Chapter 15
Mechanism of Thermal Degradation of Fire-Retardant Melamine Salts L. Costa, G. Camino, and M. P. Luda di Cortemiglia
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
Dipartimento di ChimicaInorganica,Chimica Fisica e Chimica dei Materiali, Via Pietro Giuria 7, 10125 Torino, Italy
A thorough study of the mechanism of degradation of several fire retardant melamine salts is carried out using thermogravimetry, evolved gas analysis and spectroscopic characterisation of the products of degradation. The salts can be classified in three main classes: salts which undergo thermal dissociation to acid and melamine; salts of strong acids which catalyse melamine condensation; salts of acids which react with melamine condensation products. Implications of the thermal behaviour of the salts in the mechanism of f i r e retardance is briefly discussed. The i n c r e a s i n g u n d e r s t a n d i n g o f f i r e h a z a r d i n t h e c a s e o f o r g a n i c p o l y m e r i c m a t e r i a l s has r e c e n t l y brought t o general attention the importance o f such f a c t o r s as f o r m a t i o n o f dense smoke and of corrosive or toxic products in f i r e scenarios (1-3). Thus, the emphasis i n t h e e v a l u a t i o n o f f i r e r e t a r d a n t s y s t e m s i s now s h i f t i n g from pure flame e x t i n g u i s h i n g p a r a m e t e r s t o a more comprehensive a p p r a i s a l of hazard i n f i r e retarded m a t e r i a l s i n which production of s m o k e , c o r r o s i v e a n d t o x i c p r o d u c t s i s i n c l u d e d . I n t h i s r e s p e c t , some w e l l e s t a b l i s h e d c l a s s e s o f f i r e r e t a r d a n t s , as f o r example halogenbased systems, seem t o be r a t h e r u n s a t i s f a c t o r y . Most current developments i n t h i s f i e l d i n v o l v e indeed h a l o g e n - f r e e systems such as char forming or intumescent a d d i t i v e s (4-7). These act in the c o n d e n s e d phase i n d u c i n g t h e f o r m a t i o n o f c h a r on t h e s u r f a c e o f t h e polymeric m a t e r i a l which p r o t e c t s i t from t h e a c t i o n o f t h e flame. Melamine and i t s s a l t s a r e w i d e l y used i n f o r m u l a t i o n s o f f i r e r e t a r d a n t a d d i t i v e s , p a r t i c u l a r l y o f t h e i n t u m e s c e n t t y p e ( 4 - 7 ) . The r o l e p l a y e d by m e l a m i n e s t r u c t u r e s i n t h e s e a d d i t i v e s i s h o w e v e r n o t y e t u n d e r s t o o d . The t h e r m a l b e h a v i o u r i s o f paramount i m p o r t a n c e i n studies of the f i r e r e t a r d a n c e m e c h a n i s m . I t i s known t h a t m e l a m i n e undergoes progressive condensation on h e a t i n g w i t h e l i m i n a t i o n o f ammonia a n d f o r m a t i o n o f p o l y m e r i c p r o d u c t s named " m e l a m " , "melem", " m e l o n " (8,9). The f o l l o w i n g s c h e m a t i c r e a c t i o n i s r e p o r t e d i n t h e l i t e r a t u r e (10-12): 0097-6156/90/0425-0211$08.00/0
© 1990 American Chemical Society
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
212
FIRE AND POLYMERS -NHo 2 C H N melamine 3
e
>
> CgHgN^ meiam
6
C H N melon 6
3
(1)
9
W h i l e t h e r e i s c l e a r e v i d e n c e t h a t melam i s t h e d i m e r o f m e l a m i n e i n w h i c h t w o s - t r i a z i n e r i n g s a r e c o n n e c t e d by a NH b r i d g e ( d i 6 , [ 2 , 4 diamino-1,3,5-triazine]amine) (10):
I
NH
2
I
/\ Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
N H N-C 0
N
N
x
C
V
V
2
\
C-NH
'
H
>
II
C.
v
NH
2
0
2
N HoN-C.
0
V
X
N
N
N
C
C
C-NH
II
I
N '
N
II
I
N ^
(2) ?
N
I
H different
structures
have
been p r o p o s e d
f o r melem ( 8 - 1 4 ) ,
NH,
NH, NH
I
I
0
N
II
I
NH*|_J^ ^
NH
N
I
I
II
c
c
c
N
N
II
I
C
C
HN N NH
2
2
2
N
H N
e.g.
2
N
H N-C 2
i
N
\
\ / \
I
II
I
C
C
C-NHo
ii
NH
N
/
N
/
C
C
i
NH
2
III
f o r w h i c h t h e r e i s not y e t a f i n a l p r o o f s u p p o r t i n g one o f them. As f a r a s m e l o n i s c o n c e r n e d , i t i s g e n e r a l l y a g r e e d t h a t i t i s f o r m e d by e l i m i n a t i o n o f ammonia b e t w e e n a m i n o g r o u p s o f m e l e m , w h i c h e v e r its s t r u c t u r e ( 8 - 1 3 ) . The d i f f i c u l t i e s e n c o u n t e r e d i n t h e a s s i g n m e n t of s t r u c t u r e s t o t h e s e p r o d u c t s d e p e n d s on t h e f a c t t h a t t h e y a r e e i t h e r s p a r i n g l y s o l u b l e (melamine, melam, melem) or i n s o l u b l e (melon). T h e r e f o r e c h a r a c t e r i s a t i o n i s p r a c t i c a l l y r e s t r i c t e d t o t h e u s e o f UV and s o l i d s t a t e IR s p e c t r o p h o t o m e t r y . ( 1 5 - 1 6 ) I n p a r t i c u l a r , i n s p i t e of t h e u n c e r t a i n t y of t h e s t r u c t u r e o f melem and c o n s e q u e n t l y of m e l o n , t h e r e i s a f a i r l y g o o d a g r e e m e n t i n t h e l i t e r a t u r e on t h e i r IR spectrum ( 1 6 ) ( F i g u r e 1 ) . I t c a n be s e e n t h a t me 1 a m i n e , _ m e l a m , melem a n d m e l o n a l l show t h e t y p i c a l a b s o r p t i o n a t 7 9 5 - 8 1 5 cm due t o o u t o f p l a n e d e f o r m a t i o n o f t h e s - t r i a z i n e r i n g w h e r e a s t h e y show c l e a r l y d i s t i n g u i s h a b l e f e a t u r e s i n t h e c o m p l e x r e g i o n b e t w e e n 1 0 0 0 - 1 7 0 0 cm i n v o l v i n g a b s o r p t i o n s d u e t o N H , NH, CN a n d s - t r i a z i n e r i n g (16-17). A s f a r a s f i r e r e t a r d a n c e i s c o n c e r n e d , i t i s t o be n o t e d t h a t 2
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
m e l a m i n e h e a t e d i n an open s y s t e m ( F i g u r e 2) m o s t l y evaporates u n a l t e r a t e d above 250*C l e a v i n g a l i t t l e residue (ca. 7%,) of c o n d e n s a t i o n p r o d u c t s w h i c h a r e more t h e r m a l l y s t a b l e t h a n m e l a m i n e i t s e l f : melam t o a b o u t 3 5 0 C , melem 4 5 0 C , m e l o n 6 0 0 * C ( 1 8 ) . T h e y i e l d o f c o n d e n s a t i o n p r o d u c t s c a n be i n c r e a s e d by h e a t i n g m e l a m i n e i n a c l o s e d system w i t h however l i m i t a t i o n by e q u i l i b r i u m w i t h ammonia e v o l v e d . ( 1 1 . 1 8 ) . T h e r e f o r e , when m e l a m i n e i s i n c o r p o r a t e d i n a polymer, in the absence of r e a c t i o n s w i t h the m a t r i x , i t should leave t h e m a t e r i a l when t h e r m a l d e g r a d a t i o n occurs, with negligible c o n t r i b u t i o n t o t h e c h a r r e d r e s i d u e p o s s i b l y formed. In t h i s case the c o n t r i b u t i o n o f m e l a m i n e t o f i r e r e t a r d a n c e c o u l d be s o u g h t i n a blowing a c t i o n during the c h a r r i n g step of intumescent systems, if t e m p e r a t u r e o f e v a p o r a t i o n and c h a r r i n g c o n v e n i e n t l y m a t c h . O t h e r w i s e , t y p i c a l g a s p h a s e a c t i o n s c o u l d be p e r f o r m e d by v o l a t i l i s e d m e l a m i n e such as d i l u t i o n o f flammable g a s e s , e t c . #
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
213
