Material Interface Problems Confronting ... - ACS Publications

Jul 22, 2009 - The surfaces of blood vessels in contact with blood have a "slime layer" that contains heparinoid complexes, the function of which is n...
0 downloads 0 Views 811KB Size
13 Blood/Material Interface Problems Confronting Artificial Heart Development Interaction of Liquids at Solid Substrates Downloaded from pubs.acs.org by YORK UNIV on 12/09/18. For personal use only.

F R A N K W. HASTINGS National Heart Institute, Bethesda, Md. 20014

The Artificial Heart Program of NIH has 15 contracts trying to discover materials compatible with blood. We know that foreign

materials become coated with adsorbed

protein

within a few seconds after being exposed to blood and that the clotting process does not begin until some time later. Hageman factor is activated at the blood/material

inter-

face, but how and why this leads to clotting is not clear. Other proteins may be involved.

Blood agitated in contact

with foreign material will hemolyze, perhaps days later. The surfaces of blood vessels in contact with blood have a "slime layer" that contains heparinoid complexes, the function of which is not understood. this layer, show promise. the

need for

Hydrogels, which simulate

Related

better methods

for

to these programs is determining

protein

denaturation.

" p r o b a b l y t h e most serious t e c h n i c a l obstacle s t a n d i n g i n the w a y of the d e v e l o p m e n t of satisfactory b l o o d p u m p s of m a n y varieties is t h e b l o o d / m a t e r i a l interface p r o b l e m . T h e r e is n o m a t e r i a l t o d a y w h i c h has b e e n p r o v e n to b e satisfactorily c o m p a t i b l e w i t h b l o o d . T h i s is not a p r o b l e m that c a n b e s o l v e d b y the p h y s i c i a n s a n d hematologists a l o n e b u t m u s t b e s o l v e d b y a t e a m effort i n v o l v i n g these i n d i v i d u a l s a n d also the p h y s i c a l a n d p o l y m e r chemists a n d others w h o s e expertise is p e r i odically required. ficial

R e c o g n i z i n g t h e e n o r m i t y of this p r o b l e m t h e A r t i -

H e a r t P r o g r a m of the N a t i o n a l H e a r t Institute has e s t a b l i s h e d

several projects i n this field. T h e s e projects i n c l u d e t h e f o l l o w i n g : ( 1 ) A t t e m p t s to d e v e l o p m o r e stable a n d m o r e satisfactory h e p a r i n surfaces o n v a r i o u s p o l y m e r s . ( 2 ) Studies a t t e m p t i n g to d e v e l o p materials w i t h v e r y l o w surface free energy. 175

176

INTERACTION

OF

LIQUIDS

AT

SOLID

SUBSTRATES

( 3 ) A t t e m p t s to d e v e l o p p o l y e l e c t r o l y t e c o m p l e x resins i n t h e f o r m of h y d r o g e l s w h i c h w o u l d b e c o m p a t i b l e w i t h b l o o d . ( 4 ) A t t e m p t s to d e v e l o p p o l y m e r i c h y d r o g e l s w h i c h w o u l d b e c o m patible w i t h blood. ( 5 ) A t t e m p t s t o d e v e l o p n e w base p o l y m e r s w h i c h are m o r e patible with blood.

com-

( 6 ) A t t e m p t s t o d e v e l o p silicones w h i c h are m o r e c o m p a t i b l e w i t h blood. ( 7 ) A t t e m p t s to d e v e l o p p o l y m e r i c electrets w i t h n e g a t i v e l y c h a r g e d surfaces w h i c h are m o r e c o m p a t i b l e w i t h b l o o d . T h e r e are a n u m b e r of projects to s t u d y t h e effects that result f r o m the contact of b l o o d w i t h some of these f o r e i g n m a t e r i a l s . T h e last g r o u p is p r o b a b l y t h e most c r i t i c a l g r o u p .

T h e r e is n o satisfactory in-vitro test

for b l o o d / m a t e r i a l s c o m p a t i b i l i t y , n o r is there a c o m p l e t e l y satisfactory in-vivo test.

I t is possible that there is sufficient i n f o r m a t i o n a v a i l a b l e

t o d a y f u l l y to define the p r o b l e m i f i t c o u l d b e o r g a n i z e d p r o p e r l y .

