1 The Role of Ion Association in the Substitution Reactions of Octahedral Complexes in Nonaqueous Solution Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
M A R T I N L. TOBE* University College, London,
England
The k i n e t i c s o f r e p l a c i n g X in c o m p l e x e s o f the t y p e [Co en2 A X]+n h a v e b e e n r e v i e w e d . The rate dependence on the concentration of the entering reagent varies from first-order to z e r o - o r d e r a n d reflects t h e p r e a s s o c i a t i o n e q u i l i b r i a of the r e a g e n t s a n d n o t t h e m o l e c u larity of the a c t u a l substitution. The n a t u r e , stoic h i o m e t r y , a n d e q u i l i b r i u m constants o f t h e s e ion a g g r e g a t e s h a v e b e e n discussed i n t e r m s o f c o m p e t i t i o n b e t w e e n s o l v e n t a n d solute f o r a p o s i t i o n i n the i n n e r s o l v a t i o n s h e l l of the c o m p l e x . It is p r o p o s e d t h a t , a l t h o u g h t h e k i n e t i c b e h a v i o r d o e s n o t r e f l e c t t h e substitution m e c h a n i s m , t h e r e a r e circumstances in w h i c h it is p o s s i b l e to distinguish b e t w e e n a unimolecular mechanism a n d a borderline bimolecular m e c h a n i s m in w h i c h the e n t e r i n g g r o u p does not contribute to t h e enthalpy of the transition state.
i n m o l e c u l a r i t y s t u d i e s of s u b s t i t u t i o n a t a n o c t a h e d r a l t r a n s i t i o n m e t a l i o n , t h e '
r e a c t i o n s of c o b a l t (111) c o m p l e x e s w i t h e t h y l e n e d i a m i n e , of t h e t y p e , [ G o
A X]
+ n
, h a v e p r o v i d e d m u c h of t h e d a t a .
en
2
I t w a s r e a l i z e d e a r l y t h a t t h e c h o i c e of
s o l v e n t w a s i m p o r t a n t since w a t e r , i n w h i c h t h e s e c o m p o u n d s a r e s o l u b l e , i n t e r f e r e d i n s t u d y i n g t h e r e a c t i v i t y of t h e e n t e r i n g g r o u p .
conveniently
T h e o n l y reac
t i o n s o b s e r v e d were, (a) t h e d i s p l a c e m e n t of a l i g a n d b y w a t e r ( A q u a t i o n ) , (b) t h e d i s p l a c e m e n t of c o o r d i n a t e d w a t e r b y a n a n i o n ( A n a t i o n ) , a n d (c) t h e d i s p l a c e m e n t of a l i g a n d b y h y d r o x i d e .
I n e a c h case a n i m p o r t a n t e n t i t y of t h e r e a c t i o n w a s
solvent molecule or its lyate i o n . equivocal or impossible.
Therefore, a n y kinetic interpretation was either
I n the solvolytic reaction, the zero-order w i t h respect t o
* Paper presented by Cooper H . Langford.
7 In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
8
solvent is not related to the molecularity.
I n the anation reaction, extensive mass-
l a w r e t a r d a t i o n b y w a t e r w i l l l e a d t o a s e c o n d - o r d e r k i n e t i c f o r m for a u n i m o l e c u l a r r e a c t i o n (4).
I n t h e base h y d r o l y s i s r e a c t i o n , i t is n o t possible t o t e l l w h e t h e r t h e
h y d r o x i d e i n t h e p r o d u c t e n t e r e d as s u c h , o r c a m e i n as w a t e r i n a b a s e - c a t a l y z e d solvolysis. I t w a s o b v i o u s , therefore, t h a t a l t e r n a t i v e s o l v e n t s s h o u l d be u s e d . p r o b l e m w a s t o be c e r t a i n t h a t d i r e c t s u b s t i t u t i o n w a s o c c u r r i n g .
The
first
R e p l a c e m e n t of
one l i g a n d b y a n o t h e r has been s h o w n t o be a t w o stage process (6), cis-ICo e n N 0
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
2
cis-[Co e n N 0 2
2
Cl]+ + H 0 — cis-[Co e n N 0 2
H 0]+
2
2
2
2
2
H 0]+ 2
+ S C N ~ -> a s - [ C o e n N 0 2
2
+ C I " (Aquation)
NCS]+ + H 0
2
2
(Anation)
T h e r e l a t i v e r e a c t i o n rates a n d t h e s t a b i l i t y of t h e a q u o c o m p l e x m a k e i t p o s s i b l e t o i d e n t i f y t h e a q u o c o m p l e x as a n i n t e r m e d i a t e a n d s t u d y t h e i n d i v i d u a l a c t s separately.
H o w e v e r , i f the s o l v e n t o c o m p l e x were less s t a b l e a n d t h e a n a t i o n r a t e
m u c h faster t h a n t h e s o l v o l y s i s , i t w o u l d n o t be p o s s i b l e t o o b s e r v e t h i s i n t e r m e d i a t e , a n d t h e process w o u l d be k i n e t i c a l l y i n d i s t i n g u i s h a b l e f r o m a u n i m o l e c u l a r dissociative
process.
B o t h processes w o u l d e x h i b i t o v e r a l l
first-order
kinetics
a n d the usual mass-law retardation a n d other competitive phenomena characteristic of a n e x t r e m e l y r e a c t i v e i n t e r m e d i a t e . T h i s p r o b l e m r e q u i r e s a m o d i f i e d a p p r o a c h w h i c h G r a y (16) has s o l v e d i n t h e case of s u b s t i t u t i o n i n s q u a r e p l a n a r c o m p l e x e s .
H e uses t h e f a c t t h a t bases, l i k e
hydroxide, substitute very slowly but will immediately deprotonate,
a n d hence
stabilize, a protonic solvento
cannot
intermediate.
T h i s elegant a p p r o a c h
be
a p p l i e d t o the o c t a h e d r a l c o b a l t a m m i n e s w h o s e r e a c t i o n r a t e w i t h s u c h bases is very high. O u r a l t e r n a t i v e a p p r o a c h has been t o s y n t h e s i z e t h e s o l v e n t o i n t e r m e d i a t e a n d then study its reactions i n isolation.
W e thereby hope to show that its reactivity
a n d s t e r i c course is i n c o n s i s t e n t w i t h t h e p o s t u l a t e s t a t i n g t h a t i t is a n i n t e r m e d i a t e i n the substitution reactions.
C o m p l e x e s of t h e t y p e cis- a n d trans-[Co e n
C l ] + (7), a n d cis-[Co e n ( C H ) S O C l ] + (32) h a v e b e e n p r e p a r e d . 2
2
3
2
CH3OH
W e have shown
2
2
i n t h e first case t h a t t h e l a b i l i t y of t h e c o o r d i n a t e d m e t h a n o l does n o t s u f f i c i e n t l y explain the nonappearance trans-[Co e n C l ] 2
2
+
of t h e s o l v e n t o c o m p l e x
i n t h e r e a c t i o n s of cis- a n d
i n m e t h a n o l unless i t is n o t a n i n t e r m e d i a t e i n t h e r e a c t i o n .
d i m e t h y l s u l f o x i d e s o l u t i o n , cis- a n d trans-[Co e n
2
Cl ] 2
+
In
h a v e been s h o w n t o i s o m -
erize t o a n e q u i l i b r i u m m i x t u r e t h a t a l s o c o n t a i n s t h e s o l v e n t o i n t e r m e d i a t e
(32).
D e t a i l e d k i n e t i c s t u d i e s i n d i c a t e t h a t a b o u t 8 0 % of t h e t i m e i s o m e r i z a t i o n goes v i a the solvento intermediate.
B u t t h i s is n o t a r a t e - d e t e r m i n i n g s o l v o l y s i s , r a t h e r
a t e m p o r a r y d i v e r s i o n of t h e i n t e r m e d i a t e of a d i s s o c i a t i v e r e a c t i o n . has r e c e n t l y p r e p a r e d t h e d i m e t h y l f o r m a m i d e c o m p l e x , [ C o e n
2
Watts
D MF Cl]
+ 2
(33) and
has s h o w n t h a t i t c a n n o t be a n i n t e r m e d i a t e i n t h e i s o m e r i z a t i o n of cis- a n d trans[Co e n C l ] 2
2
+
in dimethylformamide.
I n t h i s p a p e r w e w i l l d i s c u s s t h e s u b s t i t u t i o n r e a c t i o n s of c o m p l e x e s of t h e t y p e , [Co en
2
A X]
+
n
i n nonaqueous solvents a n d w i l l show h o w the general conditions
t h a t a p p l y here c a n be e x t e n d e d t o a q u a t i o n a n d o t h e r s o l v o l y t i c r e a c t i o n s , a n d t o t h e base h y d r o l y s i s r e a c t i o n . B r o w n , I n g o l d , a n d N y h o l m (P, 10, 11) were t h e first s y s t e m a t i c a l l y t o s t u d y s u b stitution i n octahedral complexes i n methanol solution.
T h e y observed two types
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
TOBE
Jtofe of
Ion-Association
9
of b e h a v i o r i n t h e r e a c t i o n b e t w e e n cis-[Co e n
Cl ]
2
2
+
a n d a v a r i e t y of a n i o n s : (a)
reagents of l o w n u c l e o p h i l i c i t i e s , e.g., NCS~~, C l ~ , B r " " a n d N 0 ~ , e n t e r e d a t a c o m 3
m o n r a t e t h a t w a s i n d e p e n d e n t of t h e i r n a t u r e a n d c o n c e n t r a t i o n a n d (b)
reagents
s u c h as C H 3 O - , N 3 - a n d N 0 ~ were m o r e r e a c t i v e a n d e n t e r e d a t a r a t e t h a t i n 2
creased w i t h i n c r e a s i n g c o n c e n t r a t i o n .
