29 Mechanisms and Rate Laws in Electrolyte Crystal Growth from Aqueous Solution
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
Arne E. Nielsen Medicinsk-Kemisk Institut, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark When electrolyte crystals grow in an aqueous solution with a surface controlled rate following a parabolic or an exponential rate law, the rate-determining step is the integration of the cations at kinks in surface steps. The integration rate constant, or frequency, is about one-thousandth of the dehydration frequency of the cations. The factor, 10 , is assumed to be due to diffusion activation energy. Both the rate laws and the absolute rates observed can be accounted for by calculating the kink density by classical methods, and estimating the adsorption equilibrium constants by means of the ion pair stability constants. The calculated and the observed rates mostly agree within one order of magnitude. The rate-determining mechanism for crystal growth may change between several surface processes and transport processes (diffusion and convection in the liquid phase) when the concentration or the particle size is varied. -3
In g e o c h e m i s t r y , a s i n c h e m i s t r y i n g e n e r a l , a phenomenon i s n o t considered as completely understood u n t i l the e s s e n t i a l e m p i r i c a l f e a t u r e s o f t h e phenomenon (such a s , f o r i n s t a n c e , i t s k i n e t i c s ) a r e a c c o u n t e d f o r i n terms o f a r e a s o n a b l e m o l e c u l a r mechanism, c o n v i n c i n g l y v e r i f i e d by e x p e r i m e n t a l t e s t s . G e o c h e m i s t r y d e a l s p r i m a r i l y w i t h c r y s t a l l i n e b o d i e s , many o f which a r e e l e c t r o l y t e s t h a t have c r y s t a l l i z e d f r o m aqueous s o l u t i o n . The m o l e c u l a r mechanisms o f t h e s e c r y s t a l l i z a t i o n p r o c e s s e s a r e t h e r e f o r e o f g r e a t importance f o r t h e understanding o f geochemical processes t a k i n g p l a c e i n nature. When a c r y s t a l i s growing i n a s o l u t i o n two groups o f p r o c e s s e s a r e always t a k i n g p l a c e , t r a n s p o r t p r o c e s s e s b r i n g i n g t h e d i s s o l v e d growth u n i t s ( i o n s o r m o l e c u l e s ) from b u l k o f t h e s o l u t i o n up t o t h e c r y s t a l s u r f a c e , and s u r f a c e p r o c e s s e s t r a n s f e r r i n g t h e a r r i v i n g growth u n i t s t o t h e l a t t i c e p o s i t i o n s ( 1 - 3 ) . W i t h some s i m p l i f i c a t i o n s we may d e s c r i b e t h e s i t u a t i o n i n t h e way t h a t t h e c o n c e n t r a t i o n o f t h e growth u n i t s i s c i n t h e b u l k s o l u t i o n and c ' i n t h e s o l u t i o n j u s t o u t s i d e t h e c r y s t a l s u r f a c e and any a d s o r p t i o n l a y e r . The t o t a l
0097-6156/86/0323-O600$06.00/0 © 1986 American Chemical Society
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
29.
NIELSEN
Mechanisms
and Rate Laws in Electrolyte
Crystal
Growth
601
d r i v i n g f o r c e f o r c r y s t a l l i z a t i o n , ( c - c ) , where c i s t h e s o l u b i l i t y , i s d i v i d e d i n t h e d r i v i n g f o r c e (c-c') f o r t h e t r a n s p o r t p r o c e s s e s and ( c ' - c ) f o r t h e s u r f a c e p r o c e s s e s ( 1 - 3 ) . The s i m p l i f i c a t i o n s made a r e 1 ) , n e g l e c t i n g t h a t t h e d i f f e r e n t i o n s may have d i f f e r e n t , p e r haps even n o n - e q u i v a l e n t c o n c e n t r a t i o n s i n t h e s o l u t i o n , and 2 ) , n e g l e c t i n g t h a t t h e c o n c e n t r a t i o n v e r y c l o s e t o a growing c r y s t a l may v a r y a l o n g t h e s u r f a c e . s
s
s
Rate C o n t r o l I f c « c '
same
composed
general
although
control
time, and of
features
the
of
treatments
kinetic equation
for
the
(10)
=
k
-F(S)-exp[-K
=
2av. (c y ) in s,ad m
e
or
can
"historically"
controlled
linear
at
on
the
nucleus)
to
in
for
surface
of
differ
only
the units
perfect of
the
growth
but
of
above right
the
typical
nuclei.
