12
Measurement o f the O x y g e n a n d C a r b o n Content
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
o f Silicon Wafers by Fourier Transform I R Spectrophotometry Asian Baghdadi Semiconductor Materials and Processes Division, National Bureau of Standards, Gaithersburg, MD 20899 Fourier transform infrared (FT-IR) spectrophotometry is a rapid, nondestructive characterization technique which is being increasingly applied on a large scale to the routine measurement of the oxygen and carbon content of silicon wafers used for the fabrication of microelectronic devices. Control of the oxygen content is needed to achieve acceptable yields in modern device processing, particularly for those processes which utilize oxide precipitates to protect active regions of devices from contamination by metallic impurities during high-temperature processing. The interlaboratory reproducibility of the measurement is not adequate considering the degree of control of the oxygen that is required. This review focuses primarily on the measurement of oxygen and carbon in silicon and on methods for improving quantitative FT-IR absorption measurements on semiconductor wafers. The evolution of silicon processing technologies for producing very large-scale, high-density integrated circuits has resulted in more demanding starting material specifications, and has increased the need for nondestructive and inexpensive characterization techniques (J_) which can be applied routinely to measure the properties of s i l i con wafers in production quantities. Infrared absorption spectrophotometry, using either dispersive or Fourier transform (FT-IR) instruments, is used for the characterization of both neutral (oxygen and carbon) and electrically active impurities (e.g., group III or group V elements, as well as some oxygen complexes) in silicon. Oxygen and carbon content measurements, which can be made at room temperature without damaging the wafers, are being widely used to control material properties prior to high-temperature processing. This paper describes the configuration of oxygen and carbon impurities in silicon and techniques which can be used to improve the quality and quantitative accuracy of IR absorption spectra obtained on FT-IR instruments. It also discusses instrument-to-instrument This chapter not subject to U.S. copyright. Published 1986, American Chemical Society Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
12.
BAGHDADI
209
Oxygen and Carbon Content of Silicon Wafers
v a r i a t i o n s , as w e l l as d i f f e r e n c e s i n the s i l i c o n wafers t h e m s e l v e s , which may a f f e c t the i n t e r l a b o r a t o r y r e p r o d u c i b i l i t y of oxygen c o n t e n t measurements on a s - r e c e i v e d s i l i c o n w a f e r s .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
Oxygen and Carbon i n S i l i c o n The most common use of i n f r a r e d a b s o r p t i o n f o r the c h a r a c t e r i z a t i o n of s i l i c o n wafers f o r m i c r o e l e c t r o n i c s p r o c e s s i n g i s f o r the d e t e r m i n a t i o n of the i n t e r s t i t i a l oxygen a n d , t o a much l e s s e r e x t e n t , s u b s t i t u t i o n a l carbon c o n t e n t . C l o s e to the m e l t i n g p o i n t of s i l i c o n , i t i s p o s s i b l e to d i s s o l v e as much as 30 p a r t s p e r m i l l i o n a t o m i c (ppma) oxygen i n s i l i c o n (2)• W e l l below the m e l t i n g p o i n t , howe v e r , the e q u i l i b r i u m s o l i d s o l u b i l i t y i s c o n s i d e r a b l y lower so t h a t , d u r i n g h i g h - t e m p e r a t u r e p r o c e s s i n g , the s u p e r s a t u r a t e d oxygen can condense i n t o a v a r i e t y of complexes and p r e c i p i t a t e s , as shown i n T a b l e I. S i n c e most s e m i c o n d u c t o r s i l i c o n c r y s t a l s a r e p u l l e d from c r u c i b l e s l i n e d w i t h f u s e d s i l i c a u s i n g the C z o c h r a l s k i c r y s t a l growth method, the s i l i c o n melt c o n t a i n s s i g n i f i c a n t amounts of d i s solved oxygen. M o r e o v e r , the d i s t r i b u t i o n of oxygen i n the m e l t i s not u n i f o r m , s i n c e i t depends upon a number of c r y s t a l growth paramet e r s i n c l u d i n g the r o t a t i o n r a t e s of the c r u c i b l e and the c r y s t a l , the melt a s p e c t r a t i o ( i . e . , the r a t i o of the m e l t h e i g h t to the c r u c i b l e d i a m e t e r ) , the p u l l r a t e of the c r y s t a l , temperature f l u c t u a t i o n s i n the m e l t , the c r u c i b l e d i s s o l u t i o n r a t e and the e v a p o r a t i o n of s i l i c o n monoxide from the exposed m e l t s u r f a c e ( 3 0 . F o r t u n a t e l y , the oxygen i n c o r p o r a t i o n has been e m p i r i c a l l y found to be f a i r l y r e p r o d u c i b l e f o r a g i v e n a p p a r a t u s and s e t of growth c o n d i t i o n s , s o t h a t s i l i c o n s u p p l i e r s have been a b l e to produce c r y s t a l s w i t h s p e c i f i e d oxygen c o n t e n t s (over a s u b s t a n t i a l p o r t i o n of the i n g o t ) to meet s p e c i f i c p r o c e s s r e q u i r e m e n t s ( 2 , 4 ) • Typical Czochralski cryst a l s c o n t a i n 10 t o 20 ppma of oxygen, w i t h b o t h r a d i a l and a x i a l macroscopic v a r i a t i o n s . There are a l s o v a r i a t i o n s on a s u b m i l l i m e t e r s c a l e caused by changes i n the i n s t a n t a n e o u s c r y s t a l growth r a t e (5-7)• These m i c r o s c o p i c v a r i a t i o n s i n the oxygen c o n c e n t r a t i o n can i n t r o d u c e s y s t e m a t i c e r r o r s i n the measurement of the oxygen d i s t r i b u t i o n a c r o s s a s i l i c o n wafer ( 8 , 9 ) . C z o c h r a l s k i c r y s t a l s grown u s i n g a d o u b l e - c r u c i b l e t e c h n i q u e (3_), magnetic f i e l d s ( 1 0 ) , o r n i t r i d e - l i n e d c r u c i b l e s (11) have lower and more u n i f o r m oxygen c o n c e n t r a t i o n s , a l t h o u g h these t e c h n i q u e s have n o t y e t been adopted on a commercial s c a l e . Oxygen o c c u p i e s i n t e r s t i t i a l s i t e s i n the s i l i c o n l a t t i c e . This was demonstrated by showing t h a t the l a t t i c e parameter of s i l i c o n c o n t a i n i n g h i g h c o n c e n t r a t i o n s of oxygen was g r e a t e r than t h a t of low-oxygen s i l i c o n (\2_) • S i n c e i s o l a t e d oxygen i n s i l i c o n i s e l e c t r i c a l l y n e u t r a l , i t was proposed t h a t the oxygen atom forms bonds w i t h two n e a r e s t - n e i g h b o r s i l i c o n atoms which g i v e up t h e i r o r i g i n a l bonds w i t h each o t h e r ( 1 3 - 1 5 ) • A t room temperature two a b s o r p t i o n bands a r e o b s e r v e d , a s t r o n g , broad band a t 1107 cm"* and a much weaker band a t 515 cm""* • The 1107 c m " band has been a t t r i b u t e d to an a n t i - s y m m e t r i c s t r e t c h i n g mode of the t r i a t o m i c S i - O - S i d e f e c t " m o l e c u l e " (15), and the 515 c m " mode has been r e c e n t l y p r o p o s e d as a symmetric s t r e t c h i n g m o t i o n , s i m i l a r t o v i b r a t i o n s o c c u r r i n g i n d i s i l o x a n e (16). Near l i q u i d n i t r o g e n t e m p e r a t u r e s , a n o t h e r band appears a t 1205 c m " ( 1 7 ) , as w e l l as some f a r - i n f r a r e d b a n d s . At l i q u i d h e l i u m t e m p e r a t u r e s , the broad band a t 1107 c m " s p l i t s i n t o a 1
1
1
1
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
210
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
Table I .
