Article pubs.acs.org/jced
Measurement and Correlation of the Excess Properties of Ternary Mixture of {x1[Hmim][BF4] + x21‑Propanol + x32‑Propanol} at Different Temperatures F. Kermanpour* and T. Sharifi Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran 65178-38695 ABSTRACT: In the present work, the density, ρ, and viscosity, η, of a binary mixture of {x11-propanol + x22-propanol}, along with a ternary mixture of {x11-hexyl-3- methylimidazolium tetrafluoroborate + x21-propanol ([Hmim][{BF4]) + x32-propanol} were measured over the entire composition range at (293.15 to 333.15) K and ambient pressure (p = 0.1 MPa). The excess molar volume, VEm, and viscosity deviation, Δη, were calculated from the measured values of density and viscosity. The excess molar volumes of ternary mixtures are negative over the entire mole fraction range and their magnitudes increase with increasing temperature. Viscosity deviations for the ternary mixture are negative over the entire mole fraction range and decrease with increasing temperature. The Cibulka and Redlich−Kister equations were used to correlate the ternary and binary excess molar volumes, respectively.
■
VE123 for a mixture of {methyl acetate + methanol +1-octyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide} at temperature 298.15 K and atmospheric pressure. Deenadayalu et al.24 studied VE123 for mixture of {[Emim] + [CH3(OCH2CH2)2OSO3] + methanol} at temperatures (298.15, 303.15, and 313.15) K. This work is a part of an ongoing research to measure and characterize the excess properties of mixtures containing [Hmim][BF4] as IL.25−27 In this work, the experimental values of densities, ρ, and viscosities, η, for a binary mixture of {x11-propanol + x22-propanol} and the related ternary mixture of {x1[Hmim][BF4] + x21-propanol + x32-propanol} were presented in the temperature range of (293.15 to 333.15) K and atmospheric pressure. The experimental data for two binary mixtures of {x1[Hmim][BF4] + x21-propanol} and {x1[Hmim][BF4] + x22-propanol} were taken from References.25,27 The values of VE123 and Δη123 were also calculated for the ternary mixture over the entire composition range from the experimental data. The Cibulka equation28 was applied to correlate the VE123 and Δη123 values using the binary parameters of binary mixtures obtained from the Redlich−Kister equation.29
INTRODUCTION Solvents are an important class of compounds that can affect the rate, selectivity, and equilibrium position of any chemical reaction. Ionic liquids (ILs) are solvents with melting points lower than room temperature. These compounds have unique properties such as low vapor pressure, wide liquid range, and solvating of both polar and nonpolar substances.1−4 Recent study of thermodynamical and thermophysical properties of ILs as solvents has been a subject which has been extensively investigated in analysis, synthesis, catalysis, and separation.5−7 The knowledge of the thermodynamical and thermophysical properties of liquid mixtures provides the necessary data in designing of chemical and industrial processes.8,9 Deviations from ideality of these properties are mainly originated from differences in the molecular size, shape, and structure of the components of a mixture and can provide a great deal of data that may be used in theoretical studies. Alkanols have been useful in pharmaceutical and food industries.10 Alkanols are also important materials from a theoretical point of view, because they are hydrogen-bonded in the pure state and can form hydrogen bonds with other hydrogenbonded compounds upon mixing. There are several publications about the thermodynamic properties of binary systems of imidazolium-based ionic liquids with alkanols.11−19 However, there is a lack of data on ternary excess molar volumes of IL [Hmim][BF4] multi component systems.20 Gomez et al.21 studied the VE123 for {ethanol + water +1,3-dimethylimidazolium methyl sulfate} mixture at several temperatures. Deenadayalu et al.22 applied the graph theory to correlate VE123 for {1-ethyl-3-methylimidazolium methyl sulfate + methanol + water} mixture. Gonzalez et al.23 obtained VE123 for IL mixture of {ethanol + water +1-butyl-3-methylimidazoliumm ethyl sulfate} at several temperatures. Andreatta et al.12 studied © 2014 American Chemical Society
■
EXPERIMENTAL SECTION Materials. The ionic liquid and 1-propanol were purchased from Merck Company with purities in mass fraction of > 0.99 for 1-propanol and > 0.98 for IL. 2-propanol was purchased from BDH Company with purity in mass fraction > 0.995. The water content in the IL was determined using a Karl Fisher Received: January 20, 2014 Accepted: April 10, 2014 Published: May 2, 2014 1922
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
Table 1. Comparison Between Measured Density, ρ, and Viscosity, η, of Pure [Hmim][BF4], 1-Propanol, and 2-Propanol Compounds with Literature Data at Given Temperatures and p = 0.1 MPaa ρ/g·cm−3 chemical name
source
mass purity percent
[Hmim][BF4]k
Merck
98 %k
1-propanol
Merck
99.8 %
2-propanol
BDH
99.5 %
η/mPa·s
T/K
exp.
lit.
exp.
lit.
