h e r e are, h o w e v e r , s o m e t a n t a l i z i n g aspects
of t h i s resonance,
a
f a c t w h i c h is u n d e r l i n e d b y t h e s m a l l n u m b e r of c h e m i c a l a p p l i c a t i o n s . A p a r t f r o m a l a r g e n u m b e r of d - m e t a l systems, the resonance has b e e n
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
o b s e r v e d so f a r o n l y i n t h e a l k a l i tantalates M T a 0 T a C , a n d i n the t a n t a l u m c h a l c o g e n i d e s
3
(M =
(1,2,11,12).
K, Na, L i ) , in T h e first
two
sections of this c h a p t e r d e a l w i t h s p e c i a l e x p e r i m e n t a l r e q u i r e m e n t s for 1 8 1
T a spectroscopy
1 8 1
T a spectra. T h e n w e r e p o r t e x p e r i m e n t a l results a n d c h e m i c a l i n f o r m a
a n d some characteristics i n v o l v e d i n t h e analysis of
tion obtained from
1 8 1
T a s p e c t r o s c o p y of the tantalates. I n the last section,
e m p h a s i s is p u t o n a recent s t u d y of t h e f e r r o e l e c t r i c p h a s e t r a n s i t i o n i n LiTa0 9 3
3
a n d o n a d i s c u s s i o n of e l e c t r i c field g r a d i e n t s o b s e r v e d
N b , and
1 8 1
at L i , 7
T a i n t h e niobates a n d tantalates.
Experimental A s mentioned already, the 6.2-keV resonance of T a can be studied w i t h standard Mossbauer techniques. Since the ratio of line shift to linewidth can be large, special attention must be devoted to the stability and accuracy of the velocity drive. This requirement is met most easily b y using an electro mechanical drive system w i t h a sinusoidally moved source. A l l spectra shown here were taken i n this way. It should be mentioned, however, that for Ta spectroscopy (due to large line shift-to-linewidth ratios) a region-of-interest spectrometer, w h i c h scans only the velocity region around the resonance, can be very useful. Such a spectrometer has been used i n a recent temperature study on N a T a 0 (11). It should be mentioned that commercially available region-of-interest spectrometers, i n most cases, do not meet the requirements for T a spectroscopy. W h e n sweeping the whole velocity range, the data acquisition system should have an increased number of channels (1024 or m o r e ) , since sometimes the information is contained only i n a few channels (see, for example, the spectrum of L i T a O i n Figure 2 ) . I n addition, small solid angles ought to be used to prevent excessive geometrical broadening. One of the m a i n difficulties w i t h T a spectroscopy is the preparation of strong sources w i t h good single-line performance. F o r absorber experiments as reported here, the conditions are met by diffusing W activity into high-purity single crystals of tungsten under ultra-high vacuum conditions (1,2,3). Con siderable efforts have to be made to get W of the highest possible specific activity. One w a y is to irradiate 9 0 % -enriched W (natural abundance 0.5%) i n the highest available thermal neutron fluxes ( 1 0 n / c m s) for periods up to several months. Alternatively, carrier-free W activity can be obtained b y 1 8 1
1 8 1
3
1 8 1
s
1 8 1
1 8 1
1 8 1
1 8 0
15
2
1 8 1
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22.
Ferroelectric
WORTMANN E T AL.
Phase
483
Transition
bombarding tantalum w i t h deuterons ( T a ( d , 2n) W ) a n d b y performing a radiochemical separation of W from the tantalum target ( 3 ) . W h e n the radiochemical work can be done i n one's own laboratory, the use of cyclotronproduced W activity is preferable to neutron activation. Standard single-line tantalum metal absorbers are prepared from h i g h purity tantalum foils ( 1 3 ) . T h e ultra-high vacuum annealing a n d outgassing procedure at temperatures u p to 2300°C has been desecribed b y Sauer ( 1 4 ) . T h e m a i n problem is that one has to handle very thin foils of 2 - 5 fim thickness. The preparation of absorbers of (polycrystalline) tantalum compounds w i t h homogeneous thickness is also quite delicate. A method used is to sediment the finely m i l l e d powders i n a polystyrene-benzene solution on thin M y l a r foils (for room temperature experiments). T h e absorbers for the high-temperature studies reviewed here were prepared b y sedimentation of 5 m g / c m L i T a 0 from a benzene suspension on 0.1-mm thick beryllium discs. Tantalum-181 spectroscopy has to cope w i t h a relatively l o w flux of the 6.2-keV gamma rays. This is primarily attributable to the h i g h conversion coefficient (a = 4 5 ) , the low gamma-ray energy (which limits the source thickness), and the long lifetime of the W activity. Furthermore, the detec tion of the 6.2-keV gamma rays is accompanied b y serious background problems since they lie on the low-energy side of rather intense L - x - r a y lines ( 1 5 ) . U s i n g an A r - K r / C 0 proportional counter ( 1 6 ) , the peak-to-background ratio for the 6.2-keV line is about 1:2 with a 5 m g / c m tantalum absorber. I n some cases, especially at l o w count rates, an intrinsic germanium detector w i t h good energy resolution can be superior to a proportional counter ( 1 5 ) . F o r low-temperature experiments, standard Mossbauer cryostats can be used. Special care, however, must be taken to avoid mechanical vibrations (i.e., originating from the boiling cryogenic liquids) w h i c h w o u l d destroy the resonance. A considerable loss (up to 6 0 % ) of the gamma flux occurs i n the windows of the cryostat, even when rather thin M y l a r ( 5 0 / m i ) or beryllium (0.2 m m ) windows are used. T h e same holds for the high-temperature experi ments w i t h a Mossbauer oven ( 1 7 ) , since the radiation has to pass through a considerable number of beryllium windows. 1 8 1
1 8 1
1 8 1
1 8 1
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
2
3
1 8 1
2
2
Hyperfine Structure of Ta Gamma-Resonance Spectra 181
The
nuclear parameters
of t h e 6 . 2 - k e V
resonance
of
1 8 1
T a are
s u m m a r i z e d i n T a b l e I . D u e to t h e l a r g e m a g n i t u d e s o f t h e n u c l e a r m o m e n t s of b o t h n u c l e a r states a n d t h e h i g h s p i n q u a n t u m n u m b e r s , I =
9/2 and I = g
are o b t a i n e d i n t h e presence o f r e l a t i v e l y s m a l l m a g n e t i c h y p e r f i n e or
electric
expected
e
7 / 2 , w i d e l y s p l i t a n d r a t h e r c o m p l e x h y p e r f i n e spectra
field
gradients
only for perfect
S i n g l e - l i n e spectra
(1,2,18,19). cubic
symmetry
fields
can be
around the emitting a n d
a b s o r b i n g n u c l e i . D i s t o r t i o n s of t h e source o r absorber m a t r i x b y l a t t i c e imperfections—introduced,
for example,
by cold
r e s i d u a l a m o u n t s of i n t e r s t i t i a l i m p u r i t y atoms tantalum)
(5,14),
2
(14), by 2
2
o r b y s u b s t i t u t i o n a l t a n t a l u m atoms i n t h e t u n g s t e n
source m a t r i x (3)—lead interactions a n d / o r
working
(e.g., 0 , N , o r H i n
t o excessive l i n e b r o a d e n i n g v i a s m a l l q u a d r u p o l e
fluctuations
i n t h e i s o m e r shift.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
484
MOSSBAUER
Table I.