Examples o f t h e E f f e c t s o f A n n e a l i n g on t h e C o n f i g u r a t i o n o f Oxygen i n S i l i c o n
Anneal Time & Temperature
Initial Oxygen Configuration
R e s u l t i n g Oxygen Configuration & i t s Electrical Activity
450°C, 1-10 h r s
Interstitial oxygen
S i O complexes, double donors known as t h e r m a l donors ( T D s )
27
Electrically inactive o x y g e n - s i l i c o n complexes or very small microprecipitates
27
Reference
x
f
650°C, 30 mins
SiO complexes formed a t 450°C
700-800°C up t o 100 h r s
Nucleation centers, s u c h as S i O complexes o r carbon-oxygen complexes
x
x
73 100"A - 1000 A, donors (ND»s)
1000-1150°C, 2-10 h r s
Microprecipitates or other nucleation centers
S i 0 p r e c i p i t a t e s , ~1 Mm, no e l e c t r i c a l a c t i v i t y
74
1350°C, hrs
Any of the above d e f e c t s
I n t e r s t i t i a l oxygen no electrical activity
20
2
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
12.
211
Oxygen and Carbon Content of Silicon Wafers
BAGHDADI
1
number of s h a r p l i n e s a t 1128 t o 1137 c m " . These l i n e s c o u l d be s u b d i v i d e d i n t o s e t s o f l i n e s whose i n t e n s i t i e s were i n the r a t i o o f the r e l a t i v e abundance of Si-0- Si, Si-0- Si, Si-O- Si, Si-0- Si, S i - O - S i , and S i - O - S i . T h i s r e d u c e s the number of observed l i n e s f o r a s i n g l e s i l i c o n i s o t o p e to three or p o s s i b l y f o u r (}&)• The r e m a i n i n g l i n e s have been e x p l a i n e d as b e i n g due t o a d d i t i o n a l l e v e l s i n the f a r - i n f r a r e d , due t o o s c i l l a t i o n s o f the oxygen atom as i t t u n n e l s between i t s two n e i g b o r i n g s i l i c o n atoms t o e q u i v a l e n t p o s i t i o n s around the a x i s (17)* Figure 1 i s a schem a t i c e n e r g y - l e v e l d i a g r a m , showing t h e a l l o w e d i n f r a r e d o p t i c a l t r a n s i t i o n s o f a model o f the S i - 0 - S i complex, which r e s u l t s i n the m u l t i p l e - l i n e spectrum ( 1 7 ) . 2 8
2 9
2 9
2 9
3 0
2 8
3 0
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
2 8
2 8
2 9
2 8
3 0
3 0
2 8
E l e c t r i c a l l y a c t i v e d e f e c t s can a l s o e x h i b i t a b s o r p t i o n i n the i n f r a r e d due t o changes i n t h e i r e l e c t r o n i c s t a t e s . F o r example, a c c e p t o r o r donor i m p u r i t i e s , a t c r y o g e n i c t e m p e r a t u r e s , can have a b s o r p t i o n l i n e s due t o t r a n s i t i o n s from t h e ground s t a t e o f t h e n e u t r a l impurity to shallow h y d r o g e n - l i k e or h e l i u m - l i k e l e v e l s l y i n g j u s t below t h e i r r e s p e c t i v e band edges ( 1 9 ) . Thus IR a b s o r p t i o n c a n be used t o d e t e c t the p r e s e n c e o f e l e c t r i c a l l y a c t i v e s i l i c o n - o x y g e n complexes which may form d u r i n g h i g h - t e m p e r a t u r e p r o c e s s i n g ( 2 0 ) . S i l i c o n - o x y g e n complexes can be formed by a n n e a l i n g the wafers a t temperatures such as 4 5 0 ° C (20), as was shown i n T a b l e I. The c o n f i g u r a t i o n o f these complexes has n o t been c l e a r l y d e t e r m i n e d , b u t from t h e k i n e t i c s o f t h e i r f o r m a t i o n they i n v o l v e a r e l a t i v e l y s m a l l number of oxygen atoms, p o s s i b l y t h r e e t o f i v e atoms, f o r m i n g the s i l i c o n - o x y g e n complex. The 4 5 0 ° C complex i s e l e c t r i c a l l y a c t i v e , and i t has been shown t o form donor (21) l e v e l s j u s t below t h e c o n d u c t i o n band e d g e . At c r y o g e n i c temperatures, the c a r r i e r s " f r e e z e o u t " onto the o x i d e complex, so t h a t an IR spectrum of the specimen e x h i b i t s a s e r i e s o f s h a r p i n t e n s e bands (22)• The a b s o r p t i o n p r o c e s s i s shown s c h e m a t i c a l l y i n F i g u r e 2 . The d e t a i l s of the a c t u a l f o r m a t i o n and c o n f i g u r a t i o n o f these d e f e c t s a r e s t i l l t h e s u b j e c t o f a c t i v e debate ( 2 3 - 2 6 ) , b u t t h e i r IR s p e c t r a have been i d e n t i f i e d as b e i n g due t o n e u t r a l h y d r o g e n - l i k e o r s i n g l y - i o n i z e d h e l i u m - l i k e donors (22)• The s p e c t r a have n o t a l l been a s s i g n e d t o a s i n g l e o x y g e n - s i l i c o n complex, b u t r a t h e r t o a s e r i e s o f complexes which come i n t o e x i s t e n c e one a f t e r the o t h e r , and which e x h i b i t d i f f e r e n t a n n e a l i n g b e h a v i o r s (22^. These d e f e c t complexes which a r e known f o r h i s t o r i c a l r e a s o n s as t h e r m a l donors (TD) c a n be d e s t r o y e d by a r e l a t i v e l y s h o r t (~30 minutes) h e a t t r e a t m e n t a t a b o u t 6 5 0 ° C ( 2 7 ) . F u r t h e r l o n g - t e r m h e a t t r e a t m e n t s , a t temperatures r a n g i n g from 550 t o 9 5 0 ° C , c r e a t e a new c l a s s o f d o n o r s , which have been termed new donors (ND) ( 2 8 ) . These donors a r e a l s o n o t f u l l y u n d e r s t o o d , b u t they a r e presumably a type o f o x i d e m i c r o p r e c i p i t a t e . Oxide m i c r o p r e c i p i t a t e s r a n g i n g i n s i z e from 100 A t o 1000 A have been d e t e c t e d i n s i l i c o n by t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y (29,30) f o l l o w i n g h e a t t r e a t m e n t s i n t h a t temperature r a n g e . Long-term a n n e a l i n g a t temperatures above 1 0 0 0 ° C promotes the f o r m a t i o n o f l a r g e r (>1 um) o x i d e p r e c i p i t a t e s . The growth o f the o x i d e p r e c i p i t a t e s r e s u l t s i n a r e d u c t i o n i n t h e i n t e n s i t y o f the i n t e r s t i t i a l oxygen band a t 1107 c m " , and i n the growth of broad new b a n d s , the most prominent of which i s c e n t e r e d a t about 1225-1230 c m " ( 3 1 - 3 3 ) . The s i z e and shape of these p r e c i p i t a t e s , as w e l l as t h e i r c o m p o s i t i o n and c r y s t a l l o g r a p h y , c a n have i m p o r t a n t e f f e c t s on t h e i r IR s p e c t r a ( 3 1 ) . F o r m a t i o n of the p r e c i p i t a t e s g e n e r a l l y a l s o r e s u l t s i n the c r e a t i o n 1
1
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
212
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
cm
1
| n, i>
I 2,0> | 2, ± 2>
1203-0 1189-0
|1,0> |0, ± 2>
| 1, ± 1>
1157-2
|0, ± 1>
| 0, 0>
1136-0
|0,0>
v< 2
9 [xm bands
517-0
1, ± 1> 0, ± 3>
I 3, ± 1> | 3, ± 3>
120-4 110-4
I 2, 0> | 2, ± 2>
783 671
I 1,0> I 0, ± 2>
| 1, ± 1>
29-3
| 0, ± 1>
0
| 0, 0>
V
2
I 0, 0>
central force labelling
harm. osc. labelling Figure
1.