293.15 303.15 313.15 323.15 333.15 293.15 303.15 313.15 323.15 333.15 293.15 298.15
1.14924 1.14248 1.13579 1.12908 1.12237 0.80352 0.79547 0.78730 0.77893 0.77032 0.78525 0.78116
1.1488b 1.1418b 1.1350b
232.65 130.02 78.24 50.30 34.02 2.200 1.728 1.370 1.098 0.912 2.362 1.971
232.8c 132.1c 81.7c 53.9c
303.15 313.15 323.15 333.15
0.77678 0.76798 0.75882 0.74920
0.80350d 0.79546d 0.78728d 0.77892d 0.77032d 0.78513d 0.78110g 0.78148i 0.77666d 0.76787d 0.75869d 0.74907d
1.769 1.330 1.015 0.624
2.204e 1.726e
2.362f 1.910h 2.038j 1.769f 1.331f 1.033g 0.811g
Standard uncertainties u are u(T) = ± 0.01 K, u(ρ) = ± 5·10−5 g·cm−3, and u(η) = ± 5·10−2 mPa·s. for IL and u(η) = ± 5·10−3 mPa·s.for non-IL compounds. bReference 30. cReference 31. dReference 32. eReference 33. fReference 34. gReference 35. hReference 36. iReference 37. jReference 38. k IC method for chloride content and Carl-Fisher titration for water content a
density of IL and its mixtures in eq 1, a viscosity dependent correction calculation were carried out via following equation:40
titration and its value has been 0.76 % (in mass fraction). Its chloride content was determined using IC method with a value of 0.007 % (in mass fraction). The solvents were used without any further purification. The densities and viscosities of pure components are compared with literature data30−38 in Table 1. Apparatus and Procedure. The densities were measured with a densitometer model of Anton Paar DMA 4500 vibrating U-tube. The uncertainty of the density measurements was ± 5·10−5 g·cm−3. A solid state thermostat with ± 0.01 K accuracy was used for controlling the temperature of the sample cell. Each mixture was prepared by weighting, and was used after it was mixed by shaking. The weightings were carried out by an electronic digital balance model AB 204-N Mettler with an accuracy of ± 1·10−4 g. The weights were converted to mole fractions using the relative atomic mass table of Wieser39 and so, the uncertainties in the mole fractions are estimated to be ± 1·10−4. Also, the uncertainties in the excess molar volumes are ± 5.10−4 cm3·mol−1. The apparatus was calibrated once a day with dry air and double distilled freshly degassed water, before beginning measurements. Viscosities were measured with an Ubbelohde viscometer which was fixed in a thermostat with a controlled temperature having an accuracy of ± 0.01 K. A digital chronometer of model KENKO KK-5898 with a precision of ± 0.01 s was used for measuring the flow times of samples. The viscosity, η, was calculated using the following equation:
⎛ c⎞ η = ρ⎜kt − ⎟ ⎝ t⎠
Δρ = ρ( −0.5 + 0.45 η ) ·10−4
(2)
where ρ is the raw density and Δρ is the difference between the raw and corrected density, while the viscosity value, η, is in mPa·s. The estimated error of the measured viscosities of mixtures including IL component was ± 1·10−2 mPa·s. The uncertainties of the viscosity measurements for the other systems were estimated to be 10−3 mPa·s.
■
RESULTS AND DISCUSSION Binary Mixture. The values of excess molar volumes, VEm, and viscosity deviations, Δη, for a binary mixture of {x11-propanol + x22-propanol} were calculated via the following equations: 2
VmE =
∑ (xiMi)(ρ−1 − ρi−1) i=1
Δη = η − x1η1 − x 2η2
(3) (4)
which are valid for ternary mixtures too. In eqs 3 and 4, xi, Mi, ρi, and ηi refer to mole fraction, molecular weight, density, and viscosity of pure components; quantities without sub index refer to the property of the mixture; and i refer to the number of components in the mixture. The obtained values of VEm and Δη for the binary mixture using eqs 3 and 4 are listed in Table 2. These excess molar volumes, VEm, and viscosity deviations, Δη, were then fitted via the Redlich− Kister equation:29
(1)
where k and c are the viscometer constants and t is the flow time in seconds. Since IL has high viscosity and such a long flow time, the measurements on pure IL and its mixtures were performed using a viscometer with a capillary diameter (∼ 0.8 mm) greater than the other measurements on mixtures not having IL as a component (∼ 0.6 mm). To evaluate the effect of viscosity on
k
YmE = x1x 2 ∑ Ai (2x1 − 1)i i=0
1923
(5)
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
Table 2. Density, ρ, Excess Molar Volume, VEm, Viscosity, η, and Viscosity Deviation, Δη, for a Binary Mixture of x11-Propanol + x22-Propanol from Temperatures of (293.15 to 333.15) K and p = 0.1 MPaa ρ x1
