Anal. Chem. 1982, 5 4 , 2547-2549
(6) Hunt, D. F.; McEwen, C. N.; Upham, R. A. Tetrahedron Lett. 1971, 439-442. (7) Hunt, D. F.; Sethi, S. K. J. Am. Chem. SOC.1080, 702, 6953-6963. (6) Lln, Y. Y.; Smith, L. L. Blomed. Mass Specfrom. 1079, 6 , 15-18. (9) Hunt, D. F. I n "Progress In Analytical Chemlstry: Applications of Newer Techniques of Analysis"; Plenum: New York, 1973;p 359. (10) Keough, T.; DeStefano, A. J. Org. Mass Specfrom. 1982, 76, 527-533. (11) Mllne, G. W. A,; Lacey, M. J. CRC Crlt. Rev. Anal. Chem. 1974,4 , 45-104. (12) Hunt, D. F.; Ryan, J. F. J. Chem. SOC., Chem. Commun. 1072, 620-621. (13) vanDoorn, R.; Nibberlng, N. M. M. Org. Mass Specfrom. 1978. 73, 527-534. (14) Yamdagni, R.; Kebarle, P. J. Am. Chem. SOC.1978,98, 1320-1324. (15) Franklln, J. L. J. Chem. Phys. 1053,27, 2029-2033. (16) Hunt, D. F.; Harvey, T. M. Anal. Chem. 1075,4 7 , 1965-1969. (17) Rosenstock, H. M.; Draxyl, K.; Stelner, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data 1977,6 , 1-783.
kcal/mol more stable (less reactive) than CH2=OCHa'. Therefore, the C4HgO" ion is less likely to undergo the structure-specific ion-molecule reactions characteristic of CHz=OCH3+. Indeed, the C4H90+ion apppears to be considerably less reactive than the C2H50+ion. The diethyl ether CI spectra of decanal and 3-decanone are nearly identical, each exhibiting (M + H)+ and an adduct ion with protonated diethyl ether (M C4H110)+. However, the (M C4H90)+ adduct ion was not observed in either spectrum and the (M - H)+ ion was very weak (-3%) in the spectrum of decanal. The diethyl ether CI spectra of anthracene and phenanthrene exhibited mainly M+ and (M H)+. The (M C4HgO)+ion was not observed in the spectrum of anthracene. Finally, the diethyl ether CI spectra of the alcohols were identical, each exhibiting (M + C4H11O)'. There was no indication of (M + C4H90)+or (M + C4HgO - C2H60H)' by analogy to the DME CI spectra of alcohols. Only dimethyl ether strikes the appropriate compromise between acidity (of C2H70+)and reactivity (of C,H,O+) to be useful for organic-functional-group recognition.
+
+
+
2547
+
(18) Benson, S. W. "Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters"; Wiley: New York,
1968. (19) Field, F. H.; Munson, M. S. B.; Becker, D. A. Adv. Chem. Ser. 1088, 58,167-192. (20) Field, F. H. J. Am. Chem. SOC. 1070,92, 2672-2878. (21) Olah, G. A. Angew. Chem., Int. Ed. Engl. 1074, 72, 173-212. (22) Dunbar, R. C.; Shen, J.; Melby, E.; Olah, G. A. J. Am. Chem. SOC. 1073,95, 7200-7202. (23) Wheland, G.W. "Resonance In Organic Chemistry"; Wiley: New York, 1955. (24) Lee, M. L.; Hiles, R. J. Am. Chem. SOC.1077,99,2008-2009. (25) Shushan, B.; Safe, S. H.; Boyd, R. K. Anal. Chem. 1970, 57, 156-158. (26) Lehman, T. A.; Bursey, M. M. "Ion Cyclotron Resonance Spectrometry", Wlley; New York, 1976;p 78. (27) Munson, M. S. B.; Fleld, F. H. J. Am. Chem. SOC. 1988, 88, 4337-4345. (28) Munson, B. Anal. Chem. 1977,49, 727A-778A. (29) Wolf, J. F.; Staley, R. H.; Koppel, I.; Taagepera, M.; McIver, R. T.; Beauchamp, J. L.; Taft, R. W. J. Am. Chem. SOC. 1977, 99, 5417-5429. (30) Losslng, F. P. J. Am. Chem. SOC. 1077,99, 7528-7530.
ACKNOWLEDGMEMT
I gratefully acknowledge the many stimulating discussions held with A. J. DeStefanio throughout the course of this study. LITERATURE CITED (1) Futrell, J. H.; Tiernan, T. 0. Sclence 1070, 762, 415-423. (2) Parker, J. E.; Lehrle, R. S. Int. J . Mass Specfrom. Ion Phys. 1071, 7,421-469. (3) Ferrer-Correla, A. J. \I.; Jennlngs, K. R.; Sen Sharma, D. K. Org. Mass Specfrom. 1978, 7 7, 867-872. (4) Ferrer-Correla, A. J. Y.; Jennings, K. R.; Sen Sharma, D. K. "Advances In Mass Spcactrometry"; Daly, N. R., Ed.; Heyden: London, 1978;Vol. 7,pp 287-293. (5) Chal, R.; Harrison, A. Ci, Anal. Chem. 1981,53, 34-37.
RECEIVED for review April 29,1982. Accepted August 17,1982.
Measuremeint of Carbon Monoxide in Combustion Emissions with a Low-Pressure Sampling System and Low-Resolution Mass Spectrometry Larry P. Haack," James W. Butler, end Alex D. Colvln Ford Motor Company, Sciontific Research Laboratory, Rm. S-306 1,
A novel method has bean developed for the real-tlme measurement of carbon moiioxlde (CO) emissions from the combustion of carbonaceous fuels. Thls method employs a rapId-flow, low-pressure sampling system lncludlng a Ilquld-nltrogen (N,) cooled cyrogenlc trap and 81 platlnum oxldatlon catalyst. A low-resolutilon mass spectrometer (MS) Is used for detectlon. At a 30 torr sample stream pressure, carbon dloxlde (CO,), water, irnd essentlally all other combustion products but CO and methane (CH,) are cryogenically removed. Wlth the platlnum oxldatlon catalyst at 560 O C , CO Is selectively oxldlred tal CO, (wRh >99 YO eff lclency) leaving CH, unreacted (