SPECTROSCOPY
A N D
ITS
CHEMICAL
APPLICATIONS
N u c l e a r Parameters of the 6.2-keV Gamma Resonance of Ta 1 8 1
V -7T G r o u n d state
a
/* =
2.35 ± 0.01 n . m . 3.5 ± 0.2 b
Q — E x c i t e d state
9.8 ± 0.6 s
T
5.35 ± 0.09 n . m . 4.0 ± 0.3 b
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
Q E l Transition
0.0065 m m / s
W
0
A>
- 5 X 10" f m 2
1.77
g(9/2)/g(7/2)
M o m e n t ratios
Q ( 9 / 2 ) /Q ( 7 / 2 )
2
±0.02
1.133 db 0.010
• See Refs. 1,2,18,19, 40, 41.
S i n c e this c h a p t e r deals w i t h n o n m a g n e t i c t a n t a l u m c o m p o u n d s , w i l l concentrate on quadrupolar hyperfine splittings only. nuclear spin quantum numbers, polycrystalline m a g n i t u d e and t h e s i g n of V
z z
1 8 1
T a spectra y i e l d the
V , w h i c h has a n o n v a n i s h i n g v a l u e ( 0 < ^ < l ) i n z z
a x i a l p o i n t s y m m e t r y at t h e t a n t a l u m atoms. 1 8 1
1 8 1
(V
xx
1 8 1
— V
field y
y
)/
the case of n o n -
I n F i g u r e 1,
T a s p e c t r a are s h o w n f o r v a r i o u s v a l u e s of rj.
experimental example for a quadrupole-split is s t i l l t h e
the
( t h e m a i n c o m p o n e n t of t h e e l e c t r i c
g r a d i e n t t e n s o r ) , as w e l l as t h e a s y m m e t r y p a r a m e t e r -q —
simulated
we
D u e to
computerThe
best
T a s p e c t r u m w i t h -q =
0
T a R e s y s t e m ( 1 , 2 ) , w h e r e a s t h e first a n a l y s i s of a q u a d r u
p o l e s p e c t r u m w i t h -q ^
0 w a s r e c e n t l y p e r f o r m e d i n t h e case of N a T a 0
3
(see R e f . 8 a n d F i g u r e 2 of this w o r k ) . D u e to t h e E l m u l t i p o l a r i t y of t h e 6 . 2 - k e V t r a n s i t i o n , t h e a b s o r p t i o n lines e x h i b i t a c h a r a c t e r i s t i c a s y m m e t r y , w h i c h o r i g i n a t e s f r o m a n i n t e r ference
between
photoelectric
followed b y internal conversion. tion spectra that can be
absorption
and
Mossbauer
absorption
T h i s i n t e r f e r e n c e effect leads to a b s o r p
described
by
dispersion-modified L o r e n t z i a n
fines of the f o r m N(v) with X
{
=
2(v
-
-tf(oo) -
£ ^ ( 1 - 2 ^ / ( 1 + ^ )
Vi)/W.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22.
W O R T M A N N
8
7 9
'
H
Phase
485
Transition
1 0 6 11 5 1423 fl—II
II II
I
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
I
Ferroelectric
E T A L .
8
6 7 9 -v Velocity
Figure
1.
1011 5
123
4
14
0 [arbitrary
1513 +v
units]
Computer-simulated Ta quadrupole-split spectra as a function of the asymmetry parameter w. 181
The bar diagrams at the top (/or 17 = 0) and at the bottom (for v = 1) represent the positions and relative intensities of the various transitions between the excited state (h = 9/2) and the ground state = 7/2). The respective subquantum numbers fort\ — 0 may be found in Refs. 1 and 2.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
486
M O S S B A U E R S P E C T R O S C O P Y A N D ITS C H E M I C A L
APPLICATIONS
Figure 2. The Ta Mossbauer absorption spectra of the alkali tantalates at room temperature (11, 27). 181
The centers of the quadrupole-split spectra are indicated by arrows. The LiTaOs spectrum is fitted with a correction for slanting background.
H e r e N(v)
-30
-20
-10
0
10
20
30
VELOCITY (mm/sec)
is t h e t r a n s m i t t e d i n t e n s i t y at a r e l a t i v e v e l o c i t y v, v
t
is t h e
p o s i t i o n of t h e i t h l i n e , W is the f u l l l i n e w i d t h at h a l f m a x i m u m , a n d Ai is t h e a m p l i t u d e of the i t h l i n e . T h e p a r a m e t e r | d e t e r m i n e s t h e r e l a t i v e m a g n i t u d e of t h e d i s p e r s i o n t e r m . Its m a g n i t u d e v a r i e s , d e p e n d i n g the a b s o r b e r thickness, a r o u n d 2 £ =
-0.30
(18,19,20).
a n d r e l a t i v e intensities of the 19 p o s s i b l e lines of a
1 8 1
The
on
energies
T a quadrupole-
s p l i t s p e c t r u m h a v e b e e n c a l c u l a t e d as a f u n c t i o n of rj a n d w e r e i n c l u d e d i n t h e fitting r o u t i n e b y u s i n g a t a b u l a t e d e x p a n s i o n series (21).
I n this
w a y , t h e q u a d r u p o l e - s p l i t s p e c t r a s h o w n i n this w o r k w e r e n o r m a l l y fitted w i t h six p a r a m e t e r s : b a c k g r o u n d rate N(oo), factor, the i s o m e r shift S, V
z z
h a l f - w i d t h W, a n a m p l i t u d e
, a n d rj. I n some cases w i t h
unresolved
h y p e r f i n e s p l i t t i n g s , W is fixed to a v a l u e o b s e r v e d i n r e s o l v e d s p e c t r a .
Tantalum-181 Mossbauer Spectroscopy of the Alkali Tantalates LiTaO , NaTaOs, KTaO s
s
T h e c r y s t a l s t r u c t u r e a n d f e r r o e l e c t r i c p r o p e r t i e s of the tantalates MTa0
3
( M — L i , N a , K ) are r a t h e r different (22,23).
KTa0
c u b i c p e r o v s k i t e s t r u c t u r e ( l i k e B a T i 0 ) , b u t does n o t o r d e r 3
has t h e
3
ferroelec-
t r i c a l l y . H o w e v e r , i t has a l a r g e e l e c t r i c p o l a r i z a b i l i t y i n d i c a t i n g t h a t i t is close to the f e r r o e l e c t r i c state
(by
means
of u n i a x i a l pressure,
instance, ferroelectric ordering can be introduced i n K T a 0 ) . 3
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
for
NaTa0
3
22.
Ferroelectric
WORTMANN ET AL.