a
η
VEm
g·cm
−3
0.0000 0.1001 0.2006 0.2956 0.3999 0.4993 0.6000 0.6973 0.7993 0.8994 1.0000
0.78524 0.78713 0.78901 0.79079 0.79271 0.79454 0.79637 0.79814 0.79998 0.80173 0.80352
0.0000 0.1001 0.2006 0.2956 0.3999 0.4993 0.6000 0.6973 0.7993 0.8994 1.0000
0.77676 0.77871 0.78065 0.78249 0.78445 0.78631 0.7882 0.79001 0.79188 0.79367 0.79547
0.0000 0.1001 0.2006 0.2956 0.3999 0.4993
0.76796 0.77001 0.77202 0.77393 0.77595 0.77788
−1
cm ·mol 3
T = 293.15 K 0.0000 −0.0094 −0.0165 −0.0224 −0.0250 −0.0265 −0.0250 −0.0228 −0.0185 −0.0082 0.0000 T = 303.15 K 0.0000 −0.0115 −0.0206 −0.0286 −0.0308 −0.0311 −0.0311 −0.0286 −0.0228 −0.0117 0.0000 T = 313.15 K 0.0000 −0.0158 −0.0260 −0.0354 −0.0371 −0.0382
ρ
Δη
−3
mPa·s
mPa·s
x1
2.362 2.369 2.359 2.344 2.322 2.300 2.278 2.258 2.238 2.219 2.200
0.000 0.023 0.030 0.030 0.025 0.018 0.013 0.009 0.005 0.003 0.000
0.6000 0.6973 0.7993 0.8994 1.0000
0.77983 0.78170 0.78361 0.78545 0.7873
1.769 1.776 1.777 1.773 1.766 1.758 1.750 1.744 1.739 1.734 1.728
0.000 0.011 0.016 0.016 0.013 0.009 0.005 0.003 0.002 0.001 0.000
0.0000 0.1001 0.2006 0.2956 0.3999 0.4993 0.6000 0.6973 0.7993 0.8994 0.0000
0.75879 0.76094 0.76306 0.76506 0.76716 0.76918 0.77121 0.77315 0.77513 0.77703 0.77893
1.330 1.349 1.360 1.365 1.368 1.368
0.000 0.015 0.022 0.024 0.022 0.019
0.0000 0.1001 0.2006 0.2956 0.3999 0.4993 0.6000 0.6973 0.7993 0.8994 1.0000
0.74916 0.75144 0.75369 0.7558 0.75802 0.76014 0.76229 0.76429 0.76637 0.76834 0.77032
g·cm
VEm
η
Δη
cm ·mol−1
mPa·s
mPa·s
1.367 1.368 1.368 1.369 1.369
0.014 0.011 0.007 0.004 0.000
1.015 1.048 1.066 1.077 1.084 1.086 1.088 1.089 1.091 1.096 1.098
0.000 0.025 0.035 0.038 0.036 0.030 0.023 0.016 0.010 0.006 0.000
0.624 0.688 0.733 0.767 0.796 0.819 0.839 0.855 0.874 0.891 0.912
0.000 0.035 0.051 0.058 0.057 0.051 0.042 0.030 0.019 0.008 0.000
3
T = 313.15 K −0.0378 −0.0350 −0.0264 −0.0136 0.0000 T = 323.15 K 0.0000 −0.0187 −0.0325 −0.0437 −0.0452 −0.0474 −0.0468 −0.0430 −0.0328 −0.0173 0.0000 T = 333.15 K 0.0000 −0.0227 −0.0402 −0.0533 −0.0565 −0.0586 −0.0596 −0.0514 −0.0402 −0.0206 0.0000
Standard uncertainties u are u(T) = ± 0.01 K, u(ρ) = ± 5·10−5 g·cm−3, u(VEm) = ± 5·10−4 cm3·mol−1, and u(η) = ± 5·10−3 mPa·s.
Table 3. Coefficients of eq 6, Bij, and Standard Deviations of Excess Molar Volume, VEm, and Viscosity Deviation, Δη, for Binary Mixture of x11-Propanol + x22-Propanol from Temperatures of (293.15 to 333.15) K i j
0
1
2
3
4
σ
−1.2299 0.0084 −1.4359 × 10−5
−2.7863 −0.0167 −2.3666 × 10−5
0.0009
11.4882 −0.07380 1.1836 × 10−4
0.4772 −0.0049 1.0998 × 10−5
0.0024
VEm 0 1 2
−3.226 0.02292 −4.185 × 10−5
0.4404 −0.0028 4.4379 × 10−6
0 1 2
16.4882 −0.1083 1.7853 × 10−4
12.7062 −0.08189 1.3280 × 10−4
4.9046 −0.03036 4.6037 × 10−5 Δη 5.4456 −0.03264 4.9036 × 10−5
The standard deviation, σ, of any property was calculated from the equation,
in which YEm represents the excess function and k is the order of polynomial equation (usually equal to 4). Ai’s are temperature dependent parameters as:
⎛ n (Y E − Y E )2 ⎞1/2 exp , i cal, i ⎟ σ = ⎜⎜∑ ⎟ (n − p) ⎝ i=0 ⎠
2
Ai =
∑ BijT j j=0
(6)
(7)
in which n is the number of experimental points and p is the number of adjustable parameters of eq 6. The obtained Redlich− Kister coefficients of the excess molar volumes and viscosity
which their temperature dependencies were obtained by fitting the experimental data to eqs 5 and 6, where Bij’s are mixture dependent coefficients and T is the absolute temperature. 1924
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
Table 4 shows the values of excess molar volumes and viscosity deviations for ternary mixture of {x1[Hmim][BF4] + x21-propanol + x32-propanol} that obtained via eqs 8 to 11. Table 4. Density, ρ, Excess Molar Volume, VEm, Viscosity, η, and Viscosity Deviation, Δη123, for Ternary Mixture of x1[Hmim][BF4] + x21-Propanol + x32-Propanol from Temperatures of (293.15 to 333.15) K and p = 0.1 MPaa ρ x1
Figure 1. Excess molar volume for binary mixture of {x11-propanol + x22propanol}, the symbols are experimental data at ●, 293.15 K; ■, 303.15 K; ▲, 313.15 K; ▼, 323.15 K; ◆, 333.15 K, and the lines are taken from ref 37 at temperatures ―, 293.15 K; − −, 303.15 K; − − −, 313.15 K; ···, 323.15 K; and •, 333.15 K. The solid lines are related to the calculated data via the Redlich−Kister equation at any given temperature.