#
A c o m p l e t e l y d i f f e r e n t s i t u a t i o n may a r i s e when melamine d e r i v a t i v e s , e.g. melamine s a l t s a r e i n t r o d u c e d i n the p o l y m e r i c m a t e r i a l , o w i n g t o t h e t h e r m a l b e h a v i o u r o f t h e s a l t s w h i c h d e p e n d s on t h e t y p e o f a c i d c o m b i n e d w i t h m e l a m i n e . We h a v e c h a r a c t e r i s e d t h e t h e r m a l b e h a v i o u r o f a w i d e number o f m e l a m i n e s a l t s a n d f o u n d t h a t t h e y may be c l a s s i f i e d i n t o t h r e e m a i n c l a s s e s : 1. S a l t s w h i c h u n d e r g o t h e r m a l d i s s o c i a t i o n t o a c i d a n d m e l a m i n e 2. S a l t s o f s t r o n g a c i d s w h i c h c a t a l y s e m e l a m i n e c o n d e n s a t i o n 3. S a l t s o f a c i d s w h i c h r e a c t w i t h m e l a m i n e c o n d e n s a t i o n p r o d u c t s . Examples of the t h r e e c l a s s e s , i n c l u d i n g s a l t s used in fire r e t a r d a n t a p p l i c a t i o n s , a r e shown a n d d i s c u s s e d h e r e . The results o b t a i n e d on h e a t i n g i n n i t r o g e n a r e r e p o r t e d s i n c e t h e y are i d e n t i c a l to those obtained i n a i r . On t h e o t h e r hand, the supply of combustible v o l a t i l e products t o the flame i n polymer combustion is e s s e n t i a l l y due t o t h e t h e r m a l d e g r a d a t i o n p r o c e s s . The r o l e o f o x y g e n i n t h i s s t e p i s s t i l l m a t t e r o f d e b a t e and i t m i g h t depend on t h e t y p e o f p o l y m e r and c o n d i t i o n s o f c o m b u s t i o n s u c h as p r e s e n c e o r absence of flame. For example, i n the presence o f the f l a m e , oxygen is present at the material s u r f a c e i n low c o n c e n t r a t i o n and m i g h t s i m p l y c a t a l y s e t h e t h e r m a l d e g r a d a t i o n p r o c e s s by h e a t r e s u l t i n g f r o m l i m i t e d thermal o x i d a t i o n of the polymeric m a t e r i a l . Experimental. Materials. M e l a m i n e and m e l a m i n e s a l t s were s u p p l i e d by SKW, T r o s t b e r g , FRG. M e l a m was p r e p a r e d by h e a t i n g e q u i m o l a r a m o u n t s of m e l a m i n e and 2,4-diamino-6-chloro-s-triazine (19). Reference melam h y d r o b r o m i d e a n d n i t r a t e w e r e p r e p a r e d by r e a c t i n g melam w i t h 20% s o l u t i o n s o f HBr and H N 0 r e s p e c t i v e l y (20). T h e r m a l d e g r a d a t i o n . A Du P o n t 951 t h e r m o b a l a n c e - 1 0 9 0 t h e r m a l a n a l y s e r s y s t e m was u s e d c o n n e c t e d t o a U t r a p p r o v i d e d w i t h e n t r a n c e a n d e x i t stopcocks. S t a n d a r d c o n d i t i o n s w e r e : 10 mg s a m p l e ; h e a t i n g rate, 1 0 C / m i n ; n i t r o g e n f l o w , 60 cm / m i n . V o l a t i l e p r o d u c t s , s w e p t b y t h e p u r g i n g n i t r o g e n , c o n d e n s e o u t e i t h e r on t h e g l a s s e n v e l o p e o f t h e thermobalance emerging from the furnace (high b o i l i n g products) or i n the U t r a p cooled at l i q u i d n i t r o g e n temperature (gaseous p r o d u c t s ) . D e g r a d a t i o n p r o d u c t s w e r e g e n e r a l l y i d e n t i f i e d by F o u r i e r Transform I n f r a r e d ( F T I R , P e r k i n E l m e r 1710) e i t h e r i n KBr p e l l e t s ( r e s i d u e s and 3
#
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
FIRE AND POLYMERS
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
214
Figure 2. Thermogravimetric and d i f f e r e n t i a l thermogravimetric c u r v e s (TG a n d DTG) o f m e l a m i n e , h e a t i n g r a t e 1 0 C / m i n ; nitrogen, 60 c r r r / m i n . #
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
215
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
h i g h b o i l i n g components) o r i n a gas c e l l a f t e r t r a n s f e r f r o m t h e U t r a p t h r o u g h a vacuum l i n e . 31P s o l i d s t a t e NMR was r e c o r d e d on a J e o l JX-270 instrument equipped w i t h magic angle s p i n n i n g accessory u s i n g CP-Mass c r o s s p o l a r i s a t i o n magic a n g l e s p i n n i n g w i t h r o t a t i o n speed o f the sample (U^) between 3.5 - 4.2 kHz. T h e r m o g r a v i m e t r y - e v o l v e d gas a n a l y s i s (TG-EGA). D e t e r m i n a t i o n o f w a t e r and ammonia e v o l v e d on h e a t i n g was c a r r i e d out by continuous m o n i t o r i n g o f t h e i r c o n t e n t i n t h e gas p u r g i n g s t r e a m e x i t i n g t h e t h e r m o b a l a n c e . W a t e r was m e a s u r e d by u s i n g a s p e c i f i c probe (Hygrometer III, P a n a m e t r i c s ) . Ammonia was m e a s u r e d by b u b b l i n g t h e g a s s t r e a m i n t o 0 . 1 N s u l p h u r i c a c i d s o l u t i o n w h o s e c o n d u c t i v i t y was c o n t i n u o u s l y r e c o r d e d . C o n d u c t i v i t y v a r i a t i o n was c o n v e r t e d i n t o ammonia e v o l v e d by means o f c a l i b r a t i o n w i t h t i t r a t e d NH^OH s o l u t i o n s . Results Salts
and
Discussion.
which Undergo
Dissociation
t o A c i d and
Melamine.
Cyanurate. T h e TG o f d i m e l a m i n e c y a n u r a t e ( F i g u r e 3 ) i s c h a r a c t e r i s e d by t h r e e d e g r a d a t i o n s t e p s a s shown by t h e DTG c u r v e . I n t h e first ( 2 5 0 - 3 5 0 * 0 , o n l y m e l a m i n e i s v o l a t i l i s e d a s shown by I R . T h e w e i g h t l o s s i n t h i s s t e p (30%) c o r r e s p o n d s t o e l i m i n a t i o n o f one m o l e c u l e o f m e l a m i n e p e r m o l e c u l e o f s a l t ( c a l c u l a t e d 3 3 % ) . I n d e e d t h e IR o f t h e r e s i d u e a f t e r melamine l o s s ( f i g u r e 4 ) , is identical with that of r e f e r e n c e m e l a m i n e c y a n u r a t e . T h i s b e h a v i o u r was f o u n d t o be t y p i c a l of s a l t s of p o l y f u n c t i o n a l a c i d s owing t o decrease of a c i d i t y w i t h i n c r e a s i n g number o f a c i d i c f u n c t i o n s . T h u s , t h e s e c o n d m o l e c u l e o f melamine b e i n g l e s s t i g h t l y b o u n d , m o s t l y t e n d s t o e v a p o r a t e on h e a t i n g ( s i m i l a r l y t o melamine heated alone) g i v i n g o n l y a n e g l i g i b l e amount o f c o n d e n s a t i o n . Above i t s m e l t i n g p o i n t ( 3 6 0 C ) a b o u t 90% o f m e l a m i n e c y a n u r a t e i s c o n v e r t e d t o v o l a t i l e p r o d u c t s ( 3 6 0 - 4 5 0 C , 2nd s t e p ) i n w h i c h f r e e m e l a m i n e a n d m e l a m i n e c y a n u r a t e w e r e r e c o g n i s e d by I R . T h i s i n d i c a t e s t h a t a c o m p e t i t i o n t a k e s p l a c e between e v a p o r a t i o n o f t h e u n a l t e r a t e d s a l t and i t s t h e r m a l d i s s o c i a t i o n t o m e l a m i n e and c y a n u r i c acid. Melamine behaves t h e n as d e s c r i b e d above w h i l e c y a n u r i c a c i d which, h e a t e d a l o n e i n TG v o l a t i l i s e s c o m p l e t e l y a b o v e 3 0 0 * C , i s known t o decompose t o c y a n i c a c i d ( 8 ) . T h e IR o f t h e r e s i d u e l e f t a t 4 5 0 C i s s i m i l a r t o t h a t of c o n d e n s a t i o n p r o d u c t s o b t a i n e d f r o m TG o f m e l a m i n e a n d t h e y i e l d ( 7 % ) i s t h a t e x p e c t e d on t h e b a s i s o f m e l a m i n e c o n t e n t o f t h e s a l t . T h e c o n d e n s a t e f r o m m e l a m i n e c y a n u r a t e seems however t o c o r r e s p o n d t o a somewhat l a r g e r d e g r e e o f c o n d e n s a t i o n , s i n c e i t s h o w s by IR a s t r u c t u r e c l o s e t o melon which i s o b t a i n e d from melamine a t higher t e m p e r a t u r e ( 5 0 0 C ) i n T G . T h i s s u g g e s t s t h a t c y a n u r i c a c i d f r e e d by h e a t i n g may d i s p l a y a c a t a l y t i c a c t i o n o n t h e c o n d e n s a t i o n o f m e l a m i n e o f t h e t y p e d i s c u s s e d b e l o w , w h o s e e f f i c i e n c y i s h o w e v e r l i m i t e d by decomposition to v o l a t i l e cyanic a c i d . The m e l a m i n e condensate undergoes then complete f r a g m e n t a t i o n t o v o l a t i l e p r o d u c t s (HCN, ( C N ) , NH CN, h i g h b o i l i n g f r a g m e n t s ) on h e a t i n g t o 6 5 0 C ( 3 r d s t e p , F i g u r e 3) a s i n t h e c a s e o f m e l a m i n e ( F i g u r e 2 ) . S u m m a r i s i n g , the f o l l o w i n g scheme c a n a c c o u n t f o r t h e thermal behaviour of dimelamine cyanurate: #
#
#
#
#
2
2
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
216
FIRE AND POLYMERS
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
•>
1
700
r
800
Temperature,°C Figure Figure
3. 2.
4000
T G , DTG c u r v e s
3000
of dimelamine cyanurate.
2000
1500
Conditions
as
1000 500 wavenumber, cm"
F i g u r e 4 . IR o f r e s i d u e o f d i m e l a m i n e c y a n u r a t e h e a t e d a t melamine c y a n u r a t e (by comparison w i t h r e f e r e n c e compound).
