12 Mechanism of Autoreduction of Ferric Porphyrins and the Activation of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
Coordinated Ligands GERD N. LA MAR and JOHN DEL GAUDIO Department of Chemistry, University of California, Davis, CA 95616 The autoreduction of ferric porphyrins in the presence of certain ligands is accompanied by the formation of ligand radicals, suggesting that these reactions may serve as models for the activation of substrates by peroxidases. NMR and ESR spectroscopy demonstrate that the autoreduction of the dicyanotetraphenylporphinatoferrate(III) yields the dicyano ferrous porphyrin and the cyanide radical by a mechanism thought to involve homolytic bond cleavage. Similar reac tions are observed with n-hexane thiol and piperidine. The reoxidation by molecular oxygen of the ferrous complex of CN or tributyl phosphine leads directly to the low spin ferric complex, as opposed to the expected oxo-dimer. A mechanism involving the formation of the superoxide anion is proposed, suggesting that this reaction may model the hemoprotein activation of molecular oxygen. -
Tron porphyrins constitute the active site of an important class of redox metalloenzymes. This class includes the cytochromes which are in volved in electron transfer processes ( 1 ) ; peroxidases, whose main func tion is to oxidize substrates at the expense of hydrogen peroxide (2); and oxygenases, which catalyze the incorporation of oxygen into sub strates via the activation of molecular oxygen (3). Although the func tions of these enzymes are quite varied, they all cause the iron atom to undergo valency changes during the operation of the enzyme. The mechanism by which an electron is transferred to and from the iron atom is poorly understood. In the case of a simple redox enzyme such as cytochrome c where both sites of the heme iron are ligated by peptide side chains, two path ways have been suggested by which an electron can travel to or from the 207 Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
208
BIOINORGANIC C H E M I S T R Y
II
i r o n a t o m — a d i r e c t e l e c t r o n t r a n s f e r f r o m the e n z y m e r e d u c t a s e to a n e x p o s e d e d g e of the p o r p h y r i n π c l o u d f o l l o w e d b y a r a p i d transfer to t h e i r o n or, a l t e r n a t i v e l y ( 4 ) , e l e c t r o n transfer v i a a n a x i a l l i g a n d of the iron porphyrin (5).
B o t h reduction mechanisms involve rapid ligand-to-
m e t a l c h a r g e transfer as a c r i t i c a l step i n t h e process.
A r e l a t e d class of
r e d o x h e m o p r o t e i n s , i n c l u d i n g oxygenases, peroxidases, a n d
cytochrome
P 4 5 0 , has o n l y one p o l y p e p t i d e s i d e - c h a i n l i g a n d b o u n d to the h e m e i r o n ,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
w i t h t h e sixth site a v a i l a b l e for c o o r d i n a t i n g a substrate w h i c h is to b e activated.
T h u s these e n z y m e s
are i n v o l v e d not o n l y i n o n e - e l e c t r o n
v a l e n c y changes of the i r o n , b u t these changes are also c o u p l e d to the o x i d a t i o n or r e d u c t i o n of the substrates. I n the case of oxygenases a n d cytochrome
P 4 5 0 , this a c t i v a t i o n of
i n v o l v e f o r m a t i o n of
the s u p e r o x i d e
molecular oxygen ion
(6)
by
is t h o u g h t
to
a reaction such
as
R e a c t i o n 1. T h e s u p e r o x i d e i o n as the a c t i v a t e d f o r m of m o l e c u l a r o x y g e n has b e e n s u b s t a n t i a t e d ( 6 ). E-Fe :0
-> E - F e
2
m
+ (V
(1)
Peroxidases p e r o x i d i z e a v a r i e t y of substrates at the expense hydrogen peroxide.
of
T h e s e peroxidases o x i d i z e a m i n e s , A H , for w h i c h 2
p r o d u c t analysis has suggested
a free r a d i c a l i n t e r m e d i a t e ( 2 ) .
c u r r e n t l y a c c e p t e d v a l e n c y changes of the e n z y m e c a n b e b y the scheme i n Reactions 2-5. perox ( F e
111
) +
H 0 2
compound I + A H
2
2
compound I I + A H
The
represented
R e a c t i o n 2 represents the c o n v e r s i o n -> c o m p o u n d I ( F e , p o r )
(2)
compound I I ( F e ) + A H *
(3)
I V
+
I V
2
perox ( F e )
+
m
AH'
(4)
A H ' - » products
(5)
of t h e e n z y m e to a h i g h l y o x i d i z e d state w h i c h is c a p a b l e of one
two-
e l e c t r o n or t w o o n e - e l e c t r o n o x i d a t i o n s ( 7 )
por
(por
+
represents the
p h y r i n r a d i c a l ) . I n R e a c t i o n s 3 a n d 4, a c t i v a t i o n of t h e a m i n e is p r o p o s e d to consist of o n e - e l e c t r o n o x i d a t i o n s of t h e a m i n e . H o w e v e r , the one-electron
o x i d a t i o n of c o o r d i n a t e d l i g a n d s b y i r o n p o r p h y r i n s h a d
not b e e n d e m o n s t r a t e d at the t i m e w e i n i t i a t e d this r e s e a r c h . E S R i n v e s t i g a t i o n s of the o x i d a t i o n of some substrates b y peroxidases h a v e p r o v i d e d direct evidence
f o r t r a n s i e n t free r a d i c a l i n t e r m e d i a t e s ( 8 ,
9).
H o w e v e r , i t has not b e e n d e t e r m i n e d w h e t h e r these substrates c o o r d i n a t e to the i r o n or w h e t h e r t h e y are s e c o n d a r y p r o d u c t s of a c t i v a t i o n b y t h e enzyme.
T h e i d e n t i f i c a t i o n a n d i n v e s t i g a t i o n of m o d e l systems w h i c h
c a n a c t i v a t e substrates b y o n e - e l e c t r o n r e d o x reactions c a n b e to p r o v i d e v a l u a b l e i n s i g h t i n t o the m e c h a n i s m of t h e h e m e
expected
enzymes.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
L A M A R AND D E L GAUDio
209
Ferric Porphyrins and Ligands
S c a t t e r e d reports h a v e a p p e a r e d i n the l i t e r a t u r e i n d i c a t i n g t h a t f e r r i c p o r p h y r i n s c a n a u t o r e d u c e i n solutions c o n t a i n i n g c e r t a i n p o t e n t i a l l i g a n d s (10, 11, 12).