E n e r g y - l e v e l diagram f o r i n t e r s t i t i a l oxygen i n s i l i c o n , showing o b s e r v e d v i b r a t i o n a l t r a n s i t i o n s i n t h e n e a r and f a r i n f r a r e d f o r a S i - 0 - S i complex. (Reproduced w i t h p e r m i s s i o n from Ref. 17. C o p y r i g h t 1970 The R o y a l S o c i e t y . ) 2 8
2 8
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
12.
BAGHDADI
213
Oxygen and Carbon Content of Silicon Wafers
of networks o f d i s l o c a t i o n s around the p r e c i p i t a t e s . These d i s l o c a t i o n s can serve to t r a p f a s t - d i f f u s i n g m e t a l l i c i m p u r i t i e s . This i s the b a s i c mechanism which i s used i n the i n t r i n s i c g e t t e r i n g (IG) o f u n d e s i r a b l e i m p u r i t i e s t o improve the y i e l d o f s e m i c o n d u c t o r f a b r i c a t i o n p r o c e s s e s (21)• Carbon i n s i l i c o n i s a much s i m p l e r and b e t t e r u n d e r s t o o d d e fect. S i n c e , a t room t e m p e r a t u r e , i t o c c u p i e s s u b s t i t u t i o n a l s i t e s and s i n c e i t i s i s o e l e c t r o n i c w i t h the s i l i c o n atoms i n the h o s t l a t t i c e , i s o l a t e d c a r b o n atoms have o n l y s u b t l e o r i n d i r e c t e f f e c t s on the p r o p e r t i e s of the s i l i c o n . I t s i n f r a r e d spectrum i s s t r a i g h t f o r w a r d , c o n s i s t i n g of a s i n g l e l o c a l v i b r a t i o n a l mode f o r each i s o tope. The C absorbance band i s c o m p l e t e l y dominated by a t w o - p h o non s i l i c o n l a t t i c e band a t 610 c m " (see I n f r a r e d A b s o r p t i o n Measurements )• The i n t e n s i t y o f the two-phonon band i s v e r y s t r o n g l y dependent on t e m p e r a t u r e , as shown i n F i g u r e 3. The open t r i a n g l e s r e p r e s e n t the i n t e n s i t y of the s i l i c o n l a t t i c e band a t 610 c m " , w h i l e the c l o s e d t r i a n g l e r e p r e s e n t s the a b s o r p t i o n c o e f f i c i e n t due t o s u b s t i t u t i o n a l carbon a t 300 K f o r a nominal c a r b o n c o n c e n t r a t i o n of 1 ppma. Thus the temperature o f the r e f e r e n c e and specimen w a f e r s must be k e p t w i t h i n 1 ° C o f each o t h e r i n o r d e r t o m a i n t a i n a good match between t h e specimen and r e f e r e n c e s p e c t r a . T h i s degree o f temperature c o n t r o l i s n o t n e c e s s a r y f o r the measurement o f the i n t e r s t i t i a l oxygen peak h e i g h t , s i n c e t h e a b s o r p t i o n due t o t h e s i l i con l a t t i c e band a t 1120 c m " (shown as the open c i r c l e s i n F i g u r e 3) i s much s m a l l e r than the a b s o r p t i o n due t o i n t e r s t i t i a l oxygen f o r a wafer c o n t a i n i n g 20 ppma oxygen (shown as the c l o s e d c i r c l e i n F i g u r e 3). However, when the r a t i o o f the a b s o r p t i v i t y o f the oxygen band t o the a b s o r p t i v i t y of the 610 c m " s i l i c o n band (3j4) i s used f o r the c o m p u t a t i o n o f the oxygen c o n t e n t , the temperature dependence o f t h e s i l i c o n l a t t i c e band must be taken i n t o a c c o u n t . 1
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
1
1
1
1
The g r e a t r e d u c t i o n i n the i n t e n s i t y o f t h e i n t e r f e r i n g 610 c m " s i l i c o n l a t t i c e band a t low temperatures might be e x p e c t e d t o l e a d t o i n c r e a s e d s e n s i t i v i t y and a c c u r a c y i n c a r b o n d e t e r m i n a t i o n s based on c r y o g e n i c IR measurements. However, the r e f l e c t i o n l o s s e s a t each of the c r y o s t a t windows a l m o s t outweigh t h i s advantage (35)• The r e m a i n i n g advantage i s u s u a l l y t o o s l i g h t t o j u s t i f y the a d d i t i o n a l time f o r c o o l i n g t h e sample and f o r p r e p a r i n g s p e c i a l s m a l l specimens n e c e s s a r y f o r most l o w - t e m p e r a t u r e measurements. The d i s t r i b u t i o n of c a r b o n i n s i n g l e - c r y s t a l s i l i c o n i s n o t uniform (36). S i n c e the carbon atom i s s m a l l e r than the s i l i c o n atom i t r e p l a c e s , h i g h l o c a l c o n c e n t r a t i o n s o f c a r b o n c a n produce a l o c a l i z e d s t r a i n i n the l a t t i c e , which can s e r v e as n u c l e a t i o n c e n t e r s f o r the f o r m a t i o n o f s t r u c t u r a l d e f e c t s such as " s w i r l " p a t t e r n s ( 3 6 ) . For t h i s r e a s o n , f l o a t - z o n e d s i l i c o n i n t e n d e d f o r the f a b r i c a t i o n o f s e m i c o n d u c t o r power d e v i c e s i s o f t e n s p e c i f i e d t o c o n t a i n low c a r b o n c o n c e n t r a t i o n , e . g . , l e s s than 1 ppma. Carbon has been r e p o r t e d t o p l a y a r o l e i n t h e heterogeneous n u c l e a t i o n o f o x i d e p r e c i p i t a t e s (37-40). In p r i n c i p l e , c a r b o n n u c l e a t i o n o f o x i d e m i c r o p r e c i p i t a t e s c o u l d be used t o advantage i n d e s i g n i n g IC p r o c e s s e s . In p r a c t i c e , however, the n o n u n i f o r m i t y o f the carbon d i s t r i b u t i o n r e n d e r s t h i s an i m p r a c t i c a l approach. Thus i n o r d e r t o a v o i d u n c o n t r o l l e d v a r i a t i o n s i n the oxide p r e c i p i t a t i o n , l o w - c a r b o n s i l i c o n i s o f t e n s p e c i f i e d f o r p r o c e s s e s which use i n t r i n s i c g e t t e r i n g . Low-carbon s i l i c o n must a l s o be used f o r the f a b r i c a t i o n of e x t r i n s i c i n f r a r e d d e t e c t o r s t o p r e v e n t the f o r m a t i o n o f c a r b o n -
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
1
214
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION e" e~ e~ Donor ^ > > X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Levels
Conduction Band
W////////////////////, Valence Band (a) Room Temperature: Free Carrier Absorption
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
Bound States
'//////////////////////A (b)T ~ 1 5 ° K , No Illumination
V///////////////////// (c) T ~ 15 °K, IR Illumination: Characteristic Absorption Lines
F i g u r e 2. E n e r g y - l e v e l diagram showing t h e a b s o r p t i o n o f r a d i a t i o n i n n-type s i l i c o n under v a r i o u s c o n d i t i o n s : (a) room temp e r a t u r e , ( b ) same specimen a t c r y o g e n i c t e m p e r a t u r e s , w i t h o u t any i l l u m i n a t i o n , and ( c ) same specimen a t c r y o g e n i c t e m p e r a t u r e s , w i t h sub-bandgap i l l u m i n a t i o n , showing c h a r a c t e r i s t i c a b s o r p t i o n o f t h e IR photons from t h e ground s t a t e o f t h e donor t o bound s t a t e s j u s t below t h e c o n d u c t i o n band.