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
350*C:
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
dimelamine cyanurate 1 i 250-350 C / melamine c y a n u r a t e + melamine step 2 J 360-450 C melamine + c y a n u r i c a c i d
217
#
step
/
#
> cyanic
(3) acid
evaporaTToTT^^elon + NH^ step 3 | >500*C decomposition
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
A behaviour
s i m i l a r to that of cyanurate
i s observed
f o r the oxalate.
o-Phtalate. In t h e f i r s t s t e p o f v o l a t i l i s a t i o n o f m e l a m i n e o p h t a l a t e ( 2 2 0 - 2 8 C T C , F i g u r e 5) a m i x t u r e o f o - p h t a l i c a n h y d r i d e and o p h t a l i c a c i d i s e l i m i n a t e d , a s i d e n t i f i e d by IR. T h e r e s i d u e (60%) s h o w s t h e IR s p e c t r u m o f f r e e m e l a m i n e . I n t h i s c a s e , u p o n m e l t i n g o f t h e s a l t ( 2 4 0 - 2 8 0 C ) , t h e a c i d r e s i d u e b e h a v e s a s when h e a t e d a l o n e where i t d i s t i l l s as a m i x t u r e o f o - p h t a l i c a c i d and a n h y d r i d e ( 2 1 ) . T h e c a l c u l a t e d amount o f o - p h t a l i c a c i d i n t h e s a l t i s 5 7 % t o be c o m p a r e d w i t h 4 0 % w e i g h t l o s s t o 2 8 0 * C . H o w e v e r t h e IR s p e c t r u m o f t h e c o m m e r c i a l o - p h t a l a t e we h a v e u s e d s h o w s t h e p r e s e n c e o f f r e e m e l a m i n e i n d i c a t i n g t h a t t h e a c i d was i n d e f e c t . On t h e o t h e r h a n d , a f e w p e r c e n t o f t h e a c i d o r o f i t s d e g r a d a t i o n p r o d u c t s may be l e f t i n t h e r e s i d u e at 280*C s i n c e i t s s u b s e q u e n t t h e r m a l b e h a v i o u r i s not i d e n t i c a l t o t h a t o f f r e e m e l a m i n e . I n d e e d t h e DTG c u r v e o f t h e s e c o n d step of degradation i n which evaporation-condensation o f melamine takes place (280-400*0, Figure 5) i s more c o m p l e x t h a n t h e c o r r e s p o n d i n g s t e p o f F i g u r e 2 . M o r e o v e r , a l a r g e r amount o f m e l a m i n e condensate i s l e f t from melamine o - p h t a l a t e a t 4 0 0 ' C (13%) as c o m p a r e d t o t h a t c a l c u l a t e d ( c a . 6%) o n t h e b a s i s o f m e l a m i n e c o n t e n t of the s a l t . F i n a l l y , the condensate obtained at 400 C is c h a r a c t e r i s e d b y a n IR s p e c t r u m s i m i l a r t o t h a t f o r m e d b y h e a t i n g m e l a m i n e c y a n u r a t e b u t i t seems m o r e s t a b l e b y a b o u t 1 0 0 * C , d e g r a d i n g between 6 0 0 - 7 5 0 C . #
#
#
The t h e r m a l degradation of s c h e m a t i c a l l y r e p r e s e n t e d as f o l l o w s :
\ o-phtalic
melamine
melamine o - p h t a l a t e step 1 \ | 220-280*0/ a c i d + o - p h t a l i c a n h y d r i d e + H 0 + melamine step 2 ^ ^ ^ J ^ 2 8 0 j 4 0 0
can
of Strong Acids
which C a t a l y s e Melamine
be
(4)
2
evaporation step 3
Salts
o-phtalate
C
#
^
melon + NH ) >600*C decomposition
3
Condensation.
Hydrobromide. A complex process t a k e s p l a c e i n t h e f i r s t s t e p o f w e i g h t l o s s o f m e l a m i n e h y d r o b r o m i d e ( 2 5 0 - 4 0 0 C ) a s shown b y t h e DTG c u r v e o f F i g u r e 6. T h e p r o d u c t s e v o l v e d i n t h i s s t e p w e r e s h o w n t o b e a m i x t u r e o f m e l a m i n e h y d r o b r o m i d e ( I R ) a n d ammonium b r o m i d e ( I R a n d X - r a y ) . The IR s p e c t r u m o f t h e r e s i d u e (55% at 400 C) which is compared w i t h t h e o r i g i n a l s a l t i n F i g u r e 7, i s i d e n t i c a l w i t h t h a t o f r e f e r e n c e melam h y d r o b r o m i d e . F u r t h e r m o r e , t h e IR o f t h e r e s i d u e #
#
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
218
FIRE AND POLYMERS
Temperature,°C Figure Figure
5. T G , DTG c u r v e s 2.
of
melamine
o-phtalate.
T
r
T
!
Conditions
as
I T T
80 _
j> 60
"\
o
ii «>— i iI 1 2X 1 1 / 1 / . M 1
f
4
° DTG
20
3
—
\
/
.' 1 0
•
\
I 1 —I
XX) Figure units)
\
.X1
1I
.
1I
1I
1I
J
I
.
I 1
V _ ,
.
1
I
.
•1
I1
I
I
2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 700800 Temperature ,°C
6. T G , DTG c u r v e s a n d r a t e o f ammonia e v o l u t i o n ( a r b i t r a r y f o r m e l a m i n e h y d r o b r o m i d e . C o n d i t i o n s a s F i g u r e 2.
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
t r e a t e d w i t h 1% NaOH i s t h a t o f e v a p o r a t i o n of melamine hydrobromide melamine t o t h e d i m e r melam: NH I 2
N
NH I
0
N
>
N
II
I H N-C N
N
H N-C
2
melam. These data show that competes w i t h t h e c o n d e n s a t i o n o f
NH I
0
N
I
C-NH
2
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
. HBr
2
219
0
N
N
II
I
II
C
C
C-NH
NH
X
• HBr + NH.Br
(5)
2
N
T h e b y - p r o d u c t ammonium b r o m i d e i s shown t o v o l a t i l i s e i n similar c o n d i t i o n s i n TG. T h i s i s a d i f f e r e n t b e h a v i o u r a l t o g e t h e r f r o m t h a t o f m e l a m i n e i n w h o s e t h e r m a l c o n d e n s a t i o n melam c a n be i s o l a t e d w i t h d i f f i c u l t y only in c a r e f u l l y c o n t r o l l e d experimental conditions ( 1 1 , 1 7 ) . I n d e e d melem i s t h e c o n d e n s a t i o n p r o d u c t m o s t e a s i l y i s o l a t e d a n d t h i s l e d some a u t h o r s t o d o u b t t h a t melam c o u l d be an i n t e r m e d i a t e p r o d u c t o f t h e c o n d e n s a t i o n o f m e l a m i n e t o melem a n d m e l o n ( 1 9 , 2 2 ) , T h e h i g h y i e l d o f c o n d e n s a t i o n c o u l d be d u e t o favoured n u c l e o p h i l i c a t t a c k when t h e a m i n o g r o u p o f m e l a m i n e i s p r o t o n a t e d : NH
3
Br
NH :
\
3
/
Br
>
\
/
^ C — N H — +
/
NH Br
(6)
4
NH Q u a n t i t a t i v e c o n d e n s a t i o n o f m e l a m i n e t o melam on h e a t i n g a t 2 9 0 C i n t h e p r e s e n c e o f z i n c c h l o r i d e a n d a c i d s was p r e v i o u s l y r e p o r t e d i n t h e literature ( 2 0 , 2 3 ) . The r e a s o n f o r l i m i t a t i o n o f t h e condensation p r o c e s s t o t h e d i m e r has however not been d i s c u s s e d . Melam h y d r o b r o m i d e undergoes thermal degradation between 4505 5 0 * 0 (2nd s t e p , F i g u r e 6) w i t h c o m p l e t e e l i m i n a t i o n o f b r o m i n e e i t h e r t h r o u g h e v o l u t i o n o f ammonium b r o m i d e , w h i c h i s t h e m a j o r p r o d u c t , o r m e l a m i n e h y d r o b r o m i d e a s shown by I R . A l s o a s m a l l amount o f f r e e ammonia i s e v o l v e d i n t h i s s t e p i n w h i c h m e l o n i s f o r m e d a s shown by t h e IR o f t h e r e s i d u e a t 5 5 0 * 0 ( c a . 35% o f o r i g i n a l melamine hydrobromide). T h e s e d a t a s u g g e s t t h a t , on h e a t i n g , c o n d e n s a t i o n o f melam t o melon o c c u r s e i t h e r t h r o u g h a r e a c t i o n s i m i l a r t o R e a c t i o n 5 w i t h e l i m i n a t i o n o f ammonium b r o m i d e o r t h r o u g h r e a c t i o n b e t w e e n f r e e a m i n o g r o u p s g i v i n g ammonia. F o r m a t i o n o f melamine h y d r o b r o m i d e , in this p r o c e s s , i s i n agreement w i t h r e p o r t e d p r o d u c t i o n o f melamine d u r i n g t h e r m a l c o n d e n s a t i o n o f melam ( 1 2 ) . D e g r a d a t i o n o f m e l o n t a k e s p l a c e as e x p e c t e d (18) above 6 0 0 * 0 ( 3 r d s t e p ) . The t h e r m a l b e h a v i o u r of m e l a m i n e h y d r o b r o m i d e c a n be d e s c r i b e d a s f o l l o w s : #