Phase
487
Transition
has a n o r t h o r h o m b i c u n i t c e l l at r o o m t e m p e r a t u r e , w h i c h c a n b e sidered
as a s l i g h t l y d i s t o r t e d p e r o v s k i t e structure.
con
W i t h increasing
t e m p e r a t u r e , it undergoes a series of s t r u c t u r a l phase transitions, e n d i n g w i t h t h e c u b i c p e r o v s k i t e s t r u c t u r e at 6 3 0 ° C .
A l t h o u g h i t has
been
r e p o r t e d as a n t i f e r r o e l e c t r i c i n the o l d e r l i t e r a t u r e , it is n o w a d a y s c l a s s i fied as q u a s i f e r r o e l e c t r i c , since i t does not possess a p e r m a n e n t electric dipole moment.
LiTa0
has t r i g o n a l s y m m e t r y a n d , f o r c o n v e n i e n c e , is
3
d e s c r i b e d b y a h e x a g o n a l u n i t c e l l (see
Figure 3).
LiTa0
is f e r r o
3
electric w i t h an exceptionally h i g h C u r i e temperature ( T = B e s i d e s the i s o s t r u c t u r a l L i N b 0
3
i t is a p r o t o t y p e
for
910 K ) .
a displacive
f e r r o e l e c t r i c . Its s t r u c t u r e a n d the a t o m i c positions w i t h i n the u n i t c e l l Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
have been investigated thoroughly below a n d above T
c
b y x-ray a n d
neutron scattering techniques ( 2 4 , 2 5 ) . T a n t a l u m - 1 8 1 M o s s b a u e r s p e c t r a h a v e b e e n o b s e r v e d for the t a n talates i n the e a r l y days of t h i s resonance
(1,2,26).
For K T a 0 , 3
single, b u t r a t h e r b r o a d resonance l i n e ( 1 , 2 )
was observed
a resonance effect at a l l is q u i t e a success i n
T a spectroscopy).
cases of N a T a 0
3
3
(to
detect I n the
a n d L i T a 0 , p a r t i a l l y s p l i t resonance patterns c e n t e r e d 3
a r o u n d i s o m e r shifts of NaTa0
1 8 1
a
and L i T a 0
3
—15
mm/s
were
observed
(26).
Recently,
were reinvestigated more thoroughly ( I I ) .
I n this
s t u d y t h e r e s o l u t i o n c o u l d be i m p r o v e d c o n s i d e r a b l y because of b e t t e r e x p e r i m e n t a l l i n e w i d t h s , a n d c o n s e q u e n t l y , m u c h l a r g e r resonance effects were observed.
a
I n the case of o r t h o r h o m b i c N a T a 0 , i n p a r t i c u l a r , i t 3
O Li 0
j
a
b
a
ferroelectric
b
p a r a e l e c t n c
O Figure 3. LiTa0
3
Stereographic and schematic presentation of the hexagonal structure in the (a) ferroelectric and (b) paraetectric phase.
The ferroelectric displacements z(Ta) and z(Li) of the metal atoms with respect to the oxygen planes closely follow the electric polarization of LiTaOs (for details see Refs. 24 and 25). In the paraelectric phase the lithium atoms are thought to be randomly distributed on both sides of their oxygen plane.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
488
M O S S B A U E R S P E C T R O S C O P Y A N D ITS
C H E M I C A L APPLICATIONS
w a s p o s s i b l e for t h e first t i m e to a c h i e v e sufficient r e s o l u t i o n f o r e x t r a c t i n g a v a l u e of the a s y m m e t r y p a r a m e t e r rj f r o m t h e q u a d r u p o l e - s p l i t s p e c t r u m I n a d d i t i o n , t h e t e m p e r a t u r e d e p e n d e n c e of
(11).
quadrupole interaction were studied i n N a T a 0 K ( I I , 2 7 ) . F i g u r e 2 shows
1 8 1
isomer
shift a n d
b e t w e e n 77 K a n d 700
3
T a spectra of K T a 0 , N a T a 0 , a n d L i T a 0 3
3
3
t a k e n at r o o m t e m p e r a t u r e . The
1 8 1
T a M o s s b a u e r studies of L i T a 0
were performed
( 30)
3
in
v i e w of t h e f e r r o e l e c t r i c a n d n o n l i n e a r o p t i c a l p r o p e r t i e s of this c o m pound.
LiTa0
is i s o s t r u c t u r a l w i t h t h e w e l l - k n o w n L i N b 0
3
(T
3
=
c
1470 K ) . B o t h c o m p o u n d s h a v e e x p e r i e n c e d w i d e a p p l i c a t i o n s i n laser s p e c t r o s c o p y a n d as o p t i c a l storage m e d i a .
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
atom, L i T a 0
3
With
1 8 1
T a as the
probe
offers M o s s b a u e r studies of a f e r r o e l e c t r i c p h a s e t r a n s i t i o n
i n a p u r e system. M o s t of t h e p r e v i o u s M o s s b a u e r studies of f e r r o e l e c t r i c p h a s e transitions suffered b e c a u s e t h e y w e r e p e r f o r m e d o n s u b s t i t u t i o n a l M o s s b a u e r i m p u r i t y atoms ( 2 8 ) , since most ferroelectrics do n o t c o n t a i n s u i t a b l e M o s s b a u e r elements.
I n addition, their relatively poor resolving
p o w e r for q u a d r u p o l e i n t e r a c t i o n s p r e v e n t e d studies w i t h s i m i l a r r e s o l u t i o n as p e r f o r m e d , for i n s t a n c e , o n m a g n e t i c p h a s e t r a n s i t i o n s . I n the b e g i n n i n g of the here (30),
1 8 1
T a Mossbauer work w i t h L i T a 0
a p u z z l i n g effect w a s o b s e r v e d .
space g r o u p of t r i g o n a l L i T a 0
3
3
reviewed
I n spite of t h e f a c t t h a t t h e
w a s d e t e r m i n e d as C
6
3 v
(24,25), implying
a t h r e e - f o l d p o i n t s y m m e t r y at t h e t a n t a l u m atoms, t h e e l e c t r i c g r a d i e n t at the
1 8 1
T a n u c l e u s , as o b t a i n e d f r o m t h e fit of the
s p e c t r a , w a s f o u n d n o t to b e a x i a l l y s y m m e t r i c . all
1 8 1
field
resonance
A t room temperature,
T a s p e c t r a t a k e n f r o m v a r i o u s absorbers y i e l d a c o u p l i n g constant
e qQ ( 7 / 2 )
=
rj =
0.03.
2
0.09 ±
(9.80
±
0.04)
• 10"
7
e V and an asymmetry
parameter
( T h e s e s p e c t r a c a n b e fitted q u i t e w e l l w i t h a n a x i a l l y
s y m m e t r i c e l e c t r i c field g r a d i e n t , as d o n e i n R e f . 11; i n c l u s i o n of
the
a s y m m e t r y p a r a m e t e r -q, h o w e v e r , i m p r o v e s t h e fit of the less intense lines).
T h e s e results are i n excellent a g r e e m e n t
n u c l e a r q u a d r u p o l e resonance s t u d y of L i T a 0 below.