14
A Multiphonon Absorption at 610cm
1
• Multiphonon Absorption at 1120 c m
12
1
0 Absorption Due to Interstitial Oxygen, for a Wafer Containing 1 x 10 Atoms/cm 18
10
3
A Absorption Due to Substitutional Carbon for a Wafer Containing 5 x 10 Atoms/cm 16
3
8
o o o
6 4
1 -
R
f
R
b
a
(
V
>
X
V
)
x
_ 2
e-
a
(
( 1 )
where I ( v ) i s the i n t e n s i t y of the t r a n s m i t t e d l i g h t a t wavenumber v r e a c h i n g the d e t e c t o r , x i s the t h i c k n e s s of the p a r a l l e l p l a t e , T and R are the n o n s c a t t e r e d t r a n s m i t t a n c e and the n o n s c a t t e r e d ( s p e c u l a r ) r e f l e c t a n c e , r e s p e c t i v e l y , w i t h the s u b s c r i p t s f and b s p e c i f y i n g the f r o n t and back s u r f a c e s of the s p e c i m e n , I ( v ) i s the i n t e n s i t y of the i n c i d e n t r a d i a t i o n and a ( v ) i s the a b s o r p t i o n c o e f f i c i e n t of the specimen a t wavenumber v . E q u a t i o n 1 has been r e w r i t t e n from i t s u s u a l form to a c c o u n t f o r the e f f e c t s o f u n p o l i s h e d f r o n t o r back s u r f a c e s which may s c a t t e r the r a d i a t i o n i n a d d i t i o n to t r a n s m i t t i n g or r e f l e c t i n g i t . F o r the case o f a s i l i c o n wafer w i t h b o t h f r o n t and back s u r f a c e s p o l i s h e d , T = 0.7 and R = 0 . 3 , so t h a t a l m o s t 10% o f the t r a n s m i t t e d r a d i a t i o n i n t r a n s p a r e n t r e g i o n s o f the s p e c trum p a s s e s through the specimen more than o n c e . A l t h o u g h specimens p r e p a r e d e s p e c i a l l y f o r q u a n t i t a t i v e IR measurements would n o r m a l l y have b o t h s u r f a c e s p o l i s h e d , t y p i c a l p r o d u c t i o n s i l i c o n w a f e r s commonly have o n l y a s i n g l e p o l i s h e d s u r f a c e . The o p p o s i t e s u r f a c e i s g e n e r a l l y lapped and e t c h e d , e i t h e r w i t h an a c i d o r a l k a l i n e e t c h ( 5 4 ) , o r sometimes d e l i b e r a t e l y damaged, e i t h e r m e c h a n i c a l l y or with a high-power l a s e r . The d e l i b e r a t e l y damaged back s u r f a c e s a r e used to c r e a t e d i s l o c a t i o n networks i n the s i l i c o n w a f e r , away from the a c t i v e r e g i o n s of the d e v i c e s , which can t r a p or " g e t t e r " h e a v y - m e t a l i m p u r i t i e s , and t h e r e b y improve the o v e r a l l y i e l d o f the f a b r i c a t i o n p r o c e s s (55)• F i g u r e 6 i s the a b s o r p t i o n spectrum of a s i l i c o n wafer w i t h a rough back s u r f a c e . The s t r o n g l y s l o p i n g b a s e l i n e i s due to the wavenumber dependence o f the s c a t t e r i n g a t the back s u r f a c e . In t h e s e c a s e s , the a b s o r p t i o n c o e f f i c i e n t due to an i m p u r i t y , i n a r e g i o n w i t h o u t s i l i c o n l a t t i c e b a n d s , i s g i v e n by (53):
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
Q
-2a.
o
"imp -
[*
A
+
l
o
9
(
1
"
S
)
"
l
o
1
^
"
S
e
x (
)l
2
)
where _ S = R-R,_e f b
(-2a.
free
x)
and where AA i s the n e t h e i g h t o f the absorbance b a n d , S i s the m u l t i p l e - r e f l e c t i o n c o r r e c t i o n f a c t o r , and a f i s the a b s o r p t i o n due to f r e e c a r r i e r s . When s i l i c o n l a t t i c e bands o v e r l a p the i m p u r i t y b a n d , t h e i r c o n t r i b u t i o n must be s u b t r a c t e d from the o b s e r v e d a b s o r p t i o n i n o r d e r to o b t a i n a i p . Note t h a t E q u a t i o n 2 c o n t a i n s the f a c t o r aj[ p on both s i d e s of the e q u a t i o n , so t h a t i t must be s o l v e d i t e r a t i v e l y . However, i t c o n v e r g e s v e r y r a p i d l y , and g e n e r a l l y needs l e s s than f o u r i t e r a t i o n s . r e e
m
m
The c o r r e c t i o n f a c t o r S i s c l o s e t o z e r o f o r a wafer w i t h a v e r y rough back s u r f a c e , such as the one whose spectrum i s shown i n F i g u r e 6, and i s 0.09 f o r a l i g h t l y - d o p e d ( e . g . , r e s i s t i v i t y 5 ft cm o r g r e a t e r ) wafer w i t h both s u r f a c e s p o l i s h e d . The back s u r f a c e s of most w a f e r s , however, f a l l between t h e s e two e x t r e m e s , so t h a t S must be d e t e r m i n e d i n o r d e r to measure a c c u r a t e l y the c o n c e n t r a t i o n o f an #
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
12.