These observations were interpreted i n
t e r m s of a d u a l m e c h a n i s m b u t w e r e l a t e r c h a l l e n g e d successfully b y B a s o l o , H e n r y , a n d P e a r s o n (26, 27).
T h e y s h o w e d t h a t a l l t h e reagents, e x c e p t m e t h o x i d e , e n t e r e d
a t a c o m m o n r a t e , a n d t h a t t h e e n h a n c e d r e a c t i v i t y o b s e r v e d for a z i d e a n d n i t r i t e b y B r o w n et al. w a s caused b y t h e s o l v o l y t i c d i s t u r b a n c e c a u s e d b y these b a s i c anions. Cl ]
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
2
+
B a s o l o et al. a l s o s h o w e d t h a t t h e t r u e r e a c t i o n r a t e b e t w e e n cis-[Co e n
a n d N3"" i n m e t h a n o l d e p e n d e d s o m e w h a t u p o n [Nf]
2
at low concentrations.
B u t i t reached a m a x i m u m , concentration-independent rate a t higher concentra tions.
T h i s b e h a v i o r w a s a s c r i b e d t o i o n a s s o c i a t i o n b e t w e e n t h e reagents, t h e
free i o n b e i n g s o m e w h a t less r e a c t i v e t h a n t h e i o n p a i r . W e h a v e r e c e n t l y c o m p l e t e d a s t u d y of t h e i s o m e r i z a t i o n , r a c e m i z a t i o n , a n d c h l o r i d e exchange rates of cis-[Co e n C l ] i n m e t h a n o l i n t h e presence of o n l y s m a l l 2
q u a n t i t i e s of c h l o r i d e .
2
+
W e found that the rate depended upon chloride concentra
t i o n w h e n i t w a s l o w a n d b e c a m e i n d e p e n d e n t of c h l o r i d e c o n c e n t r a t i o n i n t h e h i g h e r r e g i o n s t u d i e d b y B r o w n et al.
T h e rate constants are p l o t t e d i n F i g u r e 1 as
f u n c t i o n of c h l o r i d e i o n c o n c e n t r a t i o n (8).
These observations are very similar to
those of B a s o l o et al. f o r t h e s u b s t i t u t i o n b y a z i d e a n d c a n be e x p l a i n e d i n t h e s a m e w a y , i.e., b y i n v o k i n g i o n a s s o c i a t i o n .
T h e k i n e t i c c u r v e s c a n be r e p r o d u c e d b y a n
i o n a s s o c i a t i o n c o n s t a n t , K, for t h e e q u i l i b r i u m , as-[Co en C l ] 2
2
+
κ. + Cl~~ +± cis-[Co e n C l ] 2
h a v i n g a v a l u e of 250/mole a t 35°C.
2
· · · Cl"~
+
E v e n t h o u g h i o n a s s o c i a t i o n causes s p e c t r u m
changes i n t h e r e g i o n a r o u n d 3000A., s p e c t r o p h o t o m e t r y e s t i m a t i o n s a r e u n r e l i a b l e since t h e change i n a b s o r p t i o n i s s m a l l .
T h e relationship between the various rate
c o n s t a n t s gives t h e s t e r i c c o u r s e of t h e c h l o r i d e s u b s t i t u t i o n .
T h i s is reported i n
Table I.
T a b l e I»
The Steric Course o f Substitution o f C h l o r i d e In c i s - [ C o e n a n d i n its C h l o r i d e Ion P a i r In M e t h a n o l a t 35°C. %
%
X 10 /min.
ke^t z
X 10 /min. z
X 10 /min. z
trans
cisinv.
3.2 7.1
4.6 8.2
4.6 8.2
70 86
15 8
free ion ion pair
N o t i c e t h e s i m i l a r i t y of
krae.
s t e r i c courses
kexch.
Ch]
+
2
%
cisnt. 15 8
i n t h e s u b s t i t u t i o n r e a c t i o n s of
free i o n a n d t h e i o n p a i r , a n d t h e c o m p l e t e
loss of o p t i c a l a c t i v i t y f o r
the
every
a c t of s u b s t i t u t i o n . I n t h e i s o m e r i z a t i o n r e a c t i o n s of cis- a n d trans-[Co e n C l ] i n d i m e t h y l f o r m a m i d e 2
2
+
and dimethylacetamide, the e q u i l i b r i u m isomer ratios depend upon the concentra t i o n of c h l o r i d e .
T h i s has been i n t e r p r e t e d i n t e r m s of i o n a s s o c i a t i o n , a n d t h e
e q u i l i b r i u m c o n s t a n t s h a v e been c o m p u t e d (31).
T h e d e p e n d e n c e of t h e i s o m e r i z a
t i o n r a t e u p o n t h e c h l o r i d e c o n c e n t r a t i o n w a s i n t e r p r e t e d i n t e r m s of t h e d i f f e r e n t r e a c t i v i t i e s of t h e free i o n a n d t h e i o n p a i r .
P r e l i m i n a r y chloride exchange experi-
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
ments indicated that the rate difference was due to a difference i n the rate of substitution and not just to a change i n the steric course. T h e rate constants for the reactions of the free ions and chloride ion pairs of the cis- and trans-[Co e n C l ] 2
2
+
complexes in methanol, dimethylformamide, a n d d i -
methylacetamide are in Table I I .
T h e dots indicate that the information could
not be derived from the published data—not that these quantities are insignificant.
Table II. I o n A s s o c i a t i o n C o n s t a n t s a n d F i r s t - O r d e r R a t e C o n s t a n t s f o r Chloride Exchange o f Isomerlsation of cis- a n d trans-[Co e n C l ] 2
+
K/ mole
Kt/ mole
v min
k/ min
k ip/ min
kt.jp/ min
250 250 1800 1800 1700 1700
· · · 30 - · ·
0.0046 · · · 0.0017
0.00032* 0.003 0.0003
0.0082 0.008 0.0041
0.093
9
Methanol (35°C.) Dimethylformamide (60°C.) Dimethylacetamide (60°C.)
2
* Data from Pearson (26) measured at 25°C.
.. .
t
u
B y c o m b i n i n g t h e d a t a f o r t h e c h l o r i d e e x c h a n g e o f css-and trans-[Co e n C l ] i n 2
2
+
m e t h a n o l (26, 27) w i t h t h e k n o w n f a c t t h a t n o c i s i s o m e r c o u l d be d e t e c t e d a t e q u i l i b r i u m , i t w a s possible t o d e t e r m i n e t h a t t h e s t e r i c c o u r s e o f c h l o r i d e e x c h a n g e i n the trans isomer is almost entirely retentive.
T h i s is i n direct contrast t o the
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
Jtofo o f Ion-Association
JOBS
s t e r i c courses
11
of t h e r e a c t i o n s i n d i m e t h y l f o r m a m i d e , d i m e t h y lace t a m i d e , a n d
d i m e t h y l s u l f o x i d e (32), w h e r e c h l o r i d e exchange o r s o l v o l y s i s of t h e t r a n s c o m p l e x gives m a i n l y t h e cis i s o m e r .
N o s a t i s f a c t o r y e x p l a n a t i o n h a s y e t been g i v e n for t h i s
observation. I t is easy t o a r g u e t h a t t h e b e h a v i o r of t h e [ C o e n C l ] i s o m e r s i s n o t s u r p r i s i n g . 2
+
2
T h e c o r r e l a t i o n of a q u a t i o n r a t e s of c o m p l e x e s of t h e t y p e , [ C o e n A C l ] 2
w i t h the
n +
e l e c t r o n d i s p l a c e m e n t p r o p e r t i e s of t h e n o n p a r t i c i p a t i n g l i g a n d , A , has l e d t o t h e belief t h a t l i g a n d s a b l e t o d o n a t e a s e c o n d p a i r of electrons t o t h e m e t a l c a n t h e r e b y s t a b i l i z e t h e 5-coordinate i n t e r m e d i a t e a n d hence p r o m o t e a u n i m o l e c u l a r r e a c t i o n C h l o r i n e is s u c h a l i g a n d , C l — C o - : - C l , a n d t h e e s s e n t i a l l y
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
(2, 18, 24).
first-order
k i n e t i c f o r m c o u l d be used as e v i d e n c e for a u n i m o l e c u l a r m e c h a n i s m , o n c e t h e i o n a s s o c i a t i o n p r e - e q u i l i b r i u m effects for t h e d i s p l a c e m e n t of c h l o r i d e u n d e r t h e elec t r o n - d i s p l a c i n g influence of t h e o t h e r c h l o r i n e a t o m h a v e been t a k e n i n t o a c c o u n t . C o n s e q u e n t l y , i t w a s i n t e r e s t i n g t o s t u d y t h e r e a c t i o n s of c o m p o u n d s of t h e t y p e , [Co en N 0 2
fluence
X]
2
of N 0
2
, w h e r e t h e d i s p l a c e m e n t of X u n d e r t h e e l e c t r o n - d i s p l a c e m e n t i n
+ n
w a s t h o u g h t t o t a k e place b i m o l e c u l a r l y .
T h e a m o u n t of i n t e r e s t
is reflected i n t h e a m o u n t of w o r k t h a t has been p u b l i s h e d .
A t first s i g h t , there
a p p e a r s t o be l i t t l e a g r e e m e n t b e t w e e n t h e o b s e r v a t i o n s of t h e different w o r k e r s i n the
field.