T h e o b s e r v a t i o n of -q
3
w i t h a recent
1 8 1
Ta
at r o o m t e m p e r a t u r e a n d
0 i m p l i e s t h a t the t r i f o l d s y m m e t r y of
t h e o x y g e n o c t a h e d r o n ( w i t h respect to t h e t a n t a l u m a t o m ) is s o m e w h a t l o w e r e d b y a s m a l l d i s t o r t i o n , w h i c h m a y o c c u r i n a d d i t i o n to t h e w e l l k n o w n f e r r o e l e c t r i c d i s p l a c e m e n t a l o n g t h e c-axis. S u c h a d i s t o r t i o n m u s t b e r a t h e r s m a l l , since i t has n o t b e e n d e t e c t e d i n r a t h e r extensive x - r a y a n d n e u t r o n d i f f r a c t i o n studies. m e t r y p a r a m e t e r of -q = n i o b i u m site f r o m a
9 3
I t s h o u l d b e n o t e d also t h a t a n a s y m
0.02 has b e e n
N b study (46).
reported
in L i N b 0
3
on
the
W e w a n t to e m p h a s i z e t h a t t h i s
is a n i m p o r t a n t p i e c e of i n f o r m a t i o n f o r a f u l l u n d e r s t a n d i n g of a v a r i e t y of
e x p e r i m e n t a l d a t a , e s p e c i a l l y those o b t a i n e d
copy
by
Raman
spectros
(31). A d i s c u s s i o n of t h e
1 8 1
T a i s o m e r shifts i n t h e ( n o m i n a l l y p e n t a v a l e n t )
tantalates is h a m p e r e d b y t h e f a c t t h a t t h e r e are at p r e s e n t n o i s o m e r
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22.
Ferroelectric
WORTMANN ET AL.
Phase
489
Transition
Table II. Compilation of T a Mossbauer D a t a on Several Tantalum Compounds, Obtained at Room Temperature 1 8 1
Compound
W (mm/s)
(mm/s)
LiTaO, NaTaOs KTa0 2 H-TaSe TaC
0.40(2) 0.42(2) 0.97(8) 0.70(7) 2.4 (4)
-17.95(3) -15.50(3) -7.81(7) +80.40(5) + 7 0 . 8 (5)
3
2
e qQ(7/2)° (10' eV) 2
V
Ref.
+9.50(4) +3.67(4)
0.09(3) 0.47(2)
-49.76(25)
0
SO 11 1,2,11 12 1,2
7
* W = experimental linewidth ( F W H M ) . S = isomer shift relative to tantalum metal. e qQ(7/2) = quadrupole interaction energy. V = asymmetry parameter. b c
2
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
d
shift d a t a a v a i l a b l e for other
(nonmetallic)
tantalum compounds
with
different v a l e n c e states. T h e ( n o m i n a l l y t e t r a v a l e n t ) t a n t a l u m d i c h a l c o genides (12)
a n d T a C (1,2)
h a v e m e t a l l i c p r o p e r t i e s w i t h b a n d elec
trons of p r e d o m i n a n t l y d c h a r a c t e r there is a l a r g e difference
As shown
(32,33).
i n the i s o m e r shift S b e t w e e n
in Table Ta
4 +
II,
and T a
5 +
c o m p o u n d s : A S s=z 90 m m / s i n d i c a t e s that p ( 0 ) , the s e l e c t r o n d e n s i t y at the
1 8 1
T a n u c l e u s , is c o n s i d e r a b l y s m a l l e r i n T a S e
the tantalates. the T a
4 +
and i n T a C than i n
2
T h i s c a n be e x p l a i n e d b y a h i g h e r s h i e l d i n g effect i n
c o m p o u n d s t h r o u g h the l a r g e r n u m b e r of l o c a l i z e d t a n t a l u m d
electrons
(1,2).
T h e s h i e l d i n g p o t e n t i a l of t a n t a l u m electrons
r a t h e r l o c a l i z e d d b a n d of T a C a n d T a S e
2
is c o n s i d e r e d
to b e
i n the similar
to t h a t of t a n t a l u m d electrons i n c o v a l e n t b o n d s , w h i c h are, as s h o w n i n the
following,
c h a r a c t e r i s t i c for
t h e tantalates.
The
difference
in S
b e t w e e n t a n t a l u m m e t a l ( w h e r e the t a n t a l u m a t o m is n o m i n a l l y p e n t a v a l e n t ) a n d m e t a l l i c T a C or T a S e number
of
s-like c o n d u c t i o n
r e l a t i v e l y s m a l l difference metal, however,
2
c a n b e a c c o u n t e d f o r b y the l a r g e r
electrons
i n tantalum metal
i n S between
The
(34).
the tantalates a n d t a n t a l u m
p o i n t s to a h i g h l y c o v a l e n t
character
of
the
Ta—O
b o n d s , a fact w e l l k n o w n f r o m other p r o p e r t i e s of the tantalates
and
niobates a n d closely r e l a t e d to the o c c u r r e n c e of f e r r o e l e c t r i c i t y F o r e x a m p l e , t h e o r e t i c a l c a l c u l a t i o n s (36)
of the ferroelectric
of
+0.8
LiTa0
3
y i e l d a n effective
charge
of
(35).
properties
o n the t a n t a l u m
( i n s t e a d of + 5 , as e x p e c t e d for a p u r e l y i o n i c T a
5 +
atom
compound).
Simi-
l a r i l y , as w i l l b e s h o w n i n a n o t h e r section, the e l e c t r i c field g r a d i e n t at t h e t a n t a l u m site i n L i T a 0
3
c a n b e e x p l a i n e d o n l y b y a n effective
charge
considerably smaller than + 5 . W i t h i n the tantalates, p ( 0 ) f u r t h e r to K T a 0 . 3
decreases f r o m L i T a 0
T h i s behavior can be accounted
3
to N a T a 0
of t h e T a — O b o n d l e n g t h a n d b y a decrease i n c o v a l e n c y w h e n from L i T a 0
3
3
and
f o r b y a n increase
to K T a 0 . 3
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
going
490
M O S S B A U E R S P E C T R O S C O P Y A N D ITS
Study
of
the
Ferroelectric
Phase
Transition
As mentioned previously, L i T a 0
in
C H E M I C A L APPLICATIONS
LiTaO
s
offers the o p p o r t u n i t y to s t u d y a
3
" p u r e " f e r r o e l e c t r i c i n its f e r r o e l e c t r i c a n d p a r a e l e c t r i c p h a s e b y M o s s b a u e r spectroscopy. 1040 K (T
=
c
M o s t of
the e x p e r i m e n t s
at temperatures
up
to
910 K ) w e r e p e r f o r m e d i n a n absorber o v e n ( 1 7 ) , w h i c h
c o u l d b e e v a c u a t e d to pressures b e l o w 10" m b a r . T h e t e m p e r a t u r e w a s 5
c o n t r o l l e d to w i t h i n ±
2 K . A f t e r a series of h i g h - t e m p e r a t u r e m e a s u r e
ments, c o n t r o l spectra t a k e n at 300 K s h o w e d t h a t the L i T a 0 d i d not deteriorate d u r i n g h e a t i n g . 1 8 1
W(W)
absorber
3
D e p e n d i n g o n t h e s t r e n g t h of the
source, the t i m e f o r t a k i n g one s p e c t r u m r a n g e d f r o m 5 to
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
20 days. F i g u r e 4 shows
1 8 1
T a spectra of L i T a 0
at v a r i o u s
3
temperatures,
w h i c h r e v e a l a d r a m a t i c t e m p e r a t u r e d e p e n d e n c e of the e l e c t r i c q u a d r u p o l e i n t e r a c t i o n . W i t h i n c r e a s i n g t e m p e r a t u r e t h i s i n t e r a c t i o n decreases r a p i d l y , a n d v i r t u a l l y vanishes a r o u n d 800 K . I t t h e n starts t o increase a g a i n w i t h opposite s i g n . T h e results of least-squares fits of the i s o m e r shift S, the e l e c t r i c field g r a d i e n t V are g i v e n i n F i g u r e 5. V constant eQV
zz
=
1.133 (1,2).