BAGHDADI
Oxygen and Carbon Content of Silicon Wafers
221
impurity. S e v e r a l methods have been p r o p o s e d t o o b t a i n the m u l t i p l e r e f l e c t i o n correction factor S (53,56-58). I f t h e wafer has a u n i form t h i c k n e s s , the r a t i o o f the a m p l i t u d e s o f the s e c o n d a r y t o p r i mary i n t e r f e r o g r a m s c a n be used t o o b t a i n S (53^) • A l t e r n a t i v e l y , t h e v a l u e o f the b a s e l i n e i n a t r a n s p a r e n t r e g i o n o f the spectrum can a l s o be used t o d e t e r m i n e the v a l u e o f S ( 5 6 ) • This requires that the d e t e c t o r system l i n e a r i t y be w e l l - e s t a b l i s h e d , the r e f l e c t i o n s between the specimen s u r f a c e s and the s p e c t r o m e t e r components be u n d e r s t o o d q u a n t i t a t i v e l y , and t h e r e be no o t h e r p r o b l e m s , such as a s h i f t o f t h e p o s i t i o n o f the r a d i a t i o n a t the d e t e c t o r when the b a c k ground i n t e r f e r o g r a m i s b e i n g o b t a i n e d . A t h i r d method uses the magnitude o f t h e a p p a r e n t absorbance o b t a i n e d f o r a m u l t i p h o n o n s i l i con l a t t i c e absorbance band o f known v a l u e as a c a l i b r a t i o n t o c a l c u l a t e the t r u e v a l u e o f the absorbance due t o the i m p u r i t y (51) • This method, however, c a n be q u a n t i t a t i v e o n l y when the s c a t t e r i n g i s n o t dependent upon t h e wavelength o f the r a d i a t i o n . This i s not g e n e r a l l y the c a s e , as i s i l l u s t r a t e d i n F i g u r e 6 . Once the v a l u e o f S has been d e t e r m i n e d by one o f t h e s e methods, E q u a t i o n 2 c a n be used t o o b t a i n the a b s o r p t i o n c o e f f i c i e n t o f the s p e c i m e n . Measurements o f t h e Oxygen C o n t e n t o f S i l i c o n Wafers The s h o r t - t e r m r e p r o d u c i b i l i t y o f i n f r a r e d a b s o r p t i o n s p e c t r o s c o p y i n the d e t e r m i n a t i o n of the oxygen c o n t e n t o f a t y p i c a l p r o d u c t i o n s i l i con wafer c a n be g o o d , as shown i n F i g u r e 7. These d a t a r e p r e s e n t t w e n t y - f o u r c o n s e c u t i v e measurements o f a s i n g l e s p o t on a s i l i c o n wafer w i t h an e t c h e d back s u r f a c e . The d a t a were o b t a i n e d a t 4 c m " r e s o l u t i o n on an F T - I R s p e c t r o p h o t o m e t e r equipped w i t h a mercury cadmium t e l l u r i d e d e t e c t o r , a KBr/Ge b e a m s p l i t t e r and a G l o b a r (59) IR s o u r c e . A 1 mm a p e r t u r e was p l a c e d i n f r o n t o f the s i l i c o n w a f e r , and 200 scans were taken f o r each d a t a p o i n t . Unfortunately, this degree o f r e p r o d u c i b i l i t y o n l y demonstrates the p o t e n t i a l p r e c i s i o n of F T - I R measurements. In f a c t , v a r i a t i o n s o f up t o 20% have been r e p o r t e d (60-62)• These v a r i a t i o n s can o c c u r i n the measurement o f the same specimen by d i f f e r e n t l a b o r a t o r i e s o r i n t h e a n a l y s i s of a g i v e n specimen b e f o r e and a f t e r i t has undergone d i f f e r e n t b a c k surface treatments. E x p e r i e n c e s of t h i s k i n d have caused a l a c k o f c o n f i d e n c e i n the p r e c i s i o n o f the IR method f o r the d e t e r m i n a t i o n o f the oxygen c o n t e n t o f p r o d u c t i o n s i l i c o n w a f e r s . T h i s problem has been a s c r i b e d t o d i f f e r e n c e s among the wide v a r i e t y o f i n s t r u m e n t models and computer s o f t w a r e packages used i n the measurements (610 • V a r i a t i o n s i n the specimen c o n d i t i o n , i . e . , dopant l e v e l , b a c k s u r f a c e t r e a t m e n t o r oxygen d i s t r i b u t i o n have a l s o been a s o u r c e o f poor r e p r o d u c i b i l i t y ( 8 , 9 , 5 2 , 5 3 , 6 3 ) . 1
S h i v e and S c h u l t e (61) have d e s c r i b e d a r e f e r e n c e m a t e r i a l s a p p r o a c h t o improve the p r e c i s o n o f the IR a n a l y s i s method. The r e f e r e n c e s i l i c o n wafers were g i v e n one o f the s t a n d a r d b a c k - s u r f a c e treatments: a c i d e t c h e d ( A E ) , b a c k - s u r f a c e damaged (BSD), o r e n hanced g e t t e r e d ( E G ) . The EG wafers were a c i d - e t c h e d w a f e r s w i t h a p o l y c r y s t a l l i n e s i l i c o n l a y e r d e p o s i t e d on t h e i r rough s i d e . Each wafer was q u a r t e r e d and then one of t h e q u a r t e r s e c t i o n s was p o l i s h e d on the back s u r f a c e . An oxygen c o n t e n t was a s s i g n e d t o each wafer by a n a l y z i n g t h i s d o u b l e - s i d e p o l i s h e d (DSP) s e c t i o n . The oxygen c o n t e n t s were determined a u t o m a t i c a l l y from the t r a n s f o r m e d s p e c t r a u s i n g computer programs w r i t t e n by the i n s t r u m e n t ' s m a n u f a c t u r e r .
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
222
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION
500
650
800
950
1100
1250 1400
WAVENUMBERS (cm' ) 1
Figure 6.
Spectrum o f a s i l i c o n w a f e r w i t h a back s u r f a c e w h i c h was m e c h a n i c a l l y damaged t o p r o v i d e g e t t e r i n g s i t e s .
c » ~ X
CO
1.00
£ 8 0.0
4.0
J_ 8.0
-L 12.0
±
I -L 16.0 20.0 24.0
28.0
32.0
Measurement Number
F i g u r e 7.
R e p r o d u c i b i l i t y o f c o n s e c u t i v e measurements o f t h e same spot on a C z o c h r a l s k i s i l i c o n wafer c o n t a i n i n g a p p r o x i m a t e l y 7.3 x i o i n t e r s t i t i a l oxygen atoms/cm^ 1 7
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
12.