melamine step 1 evaporation step
hydrobromide I 250-400*0
melam h y d r o b r o m i d e + N H B r ^ \ | 450-550*0 / melon + NH + melamine hydrobromide 3 | >600*C decomposition 4
2
3
step
^ / + NH^Br
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
(7)
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
220
FIRE AND POLYMERS
Nitrate. The t h e r m a l b e h a v i o u r o f t h e n i t r a t e ( F i g u r e 8 ) , i s q u a l i t a t i v e l y s i m i l a r t o t h a t o f t h e h y d r o b r o m i d e ( F i g u r e 6 ) . Above i t s m e l t i n g point (225*C), melamine n i t r a t e undergoes competing e v a p o r a t i o n and c o n d e n s a t i o n t o melam n i t r a t e w i t h e v o l u t i o n o f ammonium n i t r a t e ( 1 s t s t e p , 2 5 0 - 3 7 0 * 0 . M e l a m i n e n i t r a t e a n d ammonium n i t r a t e , which v o l a t i l i s e s between 230-320*0 i n TG, were indeed i d e n t i f i e d by IR i n t h e v o l a t i l i s e d m a t e r i a l . M o r e o v e r , t h e IR s p e c t r u m o f t h e r e s i d u e o f t h i s s t e p o f d e g r a d a t i o n ( 4 2 % , F i g u r e 9B) i s i d e n t i c a l t o t h a t o f r e f e r e n c e melam n i t r a t e . T h e r e f o r e i n t h i s step of degradation a reaction s i m i l a r t o Reaction 5 takes place i n w h i c h HNOo i s s u b s t i t u t e d f o r H B r . S i m i l a r l y t o melamine hydrobromide, i n t h e second s t e p o f weight l o s s ( 3 7 0 - 4 5 0 * 0 , F i g u r e 8 ) , IR d a t a show t h a t melam n i t r a t e e v o l v e s f u r t h e r ammonium n i t r a t e , a m m o n i a a n d m e l a m i n e n i t r a t e g i v i n g melon w h i c h decomposes completely t o v o l a t i l e products above 500*C. The d e g r a d a t i o n scheme i s t h e n : melamine
step 1
nitrate 250-370*0
evaporation
/
melam n i t r a t e + N H N 0 step 2 \ I 370-450*0 \ m e l o n + NH + 4 3 melamine n i t r a t e step 3 j >500*C decomposition 4
N H
N 0
+
3
/
3
(8)
Sulphate. Melamine s u l p h a t e e l i m i n a t e s t h e water o f c r y s t a l l i s a t i o n o n h e a t i n g b e t w e e n 100 - 2 3 0 * C a s shown b y T G , DTG a n d w a t e r e v o l u t i o n curves of Figure 10 (1st step). The amount o f w a t e r evolved corresponds t o one m o l e c u l e p e r m o l e c u l e o f s a l t ( c a l c u l a t e d weight l o s s : 7 . 4 % e x p e r i m e n t a l : 8 % ) . T h e IR o f t h e a n h y d r o u s s a l t i s shown i n F i g u r e 11A i n w h i c h t h e t y p i c a l s t r o n g b a n d o f s u l p h a t e a n i o n g r o u p a t 1095 cm is evident. In t h e range 3 0 0 - 4 0 0 * 0 ( 2 n d s t e p , F i g u r e 10), the v o l a t i l e p r o d u c t s w e r e i d e n t i f i e d a s ammonia a n d w a t e r b y u s i n g t h e s p e c i f i c d e t e c t o r s a n d m e l a m i n e b y I R . From t h e w e i g h t l o s s a n d t h e m e a s u r e d amount o f w a t e r a n d ammonia ( 0 . 6 6 a n d 0 . 3 5 m o l e p e r m o l e o f s a l t respectively) i t c a n be c a l c u l a t e d t h a t a t t h e u t m o s t 15% o f t h e melamine p r e s e n t i n t h e s u l p h a t e s h o u l d be v o l a t i l i s e d . T h i s shows t h a t , i n c o n t r a s t t o t h e above s a l t s o f s t r o n g a c i d s (hydrobromide, n i t r a t e ) which tend t o e v a p o r a t e on h e a t i n g ( > 2 5 0 * C ) , melamine sulphate reaches decomposition temperature (>300*O w i t h l i b e r a t i o n o f melamine b e f o r e vapor p r e s s u r e a l l o w s s i g n i f i c a n t v o l a t i l i s a t i o n o f the s a l t . A t t h i s temperature t h e f r e e d melamine w i l l then v o l a t i l i s e . However, s i m i l a r l y t o t h e p r e v i o u s s a l t s , a l s o i n t h e case o f t h e s u l p h a t e , t h e l o s s o f s - t r i a z i n e s t r u c t u r e s i s l i m i t e d by t h e v e r y efficient promotion o f melamine condensation demonstrated by s i m u l t a n e o u s e v o l u t i o n o f ammonia. I n d e e d , i t c a n be c a l c u l a t e d t h a t a b o u t 0 . 4 m o l e c u l e s o f ammonia i s e l i m i n a t e d p e r m e l a m i n e m o l e c u l e l e f t i n t h e c o n d e n s e d p h a s e w h i c h i s c l o s e t o t h e amount c o r r e s p o n d i n g t o c o m p l e t e c o n v e r s i o n t o melam ( 0 . 5 ) . Limited decomposition of the sulphate and e x t e n s i v e melamine condensation overlap i n t h i s second step with condensation of s u l p h u r i c a c i d r e s i d u e s t o p y r o s u l p h u r i c s t r u c t u r e s . T h i s i s shown b y water e v o l u t i o n and appearance o f t y p i c a l a b s o r p t i o n s o f p y r o s u l p h a t e
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
15.
COSTA E T A L .
4000
Thermal Degradation of Fire-Retardant Melamine Salts
3000
2000
1500
111
1000 500 wavenumber, env
F i g u r e 7 . IR o f m e l a m i n e h y d r o b r o m i d e ( A ) a n d o f r e s i d u e a t 4 0 0 C ( B ) : melam h y d r o b r o m i d e ( b y c o m p a r i s o n w i t h r e f e r e n c e c o m p o u n d ) . #
100 Figure units)
200
300
400
500 600 700 Temperature ,°C
8 . T G , DTG c u r v e s a n d r a t e o f ammonia e v o l u t i o n f o r melamine n i t r a t e . C o n d i t i o n s as F i g u r e 2.
800 (arbitrary
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
222
FIRE AND POLYMERS
••• r
i A
o
c
ro
n
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
i_ o
n
i 3000
4000
i 2000
i 1500
J_
1 —
1000 500 wavenumber, cm"
F i g u r e 9 . IR o f m e l a m i n e n i t r a t e ( A ) a n d o f r e s i d u e a t 3 7 0 ' C melam n i t r a t e ( b y c o m p a r i s o n w i t h r e f e r e n c e c o m p o u n d ) .
1
(B):
100i
» /| 3
80 ^ 60|cn 5
\
DTG
' 1 / l / I
1 40I
- y
i
I ,
w
y :
1 | 1
\
1
V
/»
-
/'\'
V
-
20 H
1 \ NH
2°
\
3
! \ v_
J 1
100
1
1
200
1
1
300
1
1
400
1
i . i i i 500 600 700 Temperature,°C
F i g u r e 1 0 . T G , DTG a n d r a t e o f w a t e r a n d ( a r b i t r a r y u n i t s ) . C o n d i t i o n s a s F i g u r e 2.
ammonia
800 evolution
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
223
anion i n t h e IR s p e c t r u m o f t h e r e s i d u e a t 4 0 0 C ( e . g . : 1 0 2 0 , 1 0 5 0 , 1 2 2 5 cm , F i g u r e 1 1 B ) w h i c h w e r e a s s i g n e d b y c o m p a r i s o n with r e f e r e n c e ammonium p y r o s u l p h a t e . T h e r e a c t i o n s o c c u r r i n g i n t h i s s t e p w o u l d t h u s i n v o l v e a c o m b i n e d c o n d e n s a t i o n o f m e l a m i n e t o melam a n d o f sulphuric acid to pyrosulphuric acid. For example, condensation o f m e l a m i n e c o u l d t a k e p l a c e a s i n R e a c t i o n 5, f o l l o w e d by c o n d e n s a t i o n t o melam ammonium p y r o s u l p h a t e : #
r—
NH
tfH»
2
-I •H S 0 2
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
HLN-C
i_
X
C
j (NH ) S 0 4
NH.
0
2
I
2
NH
C
yC N ^
N
H N-C
• H S0 2
>
X
V
2
NH
NH
2
C-NH
/
+ H 0
7
2
+ NH HS0 4
4
9
V (9)
0 0 II M • H0-S-0-S-0NH II H 0 0
4
C-NH
0
i
4
0
N
H N-C
2
C
/\ N
N • H S0
y
N
2
2x | ( 9 b )
N ^
\
2
0
C
M - C
C-NHo
2
4
2
(9a)
2x NH
+ H 0
7
C-NH.