z z
z z
, a n d t h e a s y m m e t r y p a r a m e t e r rj
w a s c a l c u l a t e d f r o m the q u a d r u p o l e c o u p l i n g
b y t a k i n g Q ( 7 / 2 ) — 3.5 b a r n ( 3 7 ) a n d T h e p o t e n t i a l of the
1 8 1
Q(9/2)/Q(7/2)
T a resonance for h i g h - r e s o l u t i o n
h y p e r f i n e i n t e r a c t i o n studies is o b v i o u s f r o m F i g u r e s 4 a n d 5. O n l y the a s y m m e t r y p a r a m e t e r rj shows r a t h e r l a r g e error bars b e t w e e n 600 K a n d 900 K , w h e r e t h e q u a d r u p o l e - s p l i t s p e c t r a are r e s o l v e d o n l y p a r t i a l l y . A b o v e the f e r r o e l e c t r i c p h a s e t r a n s i t i o n , rj is f o u n d to b e z e r o statistical a c c u r a c y .
It s h o u l d be n o t e d t h a t a r o u n d the
of the q u a d r u p o l e i n t e r a c t i o n at 800 K , t h e V field
g r a d i e n t tensor a c t u a l l y changes
within
zero-crossing
c o m p o n e n t of t h e e l e c t r i c
z z
its d e f i n i t i o n .
Because
of
the
n o n a x i a l i n t e r a c t i o n , one of the p r i n c i p a l axes of the e l e c t r i c field g r a d i e n t tensor c a n v a n i s h , y i e l d i n g rj =
1. A t t e m p e r a t u r e s w e l l a b o v e a n d w e l l
b e l o w 800 K , h o w e v e r , the V
c o m p o n e n t of t h e e l e c t r i c field g r a d i e n t
tensor v i r t u a l l y c o i n c i d e s
z z
w i t h the c-axis of t h e h e x a g o n a l
unit cell
( b e c a u s e of the r a t h e r s m a l l v a l u e of rj). T h i s has b e e n v e r i f i e d b y other experiments i n L i T a O g a n d L i N b 0
3
(38,39,46).
T h e v a n i s h i n g of V
z z
a n d the m a x i m u m of rj i n F i g u r e 5 are n o t c o r r e l a t e d w i t h the ferroelec t r i c p h a s e t r a n s i t i o n , w h i c h a c t u a l l y occurs temperature.
at a c o n s i d e r a b l y
higher
T h e y c a n b e e x p l a i n e d , as w i l l b e s h o w n later, b y
the
m u t u a l c a n c e l l a t i o n of t w o c o n t r i b u t i o n s of o p p o s i t e s i g n to t h e e l e c t r i c field g r a d i e n t . T h e o n l y o b v i o u s c o r r e l a t i o n of t h e d a t a of F i g u r e 5 w i t h the f e r r o e l e c t r i c p h a s e t r a n s i t i o n at T is, besides the v i r t u a l v a n i s h i n g of rj, t h e c h a n g e i n the slope of V (T) a r o u n d T . T h e i s o m e r shift S shows c
ZZ
c
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22.
Ferroelectric
WORTMANN ET AL.
491
Phase
Transition
Figure spectra
4. The Ta absorption of LiTaO at various temperatures (30).
1000
300 K
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
625 K
800 K
875 K
923 K
-8
-16
0
VELOCITY
8
16
[mm/s]
181
s
Note that only the lowest spectrum is taken in the paraelectric phase. The zero-crossing and sign reversal of the electric quadrupole interaction at 800 K occur well below the ferroelectric transition temperature of 910 K.
n o c h a n g e i n its slope w h e n g o i n g t h r o u g h T , c
i n d i c a t i n g t h a t the p h a s e
t r a n s i t i o n is s e c o n d o r d e r . B e f o r e d i s c u s s i n g t h e m o r e d r a m a t i c results of t h e e l e c t r i c q u a d r u p o l e interaction, a few i s o m e r shift S i
S
comments
on the temperature dependence
w i l l be made.
A s originally reported for
1 8 1
of
the
T a i n d-
t r a n s i t i o n metals ( 4 ) , the t e m p e r a t u r e - i n d u c e d v a r i a t i o n of t h e p o s i t i o n S of t h e
1 8 1
T a resonance l i n e is g o v e r n e d
b y changes i n the e l e c t r o n
d e n s i t y at t h e n u c l e u s a n d n o t b y the second-order D o p p l e r effect S O D S
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
492
MOSSBAUER
SPECTROSCOPY
AND
ITS
CHEMICAL
APPLICATIONS
v •
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
T,
Figure 5. Temperature variation of the Ta isomer shift S, the electric field gradient Y , and the asymmetry parameter n at Ta in LiTaO . The ferroelectric transition temperature T is marked by arrows. ((%) from the Mossbauer study; (O) from a NQR study (29)).
1
I
m
zz
m
s
c
200
S
S
O
D
£00
600
' 800
' 1000
T E M P E R A T U R E
(as w i t h a l l other g a m m a resonances: o r d e r D o p p l e r shift
'
S =
Si + S
S OD). S
[K]
The
of S. F o r a m o r e d e t a i l e d d i s c u s s i o n w e refer to R e f s . 4,40,41. high-temperature limit,
second-
c o n t r i b u t e s v e r y l i t t l e to the o b s e r v e d v a r i a t i o n S OD S
I n the
is g i v e n f o r a D e b y e s o l i d b y — 3k/Mc
in
v e l o c i t y u n i t s , w h i c h a m o u n t s to —2.3 • 10~ m m / s p e r degree f o r t h e 4
1 8 1
T a resonance.