BAGHDADI
223
Oxygen and Carbon Content of Silicon Wafers
The b i a s of the d a t a , which was d e f i n e d as the d i f f e r e n c e between the oxygen c o n t e n t d e t e r m i n e d f o r the DSP s e c t i o n and the oxygen c o n t e n t d e t e r m i n e d f o r the s i n g l e - s i d e p o l i s h e d (SSP) s e c t i o n s , was d e t e r mined f o r each type o f back surface* c o n d i t i o n . I t s h o u l d be n o t e d t h a t the oxygen c o n c e n t r a t i o n s quoted i n S h i v e and S h u l t e ' s paper were based upon the " o l d " ASTM c a l i b r a t i o n c o e f f i c i e n t ( 6 4 ) , and have been c o n v e r t e d here t o v a l u e s u s i n g the most c u r r e n t ASTM c o e f f i c i e n t (48). T h i s method t u r n e d o u t t o be s u c c e s s f u l w i t h the BSD w a f e r s , b u t n o t w i t h the AE o r EG wafers (61)• The r e a s o n f o r the f a i l u r e w i t h t h e AE and EG back s u r f a c e c o n d i t i o n s was a t t r i b u t e d t o the d r a m a t i c v a r i a b i l i t y o f the s c a t t e r i n g o f these w a f e r s . In these c a s e s , a method f o r o b t a i n i n g the m u l t i p l e r e f l e c t i o n c o r r e c t i o n d i r e c t l y from the specimen i n t e r f e r o g r a m o r s p e c t r u m , such as one o f the methods d e s c r i b e d i n the s e c t i o n on I n f r a r e d A b s o r p t i o n M e a s u r e ments, s h o u l d be u s e d . The c a l i b r a t i o n method a l s o worked w e l l w i t h DSP w a f e r s . Thus t h e c a l i b r a t i o n method was s u c c e s s f u l e i t h e r when the f u l l m u l t i p l e r e f l e c t i o n c o r r e c t i o n c o u l d be a p p l i e d , i . e . , i n DSP w a f e r s , o r when t h e back s u r f a c e was so rough t h a t the magnitude o f the m u l t i p l e - r e f l e c t i o n c o r r e c t i o n was v e r y s m a l l , f o r example, i n the c a s e f o r BSD w a f e r s . Huber and S t a l l h o f e r r e a c h e d s u b s t a n t i a l l y s i m i l a r conclusions i n a recent a r t i c l e (65). High c o n c e n t r a t i o n s o f f r e e c a r r i e r s have i m p o r t a n t e f f e c t s on the p r e c i s i o n o f the oxygen c o n t e n t d e t e r m i n a t i o n i n s i l i c o n wafers by IR s p e c t r o p h o t o m e t r y (63). A b s o r p t i o n o f t h e IR beam by the f r e e c a r r i e r s (see F i g u r e 8) can reduce the s i g n a l - t o - n o i s e r a t i o o f the measurement u n t i l , f o r low r e s i s t i v i t y w a f e r s , m e a n i n g f u l m e a s u r e ments can no l o n g e r be made. The f r e e c a r r i e r s a l s o a f f e c t the r e f l e c t a n c e o f t h e s i l i c o n , thus c h a n g i n g the magnitude o f the m u l t i ple-reflection coefficient. However, s i n c e wafers w i t h r e s i s t i v i t i e s much below 0.1 ft*cm c a n n o t be measured, the e r r o r due t o t h i s e f f e c t i s l e s s than 1%. F i g u r e 9 shows the c o n t r i b u t i o n o f the f r e e c a r r i e r s t o t h e b a s e l i n e f o r the case o f n - t y p e s i l i c o n , as c a l c u l a t e d by Weeks ( 6 3 ) . These c a l c u l a t e d b a s e l i n e s proved t o be an e x c e l l e n t s i m u l a t i o n o f the b a s e l i n e s o f t r a n s m i s s i o n s p e c t r a o b t a i n e d f o r a s e r i e s o f n - t y p e s i l i c o n samples w i t h f r e e c a r r i e r c o n c e n t r a t i o n s r a n g i n g from 5 x 1 0 donors/cm to 5 x 1 0 d o n o r s / c m . The e f f e c t of t h i s c u r v i n g b a s e l i n e must be taken i n t o a c c o u n t i f the q u a n t i t a t i v e a n a l y s i s o f the spectrum r e l i e s on the r a t i o o f the oxygen peak a t 1107 c m " t o one o f the s t r o n g s i l i c o n l a t t i c e absorbance bands a t lower wavenumbers. 1 3
3
1 8
3
1
Some of the l a c k o f i n t e r l a b o r a t o r y r e p r o d u c i b i l i t y may be caused by t h e use o f d i f f e r e n t i n s t r u m e n t s . V a r i a t i o n s i n the oxygen c o n t e n t d e t e r m i n a t i o n c a n be due t o the use of d i f f e r e n t a p o d i z a t i o n f u n c t i o n s i n d i f f e r e n t FT-IR instruments, to d i f f e r e n t designs of t h e i r o p t i c a l benches or s i m p l y t o d i f f e r e n c e s i n the performance of t h e i r components. A p o d i z a t i o n f u n c t i o n s a r e used t o reduce the amp l i t u d e o f a r t i f a c t s i n the t r a n s f o r m e d s p e c t r a , caused by the t r u n c a t i o n o f t h e i n t e r f e r o g r a m s by t h e i n s t r u m e n t . Four o f t h e most commonly used a p o d i z a t i o n f u n c t i o n s a r e b o x c a r , c o s i n e , H a p p - G e n z e l , and t r i a n g u l a r ( 6 6 ) . The e f f e c t o f t h e s e d i f f e r e n t a p o d i z a t i o n f u n c t i o n s on the magnitude of the oxygen absorbance i s shown i n F i g u r e 10 (66)• Note t h a t t h e s e d a t a a r e n o t i n t e n d e d t o be used t o compare the peak h e i g h t a t one r e s o l u t i o n t o the peak h e i g h t a t a n o t h e r r e s o lution. They s h o u l d o n l y be used a t a g i v e n r e s o l u t i o n , t o compare the e f f e c t s of d i f f e r e n t a p o d i z a t i o n f u n c t i o n s a t t h a t r e s o l u t i o n .
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
224
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION
2 0
N t
r
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
18
16 -
14
^ c
1 2
-i o UJ
8
J 10
2
10
L 1
10°
_L 10
1
10
2
10
3
10
4
10
5
Resistivity (ohm-cm) F i g u r e 8.
E r r o r , based upon two s t a n d a r d d e v i a t i o n s o f a s e t o f 10 measurements, i n the d e t e r m i n a t i o n of the i n t e r s t i t i a l oxygen c o n t e n t of s i l i c o n a s a f u n c t i o n o f r e s i s t i v i t y f o r b o t h n - and p - t y p e s i l i c o n , e x p r e s s e d as a p e r c e n t a g e of the oxygen c o n c e n t r a t i o n . (Reproduced w i t h p e r m i s s i o n from R e f . 62. C o p y r i g h t 1983 ASTM.)
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
12.
BAGHDADI
Figure
9.
225
Oxygen and Carbon Content of Silicon Wafers
C a l c u l a t e d a b s o r p t i o n d u e t o f r e e - c a r r i e r s i n 500-um t h i c k n-type s i l i c o n c o n t a i n i n g 5 x 1 0 t o 1 x io donors/cm ( R e p r o d u c e d w i t h p e r m i s s i o n f r o m R e f . 62. Copyright 1983 ASTM.) 1
1 8
6
3
1.02
o fc^™^^ ^ 0.98 h
1
-
^
J
.
