Mechanisms of Inorganic Reactions - American Chemical Society

(2), (6), (13) (and isomerization (15)) photoreactions are observed, ... (10), it occurred to us that the analogous Cr(III) species might provide an a...
3 downloads 0 Views 3MB Size
10 Spectrospecific Photolysis of Aqueous Cr (en) (OH) Ion +

2

2

ARTHUR W. ADAMSON University

of Southern

California,

Los

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

The

Angeles,

Calif.

90007

quantum yields

for

p h o t o i s o m e r i z a t i o n of

photoaquation

cis-Cr(en) (OH) 2

and

vary

+

2

in

value and temperature dependence with w a v e l e n g t h of

irradiating

light

over

comprising the spin-allowed and bidden

transitions.

cis- a n d

The

trans-Cr(en) (OH) 2

isomerization, and tion.

The

more

thermal

+

2

the

the

region

spin-for-

lability

of

relates primarily to

only secondarily to

cis f o r m ,

the

aqua-

although more stable,

photosensitive,

and

photolysis

is

yields

a m a j o r p o r t i o n of a q u a t i o n p r o d u c t . F r o m such comparisons a n d t h e w a v e l e n g t h sensitivity of the

photolytic

behavior,

the

reaction path

f o l l o w i n g e x c i t a t i o n of a s p i n - a l l o w e d tion

transi-

differs f r o m t h a t f o l l o w i n g e x c i t a t i o n of a

spin-forbidden

transition,

and

both

differ

f r o m the t h e r m a l r e a c t i o n p a t h .

J e v e r a l a s p e c t s of t h e p h o t o l y t i c b e h a v i o r of a q u e o u s c o m p l e x i o n s h a v e s t u d i e d i n t h i s l a b o r a t o r y o v e r t h e p a s t few y e a r s .

been

One continually interesting

q u e s t i o n has been t h e e x t e n t t o w h i c h t h e p h o t o c h e m i s t r y of a c o m p l e x d e p e n d s o n the absorption band irradiated.

I n t h e case of C o ( I I I ) a c i d o p e n t a m i n e s , s u c h as

C o ( N H ) 5 B r " , we f o u n d t h a t i r r a d i a t i o n of ( * A 3

f 2

—> T g) 1

l g

2

bands showing appreciable

c h a r g e t r a n s f e r l e d t o r e d o x a n d a q u a t i o n r e a c t i o n s w h i c h were c o m p e t i t i v e .

It

w a s r e a s o n a b l e t o s u p p o s e t h a t t h e c o m m o n p r e c u r s o r w a s t h e species f o r m e d b y a p r o m p t h e t e r o l y t i c b o n d fission (1).

The ( A 1

—> Ti ) l

l g

g

b a n d w a s f a r less p h o t o ­

a c t i v e , a n d i n m o d e l cases, i r r a d i a t i o n l e d o n l y t o a q u a t i o n .

E a c h excited state or

excited state manifold thus tended to show a distinct photochemistry, w h i c h meant t h a t c o n v e r s i o n f r o m one e x c i t e d s t a t e t o a n o t h e r w a s n o t i m p o r t a n t . T h e s i t u a t i o n h a s been less c l e a r for C r ( I I I ) c o m p l e x e s .

Only substitution

(2), (6), (13) ( a n d i s o m e r i z a t i o n (15)) p h o t o r e a c t i o n s are o b s e r v e d , i r r e s p e c t i v e of w h i c h l i g a n d field b a n d is i r r a d i a t e d .

I t has been p r o p o s e d t h a t t h i s u n i f o r m r e a c ­

t i o n m o d e ( a n d n e a r l y u n i f o r m q u a n t u m y i e l d ) c o u l d be a c c o u n t e d for i f s u b s t a n t i ­ a l l y c o m p l e t e c o n v e r s i o n o c c u r r e d of t h e T 4

2 g

and T 4

l g

states to a lower l y i n g doublet,

237

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

238

MECHANISMS OF INORGANIC

presumably the

2

E

g

state.

REACTIONS

T h i s l a s t , i t w a s s u p p o s e d , w o u l d be s u f f i c i e n t l y l o n g -

l i v e d t o f u n c t i o n as a c h e m i c a l i n t e r m e d i a t e , e x c e p t i o n a l l y l a b i l e t o w a r d s s u b s t i t u ­ t i o n (13).

T h e s e d e s i g n a t i o n s of e x c i t e d s t a t e s a r e r e a l l y for Ο A s y m m e t r y , b u t

serve t o i d e n t i f y l o o s e l y t h e a b s o r p t i o n b a n d s of c o m p l e x e s of d e s c e n d e n t

sym­

metry. A n a l t e r n a t i v e i n c l i n a t i o n h a s been t o v i e w t h e i n i t i a l c h e m i c a l a c t f o l l o w i n g e x c i t a t i o n as a p r o m p t h e t e r o l y t i c b o n d fission of s o m e one c h r o m i u m - l i g a n d b o n d B o t h p i c t u r e s a d e q u a t e l y a c c o u n t for t h e so f a r n o t v e r y e l a b o r a t e d a t a ,

(2), (15).

t h e s e c o n d p e r h a p s m o r e i n k e e p i n g w i t h t h e p r i n c i p l e of s c i e n t i f i c p a r s i m o n y . P r o b a b l y t h e m o s t s e n s i t i v e d i a g n o s t i c test of w h e t h e r o r n o t p h o t o l y s i s of a complex proceeds t h r o u g h a n u b i q u i t o u s intermediate consists i n d e t e r m i n i n g the e x t e n t t o w h i c h c o p r e s e n t r e a c t i o n m o d e s s h o w different w a v e l e n g t h d e p e n d e n c i e s .

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

T h i s t y p e of t e s t w a s a v a i l a b l e for C o ( I I I ) s y s t e m s ; t h e p r o b l e m has been t o suitable C r ( I I I ) systems.

F o l l o w i n g a r e p o r t t h a t Co(en)2(H20)2

find

photoisomerized

+3

(10), i t o c c u r r e d t o us t h a t t h e a n a l o g o u s C r ( I I I ) species m i g h t p r o v i d e a n a n s w e r . If w e d e n o t e cis- a n d 2 r a f « - C r ( e n ) 2 ( H 0 ) 2 2

+3

b y H2C a n d H T , respectively, 2

a n d the four a c i d dissociation products b y H C , H T , C , a n d T , t h e n there are four a c i d i t y c o n s t a n t s (KH C, 2

KKC, ^ H T , a n d KUT) a n d t h r e e i s o m e r i z a t i o n c o n s t a n t s 2

(^Η Τ/Η Ο, KuT/HPf a n d Κτ/c). 2

2

A l l of these h a v e been e v a l u a t e d b y W o l d b y

(17),

a n d s o m e r a t e d a t a o n t h e Τ —• C c o n v e r s i o n h a s been r e p o r t e d b y O l s o n a n d G a r n e r (12).

P r e l i m i n a r y experiments showed that both photoaquation a n d photoisomeri-

z a t i o n d i d indeed occur, a n d the detailed investigations described below were there­ fore c a r r i e d o u t . Experimental Preparative Procedures. T h e s a l t s a s - [ C r ( e n ) 2 ( O H ) ( H 0 ) ] S 2 0 a n d trans[Cr(en)2(OH)(H 0)]Br were p r e p a r e d f r o m a s - [ C r ( e n ) C l 2 ] C 1 0 4 a c c o r d i n g t o W o l d b y e (17), a n d t h e l a s t c o m p l e x b y t h e p r o c e d u r e s i n " I n o r g a n i c S y n t h e s e s " (7). C r labelled complexes were s i m i l a r l y prepared. T h e ethylenediamine used was dried over sodium hydroxide a n d then distilled. H a r s h a w chromatographic a l u m i n a w a s u s e d for t h e c h r o m a t o g r a p h i c s e p a r a t i o n s . L o t N o . K 1 7 7 3 b e h a v e d e x c e p t i o n a l l y w e l l since c l e a r effluents were o b t a i n e d o n e l u t i o n w i t h t h e 1M p o t a s ­ s i u m c h l o r i d e , 0.1 M p o t a s s i u m h y d r o x i d e s o l u t i o n . O t h e r c h e m i c a l s u s e d w e r e of reagent grade. T h e p r e p a r a t i o n s p r o v e d t o be 98 t o 9 9 % c h r o m a t o g r a p h i c a l l y p u r e , t h e c o n ­ t a m i n a n t a l w a y s b e i n g t h e o t h e r i s o m e r . T h e v a r i o u s a b s o r p t i o n m a x i m a are r e ­ p o r t e d i n T a b l e I . A l l s o l u t i o n s were 0.01 M i n c o m p l e x . T h o s e d e s i g n a t e d as H C o r H T w e r e m e a s u r e d e i t h e r i n w a t e r a t p H 5 - 6 , o r i n 0.1 A f s o d i u m a c e t a t e a c e t i c a c i d buffer a t p H 5.5 (no s p e c t r a l differences r e s u l t e d ) ; a n d t h o s e d e s i g n a t e d C o r Τ were a d j u s t e d t o p H 10.5 w i t h e t h y l e n e d i a m i n e . T h e v a l u e s agree w e l l i n p o s i t i o n w i t h those of W o l d b y e (17) ( w h i c h w e r e for s o l u t i o n s \M i n s o d i u m n i t r a t e ) , b u t o u r e x t i n c t i o n coefficients are c o n s i s t e n t l y a b o u t 1 0 % h i g h e r t h a n h i s . I n a d d i t i o n , w e n o t e a w e a k m a x i m u m for Τ a t 330 ϊημ a n d r e p o r t s o m e i n f o r m a t i o n o n t h e s p e c t r a i n t h e d o u b l e t r e g i o n . T h e s e l a s t m e a s u r e m e n t s w e r e m a d e o n filtered 0 . 0 4 M s o l u t i o n s , u s i n g 5 c m . cells. T h e g e n ­ e r a l a b s o r p t i o n c u r v e s were o b t a i n e d b y a C a r y M o d e l 14 s p e c t r o p h o t o m e t e r , b u t for m o s t of t h e k i n e t i c s t u d i e s a n d a n a l y t i c a l m e a s u r e m e n t s , o p t i c a l d e n s i t i e s a t selected w a v e l e n g t h s were d e t e r m i n e d b y a D U B e c k m a n s p e c t r o p h o t o m e t e r . 2

2

2

6

2

5 1

K i n e t i c Studies. T h e r e is s o m e d i f f i c u l t y i n u n r a v e l l i n g t h e t h e r m a l r e a c t i o n s of t h e v a r i o u s f o r m s , since n o t o n l y does i s o m e r i z a t i o n o c c u r , b u t a q u a t i o n is n o t n e g l i g i b l e e v e n a t p H 10.5.

T h e s y s t e m , i n fact, resembles classic reaction triangle

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

Specfrospec/flc T a b l e I.

Complex H C 2

HC C H T 2

HT

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

Τ Aquo (HC) (HT) (C)

λ, πΐμ

c

368 (367) 392 (391) 377 (378) 365 (361) 398 (397) 330

48 (42.5) 47 (43) 69 (66) 43 (39. Ζ ) 49 (46) 19

415 418 378

Absorption Maxima λ, ΤΠμ

λ, τημ



70 (67.0) 72 (69.3) 65 (63.6) 32 (29.2) 38 (35.0) 33 (28.9) 31 30 37

485 (495) 515 (512) 528 (525) 445 (443) 495 (497) 398 (396) 570 570 548

33 34

2Z9

Photolysis



e 0.95 1.1 1.4

692sh

1.4

680

2.1

685sh

1.4

(22.5)

(508) 505 (505)

Note: Values in parentheses are those reported by Woldbye (17). spectra of solutions held at ca. 35°C. for six weeks.