N / N o / S '
2
2
+ H 0 2
0
Condensation of sulphuric acid residues could also i n v o l v e two m o l e c u l e s o f melam s u l p h a t e g i v i n g d i m e l a m p y r o s u l p h a t e ( 9 a ) . On t h e o t h e r h a n d , ammonium s u l p h a t e g i v e s d i a m m o n i u m p y r o s u l p h a t e i n TG between 270-350*C ( 9 b ) . The o v e r a l l r e s u l t o f t h e combined c o n d e n s a t i o n p r o c e s s would n o t change i f condensation of sulphuric acid residues preceeds that of melamine. In t h i s case dimelamine p y r o s u l p h a t e w o u l d be t h e f i r s t p r o d u c t o f r e a c t i o n . The f o l l o w i n g c o n d e n s a t i o n p r o c e s s l e a d i n g t o melam c o u l d t h e n o c c u r w i t h f o r m a t i o n of t h e t h r e e types o f p y r o s u l p h a t e s d i s c u s s e d above. Formation o f t h e melam s a l t o f p y r o s u l p h u r i c a c i d o n h e a t i n g melam s u l p h a t e w a s previously reported (20). Ammonia i s e v o l v e d h e r e i n t h e c o n d e n s a t i o n p r o c e s s o f m e l a m i n e t o melam w h e r e a s t h e r e s p e c t i v e ammonium s a l t s a r e e v o l v e d i n t h e c a s e o f t h e h y d r o b r o m i d e a n d n i t r a t e . R e a c t i o n s 9 a n d 9b show t h a t ammonia s h o u l d be n e u t r a l i s e d b y p y r o s u l p h u r i c a c i d g r o u p s . I n TG we have found t h a t diammonium p y r o s u l p h a t e e l i m i n a t e s ammonia above 350*C, w i t h however c o m p l e t e d e c o m p o s i t i o n : (NH ) S 0 4
2
2
7
>
2NH
3
+ 2S0
3
+ H 0 2
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
(10)
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
224 FIRE AND POLYMERS
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
225
Nevertheless, t h i s r e a c t i o n alone cannot account f o r the behaviour of m e l a m i n e s u l p h a t e s i n c e i t i m p l i e s t h e e l i m i n a t i o n o f o n e m o l e o f SOo p e r m o l e o f ammonia w h i c h w o u l d e x c e e d by a b o u t 70% t h e e x p e r i m e n t a l w e i g h t l o s s i n t h i s s t e p o f d e g r a d a t i o n . M o r e o v e r , we d i d n o t h a v e evidence of relevant e l i m i n a t i o n of S0 . On t h e o t h e r h a n d , water e v o l v e d ( 0 . 6 6 m o l e / g atom S) i s l a r g e r t h a n t h a t c a l c u l a t e d f o r R e a c t i o n 9 o r 9 a , 9b ( 0 . 5 0 m o l e / g a t o m S ) . T h e r e f o r e i t seems t h a t ammonium p y r o s u l p h a t e g r o u p s u n d e r g o t h e r m a l s c i s s i o n in t h i s step w i t h e v o l u t i o n o f ammonia w h i l e p y r o s u 1 p h u r i c acid is p a r t i a l l y s t a b i l i s e d by i n t e r a c t i o n w i t h melam w h i c h i s a t h e r m a l l y s t a b l e b a s e . T h e SO3 p o s s i b l y e v o l v e d by p a r t i a l decomposition of pyrosulphuric a c i d w o u l d d e c r e a s e t h e amount o f f r e e m e l a m i n e e v o l v e d c a l c u l a t e d on the basis of T G . T h e c a l c u l a t e d m o l e s o f ammonia e l i m i n a t e d p e r m o l e o f c o n d e n s i n g melamine would c o n s e q u e n t l y d e c r e a s e . However, s i n c e i t was c a l c u l a t e d t h a t o n l y 15% o f o r i g i n a l m e l a m i n e w o u l d be t h e maximum a m o u n t v o l a t i l i s e d , t h e r a t i o ammonia t o m e l a m i n e w o u l d f a l l in the range 0 . 3 5 - 0 . 4 0 which i s i n agreement w i t h t h e above d i s c u s s i o n once the experimental e r r o r i s taken into account.
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
3
I n t h e f o l l o w i n g t h i r d s t e p ( 4 5 0 - 5 2 0 C ) , ( F i g u r e 10) t h e melam p y r o s u l p h a t e i s f u r t h e r condensed t o melon w i t h d e c o m p o s i t i o n o f the pyrosulphuric s t r u c t u r e as shown by disappearance of typical a b s o r p t i o n s o f p y r o s u l p h a t e o r s u l p h a t e i n t h e IR o f t h e m e l o n l e f t a s a r e s i d u e . T h i s l a s t decomposes t h e n above 5 2 0 * 0 ( 4 t h s t e p ) . The p r o p o s e d d e g r a d a t i o n scheme f o r t h e s u l p h a t e i s : #
melamine s u l p h a t e * H 0 step 1 1 100 - 2 3 0 * C anhydrous melamine s u l p h a t e + H 0 step 2 4 300 - 4 0 0 * C > /* / melam p y r o s u l p h a t e + m e l a m i n e + NH3 + H 0 step 3 I 450 - 5 2 0 * 0 m e l o n + v o l a t i l e p r o d u c t s ( l i k e l y : NHo, H 0 , step 4 \ > 5 2 0 * 0 decomposition 2
2
(11)
2
2
Salts
of Acids
which React w i t h Melamine
SO3)
Condensation
Products.
P h o s p h a t e . The p h o s p h a t e , w h i c h i s a most w i d e l y u s e d f i r e r e t a r d a n t m e l a m i n e s a l t , e l i m i n a t e s w a t e r i n t w o s u c c e s s i v e s t e p s w i t h maximum r a t e a t 280 a n d 3 2 0 * C r e s p e c t i v e l y ( F i g u r e 1 2 ) . T h e s o l i d s t a t e 31P NMR o f m e l a m i n e p h o s p h a t e a n d o f t h e r e s i d u e o f t h e t w o d e h y d r a t i o n s t e p s ( 3 0 0 a n d 3 3 0 * C ) a r e shown i n F i g u r e 1 3 . I n t h e c a s e o f t h e o r i g i n a l s a l t ( F i g u r e 13A) t h e c h e m i c a l s h i f t a n i s o t r o p y i s a x i a l l y s y m m e t r i c and t h e i s o t r o p i c peak i s a t 2.5 5 t h a t i s i n t h e t y p i c a l region of o-phosphates (24). The r e s i d u e o f t h e f i r s t step of d e g r a d a t i o n shows t h e i s o t r o p i c peak c e n t e r e d a t - 8 . 6 $ ( F i g u r e 13B) that is at the chemical s h i f t t y p i c a l of pyrophosphates (24). S p l i t t i n g i n t o t w o p e a k s a t - 7 . 6 a n d 9 . 5 & i s l i k e l y t o be d u e t o a s y m m e t r y o f t h e m o l e c u l e o w i n g t o non e q u i v a l e n c e o f t h e m e l a m i n e m o l e c u l e s i n t h e pyrophosphate s a l t . In t h i s case t h e c h e m i c a l s h i f t anisotropy i s a x i a l l y s l i g h t l y a s y m m e t r i c a s shown by slightly d i f f e r e n t h e i g h t o f t h e s p i n n i n g s i d e b a n d s . A s m a l l amount o f t h e o r i g i n a l o - p h o s p h a t e i s s t i l l p r e s e n t i n t h i s r e s i d u e a s shown by t h e s m a l l peak a t 2.5 4 . The r e s i d u e o f t h e s e c o n d d e g r a d a t i o n s t e p shows t h e i s o t r o p i c p e a k a t - 2 1 . 5 b ( F i g u r e 13C) t y p i c a l o f m i d d l e g r o u p s o f
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
F i g u r e 1 2 . T G , DTG a n d r a t e o f w a t e r ( a r b i t r a r y u n i t s ) f o r melamine phosphate.
and ammonia C o n d i t i o n s as
evolution F i g u r e 2.
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
A
1 120
80
40
1
1
1 0
-40
c
-80
-120 -160 6,ppm
F i g u r e 13. S o l i d s t a t e 31P NMR o f m e l a m i n e p h o s p h a t e ( A , i =3.5 K H z ) , o f r e s i d u e a t 300*C ( B , U ^ = 3 . 6 K H z : p y r o p h o s p h a t e ) and 330*C (C, =4.0 KHz p o l y p h o s p h a t e ) .