P r o b a b l y the best k n o w n e x a m p l e is the f o r m a t i o n
of b i s ( p i p e r i d i n e ) t e t r a p h e n y l p o r p h o r i n a t o i r o n ( I I ), T P P F e the a d d i t i o n of
1 1
( pip ) , 2
by
p i p e r i d i n e to c h l o r o t e t r a p h e n y l p o r p h y r i n a t o i r o n ( I I I ) ,
R e a c t i o n 6. A l t h o u g h this r e a c t i o n w a s first r e p o r t e d i n 1967 (13),
the
pip TPPFe Cl
TPPFe
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
m
1 1
(pip) 2
(6)
i d e n t i t y of the r e d u c i n g agent a n d the m e c h a n i s m of the r e a c t i o n r e m a i n e d o b s c u r e u n t i l v e r y r e c e n t l y . O u r recent p r e l i m i n a r y c o m m u n i c a t i o n (14)
o n the a u t o r e d u c t i o n of f e r r i c p o r p h y r i n s d e m o n s t r a t e d t h a t
this r e a c t i o n i n v o l v e s r e d u c t i o n of the c o m p l e x b y a p r e s u m a b l y c o o r d i n a t e d l i g a n d , w i t h t h e substrate b e i n g o x i d i z e d to a free r a d i c a l .
The
r a d i c a l s w e r e r e a d i l y d e t e c t e d b y the a p p e a r a n c e of a n E S R s i g n a l d u r i n g the r e a c t i o n i n v o l v i n g c y a n i d e i o n , p i p e r i d i n e , or n - h e x a n e t h i o l as substrates. I n a s m u c h as this r e d o x r e a c t i o n p r o v i d e s a m e t h o d f o r a c t i v a t i n g substrates w h i c h m a y c o o r d i n a t e to i r o n p o r p h y r i n s a n d h e n c e p r o v i d e s some k i n d of a m o d e l for p e r o x i d a s e a c t i v i t y , w e h a v e c o n t i n u e d o u r w o r k o n the r e d o x system most a m e n a b l e to s p e c t r o s c o p i c i n v e s t i g a t i o n , n a m e l y the c y a n i d e i o n o x i d a t i o n . W e h a v e f u r t h e r d i s c o v e r e d that o x i d a t i o n of the r e d u c e d b i s - c y a n o ferrous c o m p l e x b y m o l e c u l a r
oxygen
does not y i e l d the e x p e c t e d o x o - b r i d g e d d i m e r ( 1 5 ) b u t i n s t e a d appears to p r o c e e d b y a m e c h a n i s m that suggests f o r m a t i o n of the s u p e r o x i d e i o n , 0 " . S i n c e this latter process w o u l d represent the o n e - e l e c t r o n r e d u c 2
t i o n of m o l e c u l a r o x y g e n b y a ferrous p o r p h y r i n c o m p l e x
and could
c o n c e i v a b l y s h e d l i g h t o n the m e c h a n i s m of o x y g e n a c t i v a t i o n (6),
the
r e o x i d a t i o n b y m o l e c u l a r o x y g e n of the a u t o r e d u c e d f e r r i c complexes w a s also i n v e s t i g a t e d s p e c t r o s c o p i c a l l y . T h u s the t w o reactions w h i c h w e p r o p o s e to c l a r i f y are the a u t o reduction (Reaction 7)
( w h e r e Ρ is a g e n e r a l p o r p h y r i n ) a n d the s u b
sequent r e o x i d a t i o n ( R e a c t i o n 8 ). A l t h o u g h a n u m b e r of substrates ( i.e., L
P¥e X->PFe L ? UI
u
PFe L * + 0 n
2
2
2
(7)
+ L
-> P F e L * m
2
(8)
+ 1
a m i n e s , t h i o l s , p h o s p h i n e s , c y a n i d e ) , r e a c t e d a c c o r d i n g to R e a c t i o n 7, as e v i d e n c e d b y the c h a n g e f r o m f e r r i c to ferrous o p t i c a l a n d N M R s p e c t r a , o u r w o r k e m p h a s i z e s the reactions for L =
C N ~ because the
n a t u r e of the complexes i n b o t h o x i d a t i o n states c a n b e d e t e r m i n e d . T h e
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
210
BIOINORGANIC C H E M I S T R Y
II
p r e l i m i n a r y d a t a o n t h e m o r e c o m p l e x p i p e r i d i n e r e a c t i o n are p r e s e n t e d o n l y to i n d i c a t e that the a u t o r e d u c t i o n m e c h a n i s m i n v o l v i n g a
one-
e l e c t r o n r e d o x r e a c t i o n a p p e a r s c o m m o n for t h e v a r i o u s substrates. Experimental Materials. T h e T P P F e C l w a s p r e p a r e d a n d p u r i f i e d b y l i t e r a t u r e m e t h o d s (16, 17). O c t a e t h y l p o r p h y r i n w a s a gift f r o m H . H . I n h o f f e n , a n d the h e m i n d i m e t h y l ester [ P P ( I X ) D M E F e C l ] w a s p u r c a s e d f r o m Sigma Chemical Co. T h e solvents u s e d f o r N M R a n d E S R m e a s u r e m e n t s w e r e c o m m e r c i a l sources of d e u t e r a t e d solvents w h i l e s p e c t r o - g r a d e solvents w e r e u s e d f o r v i s i b l e s p e c t r a . Solvents w e r e d r i e d b y s t o r i n g over m o l e c u l a r sieves. T h e amines, tributyl phosphine, n-hexanethiol, N a C N , a n d K C N w e r e o b t a i n e d f r o m s t a n d a r d c o m m e r c i a l sources. T h e C N ~ source i n C D C 1 a n d C D C 1 w a s N B u C N w h i c h was p r e p a r e d b y l i t e r a t u r e methods (18).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
m
3
2
2
4
Spectroscopic Measurements. N M R S P E C T R A . T h e N M R s p e c t r a w e r e r e c o r d e d at 2 9 8 ° C w i t h a J E O L - P S 1 0 0 F T N M R spectrometer o p e r a t i n g at 99.5 M H z . T h e a u t o r e d u c t i o n s w e r e d o n e d i r e c t l y i n the N M R t u b e , g e n e r a l l y w i t h 0 . 4 - m l samples of 1 0 - m M i r o n p o r p h y r i n solutions c o n t a i n i n g a 2 0 - 1 0 0 m o l a r excess of the substrate. S a m p l e s w e r e r o u tinely prepared i n a nitrogen atmosphere. A n a e r o b i c samples w e r e p r e p a r e d b y d e g a s s i n g t h e solvent b y t h r e e f r e e z e - t h a w cycles w h i l e solids a n d N M R tubes w e r e degassed b y p l a c i n g u n d e r v a c u u m , t h e n s t o r i n g i n a n i t r o g e n a t m o s p h e r e . If o x y g e n is not c a r e f u l l y e x c l u d e d , the ferrous p o r p h y r i n o b t a i n e d b y the a u t o r e d u c t i o n m a y b e r a p i d l y o x i d i z e d to the o x o - b r i d g e d d i m e r . A p h o t o c h e m i c a l c o n t r i b u t i o n to the a u t o r e d u c t i o n r e a c t i o n w a s i n v e s t i g a t e d b y p r e p a r i n g t w o i d e n t i c a l N M R samples of T P P F e ( CN) i n d r y D M S O c o n t a i n i n g excess C N " ; one s a m p l e w a s s h i e l d e d f r o m a n d the other exposed to the n o r m a l fluorescent l i g h t i n the l a b o r a t o r y . T h e N M R w e r e r e c o r d e d , a n d i t w a s n o t e d t h a t the e x p o s e d s a m p l e a u t o r e d u c e d a b o u t 5 0 % faster. U n d e r the c o n d i t i o n s of the e x p e r i m e n t , t h e r m a l effects o n the e x p o s e d s a m p l e are e x p e c t e d to b e n e g l i g i b l e . T h e ferrous p o r p h y r i n s w e r e r e o x i d i z e d b y i n t r o d u c i n g o x y g e n i n t o the N M R t u b e of the a u t o r e d u c e d s a m p l e . T o detect w a t e r as a p r o d u c t of the r e o x i d a t i o n of T P P F e ( C N ) ~ , it was necessary to c o m p l e t e l y e x c l u d e the p o s s i b i l i t y of a t m o s p h e r i c contact ( d r y D M S O r a p i d l y a b sorbs w a t e r f r o m the a t m o s p h e r e ) . T h e s e e x p e r i m e n t s w e r e d o n e i n a n N M R t u b e fitted w i t h a g r o u n d glass stopcock. T h i s a l l o w e d the a d d i t i o n of o x y g e n i n t o the N M R t u b e b y v a c u u m l i n e t e c h n i q u e s , c o m p l e t e l y e l i m i n a t i n g a t m o s p h e r i c contact. E x p e r i m e n t s d o n e o n b l a n k s of d r y D M S O showed no water peak. 1 1 1
2
1 _
1
1 1
E S R SPECTRA. E P R spectrometer. i n the E S R c a v i t y t i o n as the a b o v e E S R a n d N M R of
2
2
T h e E S R spectra w e r e r e c o r d e d w i t h a V a r i a n E - 4 T h e autoreductions a n d reoxidations were followed g e n e r a l l y w i t h 0 . 1 - m l samples of t h e same c o n c e n t r a N M R samples. I n the case of T P P F e (CN) the the a u t o r e d u c t i o n w e r e r e c o r d e d o n the same s a m p l e 1 1 1
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2
1 _
12.