λ, mμ 667 640sh 681sh

34 (31.8)

Those labelled Aquo are terminal

(14), a n d e v e n i f i t i s a s s u m e d t h a t t h e reverse of a q u a t i o n i s u n i m p o r t a n t , s o l u t i o n s t o a r e a c t i o n t r i a n g l e , w h i l e a v a i l a b l e , a r e d i f f i c u l t t o use p e r c e p t i v e l y (9). F o r t u n a t e l y , a q u a t i o n o c c u r r e d s l o w l y e n o u g h , r e l a t i v e t o i s o m e r i z a t i o n , t o be t r e a t e d as a p e r t u r b a t i o n w h i c h g r a d u a l l y d i m i n i s h e d t h e effect of e q u i l i b r i u m c i s a n d trans concentrations w i t h o u t m a t e r i a l l y affecting their r a t i o .

A p p l y i n g this

a p p r o a c h r e q u i r e d p a r a l l e l d a t a for s o l u t i o n s i n i t i a l l y a l l t r a n s a n d i n i t i a l l y a l l c i s . Assuming

first-order

k i n e t i c s , the o p t i c a l d e n s i t y of the i n i t i a l l y a l l cis s o l u t i o n

for a p a t h l e n g t h of 1 c m . i s g i v e n b y :

De

a

-

^ (6o + Ke ) T

+

aK

(ec -

c ) e"*
Τ e q u i l i b r i u m c o n s t a n t a n d k = k\ + k

2

c o n c e n t r a t i o n is g i v e n b y a. D

T

-

-

(1)

T

+ K) ; t h e t o t a l

= k (l 2

S i m i l a r l y , for a s o l u t i o n i n i t i a l l y a l l t r a n s :

~

1 -f- A

(ec + Ker)

-

—7-= 1 -f-

Λ

(ec -

e ) e"* T

(2)

1

I t then follows t h a t D C T = De

+ KDT

= a(€c + i £ e r ) = a c o n s t a n t

P r e l i m i n a r y d a t a h a v e been o b t a i n e d f o r O.Olikf s o l u t i o n s a t p H 2.0

(3) (added

h y d r o c h l o r i c a c i d ) a n d s o l u t i o n s buffered t o p H 5.5 w i t h O.likf a c e t a t e buffer.

The

p r i n c i p a l i n t e r e s t , h o w e v e r , w a s i n t h e C - T s y s t e m ( s o l u t i o n s b r o u g h t t o p H 10.5 w i t h a d d e d e t h y l e n e d i a m i n e ) for w h i c h m o s t of t h e p h o t o c h e m i c a l r e s u l t s were obtained.

A n e x a m p l e of t h e d i r e c t d a t a for t h e C - T s y s t e m is s h o w n i n F i g u r e 1.

O v e r t h e p e r i o d of 120 h o u r s , D C T decreased b y a b o u t 3 % , c o r r e s p o n d i n g t o a b o u t 6 % aquation. effective D

00

T h e procedure was then to calculate from each measurement an

v a l u e : D°° = D r/(l C

time should then superimpose.

+ K).

P l o t s of (D°°-D ) T

a n d of (Dc-D°°)/K

vs.

T h i s w a s r e a s o n a b l y t h e case, as i l l u s t r a t e d i n

F i g u r e 2, for d a t a a t t w o w a v e l e n g t h s . T h e insight p r o v i d e d b y this approach led to the conclusion t h a t a n accurate Κ v a l u e c o u l d n o t be o b t a i n e d f r o m i s o m e r i z a t i o n d a t a u s i n g j u s t one f o r m , a n d t h a t

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

240

M E C H A N I S M S O F I N O R G A N I C REACTIONS

T i m e , hours Figure

1.

(OH)^

at 25°C;

Isomerization of 0.01 M

cis-and

trans-Cr(en)i-

solutions adjusted to pH 10.5 with ethyl­

enediamine; optical density at 525 ?ημ. even using the c o m b i n e d d a t a for b o t h forms, the r e l a t i v e l y s m a l l a q u a t i o n t h a t occurred introduced a 5 0 % uncertainty.

T h u s , f o r t h e 3 5 ° C . d a t a of F i g u r e 2, Κ

v a l u e s of 0.2 a n d 0.3 r e p r e s e n t e d t h e l i m i t s s t i l l g i v i n g a c c e p t a b l e s t r a i g h t l i n e p l o t s . T h e results are s u m m a r i z e d i n T a b l e I I ; Κ values i n parentheses are from W o l d b y e (17) (for IMsodium

T a b l e II.

nitrate medium).

I s o m e r i z a t i o n a n d A q u a t i o n Kinetics % Aquation in One Isomerimtion Half Life

System

t°c.

Κ

k (hr)

H2C, H2T

25

0.25 db 0.05 (0.20) 0.25 ± 0.05

1 3 1.2

( p H 10.5)

42 25

0.25 =b 0.05 (0.41)

0.0425 (0.0245 ) 0.262 (0.104 ) 0.97 ca. 0.45

25

(0.078)

ca. 0.11

35

1

e

1

6

HC, H T ( p H 5.5) H C, H T ( p H 2.0) 2

2

β b

Reported by Olson and Garner (12) for p H 10.9. Similarly reported for p H 10.6.

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

Spectrospeciflc

241

Photolysis

P h o t o c h e m i c a l E x p e r i m e n t s . T h e general experimental procedure was t h a t p r e v i o u s l y d e s c r i b e d (25). T h e b o l o m e t e r w a s u s e d as a r e l a t i v e i n t e n s i t y i n d i c a ­ t o r s i n c e c o l l i m a t i o n i n t h e c y l i n d r i c a l g e o m e t r y of a n A H 6 l a m p is p o o r , a n d a l l o w ­ a n c e f o r s c a t t e r i n g i s d i f f i c u l t . C a l i b r a t i o n a t e a c h w a v e l e n g t h w a s b y m e a n s of K C r ( N H ) 2 ( N C S ) 4 s o l u t i o n s for w h i c h w e n o w h a v e a c c u r a t e a b s o l u t e q u a n t u m y i e l d s f o r w a v e l e n g t h s f r o m 450 ηΐμ t o 750 πΐμ (16). F o r t h e r u n s a t > 6 8 0 m/*, a 500 w a t t t u n g s t e n l a m p w a s u s e d s i n c e t h e o u t p u t of t h e A H 6 m e r c u r y l a m p w a s uncomfortably low at this wave length. W a v e l e n g t h s e l e c t i o n w a s b y glass filters. F o r r u n s l a b e l l e d 370 τημ, a B a i r d A t o m i c filter w i t h c u t offs a t 300 τημ a n d 400 πΐμ w a s u s e d , so t h a t a b s o i p t i o n o c c u r r e d m a i n l y i n t h e ( A2 -> T ) b a n d . R u n s l a b e l l e d 550 τημ a n d 500 πΐμ w e r e c a r r i e d o u t w i t h e i t h e r C o r n i n g C S - 2 - 6 4 o r C S - 3 - 7 1 filters w h o s e s h o r t w a v e l e n g t h c u t offs w e r e 530 τημ a n d 480 τημ, r e s p e c t i v e l y ; a b s o r p t i o n t h u s o c c u r r e d m a i n l y i n the ( A —> T 2 ) t y p e b a n d . F i n a l l y , r u n s l a b e l l e d > 6 8 0 τημ w e r e c a r ­ r i e d o u t u s i n g a C o r n i n g C S - 3 - 6 9 filter w h o s e c u t off w a s a t 680 m/*, so t h a t a b s o r p ­ t i o n was p r i m a r i l y i n the doublet region. W e u s e d a b s o r b e d l i g h t i n t e n s i t i e s of a b o u t ΙΟ"" E/minute a n d i r r a d i a t i o n t i m e sufficient t o p r o d u c e 10 t o 2 5 % r e a c t i o n (never more t h a n a n hour). 3

4

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

4

4

2 g

g

4

l g

g

6

I t w a s n o t c e r t a i n t h a t t h e a q u a t i o n p r o d u c t w o u l d be i d e n t i c a l i n s p e c t r u m to t h a t o b t a i n e d b y t h e r m a l reaction, a n d analysis was therefore carried out chromatographically, rather than spectrophotometrically. T h e procedure was t h a t described b y W o l d b y e , h i g h l y s t a n d a r d i z e d to ensure m a x i m u m r e p r o d u c i b i l i t y . P a r a l l e l separations were carried out o n u n i r r a d i a t e d solutions, a n d the c h r o m a t o ­ g r a p h i c y i e l d s of t h e c i s a n d t r a n s w e r e i n s o m e cases d e t e r m i n e d b y u s i n g C r 6 1

0

2

4

6

Time, Figure

2.

Isomerization

Cr(en) ο are n e a r l y t h e same, a n d l i k e w i s e , Δ 5 Ϊ ο - » τ a n d Δ ό ' Ϊ τ - κ } since Κ i t s e l f is a l w a y s close t o u n i t y . T h i s i m p l i e s t h a t t h e t r a n s i t i o n

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

s t a t e for i s o m e r i z a t i o n is h i g h i n e n e r g y , h i g h i n e n t r o p y ( p o s s i b l y s u g g e s t i n g a l o o s e l y b o n d e d a r r a n g e m e n t ) , a n d c o n f o r m s s y m m e t r i c a l l y t o cis a n d t r a n s g e o m e ­ t r i e s . T h e f a c t t h a t ΔΕ% is m o r e t h a n t w i c e t h a t for t h e r a c e m i z a t i o n of Cr(C20 ) ~" 4

3

3

(15) suggests t h a t , i n t h e p r e s e n t case, i t i s a C r - N r a t h e r t h a n a C r - 0 b o n d t h a t must loosen. A s e c o n d p o i n t of c o n t r a s t b e t w e e n t h e t h e r m a l a n d t h e p h o t o c h e m i c a l be­ h a v i o r i s t h a t , w h i l e t h e cis i s o m e r s a r e a l l t h e r m o d y n a m i c a l l y f a v o r e d , a n d c o n ­ s e q u e n t l y a l l t h e t r a n s f o r m s a p p e a r m o r e l a b i l e , t h e s i t u a t i o n o n p h o t o l y s i s is varied.

T h e q u a n t u m y i e l d s f o r C a r e t e n t o t w e n t y t i m e s those for Τ ; H T i s m o r e

s e n s i t i v e t h a n H C ( b u t o n l y t o w a r d s p h o t o i s o m e r i z a t i o n ) , a n d H 2 C is m o r e p h o t o ­ sensitive t h a n H 2 T . A n y a t t e m p t to explain the results u n a v o i d a b l y w i l l require postulating signi­ ficantly

different i n t e r m e d i a t e s t a t e s for t h e p h o t o c h e m i c a l a n d t h e r m a l r e a c t i o n

sequences.

P h o t o a c t i v a t i o n m u s t then c a r r y its o w n stereospecificity a n d cannot

be t h o u g h t of a s j u s t a n e x t e r n a l s o l i c i t a t i o n of e n e r g y t o ease a n e s s e n t i a l l y t h e r m a l r e a c t i o n sequence. P h o t o l y s i s of cîi-Cr(en)2(OH)2 . +

The

temperature

and

wave

length

p e n d e n c e s t u d i e s o n C p r o v i d e a b a s i s for s o m e m i n i m a l c o n c l u s i o n s .

de­

Consider

first t h e c o n t r a s t b e t w e e n p h o t o i s o m e r i z a t i o n a n d a q u a t i o n a t t h e 370 πιμ a n d 550 τημ w a v e l e n g t h regions.