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
227
228
FIRE AND POLYMERS
linear polyphosphates (24) and t h e c h e m i c a l s h i f t a n i s o t r o p y is s t r o n g l y a x i a l l y a s y m m e t r i c . A d e g r e e o f p o l y m e r i z a t i o n a b o v e 60 c a n be c a l c u l a t e d on t h e b a s i s o f e x p e r i m e n t a l s e n s i t i v i t y a n d a b s e n c e o f s i g n a l s around - 8 S a r i s i n g f r o m end g r o u p s o f p o l y p h o s p h a t e s (24). Thus, the d e h y d r a t i o n processes i n v o l v e c o n d e n s a t i o n of melamine p h o s p h a t e t o p y r o p h o s p h a t e and p o l y p h o s p h a t e :
NH
0
II
2
HO-
P
-H 0 2
.H P0 3
P
—
*H
4
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
2
N
_
C
\
/
C-NH
1st
2
1
step
NH
U
C
HO-
—
P
2nd
A
N 2~\
-(n-1)
2
H 0 2
2
A H
x n
OH
NH, H
OH
-
I
N
N I"
C
N H
2
H
2
N
_
I\ (
step
N C
II"
N H
2
—
I
OH
I N H N-C 2
(12)
2
N l C-NH,
n/2
The e x p e r i m e n t a l w e i g h t l o s s i n t h e f i r s t and s e c o n d s t e p ( 4 . 0 and 4.5% respectively) is in agreement with that corresponding to condensation to pyrophosphate ( 4 . 0 % ) and p o l y p h o s p h a t e (4.2%, n 1). F u r t h e r m o r e , t h e IR s p e c t r a o f m e l a m i n e p h o s p h a t e a n d o f t h e r e s i d u e s a t 300 a n d 3 3 0 C ( F i g u r e 14 s p e c t r a A , B a n d C r e s p e c t i v e l yf)) show t h a t b e s i d e s t h e t y p i c a l b a n d s o f p h o s p h a t e s a l t s ( 9 5 0 - 1 3 0 0 cm ' ')) w h i c h a r e p r e s e n t i n t h e t h r e e s p e c t r a , a new a b s o r p t i o n d u e t o P - O - P b o n d s ( c a . 890 cm" ) a p p e a r s i n t h e s p e c t r a o f t h e r e s i d u e s . The a b s o r p t i o n s due to melamine s a l t s t r u c t u r e s (e.g. 7 8 0 - 7 9 0 a n d 1 4 5 0 - 1 7 5 0 cm ) are c l o s e l y s i m i l a r i n t h e t h r e e s p e c t r a o f F i g u r e 14. F i r e retardants b a s e d on m e l a m i n e p y r o p h o s p h a t e a n d p o l y p h o s p h a t e a r e r e p o r t e d i n t h e l i t e r a t u r e 151 as w e l l as methods f o r p r e p a r a t i o n o f t h e s e s a l t s (25#
m. T h e TG a n d DTG c u r v e s of Figure 12 s h o w that melamine polyphosphate undergoes a complex d e g r a d a t i o n process between 3306 5 0 C . I n s t e p 3 o f t h e DTG c u r v e (max. r a t e 3 9 0 * 0 ) , w a t e r , ammonia and melamine a r e e v o l v e d . In t h i s s t e p t h e t h e r m a l b e h a v i o u r of p o l y p h o s p h a t e i s somewhat s i m i l a r t o t h a t o f t h e s u l p h a t e i n t h e same range of t e m p e r a t u r e ( 3 0 0 - 4 0 0 * 0 ) . Indeed e v o l u t i o n of melamine indicates that thermal d i s s o c i a t i o n of polyphosphate g i v i n g free melamine t a k e s p l a c e above 330*0. However, e v a p o r a t i o n o f melamine c o m p e t e s w i t h i t s c o n d e n s a t i o n as shown by e v o l u t i o n o f a m m o n i a . #
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
229
Moreover, simultaneous e v o l u t i o n of water i m p l i e s t h a t condensation of melamine i s combined w i t h t h a t o f p o l y p h o s p h o r i c s t r u c t u r e s . Assuming t h e r e a c t i o n s c h e m e p r o p o s e d a b o v e , melam p o l y p h o s p h a t e a n d ammonium p o l y p h o s p h a t e g r o u p s s h o u l d be f o r m e d f r o m m e l a m i n e polyphosphate:
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
0
I t i s k n o w n t h a t ammonium p o l y p h o s p h a t e t e n d s t o d i s s o c i a t e l i b e r a t i n g ammonia a b o v e 3 0 0 C a n d t h e r e s u l t i n g f r e e h y d r o x y g r o u p s condense giving crosslinked structures (ultraphosphate) with e l i m i n a t i o n of water (28.29): #
\ 2 0=P-0NH
4
>
0 = P - 0 - P = 0 + NHo + i l 3
(14)
H0 2 o
Owing t o o v e r l a p p i n g o f d i f f e r e n t p r o c e s s e s in t h i s range of t e m p e r a t u r e , q u a n t i t a t i v e c o n s i d e r a t i o n s b a s e d on d a t a o b t a i n e d in p r o g r a m m e d t e m p e r a t u r e TG c a n n o t be m a d e . H o w e v e r , i t c a n r o u g h l y be e s t i m a t e d t h a t up t o 4 1 0 C , t h a t i s t o t h e e n d o f t h e process c h a r a c t e r i s e d by t h e n a r r o w DTG p e a k 3 i n F i g u r e 1 2 , a b o u t o n e m o l e o f ammonia i s e v o l v e d p e r mole o f m e l a m i n e . T h i s w o u l d s u p p o r t the f o r m a t i o n o f melam by R e a c t i o n 1 3 , f o l l o w e d by e l i m i n a t i o n o f ammonia ( r e a c t i o n 14). The r e s i d u e o f t h e t h i r d s t e p o f d e g r a d a t i o n o f m e l a m i n e p h o s p h a t e ( 3 0 0 - 4 1 0 C ) s h o u l d t h e n be t h e melam s a l t o f u l t r a p h o s p h o r i c a c i d . The IR s p e c t r u m o f s u c h a r e s i d u e ( F i g u r e 1 5 A ) s h o w s b r o a d , poorly r e s o l v e d a b s o r p t i o n bands w i t h however c l e a r e v i d e n c e o f s - t r i a z i n e r i n g a b s o r p t i o n a t 7 9 0 - 8 1 0 cm . C r o s s l i n k i n g P-O-P bonds ("branching points") hydrolyse very fast in water to give phosphoric or polyphosphoric acid (30). Upon t r e a t m e n t w i t h w a t e r o f the u l t r a p h o s p h a t e r e s i d u e , a s m a l l f r a c t i o n d i s s o l v e d p r o b a b l y due t o phosphoric or polyphosphoric acid molecules r e s u l t i n g from random h y d r o l y s i s of the branching p o i n t s , whereas the s a l t s of products of c o n d e n s a t i o n o f m e l a m i n e a r e i n s o l u b l e . T h e IR s p e c t r u m o f t h e w a t e r extracted residue (Figure 15B) shows s l i g h t l y b e t t e r resolved a b s o r p t i o n bands than t h e o r i g i n a l r e s i d u e _ ( F i g u r e 15A). T y p i c a l a b s o r p t i o n s o f s - t r i a z i n e r i n g ( 7 9 0 - 8 1 5 cm ) a n d o f P=0 groups ( 1 0 8 0 , 1250 cm ) a r e e v i d e n t w h e r e a s i d e n t i f i c a t i o n o f t h e melam s t r u c t u r e i s not s t r a i g h t f o r w a r d . N e v e r t h e l e s s , the a t t r i b u t i o n of the IR s p e c t r u m o f F i g u r e 15B t o melam p h o s p h a t e o r p o l y p h o s p h a t e d e r i v i n g f r o m h y d r o l y s i s o f melam u l t r a p h o s p h a t e seems n o t u n l i k e l y if c o m p a r i s o n i s made w i t h IR a b s o r p t i o n s o f melam ( F i g u r e 1B) a n d i t s s a l t s ( F i g u r e 7 , 9 , 1 1 ) p a r t i c u l a r l y i n t h e r e g i o n s 1500-1700 and 3 0 0 0 3 8 0 0 cm . M e l a m p o l y p h o s p h a t e i s r e p o r t e d t o be o b t a i n e d o n h e a t i n g melam p h o s p h a t e ( 2 0 ) . A b o v e 410 *C t h e u l t r a p h o s p h a t e u n d e r g o e s a r e l a t i v e l y slow d e g r a d a t i o n process which i s completed a t about 650 C w i t h f o r m a t i o n o f a r e s i d u e (35% o f o r i g i n a l p h o s p h a t e ) m o s t l y s t a b l e t o 9 5 0 C #
#
#
#
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
230
FIRE AND POLYMERS T
1
J
1
1
r
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
A
I 4000
i 3000
i 2000
i 1500
i 1—» 1000 500 wavenumber, cm"
1
F i g u r e 1 4 . IR s p e c t r u m o f m e l a m i n e p h o s p h a t e ( A ) a n d o f r e s i d u e 3 0 0 C (B: p y r o p h o s p h a t e ) and a t 3 3 0 C ( C : p o l y p h o s p h a t e ) . #
I 4000
at
#
I
3000
I
2000
I
1500
L.