211
Ferric Porphyrins and Ligands
L A M A R A N D D E L G AUDIO
b y s u p p o r t i n g the E S R t u b e i n a n N M R t u b e , thus v e r i f y i n g that t h e E S R s i g n a l arose as t h e a u t o r e d u c t i o n p r o c e e d e d . V I S I B L E S P E C T R A . T h e v i s i b l e s p e c t r a w e r e o b t a i n e d w i t h a C a r y 14 r e c o r d i n g s p e c t r o p h o t o m e t e r b y s t a n d a r d t e c h n i q u e s . T h e s p e c t r u m of TPPFe (CN)2 i n D M S O c o n t a i n i n g excess C N ~ w a s o b t a i n e d u n d e r o x y g e n to i n s u r e t h a t a u t o r e d u c t i o n h a d not o c c u r r e d . T h e s p e c t r u m of T P P F e ( C N ) ~ was obtained on a sample whose N M R spectrum h a d indicated complete reduction. i n
1 _
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
1 1
2
Results and
2
Discussion
Autoreduction
of Fe(III)
Porphyrins.
OXIDATION
O F PIPERIDINE.
T h e a u t o r e d u c t i o n of T P P F e C l w i t h neat p i p e r i d i n e is r a p i d , h o w e v e r t h e r e a c t i o n rate c a n b e d e c r e a s e d b y d i l u t i o n w i t h C D C 1
3
or
DMSO.
T h e N M R s p e c t r u m of T P P F e C l i n C D C 1 , o n a d d i t i o n of p i p e r i d i n e , 3
shows resonances consistent w i t h the p r e s e n c e of h i g h s p i n F e ( I I I ) low spin T P P F e observed.
1 1
(Pip) . 2
A low spin T P P F e
I t is l i k e l y t h a t t h e l a t t e r c o m p l e x
1 1 1
(Pip)
2
and
species w a s
r a p i d l y reduces
at
not room
temperature. 15.8 G
Figure 1. ESR signal obtained by adding piperidine to a CDCl solution of TPPFeCl 3
Q=2.006
T h e r e d u c t i o n w a s c a r r i e d out i n a n E S R c a v i t y a n d f o u n d to accompanied
b y the appearance
be
of a s t r o n g E S R s i g n a l e x h i b i t i n g a
t r i p l e t s t r u c t u r e i n d i c a t i v e of a n a m i n e r a d i c a l ( F i g u r e 1 ) .
T h i s suggests
t h a t the r e d u c t i o n of the i r o n p o r p h y r i n p r o c e e d s b y a o n e - e l e c t r o n o x i d a t i o n of a c o o r d i n a t e d p i p e r i d i n e . H o r s e r a d i s h p e r o x i d a s e activates a n i l i n e (2),
a n d the a c t i v a t i o n is t h o u g h t to o c c u r v i a t h e g e n e r a t i o n of
a n i l i n e r a d i c a l , ( C H N H · ). 6
5
T h e r e is a s i m i l a r i t y b e t w e e n
an
Reaction 4
of t h e p e r o x i d a s e scheme, w h i c h i n t h e case of a n i l i n e w o u l d i n v o l v e t h e o n e - e l e c t r o n o x i d a t i o n of a n i l i n e , p e r h a p s b y c o o r d i n a t i o n to a n F e ( I V )
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
212
BIOINORGANIC C H E M I S T R Y
porphyrin, compared
w i t h R e a c t i o n 7 w h i c h most l i k e l y i n v o l v e s
II
the
o n e - e l e c t r o n o x i d a t i o n of p i p e r i d i n e c o o r d i n a t e d to a n F e ( I I I ) p o r p h y r i n . T h e p i p e r i d i n e r e a c t i o n is not c o m p l e t e l y c h a r a c t e r i z e d . T h e c o n d i tions for the g e n e r a t i o n of the r a d i c a l i n F i g u r e 1 h a v e not b e e n c l e a r l y defined, a n d i n t e r m e d i a t e s o b s e r v e d d u r i n g the r e d u c t i o n h a v e n o t b e e n i d e n t i f i e d . T h e s e difficulties h a v e b e e n o v e r c o m e i n the c y a n i d e system, w h i c h p r o v e d to b e m o r e a m e n a b l e to spectroscopic i n v e s t i g a t i o n .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
O X I D A T I O N O F C Y A N I D E I O N . I n the case of C N " as substrate, i d e n t i f i c a t i o n of reactants a n d p r o d u c t s KCN
p r o v e d feasible.
A d d i t i o n of
excess
to a 1 0 - m M T P P F e C l s o l u t i o n i n D M S O gives the l o w s p i n f e r r i c
b i s - c y a n i d e c o m p l e x , R e a c t i o n 9. T h e N M R of T P P F e ( C N ) T P P F e C l + 2 C N - ^± T P P F e ( C N ) previously characterized (19) s p e c t r u m is t i m e d e p e n d e n t ,
2
2
1 _
has b e e n
+ CI"
1 _
a n d is i l l u s t r a t e d i n A of F i g u r e 2.