T h e former shows a considerable temperature dependence

i n q u a n t u m y i e l d , t h e a p p a r e n t a c t i v a t i o n e n e r g y a v e r a g i n g 9.6 k c a l . for t h e t w o w a v e l e n g t h r e g i o n s , w h i l e t h e l a t t e r process o b e y s a s m a l l n e g a t i v e a n d a s m a l l p o s i t i v e a p p a r e n t a c t i v a t i o n e n e r g y for these t w o regions, r e s p e c t i v e l y . I t m i g h t be t h o u g h t t h a t p h o t o i s o m e r i z a t i o n a n d p h o t o a q u a t i o n c o u l d

be

c o m p e t i t i v e towards a c o m m o n precursor excited state, b u t this e x p l a n a t i o n fails on quantitative testing.

B r i e f l y , t h e q u a n t u m y i e l d for p h o t o a q u a t i o n i s t o o h i g h

t o a c c o m m o d a t e its negative a p p a r e n t a c t i v a t i o n energy.

Photoaquation must

t h e n be c o m p e t i t i v e w i t h s o m e o t h e r process s u c h as d e a c t i v a t i o n , o r r e t u r n t o t h e o r i g i n a l cis species. N e x t i s t h e c o n t r a s t b e t w e e n t h e 370 πιμ t o 550 πιμ b e h a v i o r a n d t h a t for w a v e l e n g t h s g r e a t e r t h a n 680 πιμ.

W e a r e n o w c o m p a r i n g t h e consequence of e x c i t i n g

a quartet band and a doublet band.

T h e a c t i v a t i o n energy for p h o t o i s o m e r i z a t i o n

h a s i n c r e a s e d t o a b o u t 13 k c a l . , a n d t h e r e is a d r a m a t i c s h i f t i n t h e a q u a t i o n b e h a v i o r w h i c h n o w s h o w s 20 k c a l . a p p a r e n t a c t i v a t i o n e n e r g y a n d q u a n t u m y i e l d s a p p r o a c h ­ ing u n i t y at low temperatures.

T h e m i n i m a l c o n c l u s i o n here i s t h a t i r r a d i a t i o n of

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

SpectrospeciHc

245

Photolysis

the doublet region produces a n intermediate differently disposed towards aquation f r o m t h a t r e s u l t i n g f r o m i r r a d i a t i o n of a q u a r t e t b a n d .

Specifically, the quartet to

d o u b l e t c o n v e r s i o n m e c h a n i s m , w h e r e b y a l l c h e m i c a l c o n s e q u e n c e s a r e filial t o a l o n g - l i v e d d o u b l e t i n t e r m e d i a t e , c a n n o t be i n effect here. Q u a n t u m y i e l d s f o r successive a q u a t i o n s t e p s of C r ( N H ) 6 3

b y E d e l s o n a n d P l a n e (6).

h a v e been r e p o r t e d

+ 3

T h e h i g h e r q u a n t u m y i e l d for w a v e l e n g t h s i n t h e d o u b l e t

a b s o r p t i o n r e g i o n t h a n f o r t h o s e i n t h e q u a r t e t r e g i o n w a s r e g a r d e d as s u g g e s t i n g that the conversion mechanism applied.

I t seems l i k e l y t h a t a d e t a i l e d s t u d y of

a q u a t i o n a n d i s o m e r i z a t i o n c o u l d y i e l d o b s e r v a t i o n s a n d a final c o n c l u s i o n s i m i l a r t o t h o s e f o u n d here.

O u r d a t a for p h o t o a q u a t i o n a t 2 5 ° C . s h o w t h e s a m e t r e n d of

increasing q u a n t u m y i e l d w i t h decreasing wave length, a n d o n l y the full picture

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

s h o w s t h a t t h i s p a r t i c u l a r c o r r e l a t i o n is t r i v i a l .

R e c e n t results i n this laboratory

s h o w n o i n c r e a s e i n q u a n t u m y i e l d i n t h e case of C r ( N H 3 ) e

+ 3

o n i r r a d i a t i o n of t h e

doublet band. Mechanisms.

S i n c e t h e a b o v e c o n c l u s i o n s a r e m i n i m u m , i t is i n t e r e s t i n g t o

see i f a m o r e d e t a i l e d p i c t u r e e x i s t s w h i c h c a n a c c o u n t for a l l of t h e o b s e r v a t i o n s . Four

different sequences

(at

least)

must

be

provided: thermal isomerization,

p h o t o l y s i s i n t h e d o u b l e t r e g i o n of w a v e l e n g t h , a n d p h o t o a q u a t i o n a n d p h o t o i s o merization i n the quartet region. I n a s s e m b l i n g t h i s c o l l e c t i o n , m a y w e first t u r n t o s o m e a q u a t i o n s t u d i e s of K C r ( N H ) ( N C S ) 4 (3). T h e s e l e d t o t h e c o n c l u s i o n t h a t s u b s t i t u t i o n o c c u r r e d 3

2

by

a c o n c e r t e d process, n a m e d SJV2FS, w h e r e b y a r r i v i n g a n d d e p a r t i n g g r o u p s i n t e r ­ acted through hydrogen bonding.

F i g u r e 4 b s h o w s h o w t h i s m e c h a n i s m c a n be

e x t e n d e d t o the p r e s e n t i n s t a n c e . an N H

2

H y d r o g e n b o n d i n g interactions assist i n s h i f t i n g

g r o u p f r o m one p o s i t i o n t o a n o t h e r (needed t o a c c o m p l i s h i s o m e r i z a t i o n )

b u t k e e p i t s e q u e s t e r e d so t h a t t h e N H g r o u p n e v e r loses r a p p o r t w i t h t h e c o m p l e x . 2

S u c h loss of r a p p o r t w o u l d c o n s t i t u t e t h e first s t e p t o w a r d s c o m p l e t e

detachment

or a q u a t i o n . T h e proposed

i n t e r m e d i a t e h a s t h e s y m m e t r y suggested

b y the activation

p a r a m e t e r s , a n d m a n y r e l a t e d c o n f i g u r a t i o n s w o u l d be a v a i l a b l e t o c o n t r i b u t e t o a high activation entropy.

P o s s i b l y a s i m i l a r d e t a i l e d s e q u e n c e h o l d s for t h e r a c e m i -

z a t i o n of Cr(C 04)3~~ , w h i c h a g a i n i s m u c h f a s t e r t h a n a q u a t i o n , y e t i n v o l v e s t h e 3

2

—C 0

f u n c t i o n p a r t i c i p a t i n g w i t h s o l v e n t t o a degree l e a d i n g t o m a s s i v e O

2

c h a n g e (15).

T h e case of C o ( e n ) ( O H ) 2

zation was fairly concomittant w i t h O Co(en) (H 0) 2

2

2

+ 3

.

2

+

1 3

ex­

m a y a l s o be q u i t e s i m i l a r since i s o m e r i z a -

e x c h a n g e (10), a n d e n t i r e l y so i n t h e case of

1 8

T h e r e i s a l s o a close r e s e m b l a n c e of t h e a c t i v a t i o n t h e r m o d y ­

namics for the C r a n d C o systems. Considering next the photochemistry

of

the doublet

wave

length

region,

i t i s h e l p f u l t o a c c e p t t h e p o s t u l a t e t h a t t h e r e a l l i f e t i m e of t h e E s t a t e ( a c t u a l l y a 2

v i b r o n i c s t a t e i n a l l l i k e l i h o o d (4)) i s l o n g e n o u g h for i t t o f u n c t i o n a s a r e a c t i o n intermediate.

W e n o w h a v e a species a b l e t o b o n d , p e r h a p s w i t h s o m e a c t i v a t i o n ,

t o a s e v e n t h g r o u p (-e.g., u s i n g d , 2

x

d -£, 2

z

and d

xy

orbitals if the s y m m e t r y were

CM) a n d t h e a r r a n g e m e n t s h o w n i n F i g u r e 4c i s m e r e l y a s u g g e s t i o n .

A s Gillespie

n o t e s (8), t h e e l e c t r o s t a t i c p r e d i c t i o n of h e p t a c o o r d i n a t i o n g e o m e t r y i s a m b i g u o u s , a n d t h e a r r a n g e m e n t s h o w n c o u l d be a p e r s p e c t i v e e i t h e r of a p e n t a g o n a l b i p y r a m i d , o r of G i l l e s p i e ' s 1,3,3 a r r a n g e m e n t .

I n e i t h e r case, s m a l l l u x a t i o n s c o u l d p r e p a r e

t h i s i n t e r m e d i a t e t o r e t u r n t o h e x a c o o r d i n a t i o n b y d i s c h a r g e of e i t h e r a n O H , o r

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

M E C H A N I S M S O F I N O R G A N I C REACTIONS

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

246

Figure 4. (OH)^;

Possible geometries; (a) (b) substitution by SN2FS

cis-Cr(en)2mechanism;

(c) a heptacoordinated intermediate; (d) a consequence of Cr-N bond fission; (e) a consequence of Cr-0 bond fission. N H 2 f r o m t h e c o o r d i n a t i o n sphere.

If the latter, a n intermediate having monoden-

date ethylenediamine w o u l d result, a n d this i n t u r n could proceed

t o t h e aquo

p r o d u c t b y s u b s t i t u t i v e d e t a c h m e n t of t h e o t h e r e n d . T h e r e i s n o p r e s e n t basis f o r d e c i d i n g w h i c h o r h o w m a n y of t h e s e v e r a l i s o m e r s of F i g u r e 4c m i g h t be i n v o l v e d ; b u t w e w o u l d c o n c l u d e t h a t

heptacoordinated

C r ( I I I ) is stable enough to require a c t i v a t i o n to revert i t t o hexacoordination. L a s t l y we w i l l consider w h a t happens w h e n photolysis is occasioned b y light of w a v e l e n g t h c o r r e s p o n d i n g t o one of t h e s p i n - a l l o w e d t r a n s i t i o n s , a n d l o o k a t t h e p o s s i b l e consequences of h o m o l y t i c b o n d

fission.

F o r t h e cis c o m p l e x , t w o p o s ­

s i b i l i t i e s a r e s h o w n i n F i g u r e 4 d a n d 4e, a s s u m i n g f o r s i m p l i c i t y t h a t a p r o m p t c o l ­ l a p s e t o t r i g o n a l b i p y r a m i d a l f o r m occurs.

If i t is a C r - 0 bond that is broken, then

on regrouping, o n l y isomerization can result, b u t not a q u a t i o n .

If, h o w e v e r , i t i s a

C r - N b o n d t h a t f a i l s , w e a g a i n h a v e a s i t u a t i o n b u t one s t e p r e m o v e d f r o m a q u a ­ t i o n , a n d , we w o u l d suppose, irreversibly c o m m i t t e d . I t i s a l s o possible t o a c c o u n t q u a l i t a t i v e l y f o r t h e greater p h o t o s e n s i t i v i t y of t h e of t h e c i s f o r m , e s p e c i a l l y t o w a r d s a q u a t i o n , t h a n t h e t r a n s .