deviations along with the standard deviations for the binary mixture of {x11-propanol + x22-propanol} are listed in Table 3. In Figure 1 the measured excess molar volumes in this study along with those published by Zarei41 are compared. As this figure shows there is a good agreement between two classes of results in all temperatures. Ternary Mixture. In order to correlate the experimental excess molar volumes of the ternary mixture of {x1[Hmim][BF4] + x21-propanol + x32-propanol}, the Cibulka equation was used as E Q ijkE = Q bin − xixj(1 − xi − xj)Δijk
(8)
where QEbin is binary contribution and obtained by the following equation: E E Q bin = Q 12E + Q 13E + Q 23
(9)
and Δijk obtained by Δijk = B1 + B2 xi + B3xj
(10)
Each Bi ternary parameter is a function of temperature and was obtained via the following equation: 2
Bi =
∑ CiqT q q=0
(11) 1925
x2
g·cm
VEm −3
0.0999 0.1013 0.0995 0.1002 0.0996 0.0993 0.1004 0.1006 0.2009 0.1931 0.1968 0.2013 0.2012 0.1977 0.3008 0.3024 0.3008 0.2957 0.3005 0.2981 0.3998 0.4030 0.3937 0.4009 0.3992 0.4975 0.4996 0.4981 0.5981 0.5992 0.6009 0.6906 0.7203 0.8533
0.1010 0.2007 0.3004 0.4006 0.5015 0.5961 0.6984 0.7991 0.1049 0.2335 0.3019 0.3998 0.4989 0.7009 0.0992 0.2999 0.3005 0.4006 0.4992 0.6013 0.0998 0.1968 0.3005 0.4006 0.4996 0.1040 0.3012 0.4041 0.1042 0.2005 0.2875 0.1121 0.1504 0.0920
0.87958 0.88229 0.88181 0.88286 0.88340 0.88519 0.88762 0.88997 0.94322 0.94034 0.94400 0.94771 0.94913 0.94988 0.99166 0.99368 0.99438 0.99350 0.99677 0.99740 1.02821 1.03098 1.02994 1.03238 1.03413 1.05917 1.06234 1.06236 1.08520 1.08548 1.08666 1.10471 1.10908 1.13062
0.0999 0.1013 0.0995 0.1002 0.0996 0.0993 0.1004 0.1006 0.2009 0.1931 0.1968 0.2013 0.2012 0.1977 0.3008 0.3024 0.3008 0.2957
0.1010 0.2007 0.3004 0.4006 0.5015 0.5961 0.6984 0.7991 0.1049 0.2335 0.3019 0.3998 0.4989 0.7009 0.0992 0.2999 0.3005 0.4006
0.87174 0.87439 0.87396 0.87502 0.87558 0.87739 0.87983 0.88220 0.93626 0.93263 0.93629 0.94002 0.94155 0.94225 0.98407 0.98610 0.98681 0.98602
cm ·mol 3
−1
T = 293.15 K −0.4398 −0.4370 −0.3520 −0.2362 −0.1563 −0.1991 −0.1846 −0.2269 −0.3599 −0.2958 −0.3523 −0.3175 −0.3081 −0.2509 −0.4006 −0.2135 −0.3743 −0.3528 −0.3309 −0.3462 −0.2746 −0.3256 −0.4214 −0.2481 −0.3741 −0.4139 −0.4312 −0.3106 −0.5177 −0.3530 −0.3212 −0.4986 −0.2236 −0.1613 T = 303.15 K −0.5018 −0.4878 −0.4020 −0.2802 −0.1962 −0.2373 −0.2196 −0.2599 −0.5016 −0.3457 −0.4001 −0.3611 −0.3589 −0.2846 −0.4492 −0.2496 −0.4144 −0.4006
η
Δη
mPa·s
mPa·s
5.41 5.44 5.39 5.21 5.18 5.05 5.00 4.92 8.82 8.61 8.68 8.77 8.80 8.30 13.73 13.80 13.61 13.28 13.30 13.20 20.98 21.12 20.27 20.51 20.14 31.60 32.59 31.47 50.06 49.41 49.62 75.21 85.09 153.76
−19.95 −20.23 −19.84 −20.15 −20.05 −20.08 −20.37 −20.49 −39.79 −38.18 −38.96 −39.89 −39.82 −39.47 −57.88 −58.15 −57.98 −57.11 −58.17 −57.71 −73.45 −74.02 −72.70 −74.10 −74.07 −85.31 −84.77 −85.54 −90.02 −90.91 −91.08 −86.19 −83.12 −45.10
3.47 3.54 3.43 3.47 3.40 3.39 3.35 3.33 5.98 5.85 5.91 6.02 6.05 5.74 9.47 9.55 9.43 9.19
−11.11 −11.21 −11.09 −11.13 −11.12 −11.09 −11.26 −11.31 −21.55 −20.68 −21.09 −21.55 −21.50 −21.35 −30.87 −30.98 −30.91 −30.49
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
Table 4. continued
Table 4. continued ρ −3
x1
x2
0.3005 0.2981 0.3998 0.4030 0.3937 0.4009 0.3992 0.4975 0.4996 0.4981 0.5981 0.5992 0.6009 0.6906 0.7203 0.8533
0.4992 0.6013 0.0998 0.1968 0.3005 0.4006 0.4996 0.1040 0.3012 0.4041 0.1042 0.2005 0.2875 0.1121 0.1504 0.0920
0.98921 0.98985 1.02075 1.02354 1.02250 1.02495 1.02672 1.05219 1.05506 1.05508 1.07805 1.07833 1.07952 1.09769 1.10208 1.12381