It

m i g h t t h e n b e possible to p l a c e m o r e emphasis o n areas a n d t e c h n i q u e s of i m p o r t a n c e . M a n y of t h e m a t e r i a l s that a r e b e i n g tested t o d a y d o look p r o m i s i n g w i t h t h e tests that are a v a i l a b l e . Investigators c o n t i n u e to find m o r e a n d m o r e m a t e r i a l s w h i c h d o n o t clot b l o o d w h e n passed i n test tubes m a d e of these m a t e r i a l s f o r l o n g p e r i o d s of t i m e , w e l l b e y o n d t h e t i m e n o r m a l l y r e q u i r e d f o r c l o t t i n g r e s u l t i n g f r o m t h e a c t i v a t i o n of H a g e m a n factor. W h a t is some of t h e i n f o r m a t i o n t h a t w e h a v e t o d a y ?

I n t h e first

p l a c e m u c h of t h e i n f o r m a t i o n a v a i l a b l e t o d a y is i n c o n c l u s i v e a n d s t i l l more theoretical than factual. F o r example, w e k n o w that b l o o d pract i c a l l y never clots i n d i r e c t contact w i t h a f o r e i g n m a t e r i a l . T h a t statement a l w a y s r e q u i r e s c l a r i f i c a t i o n . W e k n o w t h a t f o r e i g n materials b e c o m e coated w i t h adsorbed

p r o t e i n w i t h i n a v e r y f e w seconds after

being

exposed t o b l o o d a n d that t h e c l o t t i n g process does n o t b e g i n u n t i l some t i m e after that occurs.

H o w m a n y steps there are b e t w e e n t h e p r o t e i n

contact w i t h a f o r e i g n m a t e r i a l a n d t h e a c t u a l c l o t t i n g of b l o o d is somew h a t s p e c u l a t i v e , b u t c e r t a i n l y there is g o o d e v i d e n c e

that H a g e m a n

factor, o n e of t h e proteins i n t h e b l o o d , is a c t i v a t e d as a result of t h i s b l o o d / m a t e r i a l contact

a n d this a c t i v a t e d

H a g e m a n factor,

initiates a c h a i n r e a c t i o n w h i c h results i n t h e c o n v e r s i o n of fibrin,

i n turn,

fibrinogen

to

the m a t r i x of b l o o d clots. W e k n o w t h a t t h e H a g e m a n factor i n

b l o o d , i f i t b e c o m e s a d s o r b e d o n a surface, c e r t a i n l y does n o t r e m a i n fixed

there.

I t is e v e n possible that t h e a c t i v a t i o n of H a g e m a n factor

results f r o m t h e a c t i v a t i o n of some other p r o t e i n w h i c h does r e m a i n m o r e firmly a t t a c h e d t o t h e m a t e r i a l , b u t this has n o t b e e n d e m o n s t r a t e d .

13.

HASTINGS

177

Artificial Heart Development

W h a t a c t u a l l y h a p p e n s i n the a c t i v a t i o n of H a g e m a n factor? c h e m i c a l reaction?

We

k n o w that H a g e m a n factor c a n b e

Is i t a

activated

a n d c l o t t i n g s t i l l p r e v e n t e d as a result of the a d d i t i o n of oxylate or citrate to the b l o o d to tie u p the c a l c i u m i o n . T h i s b l o o d c o n t a i n i n g a c t i v a t e d H a g e m a n factor c a n t h e n b e a l l o w e d to s t a n d for a p e r i o d of t i m e a n d the H a g e m a n factor w i l l b e d e a c t i v a t e d .

W h a t e v e r the r e a c t i o n that is

i n v o l v e d , therefore, i t is a r e v e r s i b l e r e a c t i o n a n d p r o b a b l y does not r e q u i r e a n y a p p a r e n t c h e m i c a l resynthesis. S i n c e H a g e m a n factor is t h o u g h t to b e h e l i c a l i n f o r m , as is t r u e w i t h other b l o o d proteins, it is possible that the a d s o r p t i o n forces b e t w e e n it a n d the surface result i n a n u n f o l d i n g of the h e l i x w i t h exposure

of

c e r t a i n active sites w h i c h i n t u r n i n i t i a t e the c l o t t i n g of b l o o d . T h i s seems l i k e a reasonable t h e o r y , b u t of course at this stage c a n b e

considered

n o t h i n g m o r e t h a n that. W h a t h a p p e n s to the other proteins that are a d s o r b e d o n f o r e i g n m a t e r i a l s ? W e k n o w that m a n y proteins are q u i t e firmly b o u n d to the surface a n d that i t is difficult to w a s h some of these off.