nucleation
face
growing
a
concentration
On s m a l l
observed,
it
than energy
critical
form before
model of
growth
free
the
growth
face
adsorbed
(a
surface
i t covers the
nucleus
on
stable
grow.
crystal
nucleation
energy
the
605
Growth
perfect
of
free
called
just
each
on a
groups
Depending is
only
surface
form
higher be
nuclei will
surface
silver
crystal led
surface
supersaturation,
to
Crystal
the
the
small a
formally
size
new
(e.g.
presents
may
group.
of
(1,15).
with
the
will a
face
1949
was
assumed
of
larger
degree
Before
literature
walls
certain
any
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
in
n u c l e i were
(4,12-14).
due
and Rate Laws in Electrolyte
/(InS)]
e
(7)
where k
K
e =
e
π
F(S) a
2
=
=
S
7
mean =
c
Ύ /3^Τ
^
=
/
Spiral
Step
supersaturation suggest
that
dislocation, ing
to
the
according version
steps and
that
to
this
the
=
γ
is
γ
=
a c. 2
the of
In
(free)
the
steps
parabolic
,V '
layer,
grow
faster
This
lead
the
is
presence
not We
The
shall
small
of
destroyed
infinitely. (7).
at
Frank
(17) a
by
rate
use
the
energy (11)
a
per
tension one
to
screw spread law following
(10)
c s
frequency)
adsorption
7.
from
continues
n
(or
d
(S-1)
2
=
m
k ( S - l )
(11)
2
(y/kT)exp(y/kT)
surface
Equation
i n the
crystals
kind of
i
(10)
6
12
originate
is
/
constant
Equation
equation
9
formality
rate
Many
but
1
diameter
by
O.lav.
where
( l n S )
3
Equation
this
theory
v
/
concentration
edge,
kinetic
2
integration
may a l s o
crystal
of
( S - l )
allowed
(8) (9)
Control.
than
exp(-γ/kT)
2
ionic
see Surface
6
4/3
of
growth σ
in
the
unit
the
in
a
vertical
factors
(S-1)
step. step comes
Using
the
surface, from
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
the
606
G E O C H E M I C A L P R O C E S S E S AT M I N E R A L S U R F A C E S
net
flux
(growth u n i t s
linearly The
with
other
which
is
rates
we
to
the
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
that
rate
both
three
the
the
the
Adsorption
the
concentration of
But
it
c
Layer
been
,, ad
γ '
and
Y are
crystal.
the The
5000
that
ing
of
the
ways
of
as
the
As
average
an
the
of
them. of
Equation
be
are
1 where
"competing"
controlled not
growth
known
from
rates
we
find
macroscopic
is
not in
may b e
possible
the
to
measure
adsorption
calculated
by
layer.
means
of
the
values
c
These
may b e
(12)
estimated
from
a
the
the
anion,
respectively,
discussion
is
of
the
that (14)
T
1,1
electrolytes, for
3
for
2,2 all
i n the
between and
the
two
ions
situation, one
Κ
10V_K_^c«l) m ad
I
Q-factors
the
for
K^c ad
constant
and of
equal
ion
(«
K^.,
electrolyte
The
adsorption
Î
sum
approximately
(13)
mol/m
force
adsorbed site.
respectively.
QK
assumption
arranging
in
cases
parallel
the
= Κ "
for
200
between
adsorption
extreme
to
rate-controlling.
K ,c m ad
cation
3
roughly
are
same
equal
will
c ^
constant
, « ad
mol/m
fundamental force
mechanism are be
one
constituent
result
constants
the
.
density
ν
equilibrium
and
is
kink
in
1+10V
electrolytes,
the
the
processes
It
stability
Κ
The
varies
equilibrium)
surface
ions
[XY]
Q =
from
discussion
the
[X][Y]
where
which
(10,18,19)
adsorption
ion pair
X and
in
among
normally
Κ
growing
come
will
Concentration.
ad
where
kink
(solubility
and
surface
are
suggested
equation
the
and the
slower
for
namely
The
the
1
spiral
rate
one
with
transport
which 2
where
surface
growth
faster
the
equations
measurements,
Langmuir
each
=
Parameters
parameters
has
S
denominator
mechanisms,
when
into
for
(S-l)/[(γ/kT)exp(γ/kT)]. and
compared
control,
of
the
of be
time)
zero
the
to
two
rate
should
Estimates In
these
the
unit
and
Consequently
concluded
for
(S-l)
nucleation
of
This
per
^ and becomes
proportional
mechanisms. equal
a (
factor
Surface the
c
estimates
of
crystal
and ions
two
of
the
the
the
an of
0.06,
for
Q and Kj
give
for
1,1
electrolytes
1,2
and
200
for
2,2
electrolytes
(as
consist
(as
surface
at
BaSO
the
molecules
situation and
it
possible (_18*J_9) .