1—I
1000 500. wavenumber, c m "
F i g u r e 1 5 . IR s p e c t r u m o f r e s i d u e o f m e l a m i n e p h o s p h a t e h e a t e d 3 8 0 C (A) and o f t h i s r e s i d u e a f t e r w a t e r e x t r a c t i o n ( B ) . #
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
to
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
231
( F i g u r e 1 2 ) . I n t h i s s t e p t h e DTG c u r v e s h o w s a v e r y b r o a d p e a k w i t h a n a r r o w e r maximum s u p e r i m p o s e d (550 C) i n d i c a t i n g the occurrence of different overlapping processes. This thermal behaviour cannot be e x p l a i n e d on t h e b a s i s o f t h a t o f m e l a m i n e c o n d e n s a t i o n p r o d u c t s o r o f u l t r a p h o s p h a t e s ( e . g . ammonium s a l t ) . I n d e e d m e l a m i n e condensate undergoes complete f r a g m e n t a t i o n t o v o l a t i l e p r o d u c t s below 750*0 (18) w h i l e ammonium u l t r a p h o s p h a t e d o e s s o m o s t l y b e l o w 7 0 0 C ( 2 9 ) , i n TG a t 1 0 * C / m i n . The p r e s e n c e o f P i n t h e m a t e r i a l o b t a i n e d a t 6 5 0 * 0 i s shown by t h e s o l i d s t a t e 31P NMR w h i c h h o w e v e r g i v e s b r o a d c o m p l e x signals t h a t c o u l d n o t be a s s i g n e d to s p e c i f i c structures at this stage. The i n f r a r e d s p e c t r u m ( F i g u r e 16A) shows b r o a d absorptions among w h i c h t h o s e t y p i c a l o f s - t r i a z i n e r i n g ( 8 1 0 cm ^) a n d o f N H groups of melamine or i t s condensates (1650 and 3000-3600 c m j l ) a r e r e c o g n i s a b l e . A n o t i c e a b l e a b s o r p t i o n b e g i n s t o show a t 2 2 0 0 cm . F u r t h e r m o d i f i c a t i o n o f t h e r e s i d u e t a k e s p l a c e on r a i s i n g the t e m p e r a t u r e a b o v e 6 5 0 * 0 a s shown by t h e l o w s t e a d y r a t e o f w e i g h t l o s s (8% t o 9 0 0 * 0 , F i g u r e 1 2 ) . I n d e e d , t h e t y p i c a l a b s o r p t i o n o f s - t r i a z i n e r i n g a n d o f N H g r o u p s , s t i l l e v i d e n t i n F i g u r e 16A, h a v e d i s a p p e a r e d i n t h e IR s p e c t r u m o f t h e m a t e r i a l o b t a i n e d a t 9 0 0 C ( F i g u r e 16B). H e r e , a few b r o a d a b s o r p t i o n bands a r e p r e s e n t c e n t e r e d a t 500, 950, 1280 a n d 2 2 0 0 cm . T h i s m a t e r i a l w h i c h i s a w h i t e powder, undergoes a v e r y r a p i d d e c o m p o s i t i o n t o v o l a t i l e p r o d u c t s w i t h maximum r a t e a t 9 6 0 C ( s t e p 5, F i g u r e 1 2 ) . W h i l e f u r t h e r c h a r a c t e r i s a t i o n i s under w a y , i t c o u l d be s u g g e s t e d t h a t t h e p r o d u c t o b t a i n e d a t 9 0 0 * 0 m i g h t be a h i g h l y t h e r m a l l y s t a b l e (PN) compound o f t h e t y p e o b t a i n e d on h e a t i n g phospham (NPNH) o r p h o s p h o r y l n i t r i d e (0PN) (31.32). Sumarising, the o v e r a l l degradation process of melamine phosphate f o l l o w s t h e scheme: #
#
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
2
2
#
#
n
melamine phosphate 1 I 250-300*0 + H 0 melamine pyrophosphate step 2 | 300-330*0 / melamine polyphosphate + H 0 (15) step 3 | 330-410*0 / / melam u l t r a p h o s p h a t e + NHo + H 0 + m e l a m i n e step 4 t 410-650*0 (unidentified phosphate-ultraphosphate-melamine type structures) + v o l a t i l e products | 650-940*0 l o s s o f m e l a m i n e s t r u c t u r e s ( l i k e l y f o r m a t i o n o f PN) step 5 J 940-970*0 decomposition step
2
2
2
Borate. D e h y d r a t i o n i s t h e f i r s t r e a c t i o n o c c u r r i n g on h e a t i n g t h e b o r a t e a s i n t h e c a s e o f t h e p h o s p h a t e b u t a t a much l o w e r t e m p e r a t u r e ( 1 3 0 - 2 7 0 * 0 , s t e p 1 F i g u r e 1 7 ) . B o r i c a c i d h e a t e d a l o n e i n t h e same c o n d i t i o n s i n TG, e l i m i n a t e s w a t e r b e t w e e n 8 0 - 3 0 0 * 0 i n two m a i n o v e r l a p p i n g s t e p s w i t h maximum r a t e a t 170 a n d 1 9 0 * 0 c o r r e s p o n d i n g t o f o r m a t i o n o f m e t a b o r i c a c i d and b o r i c a n h y d r i d e r e s p e c t i v e l y : -H 0
x 2
2
HoBOo 3
3
>
HBO2
> -H 0
B 0o 9
2
3
2
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
(16)
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
232
FIRE AND POLYMERS
I— 4000
i 2000
1
3000
i 1500
i i—l 1000 500 wavenumber, cm" 1
F i g u r e 1 6 . IR s p e c t r u m o f r e s i d u e 650 C (A) and t o 900 C ( B ) . #
o f melamine phosphate
heated t o
#
F i g u r e 1 7 . T G , DTG a n d r a t e o f w a t e r a n d a m m o n i a e v o l u t i o n ( a r b i t r a r y u n i t s ) f o r melamine b o r a t e . C o n d i t i o n s as F i g u r e 2.
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
233
A p h y s i c a l m i x t u r e o f b o r i c a c i d and melamine shows t h i s two s t e p d e h y d r a t i o n p r o c e s s e s i n TG w h e r e a s i n t h e s a l t t h e t w o s t e p s seem t o merge. Indeed t h e d e h y d r a t i o n p r o c e s s b e g i n s a t h i g h e r t e m p e r a t u r e i n the s a l t (130*0 i n s t e a d o f 80*0) p o s s i b l y because i n t e r a c t i o n s of hydroxy g r o u p s w i t h melamine m o l e c u l e s have f i r s t t o be t h e r m a l l y b r o k e n . The o v e r a l l w e i g h t l o s s a t t h e end o f t h e f i r s t step of degradation of the borate ( 1 5 % , 2 7 0 * 0 F i g u r e 17) i s i n a g r e e m e n t w i t h occurrence of Reaction 16 ( c a l c u l a t e d : 1 4 . 4 % ) . The IR s p e c t r u m o f t h e p r o d u c t o f d e h y d r a t i o n ( F i g u r e 18B) s h o w s t h e t y p i c a l a b s o r p t i o n s of m e l a m i n e w i t h m i n o r d i f f e r e n c e s i n r e l a t i v e i n t e n s i t y o f some b a n d s ( s e e F i g u r e 1 A ) . W h e r e a s t h e a b s o r p t i o n s o f OH g r o u p s p r e s e n t i n t h e s p e c t r u m o f t h e o r i g i n a l s a l t ( e . g . 2 4 0 0 , 2 9 0 0 cm , F i g u r e 18A), have disappeared as e x p e c t e d f r o m o c c u r r e n c e of Reaction 1_6. The absorptions of boric anhydride ( 8 0 0 ( m ) , 1 2 0 0 ( m ) , 1 4 7 0 ( s ) cm ) are d i f f i c u l t to recognise i n F i g u r e 18B o w i n g t o o v e r l a p p i n g w i t h t h e r e l a t i v e l y s t r o n g a b s o r p t i o n s o f m e l a m i n e . The d e h y d r a t i o n p r o c e s s o f melamine borate should then r e s u l t i n a p h y s i c a l m i x t u r e or adduct of b o r i c anhydride w i t h melamine.
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
1
I n t h e r a n g e 2 7 0 - 3 5 0 * 0 ( 2 n d s t e p , F i g u r e 17) m e l a m i n e v o l a t i l i s e s as i n t h e c a s e o f p u r e m e l a m i n e ( F i g u r e 2) o r o f s a l t s w h i c h f r e e melamine at these t e m p e r a t u r e s , e . g . dimelamine cyanurate (1st step, F i g u r e 3 ) , melamine o - p h t a l a t e (2nd s t e p , F i g u r e 5 ) . However, i n t h e case of b o r i c a n h y d r i d e - m e l a m i n e o n l y a b o u t 50% o f t h e m e l a m i n e v o l a t i l i s e s a s i t c a n be c a l c u l a t e d f r o m t h e w e i g h t l o s s i n t h i s s t e p ( 3 5 % , F i g u r e 17) s i n c e b o r i c a n h y d r i d e i s s t a b l e t o >800*C i n T G . W h e r e a s more t h a n 90% o f f r e e m e l a m i n e c a n v o l a t i l i s e i n t h e same r a n g e o f t e m p e r a t u r e i n t h e e x a m p l e s m e n t i o n e d a b o v e . On t h e o t h e r hand f r e e melamine i s a b s e n t from t h e r e s i d u e o b t a i n e d when v o l a t i l i s a t i o n s t o p s a s shown by t h e IR s p e c t r u m o f F i g u r e 19A in w h i c h , however, t y p i c a l a b s o r p t i o n s o f t h e s - t r i a z i n e r i n g (790-815 cm ) a n d o f N H , NH g r o u p s ( 1 6 0 0 - 1 7 0 0 a n d 3 0 0 0 - 3 6 0 0 cm ) are r e c o g n i s a b l e i n the o t h e r w i s e complex a b s o r p t i o n p a t t e r n . T h i s r e s i d u e was b o i l e d w i t h 5N HC1 t o e l i m i n a t e s o l u b l e f r a c t i o n s s u c h a s b o r i c a n h y d r i d e . The e x t r a c t e d m a t e r i a l s h o w s an IR s p e c t r u m ( F i g u r e 19B) w h i c h c o u l d be c o n s i s t e n t w i t h a c o m p l e x p r o d u c t o f c o n d e n s a t i o n of m e l a m i n e . I n d e e d , t h e s p e c t r u m o f F i g u r e 19B i s v e r y c l o s e t o t h a t o f t h e w a t e r e x t r a c t e d p r o d u c t o b t a i n e d a t t h e same t e m p e r a t u r e from m e l a m i n e p h o s p h a t e ( F i g u r e 15B) a p a r t f r o m t h e p r e s e n c e o f m i n o r a b s o r p t i o n s b e t w e e n 9 0 0 - 1 3 0 0 cm ( e . g . 1080 cm , P=0) i n t h i s l a s t . However, i n t h e case o f t h e phosphate, t h e f o r m a t i o n o f t h i s residue o c c u r r e d w i t h e v o l u t i o n o f ammonia i n d i c a t i n g t h a t i t was i s s u e d f r o m a c o n d e n s a t i o n p r o c e s s i n v o l v i n g NH? g r o u p s o f m e l a m i n e . W h e r e a s , in t h e c a s e o f t h e b o r a t e , e v o l u t i o n o f ammonia o n l y b e g i n s a t 3 5 0 * 0 a n d takes place in the following t h i r d step (Figure 17). Although this p o i n t i s t o be f u r t h e r i n v e s t i g a t e d i t m i g h t be t h a t c o n d e n s a t i o n o f melamine t a k e s p l a c e i n the b o r i c anhydride-melamine system with h o w e v e r r e t e n t i o n o f ammonia by i n t e r a c t i o n w i t h b o r i c anhydride. A m m o n i a w o u l d t h e n be r e l e a s e d a t h i g h e r t e m p e r a t u r e when such i n t e r a c t i o n s a r e b r o k e n o n h e a t i n g . F o r e x a m p l e , ammonium p e n t a b o r a t e i s shown t o e l i m i n a t e ammonia b e t w e e n 3 3 0 - 4 0 0 * 0 i n TG ( 3 3 ) . T h e amount o f ammonia r e l e a s e d a b o v e 3 5 0 * 0 c o r r e s p o n d s t o 0 . 6 m o l e p e r m o l e o f melamine u n v o l a t i 1 i s e d i n t h e p r e v i o u s s t e p between 2 7 0 - 3 5 0 * 0 . T h i s i s c l o s e t o ammonia e v o l v e d when t h e e q u i v a l e n t r e s i d u e o f F i g u r e 15B i s f o r m e d f r o m t h e p h o s p h a t e ( 0 . 4 0 ) a n d t o t h e amount c o r r e s p o n d i n g to 1
1
0
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
234
FIRE AND POLYMERS
i 4000
F i g u r e 18. IR 280 C (B).