(9) The
c o n v e r t i n g f r o m t h a t t y p i c a l of l o w s p i n
F e ( I I I ) to one c h a r a c t e r i s t i c of d i a m a g n e t i c F e ( I I ) , Ε i n F i g u r e 2.
The
e l e c t r o n i c s p e c t r u m of the i n i t i a l a n d final s o l u t i o n is s h o w n i n F i g u r e 3.
PPM
Ho
—>
Figure 2. Proton NMR traces showing the autoreduction of TPPFe (CN)t ' in DMSO at 25°C. (A) TPPFe^CN)^-; (B-D) increasing reduc tion; (E) final product TPPFe (CN) \ 111
1
u
2
2
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
12.
L A MAR AND D E L GAUDio
213
Ferric Porphyrins and Ligands
S p e c t r u m B , the final s o l u t i o n , is also c h a r a c t e r i s t i c of a n F e ( I I )
por-
p h y r i n ( 2 0 ) a n d verifies that r e d u c t i o n of the i r o n has o c c u r r e d . I n the case of the N M R spectra, the peaks m o v e w i t h a n average resonance o b s e r v e d f o r each p o s i t i o n ( B , C , a n d D of F i g u r e 2 ) .
The
o b s e r v a t i o n of a n a v e r a g e d c h e m i c a l shift i n d i c a t e s t h a t the same e n t i t y exists i n b o t h o x i d a t i o n states a n d establishes the p r o d u c t of the r e d u c t i o n to b e the ferrous b i s - c y a n o c o m p l e x
(i.e., R e a c t i o n 1 0 ) .
R a p i d electron
e x c h a n g e averages the t w o s p e c t r a a c c o r d i n g to R e a c t i o n 11. T h e c h e m i c a l shift difference gives a l o w e r l i m i t to t h e rate of e l e c t r o n withfc > >
exchange,
1.5 X 1 0 s e c . 4
TPPFe(CN)
2
TPPFe" (CN)
2
1
" + e"-» T P P F e ( C N )
2
" + TPPFe*
TPPFe
1 1 1
1 1 1
(CN)
2
1
2
"
"
2
(10)
^ ki
(CN), - + TPPFe* 1
T h e p r e p a r a t i o n of the i r o n p o r p h y r i n T P P F e C l - d
2 0
1 1
(CN)
2
2
"
( 2 1 ) , w h e r e the
p h e n y l groups are c o m p l e t e l y d e u t e r a t e d , has a l l o w e d the f u r t h e r c h a r a c t e r i z a t i o n of t h e b i s - c y a n o F e ( I I ) s p e c t r u m of T P P F e
1 1 1
(CN)
2
1 _
and Fe(III)
porphyrins.
I n the
i n D M S O , the resonance at + 1 5 . 4 5 p p m
u p f i e l d f r o m T M S is v e r i f i e d as t h e p y r r o l e H . C o m p a r i n g t h e s p e c t r u m of T P P F e
1 1
(CN)
2
2
" and T P P F e
1 1
( C N ) ~-d 2
2
2 0
shows the p e a k at
-7.82
p p m f r o m T M S to b e the p y r r o l e H , a n d i n t e g r a t i o n i n d i c a t e s t h a t t h e
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
214
BIOINORGANIC C H E M I S T R Y
II
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
4 G
L
s
9 = 2,003
Figure 4.
The ESR spectrum observed during the autoreduction of (CN), ' in DMSO
TPPFe
111
1
l o w field s h o u l d e r at —7.85 p p m contains e i g h t p r o t o n s , consistent w i t h its assignment as t h e p h e n y l ortho p r o t o n s . T h e n a t u r e of the r e d u c i n g agent w a s p r o v i d e d b y E S R spectrosc o p y . B y c a r r y i n g out the r e d u c t i o n of T P P F e ( C N ) the c a v i t y of a n E S R spectrometer, reduction proceeded.
2
1 _
in D M S O within
a s t r o n g s i g n a l a p p e a r e d as the
T h i s c o m p l e x s i g n a l , F i g u r e 4, is i d e n t i c a l to t h a t
p r e v i o u s l y r e p o r t e d d u r i n g the a n o d i c o x i d a t i o n of t e t r a p h e n y l a r s o n i u m c y a n i d e i n D M S O ( 2 2 ) a n d has b e e n i n t e r p r e t e d to represent the c y a n i d e t e t r a m e r , A . T h e p r o p o s e d m e c h a n i s m of f o r m a t i o n of this t e t r a m e r is r e p r o d u c e d i n R e a c t i o n 12. T h u s the c y a n i d e r a d i c a l ' C N is b e i n g p r o d u c e d d u r i n g the r e d u c t i o n of the f e r r i c p o r p h y r i n , a n d t h e o v e r a l l r e a c t i o n consistent w i t h b o t h the N M R a n d E S R d a t a c a n b e w r i t t e n as R e a c t i o n 13. "NC CN"
CN-
C N - -> ( C N ) , ->
(NC) C=N2
î-le
CN-
CN"
\
CN-
-> -le
/
/ C = N
.NC
-> ( C N ) * -
(12)
2
TPPFe
1 1 1
(CN), " + 1
C N " -> T P P F e 1
1 1
(CN)
2
2
" +
-CN
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(13)
12.
L A M A R AND DEL GAUDio
FACTORS INFLUENCING T H E AUTOREDUCTION OF T P P F E
(CN)
1 1 1
2
1
'.
R i g o r o u s e x c l u s i o n of m o l e c u l a r
Anaerobic Nature of the Reduction. oxygen
215
Ferric Porphyrins and Ligands
shows t h a t t h e r e d u c t i o n p r o c e e d s a n a e r o b i c a l l y .
T h i s result
excludes the p o s s i b i l i t y t h a t t h e r a d i c a l s o b s e r v e d d u r i n g t h e a u t o r e d u c t i o n are b e i n g p r o d u c e d b y s o m e f o r m of a c t i v a t e d o x y g e n . Autocatalytic
Nature of the Reduction.
T h e data i n F i g u r e 5 show
t h e r e d u c t i o n rate to increase w i t h t i m e , i n d i c a t i n g t h a t t h e r e d u c t i o n is
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
autocatalytic.
T h i s is most l i k e l y c a u s e d b y t h e r e d u c t i o n of the f e r r i c
p o r p h y r i n b y the i n t e r m e d i a t e r a d i c a l s g e n e r a t e d b y R e a c t i o n 12, w h i c h are e x p e c t e d to b e m o r e p o t e n t r e d u c i n g agents t h a n t h e c y a n i d e i o n . H e n c e a n y d e t a i l e d i n t e r p r e t a t i o n of t h e rates w i l l b e severely l i m i t e d . The
Solvent Effects.
been observed i n C D C N 3
DMSO
autoreduction and D M S O ,
is solvent
dependent,
b u t not i n C D C 1
3
and
having CD C1 . 2
2
is the m o r e s u i t a b l e solvent, for s o l u b i l i t y reasons, a n d t h e f o l -
2
CL CL CO
Time , hrs.