1 m /mol, 3
finally
(18)
KCl)
electrolytes
type.
that to
h y d r a t i o n water ion pair
= 0.002,
for
is,
different
Kj
10
charge
ion pair
crystal
the
same
adsorbed
the
their
2,1 stability
an
for
in
and pair
ion
the
and
1,2 Ion
Q-factors
in
30
2,1
ion pairs
theory
ion
for
account
and
may t a k e
500
electrolytes.
"1 (as
Κ SO
and
BaCl
)
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
)Ml5) J
29.
NIELSEN
Mechanisms
These v a l u e s o f
and Rate Laws in Electrolyte
Crystal
607
Growth
a r e assumed t o be good w i t h i n f a c t o r s 0.2
to
5.
I n t e r f a c i a l Tension. The i n t e r f a c i a l energy σ between a c r y s t a l and an aqueous s o l u t i o n cannot ( a t l e a s t i n g e n e r a l ) be measured by m a c r o s c o p i c methods. But i t may be deduced from homogeneous n u c l e a t i o n d a t a (20-24). F o r t h e p u r p o s e o f d e t e r m i n i n g t h e edge energy γ = a o one may e i t h e r t a k e the i n d i v i d u a l v a l u e d e t e r m i n e d on t h e a c t u a l s u b s t a n c e ( i f i t i s determined) o r use t h e g e n e r a l c o r r e l a t i o n w i t h t h e s o l u b i l i t y c , e x p r e s s e d f o r i n s t a n c e by (10,18) 2
g
c
Ύ
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
kT
* , 3 - 0.272 l n mol /mΊ
2.82
(16)
The a c c u r a c y o f t h i s e q u a t i o n was t e s t e d on 37 s u b s t a n c e s and was found t o be b e t t e r than ί 20% f o r 57 p e r c e n t o f t h e 37 s u b s t a n c e s . ( T h i s t e s t has n o t been p u b l i s h e d b e f o r e , b u t t h e d a t a used were p u b l i s h e d as F i g u r e 4 i n R e f e r e n c e ( 10) ).. The I n t e g r a t i o n Rate C o n s t a n t . R e i c h and K a h l w e i t s u g g e s t e d t h a t v-j^n i s e q u a l t o the r a t e c o n s t a n t (or f r e q u e n c y ) v ^ o f d i s s o c i a t i o n o f a water m o l e c u l e from t h e i n n e r c o o r d i n a t i o n s h e l l o f the h y d r a t e d c a t i o n (25,26). They found o n l y p a r t i a l v e r i f i c a t i o n o f t h i s h y p o t h e s i s because o f t o o few d a t a . I t has been shown s u b s e q u e n t l y t h a t i f a l l t h e e s t i m a t e s mentioned above a r e made, a c o n s i d e r a b l e amount o f c r y s t a l growth d a t a may be e x p l a i n e d (18,19) by e s t i m a t i n g the i n t e g r a t i o n f r e q u e n c y as n
3
v. = 10~ u in dh
(17)
where v ^ i s the d e h y d r a t i o n f r e q u e n c y o f t h e c a t i o n s (27-29). The f a c t o r 10~ may be i n t e r p r e t e d as the A r r h e n i u s f a c t o r exp(-E*/kT) f o r an i o n making a d i f f u s i o n jump. V a l u e s o f t h e d e h y d r a t i o n f r e q u e n c i e s o f a l l m e t a l i o n s o f i n t e r e s t have been measured i n v a r i o u s ways (10). n
3