0.0999 0.1013 0.0995 0.1002 0.0996 0.0993 0.1004 0.1006 0.2009 0.1931 0.1968 0.2013 0.2012 0.1977 0.3008 0.3024 0.3008 0.2957 0.3005 0.2981 0.3998 0.4030 0.3937 0.4009 0.3992 0.4975 0.4996 0.4981 0.5981 0.5992 0.6009 0.6906 0.7203 0.8533
0.1010 0.2007 0.3004 0.4006 0.5015 0.5961 0.6984 0.7991 0.1049 0.2335 0.3019 0.3998 0.4989 0.7009 0.0992 0.2999 0.3005 0.4006 0.4992 0.6013 0.0998 0.1968 0.3005 0.4006 0.4996 0.1040 0.3012 0.4041 0.1042 0.2005 0.2875 0.1121 0.1504 0.0920
0.86351 0.86631 0.86587 0.86702 0.86760 0.86944 0.87192 0.87432 0.92845 0.92480 0.92849 0.93226 0.93378 0.93454 0.97642 0.97847 0.97921 0.97853 0.98163 0.98230 1.01327 1.01608 1.01506 1.01750 1.01931 1.04505 1.04778 1.04782 1.07090 1.07118 1.07238 1.09068 1.09510 1.11697
0.0999 0.1013 0.0995 0.1002 0.0996 0.0993 0.1004 0.1006 0.2009
0.1010 0.2007 0.3004 0.4006 0.5015 0.5961 0.6984 0.7991 0.1049
0.85529 0.85806 0.85761 0.85887 0.85949 0.86137 0.86390 0.86634 0.92060
g·cm
η
VEm −1
cm ·mol 3
T = 303.15 K −0.3624 −0.3745 −0.3124 −0.3608 −0.4548 −0.2731 −0.3986 −0.4954 −0.4597 −0.3316 −0.5510 −0.3783 −0.3423 −0.5278 −0.2430 −0.1846 T = 313.15 K −0.5516 −0.5462 −0.4513 −0.3297 −0.2394 −0.2780 −0.2568 −0.2939 −0.5720 −0.4051 −0.4568 −0.4135 −0.4030 −0.3216 −0.5100 −0.2945 −0.4659 −0.4583 −0.4009 −0.4100 −0.3635 −0.4070 −0.4985 −0.3045 −0.4287 −0.5644 −0.4923 −0.3577 −0.5905 −0.4076 −0.3654 −0.5581 −0.2630 −0.1936 T = 323.15 K −0.6384 −0.6205 −0.5143 −0.3932 −0.2967 −0.3319 −0.3062 −0.3391 −0.6721
Δη
ρ −3
mPa·s
mPa·s
x1
x2
9.31 9.16 14.38 14.53 13.93 14.20 13.93 21.33 21.43 21.38 32.73 32.39 32.60 48.39 53.44 92.04
−30.98 −30.81 −38.66 −38.93 −38.32 −38.96 −39.01 −44.23 −44.40 −44.26 −45.74 −46.22 −46.22 −41.95 −40.70 −19.16
2.37 2.45 2.38 2.40 2.38 2.36 2.37 2.35 4.27 4.17 4.23 4.33 4.35 4.16 6.84 6.92 6.88 6.68 6.79 6.69 10.33 10.38 10.10 10.17 10.10 15.15 15.29 15.28 22.70 22.50 22.59 32.33 35.73 58.44
−6.65 −6.68 −6.61 −6.65 −6.64 −6.62 −6.71 −6.76 −12.52 −12.02 −12.25 −12.50 −12.48 −12.40 −17.63 −17.68 −17.60 −17.41 −17.67 −17.59 −21.75 −21.96 −21.52 −22.01 −21.96 −24.45 −24.48 −24.38 −24.64 −24.93 −24.97 −22.13 −21.01 −8.53
0.1931 0.1968 0.2013 0.2012 0.1977 0.3008 0.3024 0.3008 0.2957 0.3005 0.2981 0.3998 0.4030 0.3937 0.4009 0.3992 0.4975 0.4996 0.4981 0.5981 0.5992 0.6009 0.6906 0.7203 0.8533
0.2335 0.3019 0.3998 0.4989 0.7009 0.0992 0.2999 0.3005 0.4006 0.4992 0.6013 0.0998 0.1968 0.3005 0.4006 0.4996 0.1040 0.3012 0.4041 0.1042 0.2005 0.2875 0.1121 0.1504 0.0920
0.91689 0.92061 0.92442 0.92598 0.92678 0.96874 0.97083 0.97158 0.97097 0.97404 0.97472 1.00581 1.00864 1.00762 1.01007 1.01191 1.03795 1.04053 1.04057 1.06379 1.06408 1.06529 1.08367 1.08813 1.11013
1.62 1.67 1.65 1.67 1.64 1.65 1.64 1.64 3.11
−4.33 −4.36 −4.30 −4.31 −4.33 −4.31 −4.38 −4.40 −7.82
0.0999 0.1013 0.0995 0.1002 0.0996 0.0993 0.1004 0.1006 0.2009 0.1931 0.1968 0.2013 0.2012 0.1977 0.3008 0.3024 0.3008 0.2957 0.3005 0.2981 0.3998 0.4030 0.3937 0.4009 0.3992 0.4975 0.4996 0.4981 0.5981 0.5992 0.6009 0.6906 0.7203 0.8533
0.1010 0.2007 0.3004 0.4006 0.5015 0.5961 0.6984 0.7991 0.1049 0.2335 0.3019 0.3998 0.4989 0.7009 0.0992 0.2999 0.3005 0.4006 0.4992 0.6013 0.0998 0.1968 0.3005 0.4006 0.4996 0.1040 0.3012 0.4041 0.1042 0.2005 0.2875 0.1121 0.1504 0.0920
0.84662 0.84964 0.84918 0.85054 0.85122 0.85317 0.85575 0.85823 0.91252 0.90887 0.91263 0.91650 0.91829 0.91895 0.96104 0.96314 0.96391 0.96336 0.96642 0.96714 0.99837 1.00121 1.00018 1.00266 1.00452 1.03070 1.03331 1.03335 1.05671 1.05700 1.05821 1.07656 1.08120 1.10331
g·cm
VEm