W e also k n o w

that m a n y of these proteins h a v e definite b i o l o g i c a l f u n c t i o n other t h a n m e r e l y osmotic a c t i v i t y . W e also k n o w t h a t the strength of these a d s o r p t i o n forces varies w i t h different proteins, b u t a p p a r e n t l y a d y n a m i c state exists w i t h proteins b e i n g a d s o r b e d , d e s o r b e d , a n d n e w proteins a d s o r b e d . It w o u l d seem q u i t e c o i n c i d e n t a l i f H a g e m a n factor w e r e the o n l y one of these proteins that a l t e r e d its b i o l o g i c a l f u n c t i o n as a result of this a d s o r p tion a n d desorption.

It seems q u i t e o b v i o u s that m a t e r i a l s w h i c h are

c o m p a t i b l e w i t h b l o o d must not a p p r e c i a b l y alter a n y of the v i t a l b l o o d proteins. H e p a r i n has b e e n i o n i c a l l y b o n d e d to surfaces for some t i m e a n d m o r e r e c e n t l y it has b e e n c o - v a l e n t l y b o n d e d to v a r i o u s materials.

Some

of these surfaces are q u i t e stable a n d the h e p a r i n r e m a i n s o n the surface i n h i g h c o n c e n t r a t i o n for l o n g periods of t i m e . T h e r e is n o longer a n y d o u b t that h e p a r i n surfaces per se r e t a r d c l o t t i n g a n d d o not r e q u i r e t h a t the h e p a r i n b e i n s o l u t i o n at the surface to a c c o m p l i s h this. T h e h e p a r i n o n the surface retards c l o t t i n g a n d its a c t i o n i n d o i n g this m a y b e somew h a t different t h a n its a c t i o n w h e n i n s o l u t i o n . P r o t e i n s , h o w e v e r ,

are

s t i l l a d s o r b e d onto h e p a r i n surfaces a n d the a d s o r p t i o n is f a i r l y strong. T h e fact that H a g e m a n factor

is not a p p a r e n t l y a c t i v a t e d b y

these

h e p a r i n surfaces does not necessarily m e a n t h a t other proteins are not altered.

A g a i n at this t i m e o u r i n f o r m a t i o n is far f r o m c o n c l u s i v e

on

this subject. W e k n o w that b l o o d that has b e e n i n contact w i t h f o r e i g n m a t e r i a l s a n d a g i t a t e d u n d e r these c o n d i t i o n s h e m o l y z e s .

W e k n o w that some of

this h e m o l y s i s or d e s t r u c t i o n of the r e d cells takes p l a c e because of

178

INTERACTION

OF

LIQUIDS

AT

SOLID

a b n o r m a l flow c o n d i t i o n s w i t h i n t h e p u m p i n g devices.

SUBSTRATES

W e also k n o w

that some of these c o n d i t i o n s that seem to destroy b l o o d i n b l o o d p u m p s a n d oxygenators exist i n t h e b o d y a n d d o n o t cause h e m o l y s i s there. W e k n o w that t h e m a t e r i a l itself a p p a r e n t l y p l a y s some r o l e i n this h e m o l y s i s , b u t t h e extent of this role is n o t altogether clear. T h e r e is also e v i d e n c e that some of t h e adverse effects o n t h e r e d b l o o d c e l l d o n o t result i n d e s t r u c t i o n of t h e c e l l at that t i m e , b u t that this m a y o c c u r days later. D i r e c t contact w i t h a f o r e i g n m a t e r i a l a p p a r e n t l y shortens t h e l i f e of r e d cells.

T h e r e is also some e v i d e n c e that r e d cells w h i c h h a v e b e e n i n

contact w i t h a f o r e i g n m a t e r i a l d o n o t f u n c t i o n i n t h e transport o f C 0 and 0

2

2

as w e l l as t h e y n o r m a l l y d o . M u c h of this i n f o r m a t i o n is s t i l l

p o o r l y u n d e r s t o o d , to say t h e least, b u t a g a i n there does a p p e a r t o b e some r e a c t i o n b e t w e e n t h e f o r e i g n m a t e r i a l a n d t h e r e d b l o o d c e l l . T h e materials themselves are n o t e d f o r t h e fact t h a t t h e y are u s u a l l y c h e m i c a l l y i n e r t so t h e i n t e r a c t i o n b e t w e e n t h e r e d c e l l a n d f o r e i g n m a t e r i a l is p r o b a b l y n o t a c h e m i c a l r e a c t i o n i n t h e u s u a l sense of t h e t e r m .