A s p e r g e r (3) f o u n d t h a t t h e r a t e of r e p l a c e m e n t of c h l o r i d e i n cis- a n d
trans-[Co e n N 0 2
2
C l ] b y t h i o c y a n a t e i n m e t h a n o l s o l u t i o n w a s i n d e p e n d e n t of t h e +
c o n c e n t r a t i o n of t h i o c y a n a t e for t h e cis i s o m e r , a n d h a d a m i x e d z e r o - a n d
first-
o r d e r d e p e n d e n c e for t h e t r a n s c o m p l e x .
first-
L a n g f o r d a n d T o b e (23) f o u n d a
o r d e r r a t e d e p e n d e n c e of t h i o c y a n a t e e n t r y i n t o trans-[Co e n N 0 2
2
B r ] i n sulfolane +
upon [ S C N ~ ] ; but they observed that chloride reacted m u c h more rapidly, a n d a l i m i t i n g , c h l o r i d e i n d e p e n d e n t r a t e w a s r e a c h e d as [Cl""] w a s i n c r e a s e d .
Langford
a n d L a n g f o r d (22) s h o w e d t h a t t h e r a t e of r e p l a c e m e n t of c h l o r i n e i n trans-[Co e n N0
2
Cl]
+
2
b y t h i o c y a n a t e i n d i m e t h y l f o r m a m i d e w a s i n d e p e n d e n t of t h e a n i o n
concentration. L a n g f o r d (21) has r e c e n t l y r e p o r t e d s o m e a n a t i o n r e a c t i o n s of trans-[Co e n Η 0] 2
2+
2
N0
2
i n sulfolane a n d we h a v e s t u d i e d s i m i l a r r e a c t i o n s o v e r a w i d e r r a n g e of s o l
v e n t (17).
T h e d a t a for t h i s r e a c t i o n a r e i n F i g u r e 2, w h e r e t w o a p p a r e n t t y p e s of
b e h a v i o r are c h a r a c t e r i z e d .
T h i o c y a n a t e enters a t a r a t e t h a t is i n d e p e n d e n t of
a n i o n c o n c e n t r a t i o n i n a l l three s o l v e n t s , a c e t o n e , d i m e t h y l f o r m a m i d e , a n d s u l folane.
The
rate is o n l y slightly dependent
b u t c o v e r s a t e n f o l d change i n r a t e c o n s t a n t .
u p o n t h e n a t u r e of t h e
solvent
H o w e v e r , for a b i m o l e c u l a r s u b s t i t u
t i o n a t a t e t r a h e d r a l c a r b o n a t o m s u c h a s o l v e n t change w o u l d a l t e r t h e r e a c t i o n r a t e b y m a n y p o w e r s of t e n .
N i t r a t e has a s i m i l a r k i n e t i c b e h a v i o r b u t t h e r a t e i s
1 5 % g r e a t e r t h a n t h a t of t h i o c y a n a t e . different k i n e t i c f o r m .
Chloride a n d bromide have a n entirely
A t r e l a t i v e l y l o w a n i o n c o n c e n t r a t i o n t h e r a t e has a m i x e d
z e r o - a n d first-order d e p e n d e n c e o n t h e a n i o n c o n c e n t r a t i o n . a l i m i t i n g r a t e is a t t a i n e d .
B u t as t h i s increases,
T h i s r a t e is a l m o s t t h e same i n a c e t o n e a n d s u l f o l a n e .
C o n d u c t i o m e t r i c s t u d i e s s h o w e d t h a t i o n aggregates e x i s t u n d e r these c o n d i t i o n s . I n d i m e t h y l f o r m a m i d e , t h e a s s o c i a t i o n between
one d i p o s i t i v e c a t i o n a n d
two
a n i o n s , b r o m i d e o r t h i o c y a n a t e , w a s a l m o s t c o m p l e t e w hen s t o i c h i o m e t r i c a m o u n t s r
of a n i o n a n d c a t i o n were m i x e d , e v e n i n d i l u t e s o l u t i o n . for a t h i r d a n i o n t o be a d d e d t o t h e a s s e m b l y .
B u t there was no tendency
I n acetone, thiocyanate saturated
t h e i o n aggregate a t t h e 2:1 c o m p o s i t i o n a n d d i d n o t a d d f u r t h e r t o i t .
B u t chloride
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
12
M E C H A N I S M S O F I N O R G A N I C REACTIONS
Figure 2.
Pseudo first-order rate constants for the replace-
ment of the water in trans-[C0 eni NO2 H2O] (CIO'4)2 by Cl~, Br~, and SCN~ in nonaqueous solvents at 25°C. as a function of anion concentration. and bromide ions added on to the neutral 2:1 aggregate, trans-[Qo e n N 0 2
• · · 2Br~, to form the negatively charged 3:1 aggregate, trans-[Co e n N 0 2
2
H 0]
2
2
H 0] 2
+ 2
+ 2
• · · 3Br~. Consequently, all the data in Figure 2 can be explained in terms of the different reactivities of the various aggregates.
T h e insensitivity of the rate of thiocyanate
entry to the thiocyanate concentration simply shows that, over the whole concentration range studied, the substrate was always in the form of the ion triplet.
The
rate dependence on the chloride or bromide concentration represents the change in the distribution of the substrate between the 2:1 and the 3:1 aggregate as the anion concentration is increased. A general pattern emerges for all of the nonaqueous substitution reactions of the [Co e n A X ] 2
+ n
cations.
anion concentration.
In every case there is a limiting rate at a sufficiently high
Sometimes this limit may have been passed at the lowest
anion concentration studied, in which case the rate would appear to be quite i n -
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
TOBB
Ro/a o f lofi-AssocioffOfi
d e p e n d e n t of t h e r e a g e n t c o n c e n t r a t i o n .
13 I n o t h e r cases i t m a y n o t be p o s s i b l e t o
a t t a i n a high enough anion concentration to detect the limiting rate.
I n the l i m i t
the rate w o u l d appear to depend linearly upon a n i o n concentration. W h a t is the significance of t h i s general b e h a v i o r ?
I t is easy
to assume
mis
t a k e n l y t h a t the s i m i l a r , o v e r a l l k i n e t i c f o r m of these n o n - a q u e o u s r e a c t i o n s of t h e cobaltammines indicates a similar mechanism.
Since the rates are not d i r e c t l y
p r o p o r t i o n a l t o t h e r e a g e n t c o n c e n t r a t i o n s , i t is e a s y t o a s s u m e t h a t t h i s i s a u n i molecular reaction. T h e l i m i t i n g r e a c t i o n r a t e c a n be e x p l a i n e d i n t e r m s of t h e p r e - e q u i l i b r i u m a s s o
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
c i a t i o n b e t w e e n t h e c a t i o n i c a n d a n i o n i c species. interact quite specifically w i t h its environment.
T h e complex, i n solution, can
I n t h e a b s e n c e of o t h e r i n t e r f e r i n g
s o l u t e p a r t i c l e s , t h i s e n v i r o n m e n t w i l l c o n s i s t of s o l v e n t m o l e c u l e s f o r m i n g t h e solvation shell.
W h e n w e c o n s i d e r t h e c a t i o n s of t h e t y p e , [ C o e n A X ] 2
+ n
, we
find
t h a t t h e r e i s c o n s i d e r a b l e a t t r a c t i o n for c e r t a i n a n i o n s , o f t e n e x c e e d i n g a n y s i m p l e electrostatic prediction.
T h e evidence
for t h i s t y p e of a s s o c i a t i o n ranges
from
kinetic a n d e q u i l i b r i u m studies to spectrometry a n d c o n d u c t i v i t y measurements. T h e s e i n t e r a c t i o n s l e a d t o f o r m i n g i o n aggregates w h i c h c a n be r e g a r d e d as species i n w h i c h a n i o n s o c c u p y p o s i t i o n s i n t h e i n n e r s o l v a t i o n s h e l l of t h e c o m p l e x i o n . T h e y c a n be c a l l e d " i n t i m a t e i o n a g g r e g a t e s " i n t h e W i n s t e i n sense of t h e w o r d (34) o r " o u t e r s p h e r e " c o m p l e x e s i n t h e T a u b e sense
(29).
Since the a t t r a c t i o n between the complex cation a n d the anions is balanced b y the repulsion between the anions a n d b y the solvent's a b i l i t y to solvate the anions, t h e r e m u s t be a m a x i m u m n u m b e r of a n i o n s t h a t c a n be a c c o m m o d a t e d i n t h e a g g r e gate.
T h i s n u m b e r m u s t d e p e n d u p o n t h e n a t u r e a n d c h a r g e of t h e c a t i o n , t h e
n a t u r e a n d c h a r g e of t h e a n i o n , a n d t h e n a t u r e of t h e s o l v e n t .
T h e r e is no reason
t o b e l i e v e t h a t t h e n u m b e r i s l i m i t e d b y c h a r g e c a n c e l l i n g i n t h e aggregate.
Neutral
r e a g e n t species c a n l i k e w i s e p r e a s s e m b l e i n t h e s o l v a t i o n s h e l l b u t t h e y l a c k t h e initial electrostatic advantage.
A l t h o u g h t h e y m a y be affected
b y differential
s o l v a t i o n effects, i n a p p r o p r i a t e c i r c u m s t a n c e s , t h e y c a n r e p l a c e c o m p l e t e l y
the
o r i g i n a l s o l v e n t so t h a t t h e i r effect m a y be m o r e p r o n o u n c e d i n t h e l o n g r u n . S i n c e m o v e m e n t w i t h i n t h e s o l v a t i o n s h e l l i n these c o m p l e x e s is r e l a t i v e l y s l u g gish, i t is postulated t h a t a complex remains a c t i v a t e d o n l y l o n g enough to react w i t h its immediate environment, the inner s o l v a t i o n shell.
In the reaction with
a n i o n i c species, a s i t u a t i o n c a n be r e a c h e d i n w h i c h n e a r l y a l l of t h e s u b s t r a t e i s i n t h e f o r m of t h e m a x i m u m i o n aggregate.