-o
• Boxcar
O.
| 0.94 -
\
V C o s l n e
X x
° Happ-Genzel A Triangular
w
\ \
0.90 2
4
8
Resolution (Wavenumbers) Figure
10. T h e e f f e c t o f t h e a p o d i z a t i o n f u n c t i o n o n t h e r e l a t i v e m a g n i t u d e o f t h e a b s o r b a n c e b a n d a t 1107 c m due t o i n t e r s t i t i a l oxygen i n s i l i c o n . These d a t a were o b t a i n e d o n a 0.87-mm t h i c k s i l i c o n w a f e r p o l i s h e d o n b o t h s i d e s . The e r r o r bars p l o t t e d on the t r i a n g u l a r apodization curve c a n a l s o be a p p l i e d t o t h e o t h e r c u r v e s . They r e p r e s e n t t h e greatest standard d e v i a t i o n f o r any o f the data sets ( c o s i n e , Happ-Genzel, o r t r i a n g u l a r ) obtained a t t h a t r e s o l u t i o n (65). - 1
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
226
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION
The oxygen determination is most often carried out at a resolution of 4 cm" ; at this resolution, the use of triangular apodization results in a reduction of the peak height by about 4%, compared to the peak height obtained by the use of boxcar apodization. The effects of beam geometry and polarization have also been calculated (66), and found not to be significant, except in the most extreme cases. For example, the change in the reflectance of a silicon wafer for a vertical, columnar IR beam with a maximum angle of incidence at the sample of 10 deg, polarized horizontally, is only 0.6%, compared to the case of an unpolarized beam. On the other hand, detector system nonlinearity in one instrument was found to be in part responsible for the lack of precision in the oxygen content determination (66)• Therefore, the lack of interlaboratory reproducibility is apparently not due to different optical bench designs in the different instruments, but rather is attributed to differences in the software or to the performance of the detector systems. The American Society for Testing and Materials (ASTM) recommends obtaining the interstitial oxygen concentration in atoms/cm by multiplying the peak absorptivity at 1107 cm" by 2.45 x 10 (48); the same conversion coefficient is also used by the German standards organization, Deutsches Institut fttr Normung (DIN) (48,67). This value was obtained by calibrating the infrared absorptivity using vacuum fusion analysis. However, the Japan Electronics Development Association (JEIDA), using charged-particle activation analysis, has obtained a significantly different value, 3.0 x 10 (68). The ASTM and DIN conversion coefficient for obtaining the substitutional carbon content from the peak absorptivity at 605 cm" is 1.0 x 10 (69) • This coefficient was determined using deuteron activation analysis as the absolute analytical method (70)•
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
1
3
1
17
17
1
17
Conclusions Fourier transform infrared spectrophotometry is used widely in the semiconductor industry for the routine determination of the interstitial oxygen content of production silicon wafers. However, the lack of interlaboratory reproducibility in this method has forced the use of ad-hoc calibration methods. The sources of this lack of reproducibility are just beginning to be understood. As investigation of this problem continues and wider acceptance is gained for improved experimental and analytical techniques, a greater degree of reproducibility should be achieved. Furthermore, new standard test methods and standard reference materials being developed by the ASTM (TV), DIN (72^), JEIDA (Jl) r Bureau Centrale de Materiaux References (73) should also significantly improve the precision of the impurity content determination. a n d
t n e
Literature Cited 1. 2.
Miller, R. L . ; Robinson, A. H.; Ferris, S. D. In "Semiconductor Characterization" edited by Barnes, P. A., and Rozgonyi, G. A., The Electrochemical Society, Pennington, N.J., 1978, pp. 1-17. Craven, R. A.; Korb, H. W. Solid State Technology 1981, 24, 5561.
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
12. BAGHDADI 3. 4. 5.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
6. 7. 8. 9.
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
Oxygen and Carbon Content of Silicon Wafers
Benson, K. E.; Lin, W.; Martin, E. P. In "Semiconductor Silicon 1981", Huff, H. R.; Kriegler, R. J.; and Takeishi, Y., Eds.; The Electrochemical Society: Pennington, N.J., 1981; pp. 33-48. Murgai, A.; Patrick, W. J.; Combronde, J. C.; Felix, J. C. IBM J. Res. Develop. 1982, 26, 546-552. Abe, T.; Kikuchi, K.; Shirai, S.; Muraoka, S. In "Semiconductor Silicon 1981", Huff, H. R.; Kriegler, R. J . ; and Takeishi, Y., Eds.; The Electrochemical Society: Pennington, N.J., 1981; pp. 54-71. Rava, P.; Gatos, H. C.; Lagowski, J. In "Semiconductor Silicon 1981", Huff, H. R.; Kriegler, R. J.; and Takeishi, Y., Eds.; The Electrochemical Society: Pennington, N.J., 1981; pp. 232-243. Ohsawa, A.; Honda, K.; Yoshikawa, M. Fujitsu Scientific and Technical J . 1980, pp. 123-134. Forman, R. A.; Bell, M. I.; Mayo, S.; Kahn, A. H. J . Appl. Phys. 1984, 55, 547-554. Forman, R. A.; Bell, M. I.; Baghdadi, A.; Mayo, S. Proc. Symp. on Defects in Silicon, Bullis, W. M. and Kimerling, L. C., Eds.; The Electrochemical Society: Pennington, N.J., 1983; pp. 303312. Suzuki, T.; Isawa, N.; Okuba, Y.; Hoshi, K., ibid, pp. 90-100. Watanabe, M.; Usami, T.; Muraoka, H.; Matsuo, S.; Imanishi, Y.; Nagashima, H., ibid, pp. 126-137. Bond, W. L . ; Kaiser, W. J . Phys. Chem. Solids 1960, 16, 44-45. Pajot, B. Analusis 1977, 5, 293-303. Hrostowski, H. J.; Adler, B. J. J . Chem. Phys. 1960, 33, 980990. Corbett, J. W.; McDonald, R. S.; Watkins, G. D. J . Phys. Chem. Solids 1964, 25, 873-879. Stavola, M. Appl. Phys. Lett. 1984, 44, 514-516. Bosomworth, D. R.; Hayes, W.; Spray, A. R. L.; Watkins, G. D. Proc. Royal Society of London 1970, A317, pp. 133-152. Pajot, B.; Deltour, J. P. Infrared Phys. 1967, 7, 195-200. Baber, S. C. Thin Solid Films 1980, 72, 201-210. Patel, J. R. In "Semiconductor Silicon 1977", Huff, H. R. and Sirtl, E., Eds.; The Electrochemical Society: Pennington, N.J., 1977; pp. 521-545. Jastrzebski, L. IEEE Trans. Electron Devices 1982, ED-29, 475487. Oeder, R.; Wagner, P. In "Defects in Semiconductors II", Mahajan, S. and Corbett, J. W., Eds.; North-Holland, N.Y., 1983; pp. 171-175. Kaiser, W.; Frisch, H. L.; Reiss, H. Phys. Rev. 1958, 112, 1546-1554. Helmreich, D.; Sirtl, E. In "Semiconductor Silicon 1977", Huff, H. R. and Sirtl, E . , Eds.; The Electrochemical Society: Pennington, N.J., 1977; pp. 626-636. Gosele, U.; Tan, T. Y. Appl. Phys. 1982, 28, 79-92. Oehrlein, G. S.; Corbett, J. W. In "Defects in Semiconductors II", Mahajan, S. and Corbett, J. W., Eds.; North-Holland, N.Y., 1983; p. 107-123. Capper, P.; Jones, A. W.; Wallhouse, E. J.; Wilkes, J. G. J. Appl. Phys. 1977, 48, 1646-1655. Craven, R. A. Technical Digest, International Electron Devices Meeting, Washington, DC, 1981, IEEE, N.Y., pp. 228-231.