1
i
i
i
3000
2000
1500
1000
spectrum of
melamine
borate
i I 500
wavenumber, cm" (A)
and o f
1
residue
at
#
4000
3000
2000
F i g u r e 1 9 . IR s p e c t r u m o f r e s i d u e 380*C (A) and o f t h i s r e s i d u e a f t e r
1500
1000
500
wavenumber, c m
o f melamine b o r a t e heated acid e x t r a c t i o n (B).
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
-1
to
15.
COSTA E T A L .
Thermal Degradation of Fire-Retardant Melamine Salts
235
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
melam f o r m a t i o n ( 0 . 5 0 ) . A physical mixture o f boric anhydride and m e l a m i n e s h o w s a TG i d e n t i c a l t o t h a t o f F i g u r e 1 7 , a p a r t f r o m t h e dehydration step. Although a d e t a i l e d i d e n t i f i c a t i o n o f t h e residue o b t a i n e d from the second step o f degradation o f melamine borate i s not yet a v a i l a b l e , i t i s c l e a r f r o m F i g u r e 19 t h a t i t c o n t a i n s s - t r i a z i n e r i n g and amino g r o u p s b e s i d e s b o r i c anhydride. This material undergoes f u r t h e r m o d i f i c a t i o n on h e a t i n g above 350*0 w i t h a r e l a t i v e l y slow w e i g h t l o s s t o 950*0 ( 3 r d s t e p , F i g u r e 17) t o g i v e a w h i t e p r o d u c t s t a b l e a t l e a s t t o 1100*0 (17% o f t h e o r i g i n a l melamine b o r a t e ) . T h i s s t e p o f d e g r a d a t i o n o c c u r s w i t h 32% w e i g h t l o s s o f w h i c h o n l y 2 . 6 % i s a c c o u n t e d f o r by ammonia. The c o n t e n t o f b o r o n in the material o b t a i n e d a t 950*0 i s 28% as d e t e r m i n e d by a method p r o p o s e d f o r r e f r a c t o r y boron n i t r i d e ( 3 4 ) . The IR s p e c t r u m o f t h i s r e s i d u e ( F i g u r e 20) s h o w s a r e l a t i v e l y s h a r p maximum a t 1 4 0 5 cm w h i c h c o u l d be a t t r i b u t e d t o B-N b o n d s ( 1 7 ) . a n d t w o o v e r l a p p i n g b r o a d m a x i m a i n t h e r e g i o n o f N H , NH s t r e t c h i n g f r e q u e n c y ( 3 0 0 0 - 3 8 0 0 cm ) w h e r e a s a b s o r p t i o n s d u e t o t h e s - t r i a z i n e r i n g ( e . g . c a 8 0 0 cm ) a r e a b s e n t . F u r t h e r b r o a d a b s o r p t i o n s a r e shown i n F i g u r e 2 0 i n t h e r e g i o n s 8 0 0 1300 a n d 1 5 0 0 - 1 7 0 0 cm . Many p a p e r s a n d p a t e n t s d e a l w i t h p r e p a r a t i o n of r e f r a c t o r y boron n i t r i d e ( s t a b l e i n i n e r t atmosphere t o 2700*0 2
(35) ) by h e a t i n g b o r o n o x y compounds w i t h m e l a m i n e g e n e r a l l y above 900*0 ( e . g . r e f . 3 6 - 4 1 ) . The IR s p e c t r a r e p o r t e d i n t h e l i t e r a t u r e f o r boron n i t r i d e ( 4 2 . 4 3 ) s h o w a weak a b s o r p t i o n a t 8 0 9 - 8 1 3 cm and a s t r o n g o n e a t 1 3 7 4 - 1 3 8 9 cm . T h e s p e c t r u m o f F i g u r e 2 0 c o u l d b e p a r t i a l l y c o n s i s t e n t w i t h t h a t o f a boron n i t r i d e s i n c e the s t r o n g e s t of t h eabove a b s o r p t i o n s i s c l o s e t o t h e s t r o n g e s t a b s o r p t i o n i n F i g u r e 2 0 . However, t h e IR s p e c t r u m o f F i g u r e 20 shows a l s o r e l e v a n t a b s o r p t i o n s w h i c h a r e n o t a t t r i b u t a b l e t o b o r o n n i t r i d e . On t h e o t h e r h a n d i t was s u g g e s t e d ( 3 6 ) t h a t o n h e a t i n g m i x t u r e s o f o r t h o b o r i c a c i d and m e l a m i n e o r o t h e r n i t r o g e n c o n t a i n i n g c o m p o u n d s ( e . g . : urea, c y a n a m i d e e t c . ) a BNO ( B = 3 1 . 6 % , N = 2 0 . 5 % ) r e s i d u e i s o b t a i n e d a t 600*0 w h i c h c o u l d n o t be t r a n s f o r m e d i n t o pure boron n i t r i d e on f u r t h e r h e a t i n g t o 1 3 0 0 * 0 ; w h e r e a s t h e BNO r e s i d u e g a v e b o r o n n i t r i d e o n heating i n a stream o f ammonia a t 500-900*0. Although IR c h a r a c t e r i s a t i o n o f t h e BNO w a s n o t s h o w n , t h e B c o n t e n t o f t h e r e s i d u e o f F i g u r e 20 (28%) i s c l o s e t o t h a t r e p o r t e d i n t h e l i t e r a t u r e ( 3 6 ) f o r BNO ( 3 1 . 6 % ) . T h e r e f o r e , t h e r e s i d u e o b t a i n e d a t 9 5 0 * 0 f r o m
4000
3000
2000
1500
1000 500 wavenumber, cm" 1
Figure 950*0.
2 0 . IR s p e c t r u m
o f residue
o f melamine
borate
heated t o
In Fire and Polymers; Nelson, G.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
236
FIRE AND POLYMERS
m e l a m i n e b o r a t e c o u l d b e s i m i l a r t o t h i s BNO m a t e r i a l r a t h e r t h a n t o pure boron n i t r i d e . While f u r t h e r c h a r a c t e r i s a t i o n work is in progress, i t must be m e n t i o n e d t h a t a l s o p o l y a m i n o - b o r a z i n e s (35,44) are b o r o n - n i t r o g e n t h e r m a l l y s t a b l e p r o d u c t s which might be formed i n t h e a b o v e c o n d i t i o n s a n d w o u l d a c c o u n t f o r t h e N-H a b s o r p t i o n i n t h e IR s p e c t r u m o f F i g u r e 2 0 . Summarising t h e data available a t t h i s stage, t h e thermal d e g r a d a t i o n o f melamine b o r a t e can be r e p r e s e n t e d by t h e scheme: melamine b o r a t e I 130-270*0 / melamine-boric anhydride + H 0 (17) \ step 2 I 270-350*0 melamine + u n i d e n t i f i e d ( l i k e l y melamine c o n d e n s a t e - b o r i c anhydride) step 3 i 350-950 C l o s s o f m e l a m i n e s t r u c t u r e s ( l i k e l y f o r m a t i o n o f BN o r BNO) step
1
Downloaded by UNIV OF ARIZONA on December 14, 2012 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0425.ch015
2
m
Conclusion T h i s s u r v e y shows t h a t melamine salts can display widely different thermal behaviour depending on t h e type o f a c i d residue. As f a r a s f i r e retardance i s concerned t h e f o r m a t i o n o f v o l a t i l e products and o f t h e r m a l l y s t a b l e r e s i d u e ( " c h a r " ) i n t h e range 300-500*C i n which most p o l y m e r s u n d e r g o t h e r m a l d e g r a d a t i o n , i s o f paramount i m p o r t a n c e . F i r s t o f a l l i t i s shown t h a t i n d i m e l a m i n e s a l t s o n e m o l e c u l e o f melamine behaves a s f r e e melamine v o l a t i l i s i n g almost q u a n t i t a t i v e l y above 2 5 0 * C . A s i m i l a r b e h a v i o u r i s a l s o shown by monomelamine salts o f a c i d s which tend t o decompose on h e a t i n g a t r e l a t i v e l y l o w temperature (200-400*C, e . g . o - p h t a l a t e , cyanurate, o x a l a t e ) . These s a l t s l e a v e o n d e g r a d a t i o n a s m a l l amount o f r e s i d u a l c h a r s t a b l e t o a b o u t 5 0 0 * C (