P r e d i c t i o n o f Growth Rates From t h e above s t a t e m e n t s i t f o l l o w s t h a t i t s h o u l d be p o s s i b l e t o d e r i v e t h e growth k i n e t i c s and c a l c u l a t e the growth r a t e o f u n c o n t a m i n a t e d e l e c t r o l y t e c r y s t a l s when the f o l l o w i n g p a r a m e t e r s a r e known: molecular weight, d e n s i t y , s o l u b i l i t y , c a t i o n d e h y d r a t i o n frequency, i o n p a i r s t a b i l i t y c o e f f i c i e n t , and the b u l k c o n c e n t r a t i o n o f t h e s o l u t i o n (or t h e s a t u r a t i o n r a t i o ) . I f t h e growth r a t e i s t r a n s p o r t c o n t r o l l e d , one s h a l l a l s o need the p a r t i c l e s i z e . In t a b l e I we have made t h e s e c a l c u l a t i o n s f o r 14 e l e c t r o l y t e s o f common i n t e r e s t . F o r t h e s a t u r a t i o n r a t i o and p a r t i c l e s i z e we have chosen v a l u e s t y p i c a l f o r t h e range where k i n e t i c e x p e r i m e n t s have been p e r f o r m e d (29,30). The e m p i r i c a l r a t e s a r e g i v e n f o r comparison. F o r t h e c a l c u l a t i o n we used V k
m D
6
= M/p = DV
;
a =
c /r ; m s
(V / V L ) m k
T
= r f o r r < 10 ym
= DV and
1 / 3
(18/19)
c / 10
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
ym
608
GEOCHEMICAL PROCESSES AT MINERAL SURFACES
en
ω
4J
ο
ω
ω
4->
x
S
α
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
ω
\
CM
4->
S
α
r—ι
•
EH
ο ο ro CM
^
•
ΚΩ
•
οτ-Η
Ο CM
ΚΩ
LO
ro Ο
ro
LD
CO
Ο
Ο Γ-
Γ ΟΟ Ο Ο
Γ
• ro
Ο en ο CM
ΚΩ
Ο Ο
m ο "
ι—Ι
^
CM • ro
CM ro • Ο
•
Ο m CM ro
Ο
κΩ
Γ ΟΟ • CM
Ο Ο en Γ-
,
H
ο•
ζ
en ro • 00
ΚΩ ι-Ι
r
• ι-Η
Ο
r—1
Ο
•
If)
Ο
CO
ι—ι
Ο Ο in
τ—I
s
Ο Ο m
rH 0
ro
αί Ο
H
e
ro
Ο
s
rH αϊ 4-»
ω >ι
ro
>1
ω
ε
Ο
•
ω m
ο
en r-
Ο
00 m m
ο CM
ro 00
ο
ro
CM
ο ro
Ο ro
Φ
ιο
I
τ-Η
CM
en • CM
ro • ro ro
in ο •
CM
ro
ο
CM
0 •Η
τ-Η
ro • ro
ro •
τ-Η
r—I r—I
•
m
rH
4->
rQ (d EH
ϋ Φ rH
ω
κΩ
r-
CM • en
m en • ο
ο ω
ι—1
:
CM
CM
Η
• 00
ζ
• m CM
00 Ο
1—1 ο
Ο
ro rH U CP
S
0
constant
constant
mass
("molecular
number
of
weight")
mass
transfer
constant 1/3
r
defined
radius
5
saturation
t
time
Τ
temperature
of
ratio
particle =
=
(3ν/4π)
c/c s
ν
particle
ν^
growth
volume
V
molar
γ
edge
6
thickness
rate
«
volume energy
dr/dt =
=
diffusion solution
η
viscosity
of
number
ions
V
in
i
n
t
e
9
r
a
t
i
o
σ
of
ν
of
M/p a
n
in
a
formula
rate
constant, constant
dehydration
rate
ρ
density;
= density
σ
surface
Δρ
layer
("unstirred
layer")
unit or (or
frequency frequency)
difference
(SI for
unit,
s
cation
(SI
crystal-liquid
tension
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
unit,
s
29.
NIELSEN
Mechanisms
and Rate Laws in Electrolyte
Crystal
Growth
613
Indices, e t c . ad
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
dh
adsorption
layer
dehydration
D
diffusion
control
e,E
exponential
r a t e law ( p o l y n u c l e a r
in
i n t e g r a t i n g jump
L
l i n e a r r a t e law
m
molar
Ρ
p a r a b o l i c r a t e law
s
solubility
equilibrium,
surface
nucleation)
saturated
S
surface
Τ
transport
control
2
p a r a b o l i c r a t e law ( s u r f a c e s p i r a l
control step)
Acknowledgments T h i s work h a s been s u p p o r t e d b y t r a v e l g r a n t s f r o m t h e D a n i s h N a t u r a l S c i e n c e R e s e a r c h C o u n c i l , and by t h e P e t r o l e u m R e s e a r c h Fund o f t h e American C h e m i c a l S o c i e t y .