Figure 5. The effect of CN~ concentration on the auto reduction rate of a 10-mM solution of TPPFe (CN) ~ in DMSO. A = 0.19 M CN~; Ο = 0.38 M CN : The increasing rate with time indicates that the autoreduc tion is also autocatalytic. III
1
2
1
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
216
BIOINORGANIC
lowing
discussions
a p p l y to t h e a u t o r e d u c t i o n
of
CHEMISTRY
TPPFe(CN)
2
1
II
" in
D M S O unless stated o t h e r w i s e . Effect of Light. thermal pathway,
T h e a u t o r e d u c t i o n occurs i n t h e d a r k , that is b y a a n d f u r t h e r discussions
are b a s e d
o n l y o n results
o b t a i n e d w i t h t h e e x c l u s i o n of l i g h t . H o w e v e r , l i g h t accelerates t h e rate of a u t o r e d u c t i o n . Effect of Water. T h e r e d u c t i o n rate i n c r e a s e d as t h e c o n c e n t r a t i o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
of w a t e r w a s decreased.
F o r e x a m p l e , r e m o v i n g w a t e r ( ~ 50 m M ) to
levels w h e r e i t is n o t o b s e r v e d b y N M R i n c r e a s e d t h e r e d u c t i o n rate a l m o s t three f o l d .
C y a n i d e c o o r d i n a t e d to f e r r i c p o r p h y r i n s acts as a
hydrogen-bond acceptor towards water ( 2 3 ) . S u c h a n interaction w o u l d m a k e t h e c o o r d i n a t e d c y a n i d e m o r e difficult to o x i d i z e (24)
a n d hence
w o u l d decrease t h e r e a c t i o n rate. Cyanide Ion Concentration.
Increasing the cyanide i o n concentra
t i o n speeds u p t h e a u t o r e d u c t i o n , as s h o w n i n F i g u r e 5. B e c a u s e of t h e a u t o c a t a l y t i c n a t u r e of the r e d u c t i o n , t h e exact c y a n i d e i o n d e p e n d e n c e has n o t y e t b e e n d e f i n e d . A l s o i t is n o t y e t clear w h e t h e r t h e c y a n i d e i o n is i n v o l v e d m e c h a n i s t i c a l l y i n t h e a u t o r e d u c t i o n .
T h e cyanide i o n con
c e n t r a t i o n c a n affect t h e o b s e r v e d rate v i a t h e a u t o c a t a l y t i c m e c h a n i s m or b y c o m p e t i n g w i t h t h e c o m p l e x e d c y a n i d e i o n f o r h y d r o g e n b o n d i n g w i t h trace a m o u n t s of w a t e r .
50 J Ο
Ο
S 30 Ο Ο Ο Ο
10
Ο Ο
—ι
f
1—
3
5 Time, hr&
Figure 6. The reduction rate of various bis-cyano porphyrins. Δ = OEPFe't'iCN), -, • = PP(IX)DMEFe (CN) ~, Ο = TPPFe (CN)^1
III
1
2
111
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
L A MAR
Ferric
AND D E L G A U D i o
Porphyrin
Basicity.
Porphyrins
and
217
Ligands
T h e r e d u c t i o n rate is d e c r e a s e d s i g n i f i c a n t l y as
the p o r p h y r i n is m a d e m o r e b a s i c ( F i g u r e 6 ) . T h e b i s - c y a n i d e
complex
of f e r r i c o c t a e t h y l p o r p h y r i n , the m o r e b a s i c p o r p h y r i n , is r e d u c e d the slowest w h i l e the b i s - c y a n i d e c o m p l e x of f e r r i c T P P , the least b a s i c ( 1 6 ) , is r e d u c e d the fastest.
I n c r e a s i n g the p o r p h y r i n b a s i c i t y places
more
e l e c t r o n d e n s i t y o n the i r o n , m a k i n g i t m o r e difficult to a c c e p t another electron.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
Effect of Axial Ligand.
I n a d d i t i o n to c y a n i d e i o n a n d p i p e r i d i n e ,
a u t o r e d u c t i o n w a s o b s e r v e d for the f o l l o w i n g p o t e n t i a l l i g a n d s — p r i m a r y , secondary,
a n d tertiary amines; p y r i d i n e ; n-hexanethiol; a n d
tributyl
phosphine. M E C H A N I S M OF T H E AUTOREDUCTION OF T P P F E
1 1 1
(CN)
2
1 _
The
.
trans
fer of a n e l e c t r o n f r o m a c y a n i d e i o n to the F e ( I I I ) c a n o c c u r b y at least three m e c h a n i s m s . ( 1 ) A n outer sphere o x i d a t i o n of free C N " b y T P P F e 1
1 1 1
(CN)
2
1 _
,
w h i c h is m e c h a n i s t i c a l l y d e s c r i b e d b y R e a c t i o n 13. T h e e l e c t r o c h e m i c a l o x i d a t i o n of c y a n i d e i o n i n a c e t o n i t r i l e occurs at potentials m o r e p o s i t i v e t h a n + 0 . 5 v o l t vs. S C E ( 2 2 ) . Fe
1 1
^ CN)
2
1 _
T h e e l e c t r o c h e m i c a l r e d u c t i o n of
TPP
i n a c e t o n i t r i l e occurs at a p o t e n t i a l of — 0 . 5 v o l t vs. S C E
( 2 5 ) . T h u s a n outer sphere m e c h a n i s m is c o n s i d e r e d u n l i k e l y . ( 2 ) A n u c l e o p h i l i c attack o n the c o o r d i n a t e d
cyanide by a
free
c y a n i d e , R e a c t i o n 14, w h i c h y i e l d s d i r e c t l y one of the precursors of the c y a n i d e t e t r a m e r i n R e a c t i o n 12. T h i s m e c h a n i s m is consistent w i t h the Ν C « - : C N P Fe
1 1 1
->
Ρ Fe
C Ν
1 1
C Ν I I
+
[CN:CN]"
(14) Ν
c
ex_ rapid
> ρ Fe C Ν
1 1
effect of the p o r p h y r i n b a s i c i t y o n the r e a c t i o n rate, as w e l l as w i t h the c y a n i d e i o n d e p e n d e n c e . H o w e v e r , as m e n t i o n e d a b o v e , the c y a n i d e i o n d e p e n d e n c e m a y result f r o m other causes.
T h e m e c h a n i s m is i n c o n
sistent w i t h the effect of w a t e r . H y d r o g e n b o n d i n g of w a t e r to a c o o r d i n a t e d c y a n i d e s h o u l d e n h a n c e the rate b y m a k i n g the c y a n i d e m o r e sus c e p t i b l e to n u c l e o p h i l i c attack.