A n y increase i n t h e a n i o n c o n c e n t r a t i o n
i n t h e b u l k s o l v e n t w i l l n o t c h a n g e t h e i m m e d i a t e e n v i r o n m e n t of n e a r l y a l l t h e s u b s t r a t e a n d , therefore, w i l l n o t effect t h e r e a c t i o n r a t e .
In this w a y a limiting
r a t e c a n be i n d e p e n d e n t of t h e c o n c e n t r a t i o n of a d d e d a n i o n i c r e a g e n t , i r r e s p e c t i v e of t h e a c t u a l m e c h a n i s m of t h e a c t u a l a c t of s u b s t i t u t i o n . F u r t h e r m o r e , I suggest t h a t these r e a c t i o n s c a n be r e g a r d e d as r e a r r a n g e m e n t processes of t h e aggregate w h e r e b y a n i n n e r sphere l i g a n d changes p l a c e w i t h a n o u t e r sphere l i g a n d .
C o n s e q u e n t l y , e a c h aggregate c a n be a s s i g n e d i t s o w n
order rate constant for its rearrangement.
first-
A n y d e p e n d e n c e of r a t e u p o n a n i o n
c o n c e n t r a t i o n arises f r o m changes c a u s e d i n d i s t r i b u t i n g t h e s u b s t r a t e b e t w e e n t h e v a r i o u s possible aggregates.
F o r e x a m p l e , i n t h e r e a c t i o n s d e s c r i b e d i n F i g u r e 2,
the r a t e d e p e n d e n c e o n b r o m i d e c o n c e n t r a t i o n i n a c e t o n e arises f r o m t h e t r a n s f o r m a t i o n of the 2:1 aggregate i n t o t h e 3:1 species.
T h e l i m i t i n g rate corresponds
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
14
M E C H A N I S M S O F I N O R G A N I C REACTIONS
t o a l l of t h e s u b s t r a t e b e i n g i n t h e f o r m of t h e h i g h e r aggregate a n d is e q u a l t o i t s rearrangement rate. T h i s c o n c e p t c a n n o t use k i n e t i c s t o e l u c i d a t e t h e m e c h a n i s m .
T h i s t h e n raises
t h e q u e s t i o n of a p p l y i n g t h e m o l e c u l a r i t y c o n c e p t t o processes t h a t i n v o l v e r e a r r a n g i n g a p r e v i o u s l y a s s e m b l e d aggregate of reagents.
W h a t is p r o b a b l y more i m p o r
t a n t is d i s t i n g u i s h i n g between the possibilities once we accept t h e i r existence.
The
c o n c e p t u a l d i s t i n c t i o n c a n be m a d e b y c o n s i d e r i n g t h e t i m i n g of t h e b o n d - m a k i n g a n d b o n d - b r e a k i n g processes.
If bond m a k i n g a n d breaking are synchronous, the
process i s c l e a r l y b i m o l e c u l a r .
If bond
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
mechanism is unimolecular with a
b r e a k i n g precedes b o n d
five-coordinate
intermediate.
making, the
If bond m a k i n g
o c c u r s first, t h e process w i l l be a s s o c i a t i v e w i t h a s e v e n - c o o r d i n a t e i n t e r m e d i a t e . A possible w a y t o d i s t i n g u i s h t h e m e c h a n i s m i n t h e a c t u a l a c t of s u b s t i t u t i o n i s o u t l i n e d i n F i g u r e s 3 a n d 4.
H e r e the s o l v a t i o n shell is represented b y a circle
a r o u n d t h e c o m p l e x , a n d a n y i o n aggregate i s r e p r e s e n t e d b y a n a n i o n i n t h e c i r cumference. to give the
T h e u n i m o l e c u l a r r e a c t i o n of t h e free i o n r e q u i r e s a s l o w d i s s o c i a t i o n five-coordinate
intermediate.
for a short w h i l e w i t h i n the s o l v a t i o n shell.
The
departing group
is t h e n
held
T h r e e p o s s i b l e fates a w a i t t h i s i n t e r
m e d i a t e : (1) a s o l v e n t m o l e c u l e e n t e r s t h e i n t e r m e d i a t e f r o m t h e s o l v a t i o n s h e l l a n d solvolysis occurs.
T h i s is the n o r m a l behavior i n water a n d happens quite often i n
d i m e t h y l s u l f o x i d e ; (2) t h e l e a v i n g g r o u p m a y r e - e n t e r t h e c o o r d i n a t i o n s h e l l a n d t h u s n o n e t s u b s t i t u t i o n o r e x c h a n g e has o c c u r r e d .
T h i s act is observable i n the
sense of b e i n g a t y p e of m a s s - l a w r e t a r d a t i o n ; (3) t h e i n t e r m e d i a t e w i l l l a s t l o n g e n o u g h f o r a n i o n of reagent Y ~ t o t a k e a p o s i t i o n i n t h e s o l v a t i o n s h e l l a n d t h e n enter the coordination shell to give s u b s t i t u t i o n .
+
χ
• X
UNI MOLEC U LA R I n t e r m s of o r i e n t a t i o n w i t h i n t h i s aggregate, t h e l e a v i n g g r o u p , X , w i l l h o l d a p o s i t i o n i n t h e s o l v a t i o n s h e l l w h i c h i s n o t v e r y different f r o m i t s p o s i t i o n i n t h e original octahedron.
T h e c o n s e q u e n c e s of t h i s h a v e a l r e a d y been d i s c u s s e d i n c o n
n e c t i o n w i t h t h e s t e r i c course of u n i m o l e c u l a r a q u a t i o n (13).
B u t i n the general
c o n t e n t of t h i s r e a c t i o n i t m e a n s t h a t t h e p o s i t i o n t a k e n u p b y t h e e n t e r i n g r e a g e n t Y " " w i l l be s i m i l a r i n t h e i o n aggregate w h i c h is o b t a i n e d i n t h i s w a y t o t h a t o b t a i n e d a f t e r t h e i n i t i a l d i s s o c i a t i o n of t h e i o n p a i r f o r m e d w i t h t h e o c t a h e d r a l
complex.
I n o t h e r w o r d s , i t i s of l i t t l e c o n s e q u e n c e w h e t h e r , i n t h e i o n aggregate i n v o l v i n g t h e five-coordinate
i n t e r m e d i a t e , X h a s l e f t the c o o r d i n a t i o n s h e l l before o r a f t e r Y h a s
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
1.
TOBE
15
Rolo of Ion -Association
ΒIMOLECULAR entered the solvation shell.
S i m i l a r s t e r i c courses of s u b s t i t u t i o n i n t h e free i o n
a n d t h e i o n p a i r w o u l d r e s u l t a n d a c t u a l l y h a v e been o b s e r v e d . T h e u n i m o l e c u l a r r e a c t i o n of t h e i o n a g g r e g a t e follows a s i m i l a r c o u r s e a n d t h e i n t e r m e d i a t e faces t h e same t h r e e p o s s i b i l i t i e s for r e a c t i o n .
T h e r a t e of b o n d
fis
s i o n w i l l n o t n e c e s s a r i l y be t h e s a m e as t h a t of t h e free i o n because t h e s o l v a t i o n e n v i r o n m e n t has c h a n g e d . r e a c t i o n s (1).
W e see t h i s effect i n t h e i o n p a i r - c a t a l y z e d s o l v o l y t i c
I n a d d i t i o n , since t h e reagent Y i s i n p o s i t i o n before t h e
five-coor
d i n a t e i n t e r m e d i a t e is f o r m e d , t h e p a t h b y w h i c h X re-enters t h e c o o r d i n a t i o n shell b e c o m e s less p r o b a b l e a s a r e s u l t of m o r e effective c o m p e t i t i o n b y Y , a n d t h e r a t e is i n c r e a s e d . T h e b i m o l e c u l a r process i s d e p i c t e d i n F i g u r e 4, w h e r e t h e free i o n has l i t t l e c h o i c e i n its reaction, being surrounded o n l y b y solvent molecules.
If i t can
undergo
s o l v o l y s i s , t h e n one of these m o l e c u l e s w i l l a t t a c k ; i f n o t , t h e r e w i l l be n o r e a c t i o n . T h e i o n aggregate c o n t a i n s s u i t a b l e reagents i n t h e i n n e r s o l v a t i o n s h e l l , a n d t h e bimolecular reaction can take place, either b y solvolysis or b y a n i o n attack. H o w t h e n c a n w e d i s t i n g u i s h k i n e t i c a l l y b e t w e e n these t w o p o s s i b l e
mechanisms?
O n e p o s s i b i l i t y is t o s t u d y the r e a c t i o n s u n d e r c o n d i t i o n s w h e r e m o s t of t h e s u b s t r a t e is i n t h e free i o n f o r m .
If the s o l v o l y t i c reaction d i d not interfere, a
first-
o r d e r r a t e d e p e n d e n c e o n a n i o n c o n c e n t r a t i o n w o u l d be o b s e r v e d i f t h e r e a c t i o n w e r e b i m o l e c u l a r since o n l y t h e i o n p a i r c a n be i n v o l v e d i n t h e s u b s t i t u t i o n . [R [R -
X]+
X]+
n
+ Υ- £
[R -
· · · Υ " Λ [R -
n
Rate -
k[R
X]+ Y]+
-
X
.·· γ-
... X -
n
+
n
n
ion pair (bimolecular)
- · · Y"]
and [R -
X+
n
· · · Y-] -
K[R
-
X+ ] n
[Y1
If o n l y a s m a l l p a r t of t h e c o m p l e x a n d Y ~ a r e e n g a g e d i n i o n a s s o c i a t i o n , t h e n these t r u e c o n c e n t r a t i o n s w i l l be a p p r o x i m a t e l y e q u a l t o t h e c o n c e n t r a t i o n s of material and, [R — X
+ n
]
= [complex] a n d [ Y ~ ] = [ a n i o n i c reagent]
so t h a t , R a t e = ^ [ c o m p l e x ] [ a n i o n i c reagent]
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
added
M E C H A N I S M S O F I N O R G A N I C REACTIONS
16
I n o t h e r w o r d s , the r a t e decreases t o zero as t h e c o n c e n t r a t i o n of a n i o n i c reagent decreases t o zero. T h e r e a c t i o n s of the free i o n a n d the i o n p a i r c o n t r i b u t e t o t h e u n i m o l e c u l a r reaction. [R -
X]+
n
*
fR -
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
[R -
X]+
n
[R]< +!>+ · · · X - — ^ [ R fast
Y]+
n
X]
+
n
··· Y " ^
+ Y " £>[R [R -
Y]+
n
X]
+
·-· X -
n
··· Y -
n
··· X -
(unimolecular)
Then, Rate = ki[R -
X
+ n
] + k'[R -
X
+
n
· · · Y"],
w h i c h , u n d e r t h e c o n d i t i o n s d i s c u s s e d a b o v e gives, R a t e = {&i + &'i£[anionic reagent]}
[complex].