Literature Cited 1. Nielsen, A. E. "Kinetics of Precipitation"; Pergamon Press: Oxford etc., 1964. 2. Nielsen, Α. Ε. Croatica Chem. Acta 1980, 53, 255-79. 3. Nielsen, A. E. In "Treatise on Analytical Chemistry"; Kolthoff, I. M.; Elving, P. J., Eds.; Wiley: New York, 1983; Part 1, Vol. 3, Chap. 27. 4. Volmer, M. "Kinetik der Phasenbildung"; Steinkopff: Dresden and Leipzig, 1939. 5. Nielsen, A. E. J. Phys. Chem. 1961, 65, 46-9. 6. Nernst, W. Z. Physik. Chem. 1904, 47, 52-5. 7. Burton, W. K.; Cabrera, N.; Frank, F. C. Phil. Trans. Roy. Soc. London 1951, A243, 299-358. 8. Nielsen, A. E. Acta Chem. Scand. 1959, 13, 1680-6. 9. Mullin, J. W. "Crystallisation"; Butterworths: London, 1972. 10. Nielsen, A. E. J. Crystal Growth 1984, 67, 289-310. 11. Nielsen, A. E. In "Industrial Crystallization 78"; de Jong, E. J . ; Jančić, S. J., Eds. North Holland Publishing Company: Amsterdam, 1979, pp. 159-68. 12. Stranski, I. Ν. Z. physik. Chemie 1928, 136, 259-78. 13. Kaischev, R.; Stranski, I. Ν. Z. physik. Chem. 1934, B26, 317-26. 14. Becker, R.; Döring, W. Ann. Physik 1935, 24, 719-52. 15. Cabrera, N.; Burton, W. K. Disc. Faraday Soc. 1949, 5, 40-8. 16. Bostanov, V. J. Crystal Growth 1977, 42, 194-200. 17. Frank, F.C. Disc. Faraday Soc. 1949, 5, 48-54. 18. Nielsen, A. E. Pure and Appl. Chem. 1981, 53, 2025-39.
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: November 13, 1987 | doi: 10.1021/bk-1987-0323.ch029
614
G E O C H E M I C A L PROCESSES AT MINERAL SURFACES
19. Nielsen, A. E. In "Industrial Crystallization 81"; Jančič, S. J . ; de Jong, E. J . , Eds. North Holland Publishing Company: Amsterdam, 1982, pp. 35-44. 20. Nielsen, A. E. Acta Chem. Scand. 1961, 15, 441-2. 21. Nielsen, A. E. In "Crystal Growth"; Peiser, H. S., Ed.; Supplement to the Journal of Physics and Chemistry of Solids, Pergamon Press: Oxford and New York, 1967, D14, 419-26. 22. Nielsen, A. E. Kristall und Technik 1969, 4, 17-38. 23. Nielsen, A. E.; Sarig, S. J. Crystal Growth 1971, 8, 1-7. 24. Nielsen, A. E.; Sohnel, O. J. Crystal Growth 1971, 11, 233-42. 25. Reich, R. "Zur Kinetik des Kristallwachstums in Wāsserigen Lōsungen", Dissertation, Göttingen, 1965. 26. Reich, R.; Kahlweit, M. Ber. Bunsenges. 1968, 72, 66-74. 27. Eigen, M.; Maass, G. Z. Physik, Chem. N. F. 1966, 49, 163-177. 28. Burgess, J. "Metal Ions in Solution"; Horwood, Chichester/Wiley: New York, 1978; Chap. 11. 29. Nielsen, A. E.; Toft, J. M. J. Crystal Growth 1984, 67, 278-88. 30. Nielsen, A. E.; Altintas, N. D. J. Crystal Growth 1984, 69, 213-30. 31. Crank, J. "The Mathematics of Diffusion"; Clarendon Press: Oxford, 1957. 32. Jost, W. "Diffusion in Solids, Liquids, Gases; Academic Press: New York, 1960. 33. Sissom, L. E.; Pitts, D. R. "Elements of Transport Phenomena"; McGraw-Hill: New York, 1972, Chap. 7. 34. Randolph, A. D.; Larson, M. A. "Theory of Particulate Processes"; Academic Press: New York, 1971. 35. Nývlt, J . ; Sohnel, O.; Matuchová, M.; Broul, M. "The Kinetics of Industrial Crystallization"; Elsevier: Amsterdam, 1985. RECEIVED
June 25, 1986
In Geochemical Processes at Mineral Surfaces; Davis, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.