A s B a l l h a u s e n (4)

r e m a r k s , s i m p l e c r y s t a l field t h e o r y relates t h e e n e r g y p o s i t i o n s of t h e s p i n - a l l o w e d t r a n s i t i o n s t o a t e t r a g o n a l i t y p a r a m e t e r w h i c h d e p e n d s o n s u m s of a x i a l charges.

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

Spoctrospecifie

Photolysis

247

F o r t h e cis c o m p l e x , we h a v e t w o 0 - N a n d one N - N t y p e a x i s w h i l e for t h e t r a n s there a r e t w o N - N a n d one 0 - 0 t y p e a x i s .

W e can a r g u e f r o m t h e s p e c t r o c h e m i c a l

series t h a t t h e effective c r y s t a l field a l o n g a n a x i s increases i n t h e o r d e r : 0 - 0 , 0 - N , and N - N .

If, n o w , l i g h t a b s o r p t i o n d i r e c t l y o r e v e n t u a l l y leads t o b o n d w e a k e n i n g

a l o n g t h e w e a k e s t l i g a n d field a x i s , t h e n for t h e cis c o m p l e x , a n 0 - N p a i r w i l l be affected, l e a d i n g t o t h e d i c h o t o m o u s p o s s i b i l i t i e s of F i g u r e 4 d a n d 4e.

I n t h e case

of t h e t r a n s f o r m h o w e v e r , t h e 0 - 0 a x i s w o u l d be affected, a n d c o n s e q u e n t l y t h i s w o u l d lead only to isomerization. I t is t h u s p o s s i b l e t o a c c o u n t for t h e general f r a m e w o r k of o b s e r v a t i o n s .

It

does n o t seem possible, h o w e v e r , t o s p e c i f y a n y u n i q u e i n t e r p r e t a t i o n of t h e a c t i v a ­ tion energy quantities.

F o l l o w i n g l i g h t a b s o r p t i o n , t h e r e c a n be e l e c t r o n i c r e t u r n

t o t h e i n i t i a l species b y r a d i a t i o n l e s s d e a c t i v a t i o n ; t h e r e c a n be s o m e c o n v e r s i o n

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

f r o m one s t a t e t o a n o t h e r .

T h e chemical intermediates m a y retain the original

configuration, m a y iscmerize, a n d m a y aquate.

Possibly solvent exchange studies

w o u l d h e l p r e d u c e the p l e t h o r a of p o s s i b i l i t i e s . W e do conclude, however, that C r ( I I I ) complexes can have a photochemistry w h i c h is spectrospecific as t o m e c h a n i s m , a n d we suspect t h a t w h e r e t h i s a p p a r e n t l y is n o t t h e case, i t is because o n l y one p r o d u c t is p o s s i b l e o r is s o u g h t for.

Acknowledgements T h e t h e r m a l i s o m e r i z a t i o n a n d a q u a t i o n r a t e s t u d i e s were c a r r i e d o u t b y M r . R . S. H a n n a n d M i s s L . B . M a r t i n e z . These investigations have been supported i n p a r t b y C o n t r a c t

AT(11-1)-113

b e t w e e n t h e U n i v e r s i t y of S o u t h e r n C a l i f o r n i a a n d t h e U . S . A t o m i c E n e r g y C o m ­ mission.

Literature

Cited

(1) (2) (3) (4)

A d a m s o n , A. W., Discussion Faraday Soc. N o . 29, 163 (1960), a n d preceding papers. A d a m s o n , A. W., J. Inorg. and Nuclear Chem. 13, 275 (1960). A d a m s o n , A. W., J. Am. Chem. Soc. 80, 3183 (1958). A d a m s o n , A. W., A b s t r a c t s of the 144th M e e t i n g of the A m e r i c a n C h e m i c a l Society, M a r c h 1963. (5) B a l l h a u s e n , " I n t r o d u c t i o n to L i g a n d F i e l d T h e o r y , " p. 107, McGraw-Hill, New Y o r k , 1962. (6) E d e l s o n , R., P l a n e , R. Α., Inorg. Chem. 3, 234 (1964), a n d preceding papers. (7) F e r n e l i u s , W. C., ed., " I n o r g a n i c Syntheses," Vol. II, p. 196, McGraw-Hill, New Y o r k , 1946. (8) G i l l e s p i e , R. J., " A d v a n c e s i n the C h e m i s t r y of C o o r d i n a t i o n C o m p o u n d s , " p. 34, MacMillan, N e w Y o r k , 1961. (9) K o r v e z e e , A. E., Rec. trav. chim. 59, 913 (1940). (10) K r u s e , W., T a u b e , H., J. Am. Chem. Soc. 83, 1280 (1961). (11) N i k o l a i s k i , E., Thesis, J o h a n n W o l f g a n g Goethe U n i v e r s i t a t , Frankfurt/M, 1962. (12) O l s o n , D. C., G a r n e r , C. S., Inorg. Chem. 2, 415 (1963). (13) Schläfer, H. L., Kling, O., J. Inorg. Nucl. Chem. 8, 320 (1958). (14) S k r a b e l , Α., Ζ. phys. Chem. 6, 382 (1929). (15) Spees, S. T., A d a m s o n , A. W., Inorg. Chem. 1, 531 (1962). (16) Wegner, E., U n p u b l i s h e d results i n this L a b o r a t o r y . (17) W o l d b y e , F., Acta Chem. Scand. 12, 1079 (1958). RECEIVED

A p r i l 3, 1964.

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

248

M E C H A N I S M S O F I N O R G A N I C REACTIONS

Discussion Arthur

Adamson:

T h e r e has been s o m e d i s c u s s i o n a n d c o m m e n t o n w h a t I

c a l l e d a cage m e c h a n i s m , a n d I w a n t t o s a y i n a l i t t l e m o r e o r g a n i z e d w a y w h a t I t h i n k is i n v o l v e d . F i r s t , I a m not t r y i n g to a t t a c k the t r a n s i t i o n state theory.

What I am aiming

a t is a l i t t l e d i f f e r e n t . T r a n s i t i o n s t a t e t h e o r y i t s e l f is a b e a u t i f u l u n i o n of w a v e m e c h a n i c s i n one respect a n d t h e r m o d y n a m i c s i n t h e o t h e r .

H o w e v e r , i t c a n n o t be a p p l i e d f u l l y t o

t h e s y s t e m s t h a t w e h a v e been d i s c u s s i n g .

I n these c i r c u m s t a n c e s t h e t h e o r y is

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

used i n a n a p p r o x i m a t e w a y , i t m a y e v e n be u s e d as a language t o p r e s e n t r e s u l t s . V e r y o f t e n t h e e n t r o p y of a c t i v a t i o n t h a t i s r e p o r t e d for a r e a c t i o n i s n o t m u c h m o r e t h a n a f o r m a l t r a n s l a t i o n of d a t a i n a m e c h a n i c a l w a y , a n d i t is d a n g e r o u s t o read all t r a n s i t i o n state i m p l i c a t i o n s i n t o the result. If w e are g o i n g t o t a l k a b o u t a p p r o x i m a t i o n s a n d a p p r o x i m a t e s i t u a t i o n s , t h e n I suggest u s i n g one o r a n o t h e r e m p h a s i s o r p o i n t of v i e w a s a u s e f u l a p p r o x i m a t i o n o r language t h a t r e n d e r s less o b j e c t i o n a b l e

innuendoes.

O n e p r o b l e m , I t h i n k , i n a d e t a i l e d a c c e p t a n c e of s i m p l e t r a n s i t i o n s t a t e t h e o r y r e g a r d i n g s o l u t i o n s y s t e m s c o n c e r n s the c e n t r a l s u p p o s i t i o n t h a t the t r a n s i t i o n state is i n e q u i l i b r i u m w i t h t h e r e a c t a n t s .

If t h e t r a n s i t i o n s t a t e is a species w h i c h p r o ­

ceeds i r r e v e r s i b l y a n d o n one v i b r a t i o n p e r i o d t o p r o d u c t s , i t is a l i t t l e d i f f i c u l t t o demonstrate, I t h i n k , that this t h e r m o d y n a m i c e q u i l i b r i u m exists.

T h e c o n c e p t of

e q u i l i b r i u m a n d t h e c o n c e p t of a n i r r e v e r s i b l e process a t s o m e p o i n t m u s t be d i s t i n c t . O n e c a n r e t r e a t a s t e p a n d t a l k a b o u t , s a y , a species w h o s e e n e r g y

content

m i g h t be w r i t t e n as A H J m i n u s a s m a l l i n c r e m e n t , t h a t i s , a species b e l o w t r a n s i t i o n s t a t e i n e n e r g y a n d a r g u e t h a t t h i s is n o w i n e q u i l i b r i u m w i t h r e a c t a n t s .

T h e added

e n e r g y t h a t c a r r i e s t h i s t o p r o d u c t s is t h e n c o n s i d e r e d t o be a s m a l l p e r t u r b a t i o n . B u t I t h i n k t h i s is a d e b a t a b l e q u e s t i o n since i t argues t h a t e n e r g y a r r i v e s i n s m a l l increments.

M a y b e i t does, b u t t h i s i s n o l o n g e r a p u r e l y t h e r m o d y n a m i c q u e s t i o n .

I suggest t h a t for c e r t a i n t y p e s of r e a c t i o n s y s t e m s i n s o l u t i o n i t is u s e f u l t o suppose t h a t the energy, if i t does a r r i v e i n increments, m u s t a r r i v e i n a r e l a t i v e l y s h o r t p e r i o d of t i m e c o m p a r e d t o t h e l i f e t i m e of t h e cage. P e r h a p s a n o t h e r w a y of l o o k i n g a t t h i s i s t o c o n s i d e r t h e r e a c t i o n ' s g o i n g i n reverse ( s t a r t i n g w i t h a t r a n s i t i o n s t a t e w h i c h t h e n b r e a k s u p i n t o r e a c t a n t s ) a n d to say t h a t , i n solution a n d perhaps especially w i t h complex ions i n hydrogenb o n d e d s o l v e n t s , t h e r e is g o o d c o m m u n i c a t i o n b e t w e e n t h e m o l e c u l e a n d i t s e n v i r o n ­ m e n t i n a v i b r a t i o n a l sense.

T h e r e f o r e , as a t r a n s i t i o n s t a t e d e c a y s b a c k w a r d s

t o r e a c t a n t s , i t s excess e n e r g y w i l l be lost i n r e a s o n a b l y large j u m p s a n d r e a s o n a b l y quickly.

C o n s e q u e n t l y , t h e r e a c t a n t species w i l l be b a c k *to t h e r m a l energies i n a

t i m e t h a t is c o m p a r a b l e , i f n o t s h o r t e r , t h a n t h e t i m e i t w i l l t a k e t h e m t o diffuse away. I a g a i n e m p h a s i z e t h a t I a m t h i n k i n g p r i m a r i l y of c o m p l e x i o n r e a c t i o n s i n ­ v o l v i n g a f a i r l y large m o l e c u l e , a n d a l o t of i n t e r a c t i o n w i t h t h e s o l v e n t s , u s u a l l y through hydrogen bonding.

I a m n o t t h i n k i n g of s m a l l m o l e c u l e s w h i c h m a y n o t

be so i n t i m a t e l y s o l v a t e d .

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

249

Discussion

P e r h a p s a n o t h e r w a y of e x p l a i n i n g w h a t I a m t r y i n g t o e m p h a s i z e is t h a t w h e n r e a e t a n t s c o m e t o g e t h e r I t h i n k p r o b a b l y t h e y w i l l h a v e diffused t o g e t h e r before a c q u i r i n g their a c t i v a t i o n energy. I t i s reasonable t o a s k j u s t w h a t t h e o p e r a t i o n a l m e a n i n g of t h e cage p i c t u r e i s . W h a t differences does i t r e a l l y m a k e ?