η
Δη
cm ·mol−1
mPa·s
mPa·s
3.06 3.11 3.19 3.20 3.08 5.15 5.19 5.14 5.02 5.08 5.04 7.76 7.81 7.61 7.66 7.56 11.20 11.38 11.32 16.39 16.30 16.41 22.81 25.01 39.18
−7.49 −7.63 −7.79 −7.78 −7.74 −10.70 −10.75 −10.73 −10.60 −10.78 −10.72 −12.97 −13.09 −12.83 −13.14 −13.17 −14.34 −14.28 −14.28 −14.11 −14.26 −14.24 −12.26 −11.52 −3.90
1.06 1.10 1.10 1.10 1.10 1.11 1.15 1.19 2.32 2.24 2.29 2.35 2.36 2.30 3.94 3.98 3.93 3.84 3.89 3.87 6.00 6.01 5.87 5.89 5.83 8.61 8.77 8.66 12.37 12.28 12.50 16.82 18.36 27.53
−2.93 −2.97 −2.94 −2.99 −3.00 −3.00 −3.03 −3.03 −5.04 −4.90 −4.99 −5.11 −5.13 −5.13 −6.76 −6.83 −6.83 −6.77 −6.92 −6.88 −8.01 −8.13 −7.99 −8.24 −8.27 −8.66 −8.62 −8.72 −8.26 −8.41 −8.28 −6.90 −6.36 −1.62
3
T = 323.15 K −0.4859 −0.5344 −0.4846 −0.4694 −0.3735 −0.5965 −0.3630 −0.5389 −0.5333 −0.4591 −0.4605 −0.4425 −0.4788 −0.5649 −0.3571 −0.4782 −0.6625 −0.5487 −0.4027 −0.6528 −0.4589 −0.4084 −0.6047 −0.2974 −0.2109 T = 333.15 K −0.7218 −0.7193 −0.5990 −0.4748 −0.3714 −0.4041 −0.3710 −0.3970 −0.7868 −0.5920 −0.6366 −0.5795 −0.5792 −0.4421 −0.7183 −0.4571 −0.6389 −0.6305 −0.5398 −0.5346 −0.5553 −0.5802 −0.6584 −0.4348 −0.5500 −0.7659 −0.6291 −0.4686 −0.7406 −0.5313 −0.4697 −0.6476 −0.3501 −0.2379
a Standard uncertainties u are u(T) = ± 0.01 K, u(ρ) = ± 5·10−5 g·cm−3, u(VEm) = ± 5·10−4 cm3·mol−1, and u(η) = ± 5·10−2 mPa·s.
1926
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
Table 5. Coefficients of eq 11, Ciq, along with Standard Deviations for Ternary Mixture of x1[Hmim][BF4] + x21-Propanol + x32-Propanol i q
0
0 1 2
250.5616 −465.4593 −391.7309
0 1 2
−10326.4763 71622.1067 −6051.8906
1 VE123 −1.5928 2.8928 2.5223 Δη123 61.8331 −428.3852 36.2791
2
σ
0.0025 −0.0044 −0.0039
0.0936
−0.0932 0.6438 −0.05453
4.3452
The parameters Cqi for the ternary mixture are listed in Table 5, along with the standard deviations, σ, of both quantities. Figures 2a,b and 3a,b show the isomolar curves for the excess
Figure 3. Contour curves of viscosity deviation, Δη123, for the ternary mixture of {x1[Hmim] [BF4] + x21-propanol + x32-propanol} at (a) 293.15 K and (b) 303.15 K. Solid lines were calculated via eq 8.
Also these figures show that increasing the temperature from (293.15 to 303.15) K does not have a remarkable effect on the overall behavior of the excess molar volumes and viscosity deviations of this ternary mixture.
■
CONCLUSIONS In this work the densities and viscosities of pure components and binary mixtures of {x11-propanol + x22-propanol} and a ternary mixture of {x1[Hmim][BF4] + x21-propanol + x32propanol} have been reported. Mixing properties of excess molar volumes and viscosity deviation for this mixture were calculated at different temperatures. The excess molar volumes are negative in the entire composition range of the ternary mixture and become more negative with increasing temperature. Also viscosity deviations for this ternary mixture are negative in the entire composition range and decrease with increasing temperature.
Figure 2. Contour curves of excess molar volume, VE123, for the ternary mixture of {x1[Hmim] [BF4] + x21-propanol + x32-propanol} at (a) 293.15 K and (b) 303.15 K. Solid lines were calculated via eq 8.
■
molar volume and viscosity deviation of the ternary mixture of {x1[Hmim][BF4] + x21-propanol + x32-propanol} at (293.15 and 303.15) K, respectively. The negative excess molar volume indicates the presence of attractive interactions between the components of the ternary mixture, since all solvents have strong intermolecular interactions by H-bonding between unlike molecules.