Again

i t m a y b e t h a t proteins i n t h e w a l l of t h e r e d c e l l m a y b e affected i n m u c h the same w a y as H a g e m a n factor a n d p o s s i b l y other b l o o d proteins are affected. W e also k n o w that patients w h o h a v e b e e n k e p t o n oxygenators f o r l o n g p e r i o d s of t i m e d e v e l o p p r o b l e m s w h i c h are p o o r l y u n d e r s t o o d b u t i f these p r o b l e m s are a l l o w e d to c o n t i n u e t h e y i n e v i t a b l y result i n d e a t h . A n i m a l s that are p u t o n t o t a l heart r e p l a c e m e n t u s i n g a n artificial heart p u m p also d i e e v e n t u a l l y w i t h some v e r y p o o r l y u n d e r s t o o d p h y s i o l o g i c changes.

T h e s e changes m a y w e l l result f r o m d e n a t u r e d e n z y m e s a n d

hormones w i t h i n the body. T h e changes t h a t take p l a c e seem to differ s o m e w h a t d e p e n d i n g o n w h e t h e r t h e b l o o d m e r e l y passes over a f o r e i g n m a t e r i a l o r w h e t h e r i t is a c t i v e l y p u m p e d b y a f o r e i g n m a t e r i a l . I t is possible t h a t t h e c o m b i n e d a c t i o n o f t h e a d s o r p t i o n forces of p r o t e i n o n f o r e i g n surfaces a n d t h e forces c r e a t e d b y t h e flexing d i a p h r a g m m a y exceed some of t h e forces of t h e c h e m i c a l b o n d s , c a u s i n g r u p t u r e of p r o t e i n c h a i n s a n d b r e a k d o w n of some of these proteins to p o l y p e p t i d e s . through

T h e s e p o l y p e p t i d e s m a y pass

c a p i l l a r y w a l l s i n t o t h e extravascular spaces

upsetting the

osmotic e q u i l i b r i u m a n d c r e a t i n g some of t h e e d e m a that is f r e q u e n t l y seen u n d e r these circumstances.

A g a i n , i t appears that t h e degree of

difficulty that arises f r o m use of oxygenators, artificial k i d n e y s , artificial b l o o d p u m p s a n d t h e l i k e is d e p e n d e n t o n t h e a m o u n t of b l o o d c o m i n g i n contact w i t h a f o r e i g n m a t e r i a l . T h u s , oxygenators w h i c h are u s e d t o oxygenate t h e entire " c a r d i a c " o u t p u t c a n b e u s e d f o r o n l y a f e w h o u r s w h i l e i f o n l y a t e n t h of t h e c a r d i a c o u t p u t is o x y g e n a t e d this p e r i o d of t i m e c a n b e g r e a t l y extended.

Artificial kidneys w h i c h allow only a

13.

179

Artificial Heart Development

HASTINGS

f r a c t i o n of the t o t a l m i n u t e v o l u m e of the heart to pass t h r o u g h t h e m c a n also b e u s e d for l o n g periods of t i m e .

C a r d i a c assist p u m p s seem

to

d e v e l o p d i f f i c u l t y i f t h e y p u m p a v e r y large f r a c t i o n of the t o t a l c a r d i a c o u t p u t for l o n g p e r i o d s of t i m e . It m i g h t b e w i s e at this t i m e to take a q u i c k look at the i d e a l surface, t h e surface of b l o o d vessels. T h e i m m e d i a t e surface i n contact w i t h b l o o d is s o m e w h a t

of a " s l i m e l a y e r " w h i c h contains h e p a r i n o i d

complexes.

T h e c o n c e n t r a t i o n of these h e p a r i n o i d complexes, h o w e v e r , is not h i g h a n d it is not c l e a r l y u n d e r s t o o d h o w i m p o r t a n t they are. It is b e c a u s e of the existence of this " s l i m e l a y e r " that h y d r o g e l s w e r e expected to s h o w p r o m i s e , the t h e o r y b e i n g that i t w o u l d b e difficult for p r o t e i n to

be

a d s o r b e d onto a surface w h i c h w a s 80 to 9 0 % w a t e r a n d , since the p r o t e i n w o u l d not be w e l l a d s o r b e d , d e n a t u r a t i o n m i g h t b e m i n i m i z e d .