T h i s c o n t r i b u t i o n is of opposite s i g n a n d one o r d e r of
m a g n i t u d e s m a l l e r t h a n the o b s e r v e d shift i n L i T a 0 , ( 8 S / 8 T ) 3
P
=
35 •
10~ m m / s p e r degree ( t h i s v a l u e is o b t a i n e d b y a s s u m i n g , f o r s i m p l i c i t y , 4
a l i n e a r v a r i a t i o n of S b e t w e e n 300 K a n d 700 K ) . I n K T a O s i m i l a r values of
(8S/8T)
P
were
observed
(11),
s
and N a T a 0 ,
indicating that
t e m p e r a t u r e v a r i a t i o n of S ( a n d , a c c o r d i n g l y , of p ( o ) )
3
the
is v e r y s i m i l a r i n
the tantalates a n d n o t d i r e c t l y c o n n e c t e d w i t h t h e f e r r o e l e c t r i c t r a n s i t i o n of L i T a 0 . A d i s c u s s i o n of ( 8 S / S T ) 3
P
i n t e r m s of a n i m p l i c i t v a r i a t i o n of
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22.
W O R T M A N N
Ferroelectric
E T A L .
Those
493
Transition
Sis ( r e s u l t i n g f r o m t h e t h e r m a l e x p a n s i o n o f t h e l a t t i c e ) a n d a n e x p l i c i t v a r i a t i o n of S i
S
(resulting from temperature-induced
changes o f t h e
e l e c t r o n i c structure at constant v o l u m e ) m u s t a w a i t h i g h - p r e s s u r e studies of t h e tantalates, w h i c h w o u l d y i e l d t h e v o l u m e d e p e n d e n c e of S i . I t S
s h o u l d b e m e n t i o n e d that t h e
1 8 1
T a i s o m e r shift exhibits a s t r o n g e x p l i c i t
t e m p e r a t u r e d e p e n d e n c e i n m e t a l l i c systems
(4,40,41).
A similar be
h a v i o r is also e x p e c t e d i n t a n t a l u m c o m p o u n d s . T o c l a r i f y t h e o r i g i n of t h e s t r i k i n g t e m p e r a t u r e - i n d u c e d v a r i a t i o n of t h e electric q u a d r u p o l e i n t e r a c t i o n i n L i T a 0 , e l e c t r i c field g r a d i e n t 3
calculations were performed de W e t t e
(43) b y u s i n g t h e p o i n t - c h a r g e m o d e l o f
( 4 2 ) . S i m i l a r c a l c u l a t i o n s p r e v i o u s l y w e r e a p p l i e d (44r-47)
to e x p l a i n L i a n d N b N M R d a t a of L i N b 0 Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
7
9 3
these c a l c u l a t i o n s a r e g i v e n elsewhere
3
and L i T a 0 . 3
D e t a i l s of
( 4 3 ) . I t is w e l l k n o w n t h a t t h e
p o i n t - c h a r g e m o d e l is b y n o means a s u i t a b l e t o o l t o c a l c u l a t e absolute values of e l e c t r i c field g r a d i e n t i n c o v a l e n t c o m p o u n d s .
I n m a n y cases,
h o w e v e r , this m o d e l c a n b e u s e d successfully t o c a l c u l a t e t h e s i g n a n d r e l a t i v e c h a n g e of t h e e l e c t r i c field g r a d i e n t i n a s y s t e m w h e r e o n l y f e w parameters v a r y .
LiTa0
3
w i t h its f e r r o e l e c t r i c phase t r a n s i t i o n a n d its
w e l l - k n o w n i n t e r a t o m i c d i s p l a c e m e n t s (24,25)
offers a n e x c e p t i o n a l case
f o r electric field g r a d i e n t c a l c u l a t i o n s , since t h e e x p e r i m e n t a l
1 8 1
T a data
( w i t h t h e k n o w n s i g n a n d t h e z e r o - c r o s s i n g of t h e e l e c t r i c field g r a d i e n t ) p r o v i d e a n u n a m b i g u o u s p r o o f of t h e m o d e l c a l c u l a t i o n s . T h e results of t h e e l e c t r i c LiTa0
3
field
gradient calculations for
1 8 1
T a in
i n t h e t e m p e r a t u r e r a n g e b e t w e e n 295 K a n d 9 4 0 K are s h o w n
i n F i g u r e 6. T h e effective charges u s e d w e r e t a k e n f r o m R e f . 4 5 , a n d a Sternheimer antishielding factor of ( 1 — y
0 0
) == 6 0 w a s u s e d (48). I t is
o b v i o u s f r o m F i g u r e 6 t h a t t h e c a l c u l a t e d e l e c t r i c field g r a d i e n t h a s t h e r i g h t s i g n a n d f o l l o w s t h e e x p e r i m e n t a l d a t a r a t h e r closely i n i t s r e l a t i v e v a r i a t i o n s ; i n p a r t i c u l a r , t h e z e r o - c r o s s i n g a t 8 0 0 K is r e p r o d u c e d b y t h e c a l c u l a t i o n s . T o e l u c i d a t e t h e effect o f z ( T a ) , w h i c h is t h e f e r r o e l e c t r i c d i s p l a c e m e n t of t h e o x y g e n atoms w i t h respect t o t h e t a n t a l u m a t o m (see F i g u r e 3 b ) , f u r t h e r c a l c u l a t i o n s w e r e p e r f o r m e d . F i g u r e 6 contains t w o m o r e t h i n - d a s h e d curves t h a t w e r e c a l c u l a t e d w i t h t h e f o l l o w i n g t w o a s s u m p t i o n s : ( 1 ) z(Ta)
= 0 o v e r t h e entire t e m p e r a t u r e r a n g e a n d
n o r m a l l a t t i c e e x p a n s i o n w i t h t e m p e r a t u r e , a n d ( 2 ) t h e u n i t c e l l does not e x h i b i t t h e r m a l e x p a n s i o n , b u t z ( T a ) varies i n a n o r m a l w a y w i t h temperature. T h e synopsis o f these c a l c u l a t i o n s together w i t h t h e e x p e r i m e n t a l d a t a l e a d to t h e f o l l o w i n g conclusions
(30,43).
c o n t r i b u t i o n s t o t h e e l e c t r i c field g r a d i e n t at
1 8 1
T h e r e are t w o m a i n
Ta in LiTa0 : 3
(1) the
h e x a g o n a l l a t t i c e p r o d u c e s a n e g a t i v e e l e c t r i c field g r a d i e n t , t h e m a g n i t u d e o f w h i c h decreases s l o w l y w i t h i n c r e a s i n g t e m p e r a t u r e d u e t o t h e lattice expansion. positive electric
( 2 ) T h e ferroelectric displacement z ( T a ) produces a field
g r a d i e n t , w h i c h is a b o u t t w i c e as l a r g e a n d o f
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
494
MOSSBAUER
SPECTROSCOPY
A N D ITS C H E M I C A L
APPLICATIONS
3.0
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
2.0
E o
1.0 -
calc. E F G ^ \ V=const. (T=300K) \
X \
0
^
0
-1.0
calc. EFG z(Ta)=0
(T=940K)
300
500
-2.0 _J 700
I
L_ 900
1100
Temperature [K] Figure 6.