If there a r e n ' t a n y , w h y discuss i t ?

T h e first e m p h a s i s here is o n t h e n o t i o n of a p r e a s s e m b l y of r e a e t a n t s . b i m o l e c u l a r r e a c t i o n A a n d Β first diffuse t o w a r d s e a c h o t h e r .

i o n , t h e n B , i f a s o l v e n t species, m u s t first diffuse i n t o t h e s o l v a t i o n s h e l l of A . is a n i o n , t h e s i t u a t i o n w o u l d be d e s c r i b e d as i o n p a i r i n g .

In a

If A i s a c o m p l e x If Β

I n a n y event, A a n d Β

first diffuse i n t o a c o m m o n " c a g e " ; t h e n d u r i n g t h i s p e r i o d of a s s o c i a t i o n , r e a c t i o n w i l l o c c u r i f a sufficient a c c i d e n t a l confluence of e n e r g y occurs.

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

T h e s e c o n d e m p h a s i s i s t h a t i t i s h e l p f u l a n d suggestive t o s u p p o s e t h a t t h e p r o b a b i l i t y of f o r m i n g a t r a n s i t i o n s t a t e f a v o r a b l e t o t h e r e a c t i o n i s h i g h l y d e t e r ­ m i n e d b y t h e p r o b a b i l i t y t h a t a s i m i l a r b u t n o n a c t i v a t e d c o n f i g u r a t i o n is a v a i l a b l e i n t h e p r e a s s e m b l e d o r " c a g e d " species.

T h u s , i n t h e case of a n a t i o n , t h e stereo­

c h e m i s t r y of t h e r e a c t i o n w o u l d be d e t e r m i n e d p a r t l y b y w h e t h e r t h e i n i t i a l i o n p a i r had a favorable configuration.

I n t h e case of s o l v a t i o n i n a m i x e d s o l v e n t , t h e

s o l v e n t d i s t r i b u t i o n i n t h e s o l v a t i o n s h e l l r a t h e r t h a n t h e average

composition

s h o u l d be t h e i m p o r t a n t v a r i a b l e d e t e r m i n i n g r e a c t i o n r a t e a n d o r d e r . S o m e possible consequences of t h i s e m p h a s i s a r e t h e f o l l o w i n g : T h e c o n c e p t of a p r e a s s e m b l y focuses a t t e n t i o n o n t h e a r r a n g e m e n t of p o t e n t i a l r e a e t a n t s i n t h e s o l v e n t cage a n d suggests t h a t there i s n o t m u c h v a l i d i t y i n u s i n g s u c h f o r m a l labels as S j y l , l i m i t i n g o r n o n l i m i t i n g , o r Sjy2 o r t h e c o m b i n a t i o n I h a v e been g u i l t y of—Si\r2FS.

I t i m p l i e s t h a t these labels are t o o r i g i d , t o o c o n s t r i c t i v e ,

a n d t o o o r i e n t e d t o w a r d s gas phase r e a c t i o n k i n e t i c s . A n o t h e r possible effect o r difference is t h a t o r d i n a r i l y t h e r e i s n o r e a l w a y independently to s t u d y the transition state—independently verify AfiTj or A 5 j . B u t i f one supposes, as a useful a p p r o x i m a t i o n , t h a t c o n f i g u r a t i o n s i n t h e cage w i l l i n c l u d e those of i n t e r e s t i n t h e t r a n s i t i o n s t a t e , one c a n n o w s t u d y t h e s o l v a t i o n shell o r t h e i o n p a i r s t r u c t u r e , o r i n o t h e r w o r d s , s t u d y t h e s i t u a t i o n i n t h e cage w i t h o u t r e q u i r i n g i t t o be a c t i v a t e d .

T h i s m e a n s t h a t one c a n s t u d y i o n p a i r

f o r m a t i o n a n d c o n s i d e r t h i s as a useful guide t o s u b s t i t u t i o n r e a c t i o n s a n d h o w t h e y m i g h t proceed.

In a mixed solvent system i n v o l v i n g a substitutive solvation such

as a q u a t i o n , t h e r e a c t i o n cage c o n c e p t suggests t h a t i t w o u l d be h e l p f u l t o s t u d y t h e s o l v e n t c o m p o s i t i o n of the s o l v a t i o n cage. w o u l d n o w be a p p l i c a b l e .

Ordinary physical chemical

methods

W e h a v e been t a k i n g a p a r t i c u l a r c o m p l e x w h o s e a b s o r p ­

t i o n s p e c t r u m is s o m e w h a t s e n s i t i v e t o s o l v e n t e n v i r o n m e n t a n d l o o k i n g a t t h i s s p e c t r u m i n m i x e d s o l v e n t s t o get a t w h a t seems t o be t h e i m m e d i a t e s o l v e n t e n ­ vironment. A n o t h e r w a y of p i c t u r i n g t h e cage is as a large, loose m o l e c u l e .

I n a sense,

w e a r e s a y i n g a b i m o l e c u l a r r e a c t i o n forms a large, loose m o l e c u l e i n t h e case of c o m p l e x i o n , w h i c h t h e n i s o m e r i z e s ; t h a t i s , t h e i n n e r - o u t e r sphere exchange

is

t h o u g h t of as a n i s o m e r i z a t i o n o r a n i n t r a m o l e c u l a r change. I n t h e case of m i x e d s o l v e n t s , i f t h e t w o s o l v e n t s are a b o u t e q u a l l y g o o d , one m a y s u p p o s e t h a t i n t h e s o l v a t i o n s h e l l there is v e r y l i t t l e f r a c t i o n a t i o n a r o u n d t h e complex.

W i t h i s o m e r i z a t i o n o r i n t r a m o l e c u l a r changes as a v i e w of w h a t i s

o c c u r r i n g , one c a n a r g u e t h a t p e r h a p s j u s t t h e s p a t i a l o c c u p a n c y , o r r o u g h l y t h e

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

M E C H A N I S M S O F I N O R G A N I C REACTIONS

250

v o l u m e f r a c t i o n of t h e s o l v e n t c o m p o n e n t variable.

t h a t w i l l s u b s t i t u t e , m a y be a g o o d

T h e r e a c t i o n r a t e s h o u l d t h e n be p r o p o r t i o n a l t o t h e v o l u m e f r a c t i o n .

I n some cases t h i s p r e d i c t i o n seems t o w o r k o u t . T h i s is one of t h e specific suggestions t h a t arises f r o m t h e r e a c t i o n cage c o n c e p t , w h e r e a s t r a n s i t i o n s t a t e t h e o r y i n i t s s i m p l e a p p l i c a t i o n w o u l d suggest t h a t t h e a c t i v i t y of t h e s o l v e n t c o m p o n e n t , r a t h e r t h a n i t s v o l u m e f r a c t i o n , s h o u l d be t h e proper variable. S t i l l a n o t h e r c o n s i d e r a t i o n is t h a t t h i s p o i n t of v i e w , e s p e c i a l l y w h e r e a t least one of t h e m o l e c u l e s i s large a n d c o m p l e x , l e n d s i t s e l f r e a d i l y t o t h i n k i n g i n t e r m s of m o r e t h a n one r e a c t i o n p a t h .

T h a t i s , i t i s m o r e a p p a r e n t t h a t t h e r e c a n be

v a r i o u s s i m i l a r c o n f i g u r a t i o n s w h o s e o v e r a l l c o n t r i b u t i o n t o t h e r a t e m a y be s i m i l a r ,

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

a n d hence c o m p e t i t i v e .

Some m a y have a high a c t i v a t i o n energy but represent a

v e r y p r o b a b l e s t a t e of a f f a i r s ; o t h e r s m a y h a v e a l o w a c t i v a t i o n e n e r g y b u t a n i m p r o b a b l e s t a t e of affairs.

I n o t h e r w o r d s , m a n y r e l a t e d r e a c t i o n p a t h s c a n be

present. A s a n i l l u s t r a t i o n , a n d n o t t o d r a w specific c o n c l u s i o n s a b o u t t h e p a r t i c u l a r set of r e a c t i o n s , t h e t a b l e t h a t P r o f . T a u b e s h o w e d ( T a b l e I) i n h i s p a p e r o n r a t e s of c h r o m o u s r e a c t i o n w i t h v a r i o u s p e n t a m m i n e c o b a l t ( I I I ) c o m p l e x e s , p r o v i d e a set of r a t e c o n s t a n t s t h a t a r e v e r y s i m i l a r , w i t h i n a f a c t o r of t w o o r t h r e e . energies suggest t h a t t h e r a t e s s h o u l d v a r y a m i l l i o n - f o l d . e n t r o p i e s of a c t i v a t i o n . each other.

Yet, activation

T h e same i s t r u e for t h e

S o m e h o w these t w o f a c t o r s h a v e m a n a g e d j u s t t o b a l a n c e

T h i s is t o o m o n u m e n t a l a c o i n c i d e n c e t o be o n l y t h a t .

T h e r e m u s t be

a n explanation a n d perhaps we can draw a n analogy from the following situation i n catalysis.

F o r a particular reaction and a particular catalyst, but activated to

d i f f e r e n t degrees, one o f t e n o b s e r v e s t h a t t h e r e a c t i o n proceeds a t a b o u t t h e same r a t e for t h e v a r i o u s l y a c t i v a t e d c a t a l y s t s , b u t w i t h q u i t e different a c t i v a t i o n energies.

T h i s w a s c o n s i d e r e d i n d e t a i l b y surface c h e m i s t s s o m e t i m e a g o a n d t h e y

p r o p o s e d a d i s t r i b u t i o n of sites o n t h e c a t a l y s t ; those t h a t a r e m o r e a c t i v e a n d reduce t h e a c t i v a t i o n e n e r g y are fewer i n n u m b e r so t h e r e i s a c o m p e n s a t i o n of f r e q u e n c y a n d a c t i v a t i o n factors. I a m s u g g e s t i n g t h a t o f t e n t h e a p p l i c a b i l i t y of B a r k l e y - B u t l e r t y p e p l o t s , t h a t is, t h e l i n e a r r e l a t i o n s h i p b e t w e e n t h e e n t r o p y a n d e n t h a l p y of a c t i v a t i o n i n a series m a y c o m e a b o u t because of t h e r e b e i n g a d i s t r i b u t i o n of r e a c t i o n p a t h s .

Small

v a r i a t i o n s i n t h e i m p o r t a n c e of l o w a c t i v a t i o n e n e r g y , l o w p r o b a b i l i t y p a t h s c o u l d t h e n a c c o u n t for t h e d a t a i n D r . T a u b e ' s t a b l e .

B y contrast, transition state

t h e o r y i n i t s a p p r o x i m a t e a p p l i c a t i o n , i n v a r i a b l y l e a d s t o d i a g r a m s of e n e r g y vs. r e a c t i o n p a t h w h i c h , i n s p i t e of a l l p r o t e s t , one r e a c t i o n p a t h , w h a t e v e r i t is, one t r a n s i t i o n s t a t e , a n d one e n e r g y . A g a i n let me say I a m proposing a shift i n emphasis a n d a n a p p r o x i m a t i o n to d e a l w i t h w h a t is i n e v i t a b l y a s t a t e of a p p r o x i m a t i o n .