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
227
228 29. 30. 31. 32.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
33.
34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56.
MICROELECTRONICS PROCESSING: INORGANIC MATERIALS CHARACTERIZATION Shimura, F.; Tsuya, H. J. Electrochem. Soc. 1982, 129, 20892095. Patel, J. R. In "Semiconductor Silicon 1981", Huff, H. R.; Kriegler, R. J.; and Takeishi, Y., Eds.; The Electrochemical Society: Pennington, N.J., 1981; pp. 189-207. Hu, S. M. J . Appl. Phys. 1980, 51, 5945-5948. Patrick, W. J., NBS Symposium on Silicon Processing, National Bureau of Standards Special Publication Number 337, pp. 442-449, 1970. Tempelhoff, K.; Hahn, B.; Gleichman, R. In "Semiconductor Silicon 1981", Huff, H. R., Kriegler, R. J., and Takeishi, Y., Eds., The Electrochemical Society: Pennington, N.J., 1981; pp. 244253. Vidrine, D. W. Anal. Chem. 1980, 52, 92-96. Kolbesen, B. O.; Kladenovic (sic), T. Kristall und Technik 1980, 15, K1-K3. Kolbesen, B. O.; Muhlbauer, A. Solid State Electronics 1982, 25, 759-775. Kishino, S.; Matsushita, Y.; Kanamori, M. Appl. Phys. Lett. 1979, 35, 213-215. Ogino, M. Appl. Phys. Lett. 1982, 41, 847-849. Oehrlein, G. S.; Lindstrom, J. L.; Corbett, J. W. Appl. Phys. Lett. 1982, 40, 241-243. Ohsawa, A.; Takizawa, R.; Honda, K.; Shibatomi, A.; Ohkawa, S. J. Appl. Phys. 1982, 53, 5733-5737. Jones, C. E.; Schafer, D.; Scott, W.; Mazer, R. J. J. Appl. Phys. 1981, 52, no. 8, pp. 5148-5158. Donovan, B.; Angress, J. F. "Lattice Vibrations"; Chapman and Hall: London, 1971; p. 167. Barker, Jr., A. S.; Sievers, A. J. "Reviews of Modern Physics"; 47, Suppl. No. 2, 1975; S39-S40. Newman, R. C. "Infrared Studies of Defects in Crystals"; Taylor and Francis: London, 1973; ch. 6. Baghdadi, A. Appl. Spectros. 1981, 35, 473-475. Baghdadi, A. Appl. Spectros. 1983, 37, 520-523. Mead, D. G.; Lowry, S. R. Appl. Spectros. 1980, 34, 167-172. Standard Test Method F121-80, Annual Book of ASTM Standards, Part 43, 1982, pp. 538-540. Hirschfeld, T.; Mantz, A. W. Appl. Spectros. 1976, 30, 552553. Leroueille, J. Appl. Spectros. 1982, 36, 153-155. Thurber, W. R., NBS Technical Note 529, National Bureau of Standards, Washington, DC, 1970. Graupner, R. K., in Silicon Processing, ASTM STP 804, Gupta, D. C., Ed.; American Society for Testing and Materials, 1983; pp. 459-468. Baghdadi, A. Proc. Symp. Defects in Silicon, Bullis, W. M. and Kimerling, L. C., Eds.; The Electrochemical Society: Pennington, N.J., 1983; pp. 293-302. Pearce, C. W. "VLSI Technology"; Sze, S. M., Ed.; McGraw-Hill: N.Y., 1983; p. 39. Monkowski, J. R. Solid State Technology 1981, 24, 44-51. Kulkarni, M. V., IBM Corporation, private communication.
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
12. BAGHDADI
Oxygen and Carbon Content of Silicon Wafers
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 28, 1986 | doi: 10.1021/bk-1986-0295.ch012
57.
229
Krishnan, K. Proc. Symp. on Defects in Silicon, Bullis, W. M. and Kimerling, L. C., Eds.; The Electrochemical Society: Pennington, N.J., 1983; pp. 285-292. 58. Graff, K. J . Electrochem. Soc. 1983, 130, 1378-1381. 59. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purposes. 60. Matlock, J. H., SEH America, Inc., private communication. 61. Shive, L. W.; Shulte, B. K. Third ASTM Symposium on Semiconductor Processing, Gupta, D. C., Ed.; 1984 (to be published). 62. Bullis, W. M.; O'Mara, W. C. Proc. Symp. on Defects in Silicon, Bullis, W. M. and Kimerling, L. C., Eds.; The Electrochemical Society: Pennington, N.J., 1983; pp. 275-284. 63. Weeks, S. P. Third ASTM Symp. on Semiconductor Processing, Gupta, D. C., Ed.; 1984 (to be published). 64. Standard Test Method F121-79, Annual Book of ASTM Standards, Part 43, 1979, pp. 519-521. 65. Stallhofer, P.; Huber, D. Solid State Technology 1983, 26, 233237. 66. Baghdadi, A. Third ASTM Symp. on Semiconductor Processing, Gupta, D. C., Ed.; 1984 (to be published). 67. Graff, K.; Grallath, E.; Ades, S.; Goldbach, G.; Tolg, G. Solid State Electronics 1973, 16, 887-893. 68. Iizuka, T.; Takasu, Shin.; Tajima, M.; Arai, T.; Nozaki, M.; Inoue, N; Watanabe, M. Proc. Symp. on Defects in Silicon, Bullis, W. M. and Kimerling, L. C., Eds.; The Electrochemical Society: Pennington, N.J., 1983; pp. 265-274. 69. Standard Test Method F123-81, Annual Book of ASTM Standards, Part 43, pp. 543-548. 70. Haas, E.; Kolbesen, B. O., Contract No. NT 74 Dk 546.28.05:621.382.2/.3 Technological Program of the Federal Department of Research and Technology of the FRG, 1973; p. 42. 71. Baghdadi, A., verbal report at the meeting of the ASTM Subcommittee on Semiconductor Physical Properties, F1.04, San Jose, California, 1984. 72. Vieweg-Gutberlet, F., verbal report at the meeting of the ASTM Subcommittee on Semiconductor Physical Properties, F1.04, San Jose, California, 1984. 73. Scace, R. I., National Bureau of Standards, private communication. 74. Yasutake, K.; Umeno, M.; Kawabe, H.; Nakayama, N.; Nishino, T.; Hamakawa, Y. Jpn. J. Appl. Phys. 1982, 21, 28-32. 75. Patrick, W.; Hearn, E.; Westdorp, W.; Bong, A. J . Appl. Phys. 1979, 50, 7156-7164. 76. Johnson, F. A. Proc. Phys. Soc., 1959, 73, 265-272. RECEIVED June 18, 1985
Casper; Microelectronics Processing: Inorganic Materials Characterization ACS Symposium Series; American Chemical Society: Washington, DC, 1986.