These

h y d r o g e l s that h a v e b e e n tested to date h a v e not b e e n q u i t e as e n c o u r a g i n g as h a d b e e n h o p e d b u t this is not altogether the f a u l t of the m a t e r i a l s themselves. T h e r e is c e r t a i n l y h o p e that as t i m e goes o n a n d m o r e w o r k has b e e n a c c o m p l i s h e d i n this field t h a t w e c a n l e a r n w h e t h e r

these

h y d r o g e l s d o i n fact h a v e p r o m i s e . A l l of this tends to i n d i c a t e that w e m a y b e m a k i n g a m i s t a k e w h e n w e look o n l y at the c l o t t i n g p r o b l e m r e s u l t i n g f r o m the b l o o d / m a t e r i a l i n t e r a c t i o n . T h i s m a y m e r e l y b e a v e r y v i s i b l e effect of the d e n a t u r a t i o n of one p a r t i c u l a r p r o t e i n i n the b l o o d .

T h e s o l u t i o n of the c l o t t i n g p r o b -

l e m m a y v e r y w e l l o n l y a l l o w us to r e c o g n i z e the fact t h a t other factors are i n v o l v e d a n d that w e h a v e f a i l e d to look at the t o t a l p i c t u r e . T w o p r o g r a m s m a y b e r e q u i r e d : ( 1 ) d e v e l o p m e n t of better m e t h o d s for d e t e r m i n i n g the d e n a t u r a t i o n of p r o t e i n a n d ( 2 )

development

materials w h i c h are satisfactorily c o m p a t i b l e w i t h b l o o d .

of

T h e f o r m e r is

a v e r y difficult p r o b l e m w h i c h m a y almost p r o v e to b e i n s u r m o u n t a b l e for m a n y years.

W e k n o w t h a t the b i o l o g i c a l f u n c t i o n of some of the

enzymes i n the b o d y c a n be a l t e r e d b y v e r y m i n o r changes of c e r t a i n c r i t i c a l side chains a n d that w e d o not h a v e g o o d tests for this b i o l o g i c a l f u n c t i o n for m a n y enzymes.

In-vivo testing is difficult since the b o d y is

c o n t i n u o u s l y t r y i n g to correct the a b n o r m a l i t i e s w h i c h it sees. F o r exa m p l e , the l e v e l of p l a s m a h e m o g l o b i n i n the b o d y is d e t e r m i n e d i n p a r t b y the body's a b i l i t y at that m o m e n t to r e m o v e the p l a s m a h e m o g l o b i n f r o m the b l o o d a n d this a b i l i t y varies c o n s i d e r a b l y f r o m t i m e to t i m e as a result of factors that are o n l y p a r t i a l l y u n d e r s t o o d .

T h e same is t r u e

w i t h the i n f u s i o n of a l t e r e d proteins. T h e b o d y w i l l r e m o v e t h e m a n d r e p l a c e t h e m just as r a p i d l y as it p o s s i b l y c a n a n d its a b i l i t y to d o t h i s w i l l v a r y as a result of m a n y factors that w i l l p r o b a b l y b e o n l y p a r t i a l l y u n d e r s t o o d f o r m a n y years.

T h e development

of m a t e r i a l s w h i c h are

t r u l y c o m p a t i b l e w i t h b l o o d is also v e r y difficult. O n e of the first p r o b l e m s i n a c h i e v i n g this, of course, is to d e t e r m i n e w h a t is i n c o m p a t i b l e a b o u t

180

INTERACTION

O F LIQUIDS

A T SOLID

SUBSTRATES

p r e s e n t l y a v a i l a b l e m a t e r i a l s . O n t h e other h a n d , o n l y as a result of d e v e l o p i n g better m a t e r i a l s a r e some of t h e m o r e subtle p r o b l e m s r e c o g nized.

T h e r e m u s t , therefore, b e a constant exchange

of i n f o r m a t i o n

b e t w e e n these groups. T h e r e o b v i o u s l y is a great n e e d f o r t h e chemists i n t h e n a t i o n t o w o r k i n this field f r o m m a n y p o i n t s of v i e w . RECEIVED

October 2 7 , 1 9 6 7 .