Measurement of Atmospheric Gases by Laser Absorption Spectrometry

times better than 5 minutes. ... 24. SCHIFF ET AL. Measurement of Atmospheric Gases. 275. To get the ... flow and allowed to stabilize for approximate...
0 downloads 0 Views 877KB Size
Chapter 24

Measurement of Atmospheric Gases by Laser Absorption Spectrometry H. I. Schiff, G. W. Harris, and G. I. Mackay Downloaded by EAST CAROLINA UNIV on December 31, 2017 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch024

Unisearch Associates, 222 Snidercroft, Concord, Ontario L4K 1B5 Canada

The advantages of Tunable Diode Laser Absorption Spectrometry (TDLAS) for measuring trace atmospheric gases are universality, positive identification, good sensitivity and rapid response time. An instrument is described which can measure two gases simultaneously under automatic computer control with detection limits better than 100 parts per trillion and with response times better than 5 minutes. Procedures have been established for the measurement of NO, NO , MNO, NH , H Q and HCHO. These species have been measured under a variety of conditions in smog chambers and in ambient air from mobile laboratories and from aircraft. 2

2

3

3

2

Tunable d i o d e l a s e r a b s o r p t i o n s p e c t r o m e t r y o f f e r s an a t t r a c t i v e method f o r a t m o s p h e r i c measurements atmospheric i n t e r e s t

( 1 ) . Almost a l l gases o f

a b s o r b s i n the 2 t o 1 5 m i c r o n r e g i o n . The v e r y

high s p e c t r a l r e s o l u t i o n of tunable diode l a s e r s permit s e l e c t i o n o f a s i n g l e r o t a t i o n a l - v i b r a t i o n a l l i n e which makes from o t h e r g a s e s v e r y u n l i k e l y .

I f an a c c i d e n t a l

interferences

interference

s h o u l d happen to o c c u r i t can r e a d i l y be i d e n t i f i e d by a change i n l i n e shape and another

l i n e c a n be c h o s e n .

Unequivocal proof of

the absence o f i n t e r f e r e n c e i s o b t a i n e d by measuring the c o n c e n t r a t i o n s at 2 d i f f e r e n t i n t e r f e r e n c e s at 2 d i f f e r e n t

l i n e s . The p r o b a b i l i t y o f

identical

l i n e s i s vanishingly small ( 2 ) .

0097-6156/87/0349-0274$06.00/0 © 1987 American Chemical Society

Johnson et al.; The Chemistry of Acid Rain ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

24.

SCHIFF ET

AL.

Measurement

of Atmospheric

275

Gases

To get the d e s i r e d s e n s i t i v i t y and d e t e c t i o n l i m i t a l o n g a b s o r p t i o n p a t h can be o b t a i n e d by u s i n g a m u l t i - p a s s White The a b s o r p t i o n l i n e can be scanned

cell.

i n a f r a c t i o n o f a second

and

the response time o f t h e measurement i s n o r m a l l y l i m i t e d by t h e r e s i d e n c e time o f the sampled gas i n the White c e l l which i s t y p i c a l l y a few

Downloaded by EAST CAROLINA UNIV on December 31, 2017 | http://pubs.acs.org Publication Date: September 3, 1987 | doi: 10.1021/bk-1987-0349.ch024

Description

seconds.

of the Instrument

F i g u r e 1 shows t h e s c h e m a t i c o f a TDLAS system d e s i g n e d t o o p e r a t e i n f i e l d c o n d i t i o n s from a m o b i l e l a b o r a t o r y . Lead s a l t d i o d e s t y p i c a l l y o p e r a t e i n t h e 20 t o 80 Κ range and t h e wavelength r e g i o n over which they emit r a d i a t i o n depends on t h e temperature and c u r r e n t p a s s i n g through them.

the

Temperature c o n t r o l to + .005 Κ i s

p r o v i d e d by t h e c o m b i n a t i o n o f a c l o s e d c y c l e h e l i u m c r y o c o o l e r , a h e a t e r and a s e r v o temperature system. each One

Two

c r y o s t a t s a r e used*

h a v i n g a l a s e r s o u r c e assembly c o n t a i n i n g 4 l a s e r d i o d e s . l a s e r d i o d e from each assembly can be chosen t o p e r m i t

two

gases t o be measured s i m u l t a n e o u s l y . The e m i t t e d r a d i a t i o n from each o f the d i o d e s i s scanned over the s e l e c t e d a b s o r p t i o n f e a t u r e by changing t h e c u r r e n t through the d i o d e . The l a s e r beam from each head i s c o l l e c t e d and f o c u s s e d by an o f f - a x i s p a r a b o l i c m i r r o r , QAP

S

or 0AP

a

and t h e n d i r e c t e d t o a

s e l e c t i o n m i r r o r , S which f l i p s back and f o r t h t o p e r m i t the beam from each o f the d i o d e s t o e n t e r the White c e l l

i n turn.

The 45° a n g l e o f the e n t r a n c e window t o t h e White c e l l t h e l a s e r beam.

splits

Most o f t h e beam p a s s e s through the window i n t o

the White c e l l but about 5% i s r e f l e c t e d through a c e l l

containing

h i g h c o n c e n t r a t i o n s o f t h e t a r g e t gases onto a s e p a r a t e HgCdTe detector.

The o u t p u t from t h i s d e t e c t o r i s used t o l o c k the l a s e r

r a d i a t i o n wavelength t o t h e c e n t e r o f t h e a b s o r p t i o n l i n e . The beam e n t e r s the 1.75 m T e f l o n - l i n e d White c e l l a c o r n e r cube r e f l e c t o r to t h e d e t e c t o r .

containing