Comparison of calculated and experimentally field gradients at Ta in LiTaO . m
observed
electric
s
The effective charges used in this calculation were taken from Ref. 45; (O) represents calculated results. The additional two ( ) lines show electric field gradients calculated with the assumption that (1) the ferroelectric displacement z(Ta) and z(Li) is zero over the entire temperature range and that (2) no volume expansion takes place (for details see text and Figure 3).
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
22.
Ferroelectric
WORTMANN ET AL.
opposite
s i g n as
contribution
(1).
Phase The
495
Transition
magnitude
of
this
positive
c o n t r i b u t i o n f o l l o w s the f e r r o e l e c t r i c d i s p l a c e m e n t ( a n d , w i t h t h a t , t h e f e r r o e l e c t r i c p o l a r i z a t i o n ) . A t 800 K , b e c a u s e of the c h a r a c t e r i s t i c t e m p e r a t u r e d e p e n d e n c e of z ( T a ) , c o n t r i b u t i o n s ( 1 ) a n d ( 2 ) c a n c e l . T , c
contribution
(2)
should vanish.
The
slope of
the
Above
experimental
e l e c t r i c field g r a d i e n t T , h o w e v e r , , i n d i c a t e s t h a t there are also other c
c o n t r i b u t i o n s to t h e e l e c t r i c field g r a d i e n t . A f e r r o e l e c t r i c p h a s e t r a n s i t i o n is t h o u g h t to b e t r i g g e r e d b y a n i s o t r o p i c l a t t i c e v i b r a t i o n s ( 4 9 ) .
Such
"soft m o d e s " a l o n g the h e x a g o n a l o a x i s c o u l d p r o d u c e a " d y n a m i c a l " c o n t r i b u t i o n to the e l e c t r i c field g r a d i e n t ( 5 0 ) , w h i c h w o u l d h a v e the same o r i g i n a n d s i g n as c o n t r i b u t i o n ( 2 ) .
A m o r e d e t a i l e d d i s c u s s i o n of a
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
d y n a m i c a l c o n t r i b u t i o n to the e l e c t r i c field g r a d i e n t i n L i T a 0
has to
3
w a i t for m o r e e x p e r i m e n t a l d a t a a b o v e T . c
W i t h respect to the L i a n d 7
L i T a 0 , and L i N b i ^ T a ^ O s
9 3
N b N M R studies p e r f o r m e d o n L i N b 0 , 3
the
(44-47,50),
3
1 8 1
T a d a t a are of
special
i m p o r t a n c e . T h e y a l l o w a c o m p a r i s o n of m e a s u r e d a n d c a l c u l a t e d e l e c t r i c field
gradients i n t w o i s o s t r u c t u r a l a n d c h e m i c a l l y v e r y s i m i l a r systems
o n t w o different l a t t i c e sites. I t c a n be c o n c l u d e d , f o r instance, t h a t the electric
field
gradients at n i o b i u m a n d l i t h i u m are p o s i t i v e at
temperature.
field g r a d i e n t at 46)
room
F u r t h e r m o r e , the t e m p e r a t u r e d e p e n d e n c e of the electric 9 3
N b in L i N b 0
3
o b s e r v e d b e t w e e n 20 K a n d 820 K
has to be discussed r e l a t i v e to the
1 8 1
T a data i n L i T a 0 .
We
3
(38, have
p e r f o r m e d p o i n t - c h a r g e c a l c u l a t i o n s for the electric field gradients at L i 7
and
9 3
N b w i t h the same f o r m a l i s m u s e d for t h e
g i v e n i n Ref. 43.
1 8 1
T a d a t a . D e t a i l s are
A g a i n , absolute values of the e l e c t r i c field gradients are
n o t to b e expected, e s p e c i a l l y i n v i e w of the u n c e r t a i n t y i n v o l v e d i n the S t e r n h e i m e r factors a n d i n the e l e c t r i c q u a d r u p o l e m o m e n t s
(51).
F i g u r e 7 s u m m a r i z e s the results of p o i n t - c h a r g e c a l c u l a t i o n s of the e l e c t r i c field gradients for (43).
7
L i , N b , and 9 3
1 8 1
T a in L i N b 0
and
3
LiTa0
3
T h e c a l c u l a t e d electric field gradients are p l o t t e d as a f u n c t i o n of
the effective c h a r g e at the n i o b i u m / t a n t a l u m atoms.
T h e d o t t e d lines
s h o w the effective charges t h a t c o r r e s p o n d to the o b s e r v e d electric gradients. T h e i r values l i e b e t w e e n + 1 . 5
and +2.5.
sistency of the e x p e r i m e n t a l a n d c a l c u l a t e d e l e c t r i c
field
T h e overall con field
gradients is
s u r p r i s i n g l y g o o d , e s p e c i a l l y w i t h respect to the l i m i t a t i o n s of the p o i n t charge m o d e l a n d the uncertainties involved i n the (1 values. T h e
9 3
N b and
1 8 1
— y ) 0 0
and Q
T a d a t a c l e a r l y reflect the h i g h c o v a l e n c y of the
N b — O a n d T a — O bonds, r e s p e c t i v e l y , w i t h the latter b e i n g s l i g h t l y m o r e c o v a l e n t , i n a g r e e m e n t w i t h other a r g u m e n t s (36,45).
T h e success
of t h e s i m p l e p o i n t - c h a r g e m o d e l i n t h e present c a l c u l a t i o n s lies, i n o u r o p i n i o n , i n the f a c t t h a t t h e n i o b i u m / t a n t a l u m atoms h a v e a nearestneighbor oxygen shell w i t h a h i g h (sixfold) bonds.
I n conclusion,
we
hope
that the
coordination and similar experimental electric
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
field
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
2
3
4
7.
Comparison
of
5
calculated
electric
1
2
3
4
5
s
field gradients LiNbO .
at
E F F E C T I V E CHARGE AT N b / T a Ta, m
zz
cal
Nb, 93
and
7
Li
1
2
3
4
€xp
3
in LiTa0
7
and
E F F E C T I V E CHARGE AT N b / T a
93
The calculated electric field gradient values (at room temperature) are plotted vs. the effective charges at the niobium/tantalum atoms. ( ) indicates those effective charges where V is equal to Vzz (the Li and Nb data are taken from Refs. 44-47).
Figure
1
E F F E C T I V E CHARGE AT TA
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
22.
W O R T M A N N
Ferroelectric
E T A L .