A l s o the o b s e r v e d
photochemical
en
h a n c e m e n t of the rate w o u l d not b e e x p e c t e d w i t h a m e c h a n i s m i n v o l v i n g n u c l e o p h i l i c attack. T h u s , a l t h o u g h this m e c h a n i s m cannot b e e l i m i n a t e d at this t i m e , it is c o n s i d e r e d u n l i k e l y . ( 3 ) I n t r a m o l e c u l a r o n e - e l e c t r o n transfer w i t h s u b s e q u e n t
dissocia
t i o n (i.e., h o m o l y t i c b o n d c l e a v a g e ) , as d e s c r i b e d b y R e a c t i o n 15. T h i s
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
218
BIOINORGANIC C H E M I S T R Y
Ν C P F e C Ν
m
- * P F e C Ν
n
+
-CN (15) N C ^PFe C Ν
CNrapid
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
II
1 1
m e c h a n i s m is consistent w i t h the effect of the p o r p h y r i n b a s i c i t y o n the r e a c t i o n a n d , m o r e i m p o r t a n t l y , c a n b e e x p e c t e d to b e enhanced.
photochemically
A l t h o u g h the role of the c y a n i d e i o n c o n c e n t r a t i o n is u n c l e a r
i n this m e c h a n i s m a n d c o u l d b e i n v o l v e d i n the a u t o c a t a l y t i c m e c h a n i s m , as w e l l as i n c o m p e t i t i o n w i t h trace a m o u n t s of w a t e r , as i n d i c a t e d a b o v e , h o m o l y t i c b o n d cleavage c a n d e s c r i b e the a u t o r e d u c t i o n r e a c t i o n for the v a r i e t y of substrates i n v e s t i g a t e d to date. O u r results i n d i c a t e t h a t the a u t o r e d u c t i o n cannot o c c u r b y a c o n v e n t i o n a l o u t e r sphere m e c h a n i s m b e c a u s e of the gross m i s m a t c h of t h e e l e c t r o c h e m i c a l potentials. E x p e r i m e n t a l d a t a a v a i l a b l e at this t i m e are consistent w i t h h o m o l y t i c i r o n - c a r b o n b o n d cleavage w h i c h m a y or m a y not i n v o l v e a s i m u l t a n e o u s n u c l e o p h i l i c attack o n the c o o r d i n a t e d c y a n i d e . T h e h o m o l y t i c m e t a l - c a r b o n b o n d cleavage m a y serve as a m o d e l s i m i l a r processes r e p o r t e d for v i t a m i n Βχ O T H E R SYSTEMS.
Alkyl Thiols.
2
for
(26).
T h e r e d u c t i o n of h e m i n w i t h ethane-
t h i o l has b e e n suggested to o c c u r b y a free r a d i c a l m e c h a n i s m o n t h e basis of
product
analysis
(11).
The
r e a c t i o n of
n-hexanethiol
with
T P P F e C l i n D M S O c a r r i e d out i n the E S R c a v i t y gives rise to the s i g n a l i l l u s t r a t e d i n F i g u r e 7. T h e s e are p r e l i m i n a r y results, a n d the s p e c t r u m is of p o o r q u a l i t y a n d p r o b a b l y reflects some s a t u r a t i o n f r o m the
low
steady-state c o n c e n t r a t i o n of the r a d i c a l . N e v e r t h e l e s s the s i g n a l o n l y appears d u r i n g the a u t o r e d u c t i o n of the i r o n p o r p h y r i n a n d a g a i n i n d i cates that the a u t o r e d u c t i o n occurs b y a free r a d i c a l p a t h w a y . Pyridines,
Amines, and Phosphines.
W e have not observed an E S R
s i g n a l d u r i n g the a u t o r e d u c t i o n w i t h the a b o v e substrates.
With
the
p y r i d i n e s a n d p h o s p h i n e s so f a r i n v e s t i g a t e d , the r e d u c t i o n p r o b a b l y has b e e n too s l o w to generate a p p r e c i a b l e concentrations of r a d i c a l species. T h e a u t o r e d u c t i o n is m u c h faster w i t h p r i m a r y a n d s e c o n d a r y
amines,
h o w e v e r the r a d i c a l s p r o d u c e d are most l i k e l y too s h o r t - l i v e d to detect w i t h o u r present m e t h o d s . W e are i n v e s t i g a t i n g the a p p l i c a b i l i t y of r a p i d flow a n d spin trapping techniques. A l t h o u g h t h e m e c h a n i s t i c details of the a b o v e systems h a v e not yet b e e n c l a r i f i e d , o u r results suggest that the a u t o r e d u c t i o n of f e r r i c p o r p h y r i n s b y a free r a d i c a l p a t h w a y that most l i k e l y i n v o l v e s t h e h o m o l y t i c
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
12.
LAMAR
AND D E L GAUDio
219
Ferric Porphyrins and Ligands
— 100 G
·'
I g3 2 0 0
Figure 7. The ESR signal obtained upon the addition of n-hexanethiol to a CDCl solution of TPPFeCl 3
cleavage of t h e i r o n substrate b o n d is a g e n e r a l f e a t u r e of
Fe(III)
porphyrin chemistry. M o d e l systems f o r t h e a c t i v a -
Reoxidation of Fe(II) Porphyrins.
t i o n of m o l e c u l a r o x y g e n v i a c o o r d i n a t i o n to a n F e ( I I ) p o r p h y r i n h a v e not b e e n r e p o r t e d because of the r a p i d i r r e v e r s i b l e a u t o o x i d a t i o n of t h e F e ( I I ) t o the F e ( I I I ) o x o - b r i d g e d d i m e r ( C ) ( R e a c t i o n 1 6 ) . PFe
11
Since the
(L) ^± L + P F e L n
2
I (B)
> PFe 0
X I I
0Fe P
(16)
n i
2
(C)
rate of this r e a c t i o n is s u p p r e s s e d b y excess l i g a n d , L, a n i n t e r m e d i a t e five-coordinated
Fe(II)
complex
( B ) is i m p l i c a t e d ( 2 7 ) . S t e r i c a l l y
h i n d e r e d F e ( I I ) p o r p h y r i n s h a v e b e e n d e s i g n e d (27, 28) w h i c h p r e v e n t t h e f o r m a t i o n of t h e o x o - b r i d g e d d i m e r , m o s t l i k e l y b y i n t e r f e r i n g w i t h the b i m o l e c u l a r r e a c t i o n b e t w e e n t h e F e ( I I ) o x y g e n a d d u c t a n d a s e c o n d F e ( I I ) p o r p h y r i n . T h e h i n d e r e d p o r p h y r i n s h a v e b e e n s h o w n to r e v e r s i b l y b i n d m o l e c u l a r o x y g e n a n d b e h a v e as s u i t a b l e m o d e l
compounds
for t h e a c t i v e site of m y o g l o b i n a n d h e m o g l o b i n . H o w e v e r , to date these m o d e l s h a v e not b e e n a b l e t o a c t i v a t e m o l e c u l a r o x y g e n . C Y A N I D E C O M P L E X E S . W e h a v e i n v e s t i g a t e d t h e o x i d a t i o n of T P P Fe
1 1
(CN)
2
2
" i n D M S O w i t h m o l e c u l a r o x y g e n . T h e effect of i n t r o d u c i n g
m o l e c u l a r o x y g e n i n t o a 1 0 - m M D M S O s o l u t i o n of T P P F e ( I I ) ( C N )
2
2
"
c o n t a i n i n g excess K C N ( p r e p a r e d b y a l l o w i n g c o m p l e t e a n a e r o b i c a u t o r e d u c t i o n of the f e r r i c c o m p l e x ) is s h o w n i n F i g u r e 8. T h e i n i t i a l species
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
220
BIOINORGANIC C H E M I S T R Y
II
"DMSO- dg
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
pyrrole H
Figure 8. Proton NMR traces showing the reoxidation by oxy gen of TPPFe (CN) ~ in DMSO at 25°C. (A) reduced complex; (B-D) traces with in creasing time after addition of oxygen. n
2
2
-4
PPM
Ο
H.