H e n c e , t h e r a t e w i l l r e m a i n finite as the c o n c e n t r a t i o n of t h e
anionic
reagent
a p p r o a c h e s zero. T h i s a p p r o a c h a p p l i e s o n l y w h e n w e a r e c e r t a i n t h a t t h e s u b s t r a t e is m a i n l y i n t h e f o r m of t h e free i o n a t t h e lowest a n i o n c o n c e n t r a t i o n s . c h l o r i d e exchange of cis~[Co e n C l ] 2
2
+
T h i s is t r u e i n t h e
i n methanol a n d we can safely conclude t h a t
t h e m e c h a n i s m is u n i m o l e c u l a r (8, 9, 10, 11, 26, 27).
T h i s condition d i d not exist
w h e n we s t u d i e d the d i s p l a c e m e n t of w a t e r i n tran$-[Co e n N 0 H 0 ] 2
2
2
+ 2
b y anions
w h e r e , because of t h e large i o n a s s o c i a t i o n c o n s t a n t s , n o n e of the s u b s t r a t e w a s i n t h e free i o n f o r m u n d e r r e a c t i o n c o n d i t i o n s . trans-[Co e n N 0 2
2
H o w e v e r , i n the reaction
between
B r ] " a n d thiocyanate i n sulfolane, the substrate was m a i n l y i n
t h e free i o n f o r m .
4
T h e observed second-order
kinetic form was fully
consistent
w i t h a s s i g n i n g a b i m o l e c u l a r m e c h a n i s m t o t h e r e a r r a n g e m e n t of t h e i o n p a i r . Is i t possible t o d i s t i n g u i s h the m e c h a n i s m b y the e x t e n t t o w h i c h t h e r e a r r a n g e m e n t r a t e of the i o n aggregate d e p e n d e d u p o n t h e n a t u r e of t h e e n t e r i n g a n i o n ? S m a l l differences w o u l d be e x p e c t e d for a n S j y l m e c h a n i s m since t h e presence a n i o n s i n t h e s o l v e n t shell w o u l d e x e r t a " s o l v e n t e f f e c t " u p o n t h e r a t e of fission.
I n a d d i t i o n , t h e n a t u r e a n d l o c a t i o n of t h e a n i o n s i n t h e aggregate
of
bond will
d e t e r m i n e the e x t e n t of the c o m p e t i t i o n w i t h t h e r e t u r n processes a n d hence, affect the observed rate.
If the r e a c t i v i t y difference of t h e e n t e r i n g n u c l e o p h i l e s were
large (i.e., s e v e r a l p o w e r s of 10), a s i n t h e case of b i m o l e c u l a r s u b s t i t u t i o n a t t e t r a h e d r a l c a r b o n (15) a n d o c t a h e d r a l s i l i c o n (25), one w o u l d n o t h e s i t a t e t o a s s i g n a bimolecular mechanism. H o w e v e r , if, as h a s been suggested (23), t h e a c t i v a t i o n e n e r g y is c o l l e c t e d m a i n l y b y the c o m p l e x a n d the f u n c t i o n of t h e e n t e r i n g g r o u p is t o be p r e s e n t w h e n t h e c o m p l e x is a c t i v a t e d , one w o u l d n o t e x p e c t t h e r a t e of t h i s t y p e of b i m o l e c u l a r process t o be g r e a t l y s e n s i t i v e t o the n a t u r e of t h e e n t e r i n g g r o u p .
This might
e x p l a i n L a n g f o r d ' s (20) o b s e r v a t i o n t h a t s o l v o l y s i s of C o ( I I I ) e t h y l e n e d i a m i n e c o m plexes is f a r less s e n s i t i v e t o the s o l v e n t i o n i z i n g p o w e r t h a n u n i m o l e c u l a r s o l v o l y s e s of t e t r a h e d r a l c a r b o n c o m p o u n d s ; b u t , he a l s o p o i n t s o u t t h a t t h e C o - X b o n d i n t h e g r o u n d s t a t e is m u c h m o r e i o n i c t h a n the C - X b o n d a n d hence there is a s m a l l e r difference i n t h e s o l v a t i o n of t h e g r o u n d s t a t e a n d t h e t r a n s i t i o n s t a t e .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
TOBE
Hole of
Ion-Association
17
A t present, a l t h o u g h t h e u n i m o l e c u l a r m e c h a n i s m has been a d e q u a t e l y
demon
s t r a t e d for c o m p l e x e s of the t y p e [ C o e n C l ] , t h e b i m o l e c u l a r m e c h a n i s m p o s t u 2
l a t e d for c o m p l e x e s of t h e t y p e , [ C o e n N 0 2
2
2
+
X]
+
n
(2, 18, 24) is b y n o m e a n s c e r t a i n .
I f i t does e x i s t , i t is c o n c e p t u a l l y different f r o m b i m o l e c u l a r s u b s t i t u t i o n a t p l a t i n u m (II) a n d tetrahedral carbon.
T h e r e is, as y e t , n o reason d e f i n i t e l y t o assign a u n i
m o l e c u l a r m e c h a n i s m t o t h e i r r e a c t i o n s a n d m u c h m o r e w o r k w i l l be before a n y final c o n c l u s i o n c a n be d r a w n .
necessary
I t is i n t e r e s t i n g t o n o t e t h a t , i n g o i n g
from solvolytic aquation to substitution reactions i n noninterfering solvents, we s t i l l h a v e n o t been a b l e t o a p p l y k i n e t i c s d i r e c t l y t o relate m o l e c u l a r i t y t o o r d e r .
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
A l t h o u g h i n w a t e r the k i n e t i c f o r m reflected t h e p e r m a n e n t u n c h a n g e a b l e s o l v e n t e n v i r o n m e n t , the n o n a q u e o u s w o r k shows no r e l a t i o n s h i p b e t w e e n t h e c o n t r o l l a b l e c o n c e n t r a t i o n of the reagent i n the b u l k s o l v e n t a n d the c o m p o s i t i o n of the k i n e t i c a l l y i m p o r t a n t e n v i r o n m e n t of t h e c o m p l e x .
T h e k i n e t i c a p p r o a c h is a g a i n use
less, a n d one m u s t use the m o r e e q u i v o c a l a p p r o a c h e s
w h i c h were a p p l i e d
to
aquation. T h e c o n c e p t of p r e a s s e m b l y as a r e q u i r e m e n t for s u b s t i t u t i o n m a y t h r o w l i g h t u p o n t h e v e x e d q u e s t i o n of t h e m e c h a n i s m of t h e base h y d r o l y s i s r e a c t i o n . l o n g been k n o w n t h a t c o m p l e x e s of the t y p e , [ C o e n A X ] 2
hydroxide i n aqueous solution.
+
n
I t has
can react r a p i d l y w i t h
T h e kinetic form is cleanly second-order
even at
h i g h h y d r o x i d e c o n c e n t r a t i o n s , p r o v i d e d t h a t t h e i o n i c s t r e n g t h is h e l d c o n s t a n t . H y d r o x i d e i s u n i q u e i n t h i s r e s p e c t for these c o m p l e x e s . been suggested.
T w o mechanisms have
T h e first is a b i m o l e c u l a r process; t h e second is a b a s e - c a t a l y z e d
d i s s o c i a t i v e s o l v o l y s i s i n w h i c h the base r e m o v e s a p r o t o n f r o m t h e n i t r o g e n i n p r e e q u i l i b r i u m t o f o r m a d i s s o c i a t i v e l y l a b i l e a m i d o species (5, 19,
30).
W i t h o u t d i s c u s s i n g the r e l a t i v e m e r i t s of t h e t w o m e c h a n i s m s i t is i n t e r e s t i n g t o p o i n t o u t t h e i n f o r m a t i o n t h a t does n o t r e a d i l y fit e i t h e r m e c h a n i s m : (1) t h e h i g h r e a c t i v i t y of h y d r o x i d e is p e c u l i a r t o c e r t a i n C o ( I I I ) a n d R u ( I I I )
complexes
a n d t h e a n a l o g o u s c o m p l e x e s of P t ( I V ) , R h ( I I I ) , a n d I r ( I I I ) a p p e a r t o h a v e l i t t l e o r n o excess l a b i l i t y i n t h e presence of h y d r o x i d e ; (2) i n m a n y cases, t h e g r e a t r e a c t i v i t y difference between w a t e r a n d h y d r o x i d e c o m e s m a i n l y f r o m t h e a c t i v a tion entropy a n d not the a c t i v a t i o n energy
(12).
A l l of t h i s suggests t h a t t h e i o n a s s o c i a t i o n e x p l a n a t i o n m a y be a p p l i e d here t o a n e s s e n t i a l l y b i m o l e c u l a r (or a s s o c i a t i v e ) p h e n o m e n o n .