I a m not attempting to

k n o c k d o w n t h e p i l l a r s of t r a n s i t i o n s t a t e t h e o r y ( F i g u r e A ) . O v e r t h e p a s t s e v e r a l y e a r s w e h a v e been i n t e r e s t e d i n d e t e r m i n i n g t o w h a t e x t e n t t h e p h o t o c h e m i s t r y of c o m p l e x i o n s of v a r i o u s t r a n s i t i o n m e t a l i o n s r e s e m b l e t h e r m a l r e a c t i o n c h e m i s t r y as t o p r o d u c t s , a n d t o w h a t e x t e n t t h e b e h a v i o r v a r i e s w i t h t h e w a v e l e n g t h o r t y p e of e x c i t e d s t a t e p r o d u c e d . I n t h e case of t h e c o b a l t c o m p l e x e s , a n d i n p a r t i c u l a r a series of a c e t o p e n t a m m i n e s , g e n e r a l l y i r r i d a t i o n i n t h e w a v e l e n g t h v i c i n i t y of a c h a r g e t r a n s f e r b a n d l e d

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

251

Discussion

F i r s t Stage CoA5X+

2

-+

[Co(II)A*—X]+

4-

2

Δ

M — X b o n d weakened, v i b r a t i o n a l energy, Δ , dissipated Second State [Co(II)Ar-X]

^

+ 2

k

t

CoAfiX+

+

2

Δ'

atom returns with further Δ ' dissipated CoAfi+ ~-H 0—X 2

2

i n t e r p o s i t i o n of s o l v e n t

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

Figure A.

Suggested mechanism

for photolysis

of Co (111)

complexes

t o a g o o d d e a l of r e d o x d e c o m p o s i t i o n — i . e . , o x i d a t i o n of l i g a n d a n d r e d u c t i o n of t h e cobalt.

A c c o m p a n y i n g t h i s w a s o f t e n a good d e a l of s u b s t i t u t i o n , b u t c o m p e t i t i v e

t o t h e r e d o x m o d e of r e a c t i o n . homolytic bond

fission,

W e p r o p o s e d i n 1957 t h a t t h e p r i m a r y a c t w a s a

a n d t h a t either a redox or a n a q u a t i o n reaction ensued.

T h i s d e p e n d e d o n w h e t h e r t h e f r a g m e n t s escaped c o m p l e t e l y o r w h e t h e r , before c o m p l e t e escape, a n e l e c t r o n r e t u r n e d t o reverse t h e r e d o x p a r t b u t s t i l l a l l o w t h e a c i d o g r o u p t o escape.

O n t h e o t h e r h a n d , i r r a d i a t i o n , i n t h e case of these c o b a l t

c o m p l e x e s , of a p u r e r l i g a n d field b a n d , l e d t o v e r y l o w q u a n t u m y i e l d s a n d a q u a ­ tion only.

T h u s , t h e choice of w a v e l e n g t h o r e s s e n t i a l l y t h e choice of t y p e of b a n d

t o i r r a d i a t e m a d e a c o n s i d e r a b l e difference as t o t h e p h o t o c h e m i s t r y . T h e g e n e r a l o b s e r v a t i o n i n t h e p u b l i s h e d w o r k has been t h a t for species s u c h as h e x a m m i n e c h r o m i u m , thiocyanatopentammine, or the hexa-aquo i o n where

O

1 8

exchange w a s l o o k e d a t , i r r a d i a t i o n p r o d u c e d a s u b s t i t u t i o n r e a c t i o n a n d n o t h i n g else.

M o r e o v e r t h e r e a c t i o n m o d e w a s i n d e p e n d e n t of w a v e l e n g t h , a n d t h e q u a n ­

t u m yields d i d not change m u c h .

F r o m a m o r p h o l o g i c a l p o i n t of v i e w , t h e r e are

e s s e n t i a l l y three t y p e s of e x p l a n a t i o n s .

F i r s t a l l e x c i t e d states i n d e p e n d e n t l y l e a d

t o t h e s a m e c h e m i c a l sequence, a n d w e suppose t h a t t h e p r i m a r y a c t is s i m p l y a heterolytic bond

fission.

Second, the excited quartet states convert to the doublet state w h i c h t h e n acts as a c o m m o n c h e m i c a l i n t e r m e d i a t e .

T h i s a t t r a c t i v e suggestion, o w i n g p a r t l y t o

t o P l a n e a n d p a r t l y t o S c h l a f e r , is p l a u s i b l e because t h i s c o n v e r s i o n i s k n o w n t o occur i n rigid media. H o w e v e r , a t h i r d p o s s i b i l i t y i s t h a t v a r i o u s e x c i t e d states a r e p o t e n t i a l l y different i n t h e i r p h o t o c h e m i s t r y , b u t t h a t t h e s y s t e m s c h o s e n for s t u d y d i d n ' t h a v e a n y m e a n s of r e f l e c t i n g t h i s difference. T h e p r e s e n t p a p e r i s c o n c e r n e d w i t h c h o o s i n g s y s t e m s w h i c h reflect s u c h differences i f t h e y e x i s t .

F i g u r e Β r e p r o d u c e s t h i s s u m m a r y of r e s u l t s .

T h e c o m p l e x c h o s e n for s t u d y w a s a * 5 - d i h y d r o x y b i s ( e t h y l e n e d i a m i n e ) c h r o m i u m (III).

T w o t y p e s of s u b s t i t u t i o n r e a c t i o n s c a n o c c u r h e r e : i s o m e r i z a t i o n a n d a q u a ­

tion.

W e n o w a r e a b l e t o o b s e r v e r e a c t i o n r a t i o s as w e l l as o v e r a l l q u a n t u m y i e l d s .

W e d o see s o m e differences w i t h w a v e l e n g t h .

T h e m o s t s t r i k i n g is t h a t w h i c h

o c c u r s i n t h e q u a n t u m y i e l d for t h e a q u a t i o n r e a c t i o n . i n d e p e n d e n t for s h o r t w a v e - l e n g t h i r r a d i a t i o n s .

T h i s is nearly temperature

A t the longer-wave lengths where

a t l e a s t a f a i r p r o p o r t i o n of l i g h t i s b e i n g a b s o r b e d i n t o t h e d o u b l e t t r a n s i t i o n , i t i s quite temperature dependent.

T h e isomerization quantum yields given b y

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

the

MECHANISMS OF INORGANIC

252

REACTIONS

1.01 Aquation

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

ο,ο,ι

triangles show rather similar behavior at a l l the wave lengths b u t w i t h a gradually i n c r e a s i n g t e m p e r a t u r e d e p e n d e n c e as t h e w a v e l e n g t h is d e c r e a s e d . I t is i m p o s s i b l e t o s u p p o s e t h a t , i n t h e case of p h o t o l y s i s a t t h e s h o r t e r w a v e ­ lengths, aquation a n d isomerization are competitive towards a c o m m o n precursor. T h e a r g u m e n t is a q u a n t i t a t i v e one c o n c e r n i n g t h e h i g h q u a n t u m y i e l d s for b o t h processes.

T h e a l g e b r a of a c o m p e t i t i v e r e a c t i o n scheme c a n n o t e x p l a i n t w o p r o c ­

esses, one w i t h a h i g h t e m p e r a t u r e coefficient a n d one w i t h a n a p p a r e n t z e r o - t e m ­ p e r a t u r e coefficient, i f b o t h o c c u r i n c o m p a r a b l e y i e l d s .

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

Discussion

253

I p r o c e e d i n t h e p a p e r t o s p e c u l a t e a b o u t i n t e r m e d i a t e s t h a t π i g h t be p r o d u c e d . T h e s e are e s s e n t i a l l y s p e c u l a t i o n s , a f r a m e for d i s c u s s i o n .

I w i l l leave t h a t aspect

o p e n for q u e s t i o n s . Harry Gray: chemistry.

Photochemistry

is

a

new

and

exciting

area i n inorganic

I a m sure t h e e x p e r t s i n t h e field, P r o f . A d a m s o n , P r o f . P l a n e , a n d o t h e r s

here, w i l l agree t h a t t h e progress i n i n o r g a n i c p h o t o c h e m i s t r y t h u s f a r has been a d o g ' s d i n n e r c o m p a r e d t o o r g a n i c p h o t o c h e m i s t r y s i m p l y because we h a v e a t t r a c t e d fewer p e o p l e i n t o t h i s n e w

field.

I t h i n k i t is g o i n g t o be m o r e c o m p l i c t e d t h a n t h e

o r g a n i c p h o t o c h e m i s t r y since o u r s y s t e m s are c o n s i s t e n t l y m o r e i n t e r e s t i n g a n d intricate. I h a v e s o m e of o u r r e s u l t s t o p r e s e n t . problems i n this area.

A l s o , I w o u l d like to p o i n t out some

T h e r e are three p r o b l e m s t h a t I t h i n k m u s t be s o l v e d before

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

we c a n d o a n y s i g n i f i c a n t p h o t o c h e m i s t r y . T h e first is t h e q u e s t i o n of m o n o c h r o m a t i c l i g h t .

Monochromatic light will

h a v e t o be a v a i l a b l e , I t h i n k , a t l e a s t =b 1 0 0 A . , o r e v e n less. T h e s e c o n d p r o b l e m is t h e i d e n t i f i c a t i o n of a b s o r p t i o n b a n d s , a p r o b l e m t h a t P r o f . A d a m s o n m a k e s c l e a r i n t h e first page of h i s p a p e r .

I n discussing transitions

t o t h e v a r i o u s d-d e x c i t e d states i n o c t a h e d r a l c h r o m i c c o m p l e x e s , he uses t h e u s u a l octahedral designations.

T h e s e d e s i g n a t i o n s serve t o i d e n t i f y these b a n d s l o o s e l y .

B u t we m u s t do considerably better t h a n this.

T h u s , the second

p r o b l e m is

certainly to identify the absorption bands i n considerably more detail. T h e t h i r d p r o b l e m i s t o s t u d y s y s t e m a t i c a l l y t h e v a r i o u s t y p e s of t r a n s i t i o n s i n v o l v e d i n m e t a l complexes.

F i r s t , i f one w a n t s t o s t u d y t h e p h o t o c h e m i s t r y of

d-d b a n d s he s h o u l d n o t s t u d y t h e p h o t o c h e m i s t r y of d-d b a n d s o v e r l a p p e d w i t h charge transfer bands.

T h a t i s , h e s h o u l d select s y s t e m s w h i c h h a v e d-d b a n d s

clearly separated from the other transitions. transfer.

S e c o n d , t h e r e a r e t w o t y p e s of c h a r g e

L i g a n d - t o - m e t a l c h a r g e t r a n s f e r i n t h e h a l i d e s is one.

Systems should

be selected i n w h i c h t h e L —> M b a n d s a r e i s o l a t e d f r o m t h e o t h e r s , a n d one s h o u l d s t u d y t h e q u a n t u m y i e l d s as a f u n c t i o n of w a v e l e n g t h . t r a n s f e r s y s t e m s are t h i r d .

M e t a l - t o - l i g a n d charge

T h i s h a s n ' t been stressed u p t o t h i s p o i n t .

Metal

c a r b o n y l s , a c e t y l a c e t o n a t e s , a n d m e t a l n i t r o s y l s a r e i n t e r e s t i n g cases i n w h i c h one can isolate the metal-to-ligand charge

transfer bands

from the other

bands.

F i n a l l y , t h e l i g a n d - l i g a n d t r a n s i t i o n s are t y p e s t h a t t h e o r g a n i c c h e m i s t s h a v e investigated thoroughly. O n t h e second p r o b l e m t h e p e o p l e i n m y a r e a a r e r e s p o n s i b l e for t h e p o o r s t a t e of a f f a i r s .