AUTHOR INFORMATION
Corresponding Author
*Phone: +98-811-8282807. Fax: +98-811-8257404. E-mail:
[email protected]. 1927
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
Funding
(12) Andreatta, A. E.; Arce, A.; Rodil, E.; Soto, A. Physical and excess properties of (methyl acetate + methanol + 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and its binary mixtures at T = 298.15 K and atmospheric pressure. J. Chem. Thermodyn. 2009, 41, 1317−1323. (13) Domanska, U.; Krolikowski, M.; Slesinska, K. Phase equilibria study of the binary systems (ionic liquid + thiophene): Desulphurization process. J. Chem. Thermodyn. 2009, 41, 1303−1311. (14) Sobota, M.; Dohnal, V.; Vrbka, P. Activity Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid 1-Ethyl-3methyl-imidazolium Nitrate. J. Phys. Chem. B 2009, 113, 4323−4332. (15) Restolho, J.; Serro, A. P.; Mata, J. L.; Saramago, B. Viscosity and Surface Tension of 1-Ethanol-3-methylimidazolium Tetrafluoroborate and 1-Methyl-3-octylimidazolium Tetrafluoroborate over a Wide Temperature Range. J. Chem. Eng. Data 2009, 54, 950−955. (16) Revelli, A. L.; Mutelet, F.; Jaubert, J. N. (Vapor + liquid) equilibria of binary mixtures containing light alcohols and ionic liquids. J. Chem. Thermodyn. 2010, 42, 177−181. (17) Pereiro, A. B.; Deive, F. J.; Rodriguez, A.; Ruivo, D.; Canongia Lopes, J. N.; Esperanca, J. M. S. S.; Rebelo, L. P. N. New Insight into Phase Equilibria Involving Imidazolium Bistriflamide Ionic Liquids and Their Mixtures with Alcohols and Water. J. Phys. Chem. B 2010, 114, 8978−8985. (18) Deng, Y.; Husson, P.; Jacquemin, J.; Youngs, T. G. A.; Kett, V. L.; Hardacre, C.; Gomes, M. F. C. Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k = 1, 2, 6) in 1-methyl3-alkylimidazolium bis(trifluoromethylsulfonyl)imide {[C1CnIm][NTf2] n = 2, 4, 6, 8, 10} ionic liquids. J. Chem. Thermodyn. 2011, 43, 1708−1718. (19) Andreatta, A. E.; Francisco, M.; Rodil, E.; Soto, A.; Arce, A. Isobaric vapour−liquid equilibria and physical properties for isopropyl acetate + isopropanol + 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide mixtures. Fluid Phase Equilib. 2011, 300, 162−171. (20) Deenadayalu, N.; Bahadur, I.; Hofman, T. Volumetric Properties for (Ionic Liquid + Methanol or Ethanol or 1-Propanol + Nitromethane) at 298.15 K and Atmospheric Pressure. J. Chem. Eng. Data 2011, 56, 1682−1686. (21) Gomez, E.; Gonzalez, B.; Calvar, N.; Dominguez, A. Excess molar properties of ternary system (ethanol + water + 1,3dimethylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 2008, 40, 1208−1216. (22) Deenadayalu, N.; Kumar, S.; Bhujrajh, P. Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures. J. Chem. Thermodyn. 2007, 39, 1318−1324. (23) Gonzalez, B.; Calvar, N.; Gomez, E.; Dominguez, A. Physical properties of the ternary system (ethanol + water + 1-butyl-3methylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 2008, 40, 1274. (24) Deenadayalu, N.; Bhujrajh, P. Density, Speed of Sound, and Derived Thermo dyna mic Prop erties of I onic L iquids [EMIM]+[BETI]− or ([EMIM]+[CH3(OCH2CH2)2OSO3]− + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K. J. Chem. Eng. Data 2008, 53, 1098−1102. (25) Kermanpour, F.; Sharifi, T. Thermodynamic study of binary mixture of x1[C6mim][BF4] + x21-propanol: Measurements and molecular modeling. Thermochimi. Acta 2012, 527, 211−218. (26) Kermanpour, F.; Niakan, H. Z. Measurement and modeling the excess molar properties of binary mixtures of {[C6mim][BF4] + 3amino-1-propanol} and {[C6mim][BF4] + isobutanol}: Application of Prigogine−Flory−Patterson theory. J. Chem. Thermodyn. 2012, 48, 129−139. (27) Kermanpour, F. The excess molar properties of {x1[C6min][BF4] + x22-propanol}: Application of ERAS model. J. Mol. Liq. 2012, 169, 156−162. (28) Cibulka, I. Estimation of excess volume and density of ternary liquid mixtures of non-electrolytes from binary data. Collect. Czech. Chem. Commun. 1982, 47, 1414−1419.
Authors would like to thank Bu-Ali Sina University for financial support of this work. The company of Dr. M. Fattahi in preparing the ternary mixture figures should also be appreciated. Notes
The authors declare no competing financial interest.