C o n s i d e r i n g the
difference
b e t w e e n h y d r o x i d e a n d a n y o t h e r reagent i n w a t e r , a p a r t f r o m i t s b a s i c i t y , one c o n cludes t h a t its m o b i l i t y m u s t p l a y a n i m p o r t a n t p a r t .
Whereas a l l the other rea
gents m u s t be i n a s u i t a b l e p o s i t i o n w i t h i n the s o l v a t i o n s h e l l before t h e y c a n e n t e r the c o m p l e x , t h e h y d r o x i d e i o n , b y m e a n s of a G r o t t h u s c h a i n p r o t o n t r a n s f e r , c a n be t r a n s m i t t e d t o a n y p o s i t i o n w h e r e i t i s needed w h i l e the c o m p l e x b e c o m e s a c t i vated.
I t c a n therefore be l o o k e d u p o n as a n u n s a t u r a t a b l e i o n aggregate
h y d r o x i d e f u l l y " d e l o c a l i z e d " a b o u t the c o m p l e x . any departure from
the
first-order
with
C o n s e q u e n t l y , we d o n o t o b s e r v e
dependence upon
hydroxide
concentration.
T h i s c o n t r i b u t i o n to the r e a c t i v i t y w i l l appear i n the a c t i v a t i o n entropy rather t h a n in the enthalpy t e r m . I n c o n c l u s i o n , t h i s e x t r e m e i m p o r t a n c e of p r e a s s o c i a t i o n of reagents a p p e a r s t o be peculiar to the c o b a l t a m m i n e systems a n d m a y v e r y well arise from some p r o p e r t y of t h e N - H b o n d (27). Cl ] 2
+
R e c e n t w o r k o n the s u b s t i t u t i o n r e a c t i o n s of [ C o d i a r s
2
(diars = o-phenylenebis(dimethylarsine)) i n m e t h a n o l shows t h a t , even i n the
case of t h e cis c o m p l e x , there is a b s o l u t e l y no k i n e t i c effect i n i s o m e r i z a t i o n , i n
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
18
c h l o r i d e e x c h a n g e o r i n t h i o c y a n a t e s u b s t i t u t i o n w h i c h c a n be assigned t o i o n asso c i a t i o n (28).
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
Literature
C o n d u c t i v i t y s t u d i e s suggest t h a t no a s s o c i a t i o n o c c u r s
(14).
Cited
(1) A d a m s o n , A. W . , W i l k i n s , R . , J. Am. Chem. Soc., 7 6 , 3379 (1954). (2) Ašperger, S., Ingold, C . , J. Chem. Soc. 1956, 2862. (3) Ašperger, S., Pavlović, D., Orhanović, M., J. Chem. Soc. 1961, 2142. (4) Basolo, F., Pearson, R . , " M e c h a n i s m s of Inorganic R e a c t i o n s , " p. 139, J o h n W i l e y a n d Sons, Inc., N e w Y o r k , 1958. (5) Ibid., p. 124. (6) B a s o l o , F., Stone, B . , B e r g m a n n , J., Pearson, R . , J. Am. Chem. Soc., 7 6 , 3079 (1954). (7) B o s n i c h , Β., unpublished w o r k . (8) B o s n i c h , B . , Ingold, C . , T o b e , M., J. Chem. Soc., i n press. (9) B r o w n , D. D., Ingold, C . , N y h o l m , R . , J. Chem. Soc. 1953, 2674. (10) B r o w n , D. D., Ingold, C . , J. Chem. Soc. 1953, 2680. (11) B r o w n , D. D., N y h o l m , R . , J. Chem. Soc. 1953, 2696. (12) C h a n , S., T o b e , M., J. Chem. Soc. 1962, 4531. (13) C h a n , S., T o b e , M., J. Chem. Soc. 1963, 5700. (14) D o l c e t t i , C . Pelos, A. personal c o m m u n i c a t i o n , 1964. (15) E d w a r d s , J., Pearson, R . , J. Am. Chem. Soc., 8 4 , 16 (1962). (16) G r a y , H., O l c o t t , R . , Inorg. Chem., 1, 481 (1962). (17) Hughes, M., T o b e , M., J. Chem. Soc. 1965, 1204. (18) Ingold, C . , N y h o l m , R . , T o b e , M., Nature, 187, 477 (1960). (19) I n g o l d , C . , N y h o l m , R . , T o b e , M., Nature, 194, 344 (1962). (20) L a n g f o r d , C . , Inorg. Chem., 3, 228 (1964). (21) L a n g f o r d , C . , J o h n s o n , M., J. Am. Chem. Soc., 8 6 , 229 (1964). (22) L a n g f o r d , C . , L a n g f o r d , P., Inorg. Chem., 2, 300 (1963). (23) L a n g f o r d , C., T o b e , M., J. Chem. Soc. 1963, 506. (24) Pearson, R . , Basolo, F., J. Am. Chem. Soc., 7 8 , 4878 (1956). (25) Pearson, R . , E d g i n g t o n , D., B a s o l o , F., J. Am. Chem. Soc., 8 4 , 3233 (1962). (26) Pearson, R . , H e n r y , P., B a s o l o , F., J. Am. Chem. Soc., 79, 5379 (1957). (27) Pearson, R . , H e n r y , P . , Basolo, F., J. Am. Chem. Soc., 7 9 , 5382 (1957). (28) Pelos, A. T o b e , M., J. Chem. Soc. 1964, 5063. (29) T a u b e , H., Posey, F. Α., J. Am. Chem. Soc., 7 5 , 1463 (1953). (30) T o b e , M., Science Prog., 4 8 , 483 (1960). (31) T o b e , M., W a t t s , D., J. Chem. Soc. 1962, 4614. (32) T o b e , M., W a t t s , D., J. Chem. Soc. 1964, 2991. (33) W a t t s , D., personal c o m m u n i c a t i o n , 1963. (34) W i n s t e i n , S., R o b i n s o n , G., J. Am. Chem. Soc., 8 0 , 169 (1958). R E C E I V E D April 3, 1964.
Discussion Cooper H . Langford:
I
don't
pretend
to
be
a
chemically
satisfactory
s u b s t i t u t e for M a r t i n T o b e , b u t I t h o u g h t i t m i g h t be useful for m e q u i c k l y t o s u m m a r i z e s o m e of t h e m a i n c o n c l u s i o n s c o n t a i n e d i n h i s p a p e r .
Perhaps I may
a l s o a c c e p t K e n t M u r m a n n ' s i n v i t a t i o n t o a d d j u s t one o r t w o t h i n g s t h a t h a v e i n terested us r e c e n t l y w h i c h f o l l o w D r . T o b e ' s suggestions c o n c e r n i n g t h e i m p o r t a n c e of p r e a s s o c i a t i o n . T h e i n t e r e s t i n n o n a q u e o u s s o l u t i o n s for s t u d y i n g s u b s t i t u t i o n r e a c t i o n s of t h e amminecobalt(III)
s y s t e m s b e g a n v e r y o b v i o u s l y f r o m t h e difficulties c a u s e d
p a r t i c i p a t i o n of t h e s o l v e n t i n r e a c t i o n s i n a q u e o u s s o l u t i o n .
by
There was hope that
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
TOBE
Discussion
19
p e r h a p s there w o u l d be some cases i n n o n a q u e o u s s o l v e n t s w h e r e t h e k i n e t i c s w o u l d be, i n a s t r a i g h t f o r w a r d w a y , d i a g n o s t i c of t h e m o l e c u l a r i t y of t h e r e a c t i o n .
The
n o t i o n t h a t the e n t e r i n g g r o u p m i g h t a p p e a r i n t h e r a t e l a w (some e n t e r i n g g r o u p o t h e r t h a n t h e s o l v e n t ) a n d l e a d t o a clear c u t d e c i s i o n o n t h e role of t h e e n t e r i n g g r o u p i n t h e r e a c t i o n , w a s one of t h e m o t i v a t i o n s for d o i n g n o n a q u e o u s w o r k . A s w o r k has progressed i n D r . T o b e ' s h a n d s , a n e w a m b i g u i t y has a p p e a r e d i n t h e k i n e t i c s for n o n a q u e o u s s y s t e m s .
O n e does find s u b s t i t u t i o n r e a c t i o n s w h o s e
k i n e t i c s d e p e n d o n t h e c o n c e n t r a t i o n s of e n t e r i n g a n i o n s ; b u t , i n a l m o s t a l l cases, d e t a i l e d a n a l y s i s reveals t h a t t h i s d e p e n d e n c e c a n be a c c o u n t e d
for b y
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
t r a c k of t h e n a t u r e of i o n aggregates, o r o u t e r sphere c o m p l e x e s f o r m e d .
keeping
The com
p l i c a t e d r a t e l a w s f o u n d are r a t h e r e a s i l y s o r t e d o u t i f one c a n o b t a i n s o m e d a t a a b o u t t h e e q u i l i b r i u m b e t w e e n different i o n aggregates a n d a s s i g n c o r r e c t s u b s t i t u t i o n rates for e a c h of t h e v a r i o u s o u t e r sphere c o m p l e x e s . i n t e r e s t i n g t h i n g s d o emerge f r o m c o n s i d e r i n g these s y s t e m s .
C e r t a i n l y some v e r y D r . T o b e has f o u n d
i n s e v e r a l s y s t e m s t h a t r e a c t i o n s t e r e o c h e m i s t r i e s i n the o u t e r sphere
complexes,
o r i o n aggregates, a r e s i m i l a r t o t h e s t e r e o c h e m i s t r i e s of t h e r e a c t i o n s of t h e free ions.