I t a k e m o s t r e s p o n s i b i l i t y because o u t s i d e of o c t a h e d r a l a n d t e t r a h e d r a l

complexes no complete assignments have been made.

B u t , we do have new results,

a n d I t h i n k i t is of s o m e i n t e r e s t t o p r e s e n t t h e m .

Cooper Langford and I at

C o l u m b i a n o w h a v e c o n c l u s i v e r e s u l t s o n t h e e n e r g y levels i n t h e d i s t o r t e d o c t a h e d ­ ral cobalt compounds.

T h e s e are t h e 0 ) ( Ν Η 3 ) δ Χ

+ 2

complexes.

T h e s p e c t r a of these c o m p l e x e s were c a r e f u l l y w o r k e d o u t b y L e n h a r t a n d W e i g e l some t i m e ago. D r . L a n g f o r d a n d I d e c i d e d t o l o o k a t these s p e c t r a a g a i n .

W e remeasured

t h e s p e c t r u m of C o C N H a ^ F " * " because t h i s is t h e one i n w h i c h t o r e s o l v e t h e f o u r t h 2

d-d b a n d .

T h e b a n d c o m e s o u t n i c e l y a n d we d i d n ' t e v e n need a G a u s s i a n a n a l y s i s .

A G a u s s i a n a n a l y s i s c h e c k e d o u t L e n h a r t a n d W e i g e l ' s first three b a n d s v e r y n i c e l y a n d t h u s we h a v e r e s o l v e d i n one case, o u t s i d e of o c t a h e d r a l a n d t e t r a h e d r a l s y m ­ m e t r y , a l l of t h e s p i n - a l l o w e d b a n d s .

T h e b a n d f r o m xy t o x?-y? s h o u l d h a v e t h e

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

254

M E C H A N I S M S O F I N O R G A N I C REACTIONS

ΔΠ

Ε

>

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

Αι

I yz

I xx

I

*

»»lj t

I x*-y*

Figure C. Energy levels in the distorted octahedral cobalt complexes same energy as i n C o ( N H ) 3

6

+ 3

because t h e h a l i d e s u b s t i t u t i o n is i n a p o l e p o s i t i o n .

T h e r e a r e t w o a l l o w e d b a n d s , t h e t w o E ' s , a n d t w o f o r b i d d e n ones, A2 a n d B2. T h e p o l a r i z a t i o n s h a d been d o n e a n d i n t e r p r e t e d b y C a r l B a l l h a u s e n a n d M o f f i t t , a n d a l l t h a t r e m a i n e d w a s t o get t h e f o u r t h b a n d .

W e have done the complete

t h e o r e t i c a l p r o b l e m as w e l l as p o s s i b l e i n s t r o n g field w i t h c o m p l e t e c o n f i g u r a t i o n i n t e r a c t i o n , a n d we n o w h a v e , I t h i n k , t h e c o r r e c t o n e - e l e c t r o n o r d e r i n g for t h e halopentammines. I t t u r n s o u t t h a t z — a l i t t l e s u r p r i s i n g — i s s u b s t a n t i a l l y a b o v e x —y . 2

2

xz—yz l e v e l i s f u r t h e r a b o v e xy, h o w e v e r , a n d t h e n e t effect places t h a n NH3 i n the spectrochemical

series.

2

fluoride

The lower

F l u o r i d e gives s t r o n g e r σ - a n t i b o n d i n g

b u t even stronger ir-antibonding a n d thus net reduction. F o r C o ( N H ) F + , Δττ 3

6

2

=

3450/cm., Δ σ

T h a t i s , z i s 2400 w a v e n u m b e r s a b o v e x —y . 2

2

2

«

2400/cm.

T h e chloropentammine,

aw i s

4 0 0 0 / c m . t h e b r o m o p e n t a m m i n e , aw is 4 5 5 0 / c m . , a n d t h e i o d o p e n t a m m i n e aw is 5550/cm. Dr. Adamson:

O n e c a n get IOOA. r e s o l u t i o n w i t h i n t e r f e r e n c e

filters.

We

use t h e m m a i n l y because of t h e i r h i g h l i g h t i n t e n s i t y , b u t we d o h a v e d e t a i l e d d a t a b y w a v e l e n g t h r e g i o n o n one c h r o m i u m c o m p o u n d , a n d we d o see s m a l l d i p s a n d changes i n the q u a n t u m yields.

I a m r e f e r r i n g t o some w o r k b y D r . B e g n e r i n o u r

department. T h e d e v e l o p m e n t of t h e o r y is b e a u t i f u l , a n d I w o u l d s a y t h a t t h e o r e t i c i a n s h a v e t o be p r o m p t e d b y e x p e r i m e n t a l r e s u l t s . I s h o w e d , a t a F a r a d a y d i s c u s s i o n i n 1960, a slide d e p i c t i n g a s p e c t r u m of t h e fluoropentammine

w h i c h showed the s m a l l peak.

W e weren't alert enough theoreti­

c a l l y t o see i t s significance. I h a v e one final c o m m e n t o n t h e c h r o m i u m s y s t e m . state, a doublet Γ

2 α

T h e r e is another doublet

t h a t is supposed to be present a n d u s u a l l y h i d d e n b y the q u a r t e t -

quartet transitions.

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

10.

ADAMSON

Discussion

255

P o s s i b l y s o m e of o u r r e s u l t s i n v o l v e c o n v e r s i o n t o t h a t s t a t e .

D o you have a n y

comment? Robert Plane:

I w o u l d l i k e t o c o m m e n t o n t h e p h o t o c h e m i s t r y of these c o m ­

p l e x e s , p a r t i c u l a r l y t h e c h r o m i u m w h i c h I t h i n k a r e w e l l c h o s e n for a t l e a s t t w o of D r . G r a y ' s reasons.

F i r s t , i n t h e case of c h r o m i u m , u n l i k e c o b a l t , t h e

charge

t r a n s f e r b a n d i s w e l l s e p a r a t e d , so t h a t one c a n s t u d y t h e d-d t r a n s i t i o n s , a t l e a s t i n c e r t a i n s y s t e m s w h e r e one has s i x l i g a n d s a l l a l i k e , a n d t h e r e i s n o J a h n - T e l l e r s p l i t t i n g , a n d one h a s a f a i r l y g o o d i d e a as t o t h e a s s i g n m e n t of b a n d s . T h e first t h e o r y t o a c c o u n t for p h o t o c h e m i s t r y i n these series w a s t h a t b y D r . A d a m s o n w h i c h p o s t u l a t e s t h e b o n d fission as t h e p r i m a r y a c t .

Simultaneously,

H . L . S c h l a f e r (9) a n d J o h n H u n t a n d I (8) p r o p o s e d t h e i n v o l v e m e n t of t h e d o u b l e t Ε state.

A l t h o u g h these s e e m e d s i m i l a r , t h e y were r a d i c a l l y d i f f e r e n t suggestions.

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

Schlafer's p o i n t was t h a t on i r r a d i a t i o n the molecule found itself u l t i m a t e l y i n the spin-forbidden state where the energy was stored.

O n releasing energy d u r i n g

r e t u r n from the doublet Ε state to the ground state, reaction occurred.

Our

postulate also i n v o l v e d the s p i n d o u b l e t state w h i c h is a spin-forbidden state.

But

our p o i n t was that the reaction occurred while the molecule was i n the doublet state. I n other words, we s a i d t h a t b y i r r a d i a t i n g the s y s t e m we are s t u d y i n g the c h e m i s t r y of a n e x c i t e d s t a t e of c h r o m i u m .

I think Prof. Adamson's d a t a have shown very

w e l l t h a t t h e t h e r m a l r e a c t i o n a n d t h e p h o t o c h e m i c a l r e a c t i o n are d i f f e r e n t t h i n g s . T h e y l e a d t o d i f f e r e n t p r o d u c t s , a n d t h e t e m p e r a t u r e coefficients a r e v e r y d i f f e r e n t . S u c h r e s u l t s are c o m p l e t e l y c o n s i s t e n t w i t h t h e p o s t u l a t e of r e a c t i o n i n t h e e x c i t e d state.

H o w e v e r , t h i s p o s t u l a t e d o e s n o t e x c l u d e t h e b o n d fission p o s t u l a t e .

If y o u

l i k e , w e a r e t r y i n g t o d e c i d e w h a t species i s r e a c t i n g : i s i t t h e d o u b l e t m o l e c u l e o r t h e ground state molecule? finally

A l s o w h a t i s t h e m e c h a n i s m b y w h i c h t h e p r o p e r species

reacts? I w o u l d like t o c o m m e n t on the statement i n D r . A d a m s o n ' s paper w h i c h says

t h a t o u r w o r k as a f u n c t i o n of w a v e l e n g t h i s t r i v i a l i f we o n l y k n e w a l l t h e f a c t s . Perhaps this is true.

B u t I a m n o t w i l l i n g t o a d m i t t h a t i t i s t r i v i a l o n t h e b a s i s of

a n y fact that I k n o w yet.

F o r the H 2 O

1 8

e x c h a n g e w i t h C r ( H 2 0 ) e , one c a n i r r a d i ­ + 3

ate a l l three a b s o r p t i o n bands separately, a n d the q u a n t u m yields are the same (8).

T h i s is r e m i n i s c e n t of w h a t i n v a r i a b l y h a p p e n s i n o r g a n i c

w h e n one excites t o a n y of s e v e r a l s p i n - a l l o w e d s t a t e s .

photochemistry

T h e molecule immediately

converts i n t e r n a l l y t o the lowest state, a n d a n y t h i n g t h a t is interesting happens f r o m the lowest.

H e n c e , i t d o e s n ' t m a t t e r w h i c h s t a t e i t goes t o

first.

W e b e l i e v e i t goes

n e x t i n t o t h e d o u b l e t s t a t e a n d so w e d i d t h e s e c o n d p a r t of t h e e x p e r i m e n t .

This

c o u l d n o t be d o n e w i t h t h e h e x a q u o case because t h e s p i n d o u b l e t o v e r l a p s w i t h one of t h e s p i n - a l l o w e d s t a t e s .

Instead we used C r ( N H ) 6 3

+ 3

where we can i r r a d i a t e

the doublet directly a n d p u t the molecule i n t o this state.

W l i e n we d o so, o u r

q u a n t u m y i e l d c l i m b s to u n i t y , w h i c h I t h i n k is significant ( i ) .

I n t h i s case t h e

evidence is good t h a t molecules are r e a c t i n g i n their excited states. Dr. Adamson:

T h i s is a c o r r e c t i o n .

I d i d n ' t s a y y o u r r e s u l t s were t r i v i a l .

I s a i d t h a t b y h a v i n g t h e m a t o n l y one t e m p e r a t u r e p o s s i b l y t h e o r d e r i n g of t h e q u a n t u m yields w i t h wave length led to a conclusion t h a t was not general.

At

a n o t h e r temperature y o u m i g h t have found a different order. Dr. Plane:

W e found them temperature independent.

Cooper L a n g f o r d :

M y comment

is not on

photochemistry,

but on

A d a m s o n ' s r e m a r k s o n cage aggregates a n d t h e t r a n s i t i o n s t a t e t h e o r y .

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

Prof.

256

M E C H A N I S M S O F I N O R G A N I C REACTIONS I s y m p a t h i z e w i t h t h e p o i n t of v i e w he i s a d v o c a t i n g , a n d I h o p e t h a t h i s s u g ­

gestions w o u l d n o t be c o n f u s e d

b y m i s c o n s t r u i n g t r a n s i t i o n state t h e o r y .