»
(TMS)
( A i n F i g u r e 8 ) is c h a r a c t e r i s t i c of t h e F e ( I I ) p o r p h y r i n , a n d t h e p r e s ence of a n excess of K C N guarantees the b i s - c y a n i d e c o m p l e x .
O n reac
t i o n w i t h m o l e c u l a r o x y g e n a l l p e a k p o s i t i o n s shift u p h e l d to p o s i t i o n s c h a r a c t e r i s t i c of t h e i n i t i a l F e ( I I I ) h e m i c h r o m e ( B , C , a n d D i n F i g u r e 8).
A g a i n the o b s e r v a t i o n of a v e r a g e d c h e m i c a l shifts i n d i c a t e s that t h e
same species exists i n b o t h o x i d a t i o n states w i t h r a p i d e l e c t r o n e x c h a n g e a v e r a g i n g t h e s p e c t r a a n d establishes t h e o x i d a t i o n p r o d u c t t o b e bis-cyano F e ( I I I ) TPPFe
1 1
c o m p l e x , R e a c t i o n 17. (CN)
f o l l o w e d to c o m p l e t i o n
2
2
" +
0
(about
2
-> T P P F e 80%
T h i s r e a c t i o n has n o t 1 1 1
(CN), " +
completion)
1
0
2
( ? )
"
since t h e
a u t o r e d u c t i o n is c o m p e t i t i v e w i t h t h e o x i d a t i o n process.
the been (17)
anaerobic
I n t h e case of
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
PP(IX)DMEFe (CN) n
2
2
221
Ferric Porphyrins and Ligands
L A M A R A N D D E L GAUDIO
~ , since the f e r r i c f o r m autoreduces s l o w e r , the
o x i d a t i o n w i t h m o l e c u l a r o x y g e n i n D M S O is m o r e r a p i d a n d c a n c a r r i e d to c o m p l e t i o n .
be
T h e N M R s p e c t r u m o b t a i n e d for the o x i d i z e d
p r o d u c t is i d e n t i c a l to that of the w e l l c h a r a c t e r i z e d P P ( I X ) D M E F e (CN)
2
n l
-
a n d f u r t h e r establishes the p r o d u c t of the o x i d a t i o n as the b i s -
1 -
cyano F e
1 1 1
species.
T h e N M R d a t a i n F i g u r e 8 also i n d i c a t e that w a t e r is a n o x i d a t i o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
product.
T h i s is the o n l y o x y g e n - c o n t a i n i n g species that has as yet b e e n
identified.
T h e source of the p r o t o n i n the w a t e r has not b e e n
estab-
l i s h e d ; h o w e v e r the o x i d a t i o n of the p h e n y l - d e u t e r a t e d p o r p h y r i n T P P Fe
1 1
( C N ) ~-d o i n D M S O - d 2
2
6
also gave a w a t e r peak, i n d i c a t i n g t h a t at
least some of the protons w e r e o b t a i n e d f r o m the p y r r o l e p o s i t i o n .
Dur-
i n g these experiments p r e c a u t i o n w a s t a k e n to p r e v e n t a n y contact w i t h the a t m o s p h e r e .
S i n c e most of the i n t e n s i t y of the p y r r o l e p e a k is s t i l l
present at the e n d of a n a u t o r e d u c t i o n , r e o x i d a t i o n , a n d a s e c o n d a u t o r e d u c t i o n c y c l e , w e suggest that p r o t o n o b s t r a c t i o n f r o m the p y r r o l e s is o n l y a m i n o r p a t h w a y for d e a c t i v a t i o n of the a c t i v a t e d o x y g e n . S i n c e the p r o d u c t of the o x i d a t i o n is the bis c y a n i d e F e ( I I I )
species,
w h i c h is a g a i n r e d u c e d b y the excess c y a n i d e , the r e a c t i o n c a n b e c y c l e d , as r e p r e s e n t e d b y the f o l l o w i n g s c h e m e : H 0 2
T h e presence of the s u p e r o x i d e i o n has not b e e n c o n f i r m e d .
The
E S R s p e c t r u m of the s u p e r o x i d e a n i o n i n f r o z e n D M S O is k n o w n . S a m ples of r e d u c e d
porphyrins have been
f r o z e n i m m e d i a t e l y after
the
i n t r o d u c t i o n of m o l e c u l a r o x y g e n , h o w e v e r a s u p e r o x i d e a n i o n s i g n a l has not been observed. our
It m a y b e that the 0 " i o n is too short l i v e d u n d e r 2
experimental conditions
to b e
g e n e r a t i n g the T P P F e ( I I I ) ( C N )
2
1 _
observed.
S i n c e the
o x i d a t i o n is
species, w h i c h is t h e n r e d u c e d
by
t h e excess C N " present, the c y a n i d e t e t r a m e r E S R s i g n a l ( R e a c t i o n 12) 1
appears. I n t e r e s t i n g l y , s u p e r i m p o s e d o n this is a t h r e e - l i n e s i g n a l ( F i g u r e 9 ) w h i c h is not seen d u r i n g t h e o r i g i n a l r e d u c t i o n of T P P F e ( I I I ) ( C N ) ~ . 2
2
T h e h y p e r f i n e s p l i t t i n g of t h e t r i p l e t is 1.5 gauss. H y p e r f i n e s p l i t t i n g i n t h e c y a n i d e r a d i c a l , o b t a i n e d b y u v i r r a d i a t i o n of H C N i n a n a r g o n m a t r i x , w a s r e p o r t e d as 4.6 gauss a n d is t h o u g h t to b e s u r p r i s i n g l y s m a l l (29).
H y p e r f i n e s p l i t t i n g i n t h e N C O r a d i c a l i n the gas p h a s e
r e p o r t e d as a b o u t 19 gauss ( 3 0 ) . not been determined.
was
T h e o r i g i n of the t h r e e - l i n e s i g n a l has
T h e a d d i t i o n of a D M S O s o l u t i o n of K 0
2
solu-
b i l i z e d w i t h the d i c y c l o h e x y l - 1 8 - c r o w n - 6 c y c l i c ether to D M S O s a t u r a t e d w i t h K C N ( a n d m o r e d i l u t e solutions ) d i d n o t r e p r o d u c e the t r i p l e t n o r
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
222
BIOINORGANIC C H E M I S T R Y
Figure 9.