■
LIST OF SYMBOLS xi mole fraction of component i Mi molecular weight of component i η viscosity ρ density YEm general excess function VEm excess molar volume of binary mixture Δη viscosity deviation of binary mixture VE123 excess molar volume of ternary mixture Δη123 viscosity deviation of ternary mixture k and c viscometer constants t time Ai and Bij Redlich−Kister coefficients QEijk Cibulka equation QEbin binary contribution of Cibulka equation σ standard deviation T absolute temperature Bi and Cqi Cibulka coefficients
■
REFERENCES
(1) Welton, T. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071−2083. (2) Dommert, F.; Schmidt, J.; Krekeler, C.; Zhao, Y. Y.; Berger, R.; Delle Site, L.; Holm, C. Towards multi scale modeling of ionic liquids: From electronic structure to bulk properties. J. Mol. Liq. 2010, 152, 2− 8. (3) Germani, R.; Mancini, M. V.; Savelli, G.; Spreti, N. Mercury extraction by ionic liquids: temperature and alkyl chain length effect. Tetrahedron Lett. 2007, 48, 1767−1769. (4) Liebert, V.; Nebig, S.; Gmehling, J. Experimental and predicted phase equilibria and excess properties for systems with ionic liquids. Fluid Phase Equilib. 2008, 268, 14−20. (5) Letcher, T. M.; Reddy, P. Ternary (liquid + liquid) equilibria for mixtures of 1-hexyl-3-methylimidazolium (tetrafluoroborate or hexafluorophosphate) + benzene + an alkane at T = 298.2 K and p = 0.1 MPa. J. Chem. Thermodyn. 2005, 37, 415−421. (6) Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A: Gen. 2010, 373, 1−56. (7) Pârvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615−2665. (8) Ranjbar, S.; Momenian, S. H. Densities and Viscosities of Binary and Ternary Mixtures of (Nitrobenzene + 1-Bromobutane), (1Bromobutane + Methylcyclohexane), (Nitrobenzene + Methylcyclohexane), and (Methylcyclohexane + Nitrobenzene + 1-Bromobutane) from (293.15 to 308.15) K. J. Chem. Eng. Data 2011, 56, 3949−3954. (9) Deenadayalu, N.; Bahadur, I.; Hofman, T. Ternary excess molar volumes of {methyltrioctyl ammonium bis(trifluoromethylsulfonyl)imide + ethanol + methyl acetate, or ethyl acetate} systems at T = (298.15, 303.15, and 313.15) K. J. Chem. Thermodyn. 2010, 42, 726− 733. (10) Pires, R. M.; Costa, H. F.; Ferreira, A. G. M.; Fonseca, I. M. A. Viscosity and Density of Water + Ethyl Acetate + Ethanol Mixtures at 298.15 and 318.15 K and Atmospheric Pressure. J. Chem. Eng. Data 2007, 52, 1240−1245. (11) Garcia-Miaja, G.; Troncoso, J.; Romani, L. Excess properties for binary systems ionic liquid + ethanol: Experimental results and theoretical description using the ERAS model. Fluid Phase Equilib. 2008, 274, 59−67. 1928
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929
Journal of Chemical & Engineering Data
Article
(29) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (30) Garcia-Miaja, G.; Troncoso, J.; Romani, L. Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations. J. Chem. Thermodyn. 2009, 41, 334−341. (31) Sanmamed, Y. A.; Gonzalez-Salgado, D.; Troncoso, J.; Cerdeirina, C. A.; Romani, L. Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 2007, 252, 96−102. (32) Zarei, H. A.; Jalili, F. Densities and derived thermodynamic properties of (2-methoxyethanol + 1-propanol, or 2-propanol, or 1,2propandiol) at temperatures from T = (293.15 to 343.15) K. J. Chem. Thermodyn. 2007, 39, 55−66. (33) Baylaucq, A.; Watson, G.; Zeberg-Mikkelsen, C.; Bazile, J. P.; Boned, C. Dynamic Viscosity of the Binary System 1-Propanol + Toluene as a Function of Temperature and Pressure. J. Chem. Eng. Data 2009, 54, 2715−2721. (34) Kao, Y. C.; Tu, C. H. Densities, viscosities, refractive indices, and surface tensions for binary and ternary mixtures of 2-propanol, tetrahydropyran, and 2,2,4-trimethylpentane. J. Chem. Thermodyn. 2011, 43, 216−226. (35) Pang, F. M.; Seng, C. E.; Teng, T. T.; Ibrahim, M. H. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 to 333.15 K. J. Mol. Liq. 2007, 136, 71−78. (36) Lomte, S. B.; Bawa, M. J.; Lande, M. K.; Arbad, B. R. Densities and Viscosities of Binary liquid Mixtures of 2-Butanone with Branched Alcohols at (293.15 to 313.15) K. J. Chem. Eng. Data 2009, 54, 127− 130. (37) Dubey, G. P.; Kumar, K. Thermodynamic properties of binary liquid mixtures of diethylen etriamine with alcohols at different temperatures. Thermochim. Acta 2001, 52, 7−17. (38) Iloukhani, H.; Samiey, B.; Mogahaddasi, M. A. Speeds of sound, isentr-opiccompressi- bilities, viscosities and excess molar volumes of binary mixtures of methylcyclohexane + 2-alkanols or ethanol at T = 298.15 K. J. Chem. Thermodyn 2006, 38, 190−200. (39) Wieser, M. E. Atomic Weights of the Elements 2005 (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 2051−2066. (40) Lundstrum, R.; Goodwin, A. R. H.; Hsu, K.; Frels, M.; Caudwell, D. R.; Trusler, J. P. M.; Marsh, K. N. Measurement of the Viscosity and Density of Two Reference Fluids, with Nominal Viscosities at T = 298 K and p = 0.1 MPa of (16 and 29) mPa·s, at Temperatures between (298 and 393) K and Pressures below 55 MPa. J. Chem. Eng. Data 2005, 50, 1377−1388. (41) Zarei, H. A.; Asadi, S.; Iloukhani, H. Temperature dependence of the volumetric properties of binary mixtures of (1-propanol, 2propanol and 1,2-propanediol) at ambient pressure (81.5 kPa). J. Mol. Liq. 2008, 141, 25−30.
1929
dx.doi.org/10.1021/je401101u | J. Chem. Eng. Data 2014, 59, 1922−1929