Phase
Transition
497
gradient data n o w available i n L i N b 0 a n d L i T a 0 w i l l stimulate more s o p h i s t i c a t e d electric field g r a d i e n t c a l c u l a t i o n s (52,53) t h a t m a y y i e l d p h y s i c a l l y a n d c h e m i c a l l y m o r e d e t a i l e d i n f o r m a t i o n a b o u t t h e electronic structure of these c o m p o u n d s . O u r p o i n t - c h a r g e m o d e l c a l c u l a t i o n s , h o w e v e r , have a l r e a d y s h o w n t h e major c o n t r i b u t i o n s to t h e electric field gradients i n L i N b 0 a n d L i T a 0 . 3
3
3
3
Acknowledgments
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
T h i s w o r k w a s s u p p o r t e d b y the S o n d e r f o r s c h u n g s b e r e i c h 161 o f t h e D e u t s c h e F o r s c h u n g s g e m e i n s c h a f t . T h e constant t e c h n i c a l assistance of D . S o b a n s k i is g r a t e f u l l y a c k n o w l e d g e d . Literature Cited 1. Kaindl, G . Salomon, D.; Wortmann, G. Phys. Rev. 1973, B8, 1912. 2. Kaindl, G ; Salomon, D.; Wortmann, G. Phys. Rev. Lett. 1972, 28, 952. 3. Dornow, V. A.; Binder, J.; Heidemann, A.; Kalvius, G. M.; Wortmann, G. Nucl. Instrum. Methods 1979, 163, 491. 4. Kaindl, G.; Salomon, D. Phys. Rev. Lett. 1973, 30, 579. 5. Heidemann, A.; Kaindl, G.; Salomon, D.; Wipf, H.; Wortmann, G. Phys. Rev. Lett. 1976, 36, 213. 6. de Waard, H.; Perlow, G. J. Phys. Rev. Lett. 1970, 24, 566. 7. Forster, A.; Potzel, W.; Kalvius, G. M. Z. Phys. 1980, B37, 209. 8. Raghaven, R. S.; Pfeiffer, L. Phys. Rev. Lett. 1974, 32, 512. 9. Pfeiffer, L.; Kovacs, T. Bull. Am. Phys. Soc. 1980, 25, 549. 10. West, P. J.; Salomon, D. J. Physique 1979, 40, C2-616. 11. Wortmann, G.; Trollmann, G.; Heidemann, A.; Kalvius, G. M. Hyperfine Interact. 1978, 4, 610. 12. Pfeiffer, L.; Eibschütz, M.; Salomon, D. Hyperfine Interact. 1978, 4, 803. 13. Materials Research Corp., Orangeburg, NY 10692; Goodfellow Metals Ltd., Cambridge CB4 4DJ, U.K. 14. Sauer, Ch. Z. Phys. 1969, 222, 439. 15. Pfeiffer, L. Nucl. Instr. Methods 1977, 140, 57. 16. Reuter-Stokes, Cleveland, OH 44128. 17. RICOR, En-Harod, Israel. 18. Sauer, Ch.; Matthias, E . ; Mössbauer, R. L. Phys. Rev. Lett. 1968, 21, 961. 19. Kaindl, G.; Salomon, D. Phys. Lett. 1970, B32, 364. 20. Salomon, D.; West, P. J.; Weyer, G. Hyperfine Interact. 1977, 5, 61. 21. Shenoy, G. K.; Dunlap, B. D. Nucl. Instr. Methods 1969, 71, 285. 22. Landolt-Börnstein New Series III/3: "Ferro- and Antiferroelectric Sub stances"; Springer Verlag: Berlin, 1969; Vol. 3, No. 3. 23. Landolt-Börnstein "Oxides"; Springer Verlag: Berlin, 1969; Vol. 3, No. 9. 24. Abrahams, S. C.; Bernstein, J. L. J. Phys. Chem. Solids 1967, 28, 1685. 25. Abrahams, S. C.; Buchler, E . ; Hamilton, W. C.; Laplace, S. J. J. Phys. Chem. Solids 1973, 34, 521. 26. Kaindl, G.; Salomon, D. Bull. Am. Phys. Soc. 1972, 17, 681. 27. Trollmann,G.,unpublished data. 28. Wildner, W.; Gonser, U.; Schmidt, H . ; Albers, J.; Date, S. K. Ferroelectrics 1980, 23, 193. 29. Zhukov, A. P.; Soboleva, L. V.; Belyaev, L . M.; Volkov, A. F. Ferroelectrics 1978, 21, 601. 30. Löhnert, M.; Wortmann, G.; Kaindl, G.; Salomon, D., unpublished data. ;
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by CORNELL UNIV on May 18, 2017 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch022
498
MOSSBAUER
S P E C T R O S C O P Y A N D ITS
C H E M I C A L APPLICATIONS
31. Penna, A. F.; Chaves, A.; Andrade, P. da R.; Porto, S. P. S. Phys. Rev. 1976, R13, 4907. 32. Wilson, J. A.; DiSalvo, F. J.; Mahajan, S. Adv. Phys. 1975, 24, 117. 33. Schwarz, K. J. Phys. 1977,C10,195. 34. Boyer, L. L.; Papaconstantopoulos, D. A.; Klein, B. M. Phys. Rev. 1977, B15, 3685. 35. Michel-Calendini, F. M.; Chermette, H.; Weber, J. J. Phys. 1980, C13, 1427. 36. Lines, M. E. Phys. Rev. 1970, B2, 698. 37. deWit, S. A.; Backenstoss, G.; Daum, C.; Sens, J. C.; Acker, H. L. Nucl. Phys. 1967, 87, 657. 38. Fujara, F.; Stöckmann, H.-J.; Ackermann, H.; Buttler, W.; Dörr, K.; Grupp, H.; Heitjans, P.; Kiese, G.; Körblein, A. Z. Phys. 1979, B37, 151. 39. Keune, W.; Date, S. K.; Dézsi, I.; Gonser, U. J. Appl. Phys. 1975, 46, 3914. 40. Kaindl, G.; Salomon, D.; Wortmann, G. Mössbauer Eff. Methodol. 1973, 8, 211. 41. Kaindl, G.; Salomon, D.; Wortmann, G. In "Mössbauer Isomer Shifts"; Shenoy, G. K.; Wagner, F. E., Eds.; North Holland: N.Y., 1978; p. 563. 42. de Wette, F. W. Phys. Rev. 1961, 123, 103. 43. Löhnert, M.; Wortmann, G.; Kaindl, G., unpublished data. 44. Peterson, G. E . ; Bridenbaugh, P. M.; Green, P. J. Chem. Phys. 1967, 46, 4009. 45. Peterson, G. E . ; Bridenbaugh, P. M. Phys. Rev. 1968, 48, 3402. 46. Schempp, E . ; Peterson, G. E . ; Carruthers, J. R. J. Chem. Phys. 1970, 53, 306. 47. Peterson, G. E . ; Carruthers, J. R.; Carnevale, A. J. Chem. Phys. 1970, 53, 2436. 48. Feiock, F. D.; Johnson, W. R. Phys. Rev. 1969, 187, 39. 49. Cochran, W. Adv. Phys. 1960, 9, 387. 50. Halstead, T. K. J. Chem. Phys. 1970, 53, 3427. 51. Büttgenbach, S.; Dicke, R. Z. Phys. 1975, A27S, 197. 52. Reschke, R.; Trautwein, A.; Harris, F. E . ; Date, S. K. J. Magn. Magnet. Mat. 1979, 12, 176. 53. Trautwein, E. See Chapter 1 in this book. RECEIVED August 14, 1980.
Stevens and Shenoy; Mössbauer Spectroscopy and Its Chemical Applications Advances in Chemistry; American Chemical Society: Washington, DC, 1981.