He

singles o u t large m o l e c u l e s y s t e m s i n c o n d e n s e d phases as places w h e r e t h e t r a n s i ­ t i o n s t a t e t h e o r y w o u l d be i n t r o u b l e . M y u n d e r s t a n d i n g of t r a n s i t i o n state t h e o r y is t h a t t h i s is w h e r e t h e a p p r o x i m a ­ t i o n s a r e m o s t l i k e l y t o be a c c u r a t e , e s p e c i a l l y i f t h e a c t i v a t i o n e n e r g y is l a r g e .

The

transition state theory, from the detailed statistical viewpoint, requires t h a t a l l degrees of f r e e d o m b u t one be i n e q u i l i b r i u m .

T h i s is most readily obtained i n

a c o n d e n s e d phase w h e r e e n e r g y t r a n s f e r is r a p i d . Dr. Adamson:

Y o u have a point there.

I t h i n k t h a t i n t h e large m o l e c u l e

s y s t e m , for e x a m p l e p e n t a m m i n e h a l i d e a n d w a t e r , t h e r e w i l l be m o r e t h a n one r e a c ­

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

t i o n p a t h a n d n o t a single t r a n s i t i o n s t a t e .

I t i s h e l p f u l t o c o n s i d e r t h i s as a k i n d of

intramolecular rearrangement. Robert Connick:

S i n c e t h e s u b j e c t has been r a i s e d , I w o u l d l i k e t o c o m m e n t

o n this general p r o b l e m . I agree w i t h l o o k i n g a t these m a t t e r s i n different w a y s .

A s I understand it,

y o u do not object to the t r a n s i t i o n state t h e o r y f o r m u l a t i o n .

T h e one w o r d of

c a u t i o n I w o u l d l i k e t o i n t e r j e c t , t h o u g h , i s t h i s : y o u s p o k e of t h e caged

species

before i t h a d r e a l l y r e a c h e d t h e a c t i v a t e d c o m p l e x c o n f i g u r a t i o n , a n d y o u s p o k e of this concept's being particularly valuable. I n a f o r m a l i s t i c sense t h e r a t e is c o n t r o l l e d , a c c o r d i n g t o t h e t r a n s i t i o n state t h e o r y , b y t h e s t a b i l i t y , c o n c e n t r a t i o n , a n d so o n of t h e a c t i v a t e d c o m p l e x . the k e y configuration.

T h i s is

T h i s t h e o r y says t h a t a l l o t h e r c o n f i g u r a t i o n s m a y be i n ­

teresting b u t t h e y don't really count w h e n i t comes to determing the rate.

There­

fore, one is a l w a y s i n d a n g e r of i n c o r r e c t p r e d i c t i o n s a b o u t a r e a c t i o n r a t e i f one deliberately strays from the activated complex configuration.

I do not mean to say

t h a t one w i l l a l w a y s e r r , because i n m a n y r e a c t i o n s t h e c o n f i g u r a t i o n of t h e s y s t e m as i t a p p r o a c h e s t h e a c t i v a t e d c o m p l e x i s v e r y s i m i l a r t o w h a t i t is i n t h e a c t i v a t e d complex.

I n f a c t , one believes t h a t i n m o s t of these cases i t is t h e a c c u m u l a t i o n of

e n e r g y i n p a r t i c u l a r b o n d s r a t h e r t h a n changes i n g e o m e t r y w h i c h a r e o c c u r r i n g i n t h e final a c t i v a t i o n .

N e v e r t h e l e s s , s u c h a s i t u a t i o n does n o t a l w a y s e x i s t , a n d

p a r t i c u l a r l y i f one t a l k s a b o u t w h a t caged species w o u l d f o r m p r e f e r e n t i a l l y i n a solution.

O f t e n the c o n f i g u r a t i o n w h i c h is t h e r m o d y n a m i c a l l y preferable w i l l n o t

be t h e one w h i c h c o r r e s p o n d s t o t h e a c t i v a t e d c o m p l e x . r e a s o n w h y t h e y s h o u l d be i d e n t i c a l .

I n m a n y cases t h e r e i s n o

I t m u s t be r e m e m b e r e d t h a t t h e a c t i v a t e d

c o m p l e x is a n u n s t a b l e species, n o t a s t a b l e one.

I t is f o r m e d w i t h a great e x p e n d i ­

t u r e of e n e r g y a n d therefore, one m u s t n o t p o s t u l a t e p r o p e r t i e s a b o u t i t b a s e d o n g e n e r a l ideas of o v e r a l l s t a b i l i t y . Dr. Adamson: i n t h i s respect. state.'

I t is possible t h a t D r . C o n n i c k a n d I h a v e different v i e w p o i n t s

H e referred r e p e a t e d l y t o ' the a c t i v a t e d c o m p l e x ' a n d ' the t r a n s i t i o n

I h a v e s a i d , t h a t I feel i n these t y p e s of r e a c t i o n s one m a y h a v e a d i s t r i b u ­

t i o n of p a t h s t h a t a r e c o n t r i b u t i n g c o m p a r a b l y .

T h e y are n o t t e r r i b l y different,

b u t e n o u g h so t h a t i t i s d a n g e r o u s t o c o m p r e s s ones t h o u g h t s t o " t h e " t r a n s i t i o n state a n d " t h e " a c t i v a t e d complex.

I suspect

t h a t these

B a r k l e y - B u t l e r se­

q u e n c e s m a y i n d i c a t e a d i s t r i b u t i o n of r e a c t i o n p a t h s . Edward K i n g :

O f course, i f these different t r a n s i t i o n states h a v e

composition, i t appears i n the rate law.

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

different

10.

ADAMSON

Discussion

Dr. Adamson:

257

L e t ' s go b a c k t o t h e i n t r a m o l e c u l a r r e a r r a n g e m e n t p i c t u r e .

T h e c o m p o s i t i o n of the t r a n s i t i o n s t a t e is a l w a y s t h e s a m e . I w a n t t o pose a q u e s t i o n .

Daniel Leussing: p e r i m e n t a l access?

Is t h i s p i c t u r e o p e n t o e x ­

I n o t h e r w o r d s , i f t h e r e i s a s p e c t r u m of t r a n s i t i o n states w i t h

different h e a t s , w i l l w e n o t get t h e a p p e a r a n c e of a h e a t c a p a c i t y of t h e t r a n s i t i o n s t a t e ; w h e r e a s i f t h e m o d e l s h o w e d a single t r a n s i t i o n state p r e d o m i n a t i n g w o u l d n o t t h e h e a t of r e a c t i o n be c o n s t a n t ?

W o u l d n ' t t h i s a l l o w us t o a n s w e r t h e q u e s ­

tion. D r . Adamson:

I f t h e r e is a d i s t r i b u t i o n of r e a c t i o n p a t h s , t h e n t h e a p p a r e n t

a c t i v a t i o n e n e r g y s h o u l d i n d e e d change w i t h t e m p e r a t u r e , a n d t h e effect w o u l d a p p e a r as a h e a t c a p a c i t y of a c t i v a t i o n .

H o w e v e r , i t does n o t seem possible

to

d i s t i n g u i s h t h i s s i t u a t i o n f r o m t h a t of a single r e a c t i o n p a t h w h e r e t h e t r a n s i t i o n

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

s t a t e h e a t c a p a c i t y i s different f r o m t h a t of t h e r e a c t a n t s .

T h a t is to say, the formal

t h e r m o d y n a m i c s w o u l d be i d e n t i c a l for t h e t w o cases. Gordon Atkinson:

I t h i n k t h e r e i s , a t least i n p r i n c i p l e , a w a y t o e x a m i n e a

s y s t e m for d i s t r i b u t i o n of v e r y s i m i l a r p a t h s .

T h i s is b y relaxation technique, p a r ­

t i c u l a r l y u l t r a s o n i c a b s o r p t i o n . A d i s t r i b u t i o n of s i m i l a r , t h o u g h n o t i d e n t i c a l p a t h s , i m p l i e s a d i s t r i b u t i o n of r e l a x a t i o n t i m e s c e n t e r e d a t a c e r t a i n f r e q u e n c y .

But

there is a s u b t l e e x p e r i m e n t a l p r o b l e m i n v o l v e d i n d i s t i n g u i s h i n g b e t w e e n a single r e l a x a t i o n t i m e a n d a r a t h e r c l o s e l y s p a c e d d i s t r i b u t i o n of r e l a x a t i o n t i m e s . Ronald Archer:

W i t h r e g a r d t o base h y d r o l y s i s , I t h i n k t h e r e is some stereo­

c h e m i c a l e v i d e n c e t h a t suggests b o t h sides are p r o b a b l y s o m e w h a t c o r r e c t .

There

is e v i d e n c e of the t y p e w h i c h J o h n B a i l a r has been g i v i n g us for a b o u t 30 y e a r s r e g a r d i n g t h e so c a l l e d D —• L i n v e r s i o n s of c o n f i g u r a t i o n (2, J , 4).

F r e d B a s o l o has

suggested s e v e r a l t i m e s t h a t one does n o t see t h i s i n v e r s i o n b y a s i m p l e S j v l t y p e process (6, 7).

O n t h e o t h e r h a n d , s o m e of t h e w o r k I h a v e been d o i n g i n l i q u i d

a m m o n i a suggests t h a t n o t o n l y does one see t h e i n v e r s i o n of c o n f i g u r a t i o n , b u t a l s o t h e c o n j u g a t e base p a t h (2).

T h e r e f o r e , I t h i n k one m u s t h a v e a p r e o r i e n t a t i o n

p l u s a n i n t e r m e d i a t e t h a t is p r o b a b l y b a s i c a l l y a n S ^ l t y p e ; n o , I w o n ' t s a y S j y l — l e t ' s s a y there is p o s s i b l y a

Literature

five-coordinate

i n t e r m e d i a t e of s o m e s o r t i n t h e m i d d l e .

Cited

(1) A r c h e r , R. D., "Proceedings E i g h t h I n t e r n a t i o n a l Conference o n C o o r d i n a t i o n C h e m i s t r y , V . G u t m a n n , ed., p p . 111-114, S p r i n g e r - V e r l a g , V i e n n a , 1964. (2) B a i l a r , Jr., J. C., A u t e n , W., J. Am. Chem. Soc. 56, 774 (1934). (3) B a i l a r , Jr., J. C., H a s l a m , J. H., Jones, Ε. M., J. Am. Chem. Soc. 58, 2226 (1936). (4) B a i l a r , Jr., J. C., J. Am. Chem. Soc. 86, 3656 (1964). (6) Basolo, F r e d , " C h e m i s t r y of C o o r d i n a t i o n C o m p o u n d s , J. C. B a i l a r , ed., C h a p t e r 8, R e i n h o l d , N e w Y o r k , 1956. (6) B a s o l o , F r e d , Chem. Rev. 52, 459 (1953). (7) E d e l s o n , M. R., P l a n e , R. Α., Inorg. Chem. 3, 231 (1964). (8) P l a n e , R. Α., H u n t , J. P., J. Am. Chem. Soc. 79, 3343 (1957). (9) Schlafer, H. L., Z. physik. Chem., Neue F o l g e , 11, 1/2, 5 (1957).

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.

Downloaded by UNIV OF SYDNEY on April 7, 2013 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch010

M E C H A N I S M S O F I N O R G A N I C REACTIONS

In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.