The ESR signal observed during the oxidation of in DMSO by oxygen
II
TPPFe (CN) ~ n
2
2
w a s t h e s t r o n g E S R s i g n a l ( R e a c t i o n 1 2 ) , i n d i c a t i v e of C N f o r m a t i o n , observed. O T H E R SYSTEMS. A
s e c o n d case w h e r e t h e o x i d a t i o n
of
an
p o r p h y r i n does n o t g i v e t h e b r i d g i n g o x o - d i m e r is t h e system in C D C 1
3
w i t h t h e s t r o n g field l i g a n d P ( n - B u ) l n
C l in CDC1
3
TPPFe
1 1
as t h e a x i a l base ( 3 1 ) .
3
A s m e n t i o n e d a b o v e , t h e a d d i t i o n of excess P ( n - B u ) t i o n of T P P F e
Fe(II)
3
to a 1 0 - m M s o l u
causes t h e a u t o r e d u c t i o n of t h e p o r p h y r i n .
O n a d d i t i o n of m o l e c u l a r o x y g e n , t h e p o r p h y r i n peaks shift u p f i e l d w i t h a n a v e r a g e d c h e m i c a l shift, i n d i c a t i n g t h e f o r m a t i o n of a l o w s p i n F e ( I I I ) complex.
A l t h o u g h this system has n o t y e t b e e n f u l l y c h r a c t e r i z e d , i t is
clear t h a t t h e o x i d a t i o n does n o t give t h e b r i d g i n g o x o - d i m e r . The
autooxidation
of t h e b i s - p i p e r i d i n e c o m p l e x
o b t a i n e d b y t h e a n a e r o b i c a u t o r e d u c t i o n of T P P F e
I H
TPPFe
1 1
(pip ) ,
C l in CDC1
p i p e r i d i n e (as w i t h other a m i n e s ) , y i e l d s , as e x p e c t e d ,
2
3
with
the bridging
oxo-dimer. MECHANISM
OXYGEN.
O F OXIDATION O F T P P F E
W e have
considered
1 1
(CN)
2
2
~
three m e c h a n i s m s
WITH
MOLECULAR
to account
for the
u n u s u a l l a c k of d i m e r f o r m a t i o n i n the a u t o o x i d a t i o n . ( 1 ) A n outer sphere o x i d a t i o n of t h e F e ( I I ) , R e a c t i o n 18.
0
2
Ν C + P Fe C Ν
( I I )
Ν C -» Ρ F e C N
m
+ 0
2
( ? )
"
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(18)
12.
T h e o x i d a t i o n of F e ( I I )
223
Ferric Porphyrins and Ligands
L A M A R AND D E L GAUDio
p o r p h y r i n s is t h o u g h t to i n v o l v e a
five-
c o o r d i n a t e i n t e r m e d i a t e , R e a c t i o n 16. H o w e v e r , w i t h c y a n i d e i o n as a x i a l base i t m a y b e p o s s i b l e to transfer a n e l e c t r o n f r o m t h e F e ( I I ) to m o l e c u lar o x y g e n b y a n e l e c t r o n transfer t h r o u g h t h e c o o r d i n a t e d c y a n i d e i o n w i t h o u t t h e f o r m a t i o n of a n i r o n - o x y g e n b o n d . A l t h o u g h this m e c h a n i s m appears a t t r a c t i v e f o r t h e c y a n i d e i o n , t h e o x i d a t i o n of t h e p h o s p h i n e c o m p l e x most l i k e l y occurs b y t h e same m e c h a n i s m , a n d e l e c t r o n transfer
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
t h r o u g h t h e c o o r d i n a t e d p h o s p h i n e appears m u c h less l i k e l y . outer-sphere m e c h a n i s m is c o n s i d e r e d u n l i k e l y .
Thus an
A c o n s i d e r a t i o n of t h e
s t a n d a r d p o t e n t i a l , E ° , for R e a c t i o n 18 appears to suggest that t h e F e ( I I ) p o r p h y r i n is a n insufficiently s t r o n g r e d u c i n g agent ( b y p e r h a p s 0.2 v o l t ) to r e d u c e o x y g e n to 0 ~ b y a n outer-sphere m e c h a n i s m .
H o w e v e r , E°
2
v a l u e s are r e f e r e n c e d to t h e standard-state c o n c e n t r a t i o n s of 1 M . U n d e r our e x p e r i m e n t a l c o n d i t i o n s t h e c o n c e n t r a t i o n of t h e r e a c t i v e species 0 ~ 2
is e x p e c t e d to b e q u i t e s m a l l , a n d c o n s i d e r a t i o n of t h e N e r n s t e q u a t i o n suggests t h a t t h e p o t e n t i a l f o r t h e r e a c t i o n c o u l d b e c o n s i d e r a b l y l a r g e r t h a n t h e s t a n d a r d E° v a l u e . T h u s a n outer sphere m e c h a n i s m c a n n o t b e e l i m i n a t e d o n t h e basis of t h e s t a n d a r d p o t e n t i a l E°.
T h i s a r g u m e n t is
d i s c u s s e d m o r e t h o r o u g h l y i n R e f . 32. ( 2 ) F o r m a t i o n a n d cleavage of the o x o - b r i d g e d d i m e r , R e a c t i o n s 19 a n d 20. Ν C Ρ F e + 0·> -> Ρ F e C Ν 1 1
i n
CN'
PFe
n i
OFe
i n
P + CN"
OFe P
(19)
Ν C > Ρ Fe C Ν
(20)
m
1 1 1
T h e o x o - b r i d g e d d i m e r is c l e a v e d w i t h excess K C N i n D M S O , R e a c t i o n 20, i.e., u n d e r o u r e x p e r i m e n t a l c o n d i t i o n s , a l t h o u g h t h e rate is v e r y s l o w ( 3 1 ) . T h e p o s s i b i l i t y of t h e o x o - b r i d g e d d i m e r as a n i n t e r m e d i a t e can
b e d i s c o u n t e d b y c o n s i d e r i n g the f o l l o w i n g e x p e r i m e n t .
of P P ( I X ) D M E F e
I I X
(CN)
2
2
A sample
- i n D M S O saturated w i t h K C N was a l l o w e d
to a u t o r e d u c e a n a e r o b i c a l l y u n t i l a b o u t 5 0 % h a d b e e n r e d u c e d , A i n F i g u r e 10. A n e q u i v a l e n t a m o u n t of t h e d i m e r [ P P ( I X ) D M E F e ] 0 m
2
w a s a d d e d i n t h e absence of o x y g e n ( Β i n F i g u r e 10 ). T h e n o x y g e n w a s i n t r o d u c e d , c a u s i n g t h e o x i d a t i o n of t h e P P ( I X ) D M E F e ( C N ) n
oxidation proceeded, m e t h y l resonances
as e v i d e n c e d b y t h e d o w n f i e l d m o v e m e n t
2
2
".
As
of t h e
( C a n d D i n F i g u r e 1 0 ) , t h e s p e c t r u m of t h e o x o -
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
224
BIOINORGANIC
CHEMISTRY
II
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch012
—-DMSO-d