I a m n o t sure t h a t t h i s has been t h o r o u g h l y e x p l a i n e d , a n d p e r h a p s i t is a n
i n t e r e s t i n g p o i n t for t h i s d i s c u s s i o n . C a r e f u l c o n s i d e r a t i o n of t h e o u t e r sphere c o m p l e x e s does l e a d t o a n u n d e r s t a n d i n g of c i r c u m s t a n c e s u n d e r w h i c h s o m e t h i n g d e f i n i t e a b o u t t h e m o l e c u l a r i t y of s u b s t i t u t i o n r e a c t i o n s m i g h t be s a i d .
I t becomes clear, t h a t i n order to understand
t h e m o l e c u l a r i t y of a s u b s t i t u t i o n r e a c t i o n , one m u s t find d a t a for t h e c o n c e n t r a t i o n r e g i o n of a n e n t e r i n g o r a n i o n i c g r o u p , w h e r e i t is p o s s i b l e t o m e a s u r e r e a c t i o n of t h e free i o n .
I f one c a n p r o c e e d t o s u f f i c i e n t l y l o w c o n c e n t r a t i o n of t h e e n t e r i n g g r o u p
so t h a t t h e p r e d o m i n a n t species i n s o l u t i o n a r e t h e free c o m p l e x i o n a n d t h e
1:1
o u t e r sphere c o m p l e x , a n a p p r o p r i a t e e x t r a p o l a t i o n c a n l e a d t o m o l e c u l a r i t y d e termination.
A s I u n d e r s t a n d D r . T o b e ' s p o i n t of v i e w , i f t h e r e i s n o p a t h w a y i n
d e p e n d e n t of t h e e n t e r i n g g r o u p , t h e r e a c t i o n s h o u l d be d e s c r i b e d a s b i m o l e c u l a r i n c h a r a c t e r , b u t i f t h e r e is a p a t h w a y c o m p l e t e l y i n d e p e n d e n t of t h e e n t e r i n g g r o u p , t h e r e a c t i o n m a y be u n i m o l e c u l a r .
N o w , of c o u r s e , one m u s t s a y , " m a y be u n i
m o l e c u l a r , " because t h e same d i f f i c u l t y t h a t arises i n a q u e o u s s o l u t i o n arises i n these solvents.
T h e c o m p l e x m a y be r e a c t i n g w i t h t h e s p l v e n t t o f o r m a n i n t e r m e d i a t e
s o l v o c o m p l e x , a n d t h i s p o s s i b i l i t y has t o be r e s o l v e d before one c a n d e c i d e a b o u t t h e m o l e c u l a r i t y of t h e s u b s t i t u t i o n p r o c e s s . T h i s i s a n o t h e r of t h e v e r y i n t e r e s t i n g c o n t r i b u t i o n s i n T o b e ' s p a p e r . h a s s t u d i e d s u b s t i t u t i o n r e a c t i o n s of t h e
Tobe
dichloro-bis(ethylenediamine)cobalt(III)
i o n i n m e t h a n o l , r e p o r t e d t h e p r e p a r a t i o n of t h e s u p p o s e d s o l v o i n t e r m e d i a t e t h a t w o u l d be r e q u i r e d , a n d s t u d i e d t h e r a t e of t h e c h l o r i d e a n i o n e n t r y i n t o t h i s s u p posed solvo intermediate.
H e r e p o r t s t h a t t h e l a b i l i t y of m e t h a n o l i n t h i s c o m p l e x
i s insufficient t o a l l o w t h e c o m p l e x t o be a n i n t e r m e d i a t e i n a s u b s t i t u t i o n process of t h e d i c h l o r o c o m p l e x .
Y e t i t is possible t o o b t a i n , i n t h e case of t h e d i c h l o r o -
c h l o r i d e exchange, a t e r m i n t h e r a t e l a w for t h e free i o n .
T h i s leads t o t h e c o n
c l u s i o n t h a t , i n f a c t , one has a g e n u i n e l y u n i m o l e c u l a r s u b s t i t u t i o n process. If t h e r e i s n o p a t h w a y i n d e p e n d e n t of t h e c h l o r i d e , t h a t i s , i f e x t r a p o l a t i o n t o v e r y l o w c h l o r i d e c o n c e n t r a t i o n of c h l o r i d e e x c h a n g e r e a c t i o n l e d t o a z e r o i n t e r c e p t a n d n o free i o n p a t h w a y , t h e n we w o u l d h a v e a b i m o l e c u l a r r e a c t i o n .
T h i s defini
t i o n of b i m o l e c u l a r i t y o n l y r e q u i r e s c h l o r i d e t o be a c o m p o n e n t of t h e s e c o n d c o o r d i n a t i o n sphere for c h l o r i d e e x c h a n g e t o o c c u r .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
20
A quibble i n designating the molecularity appears.
T h e process m i g h t be c o n
s i d e r e d u n i m o l e c u l a r i f one considers t h e s e c o n d c o o r d i n a t i o n s p h e r e as p a r t of t h e c o m p l e x i n t h i s single s p e c i e s ; i t m i g h t be c o n s i d e r e d b i m o l e c u l a r i f one prefers t o c o n s i d e r t h e c h l o r i d e as e x t e r i o r t o t h e c o m p l e x — a n d t h e aggregate t w o p a r t i c l e s . B u t i t is q u i t e p o s s i b l e t h a t t h e r e a c t i o n m e c h a n i s m i s n o t different i n a n y i m p o r t a n t w a y f r o m t h e r e a c t i o n m e c h a n i s m t h a t leads t o a c l e a r c u t u n i m o l e c u l a r p a t h w a y . L e t ' s i m a g i n e a n i n t e r m e d i a t e , i n t h e sense of t r a n s i t i o n s t a t e t h e o r y , t h a t has a m i n i m u m p o t e n t i a l energy surface w i t h " w e a k " bonds to b o t h chlorides i n the outer coordination sphere.
W e c o u l d h a v e a n i n t e r m e d i a t e i n t h e sense of t r a n s i t i o n
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
s t a t e t h e o r y b u t i t w o u l d n o t be k i n e t i c a l l y d e t e c t a b l e , because i t m i g h t r e a c t so r a p i d l y t h a t i t s s e c o n d c o o r d i n a t i o n sphere c o u l d n o t r e a r r a n g e i n t h e t i m e for i t s reaction.
T h e n , of c o u r s e , i t w o u l d n e v e r a p p e a r i n t h e r a t e l a w a t a l l .
O n e w o n d e r s i f w e a r e l o o k i n g , i n s o m e sense, i n t h e r i g h t d i r e c t i o n b y a t t e m p t i n g t o a n a l y z e these r e a c t i o n s w i t h a n o t a t i o n t h a t designates m o l e c u l a r i t y r a t h e r t h a n f o c u s i n g a t t e n t i o n o n t h e e n e r g e t i c role o r l a c k of e n e r g e t i c r o l e of t h e e n t e r i n g group.
D r . T o b e p o i n t s o u t t h a t a large b o d y of t h e s t u d i e s o n t h e a m m i n e c o b a l t ( I I I )
s y s t e m s c a n be i n t e r p r e t e d s u c c e s s f u l l y f r o m a p o i n t of view s u g g e s t i n g t h a t t h e r
r e a c t i o n s r e q u i r e p r e a g g r e g a t i o n of t h e r e a c t a n t s (the o r i g i n a l c o m p l e x a n d t h e e n t e r i n g g r o u p ) , b u t t h a t t h e a c t i v a t i o n e n e r g y for t h e s u b s t i t u t i o n d e r i v e s l a r g e l y w i t h i n t h e o r i g i n a l c o m p l e x a n d is n o t s i g n i f i c a n t l y r e d u c e d b y p a r t i c i p a t i o n of t h e entering group. I t h i n k D r . T o b e ' s p a p e r c l e a r l y suggests t h a t c o n c e p t s d e v e l o p e d i n c o n n e c t i o n w i t h r e a c t i o n s i n n o n a q u e o u s s o l v e n t s , p r e a s s o c i a t i o n , a n d i t s i m p o r t a n c e for r e a c t i o n , m a y have i m p o r t a n t applications i n s t u d y i n g reactions i n aqueous solution. I n t h a t c o n t e x t I w o u l d l i k e t o offer a few t h o u g h t s o n t h e m o r e o r less c l a s s i c r e a c t i o n of w a t e r w i t h t h e c h l o r o p e n t a m m i n e c o b a l t i c i o n . T h e f o r w a r d r e a c t i o n , t h e r e p l a c e m e n t of c h l o r i d e b y w a t e r , w a s s t u d i e d q u i t e s o m e y e a r s ago.
A l t h o u g h t h e r e has been s o m e i n t e r e s t i n t h e reverse r e a c t i o n , t h e
r e p l a c e m e n t of u a t e r b y c h l o r i d e , n o d e t a i l e d s t u d i e s h a v e been p u b l i s h e d t o d a t e . O n t h e g e n e r a l q u e s t i o n of t h e a n a t i o n r e a c t i o n of t h e a q u o c o m p l e x b y v a r i o u s a n i o n s , there is a l i t t l e m o r e i n f o r m a t i o n .
I n p a r t i c u l a r , of c o u r s e , t h e r e a r e a few
cases w h e r e one m a y i d e n t i f y r a t e s of t h e same s o r t t h a t a r e d i s c u s s e d i n t h e p a p e r o n n o n a q u e o u s s y s t e m s - i . e . , r a t e s of i n t e r c h a n g e b e t w e e n o u t e r a n d i n n e r sphere ligands. I n t h e case of sulfate a n d d i h y d r o g e n p h o s p h a t e w h e r e t h e i o n p a i r a s s o c i a t i o n c o n s t a n t s h a v e been c l e a r l y i d e n t i f i e d , t h e a n a t i o n rates a r e k n o w n for t h e 1:1 o u t e r sphere c o m p l e x .
These rate values v a r y somewhat, a n d this perhaps indicates
p a r t i c i p a t i o n of t h e e n t e r i n g g r o u p . w h a t is g o i n g o n .
B u t there m a y be a n o t h e r w a y t o i n t e r p r e t
T h e s e t w o r a t e s of a n i o n e n t r y a r e s m a l l e r t h a n t h e r a t e of w a t e r
e x c h a n g e of t h e a q u o p e n t a m m i n e c o m p l e x .
In fact, the u n i v a l e n t a n i o n enters t h e
c o m p l e x f r o m t h e o u t e r sphere a t a p p r o x i m a t e l y o n e - e i g h t h of t h e r a t e of w a t e r e x c h a n g e , a n d t h e d i v a l e n t a n i o n e n t e r s t h e c o m p l e x f r o m t h e o u t e r sphere a b o u t t w i c e as fast. P e r h a p s these r e s u l t s c o u l d be i n t e r p r e t e d b y a d o p t i n g a m o d e l w h e r e t h e e n t e r i n g g r o u p does n o t p a r t i c i p a t e i n t h e a c t i v a t i o n process a t a l l b u t t h a t w h e n t h e b o n d f r o m t h e c o b a l t t o t h e w a t e r is s u f f i c i e n t l y w e l l b r o k e n , w h a t e v e r g r o u p i s i n place ( s t a t i s t i c a l l y ) , falls i n .
F r o m t h i s p o i n t of v i e w t h e n u m b e r e i g h t (as a m a g i c
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
TOBE
21
ùiêcvssion
number) for the number of molecules in the second coordination sphere is not entirely unreasonable. We have some preliminary experiments on the rate of chloride entry in the aquopentammine complex over a range of chloride concentrations, which perhaps also can be incorporated into a picture of this kind. If we plot the observed rate vs. the concentration of sodium chloride of less than O.lOAf to 2M, the rate in the low concentration region depends on the chloride concentration.
T h e reaction is approximately second-order.
controlling the ionic strength.)
(This is without
Slightly above 0.101/ there is a definite change of
slope, and the reaction rate is less sensitive to chloride concentration.
Perhaps
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
here again the change of slope represents the formation of the 1:1 outer sphere complex, and in this region the additional rate increase is caused by additional chloride association with the ion.
If we extrapolate the high chloride portion of
the curve to zero, the intercept is again approximately one-eighth of the water exchange rate, or in pretty close agreement to the rate of entry of dihydrogen phosphate. A t this point I am not sure that I am prepared to defend this interpretation. But I suggest that these results indicate that perhaps D r . Tobe's concept of preassociation should be seriously considered in accounting for reaction process in aqueous solution which have been regarded more in terms of the dissociative process. R a l p h G . Pearson :
I would like to say a few things in connection w ith the r
ideas brought out by D r . Tobe's paper.
First, the thing that impressed me very
much was the fact that just as in an aqueous solution, for these octahedral complexes (at least the ammineeobalt(III) systems) we find that the rate of the reaction is remarkably independent of the nature and concentration of the incoming group.
T h i s has, of course, led many people to discuss a reaction path in which
bond making was relatively unimportant, and bond breaking led bond making to a substantial degree. I would be interested in any comment from the audience about the chronological development of this concept.
A s far as I can remember, in 1958 a number of
people simultaneously brought this idea forward.
Roughly, it was that if we are
going to replace a coordinated chlorine by something, then just as Tobe's diagram represents, we would have a mechanism in which lengthening of the cobalt—chlorine bond would be the critical step.
Figure A.
We have to supply activation energy from within
Solvent assisted dissociation, or SAD
mechanism; X-solvent molecule or
other ligand in second coordination shell. the complex, an extreme vibration, so that eventually this cobalt—chlorine bond becomes greatly lengthened and is on the verge of breaking.
B u t I feel that for
many cases of the normal substituents on cobalt it would be quite impossible for this chlorine just to leave and for a five-coordinated intermediate to remain behind.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
22
A l s o , r e a r r a n g e m e n t i n m a n y cases w o u l d be d i f f i c u l t because of t h e c r y s t a l field s t a b i l i z a t i o n effects.
B u t i t c o u l d be possible t h a t s o m e w h e r e , w h e n t h i s b o n d h a d
l e n g t h e n e d s u f f i c i e n t l y , t h i s g r o u p X c o u l d s l i p i n ; a n d as D r . L a n g f o r d i n d i c a t e d , we w o u l d then have an intermediate, or transition s t a t e / o r something w h i c h would
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
h a v e these t w o g r o u p s p a r t i a l l y b o n d e d .
Figure B.
Partial bonding of X and Cl groups
T h e n i n w a t e r s o l u t i o n i t seems t h a t t h i s X g r o u p is w a t e r , a l m o s t u n i v e r s a l l y . B u t t h i s w o u l d a c c o u n t for t h e g e n e r a l i n d e p e n d e n c e of t h e r e a c t i o n r a t e o n t h e n a t u r e of t h i s X
group.
T h i s is the m e c h a n i s m w h i c h has been c a l l e d t h e s o l v e n t a s s i s t e d d i s s o c i a t i v e mechanism, or the S A D mechanism.
I t h i n k the name "interchange m e c h a n i s m "
m i g h t be a g o o d one, p e r h a p s b e t t e r t h a n t h e S A D m e c h a n i s m . I n 1958, a s I r e m e m b e r i t , F r e d B a s o l o a n d I , A r t h u r A d a m s o n a n d H e n r y T a u b e , a n d H . R . H u n t came out w i t h this mechanism basically, stressing slightly different features.
T h e n D r . T o b e joined the bandwagon w i t h this mechanism i n
1959, a n d t h e t e r m " s o l v e n t assisted d i s s o c i a t i o n " w a s c o i n e d b y W a l l a c e a n d h i s g r o u p i n C a n a d a i n 1961.
T h a t is t h e s t o r y a s I see i t a t t h e p r e s e n t t i m e
I w o u l d l i k e t o s h o w s o m e figures t o set u p s o m e b a c k g r o u n d a n d l a n g u a g e . Base OH0 H" NH NH HPOr NH2OH FNOr H 0 I-
A
1 x 10-» 1 X 10" 4 X 10" 7 Χ ΙΟ" 2 Χ ΙΟ"* 2 X 10-* 4 Χ ΙΟ" 55
12
2
2
k
K
e
2
8
2
4
2
Figure C.
—
1.7 X 10» M~ 8.0 X 10* 33 3.2 X 10-* 1.2 1.7 Χ ΙΟ" 8.8 X 10-» 4.9 X 10-* 3 Χ ΙΟ" ?
l
sec."
1
8
4
Rate constants for base-catalyzed hydrolysis of
Si(acac)z
+
F i g u r e C s h o w s a n e x t r e m e case of t h e d e p e n d e n c e of a s u b s t i t u t i o n r e a c t i o n r a t e o n t h e n a t u r e of t h e i n c o m i n g g r o u p .
T h i s h a p p e n s t o be t h e h y d r o l y s i s of t h e
t r i s a c e t y l a c e t o n a t e c o m p l e x of s i l i c o n (I V ) , c a t i o n i c species, w h i c h K i r c h n e r s t u d i e d first—the
r a t e of r a c e m i z a t i o n o r r a t e of d i s s o c i a t i o n .
We
studied the
base-
c a t a l y z e d r a t e of d i s s o c i a t i o n a n d s h o w e d t h a t a large n u m b e r of a n i o n s a n d n u c l e o p h i l i c g r o u p s , i n g e n e r a l , w o u l d c a t a l y z e i n t h e d i s s o c i a t i o n process.
W e found that
t h e r e a c t i o n r a t e s were a c t u a l l y for a s e c o n d - o r d e r process, so these u n i t s a r e l i t e r s per mole per second.
B u t the reaction rate d i d v a r y over a n enormous r a n g e — i n
t h i s case, a b o u t a f a c t o r of 1 0 — a n d t h i s i s t y p i c a l of the s o r t of v a r i a t i o n i n r a t e s 9
of r e a c t i o n ( t h a t y o u c a n get) for processes t h a t seem t o be Sj\r2 b i m o l e c u l a r d i s p l a c e m e n t processes.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1·
TOBE
Discussion
23
T h e m e c h a n i s m , i n c i d e n t a l l y , for t h i s a c e t y l a c e t o n a t e case is n o t u n a m b i g u o u s a n d i t is possible t h a t n u c l e o p h i l i c a t t a c k o c c u r s a t t h e l i g a n d r i n g i n one of t h e c a r b o n y l groups. Y o u w i l l n o t i c e i n t h i s case t h a t the n u c l e o p h i l i c r e a c t i v i t y c o n s t a n t s — t h e s e rate c o n s t a n t s — v a r y roughly w i t h the basicity.
H y d r o x i d e i o n i s a l m o s t the m o s t
p o w e r f u l n u c l e o p h i l i c reagent because i t is the strongest base t h a t c a n e x i s t i n a q u e ous s o l u t i o n .
W a t e r is t h e w e a k e s t n u c l e o p h i l i c reagent, s i m p l y because a n y t h i n g
w e a k e r t h a n w a t e r is n o t d e t e c t a b l e i n a n a q u e o u s s o l u t i o n .
S o t h i s n u m b e r is t h e
l o w e r l i m i t for n u c l e o p h i l i c r e a c t i v i t y .
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
F o r o t h e r n u c l e o p h i l e s s u c h as i o d i d e — r e a l l y one c a n ' t decide w h e t h e r there i s a n u c l e o p h i l i c r a t e c o n s t a n t for i o d i d e o r n o t , because y o u h a v e t o h a v e e n o r m o u s c o n c e n t r a t i o n s of i o d i d e t o d e t e c t a r a t e c o n s t a n t of t h i s v a l u e .
S o t h i s n u m b e r here
is r e a l l y j u s t a n u p p e r l i m i t t o w h a t the r e a c t i v i t y of i o d i d e is. N o t i c e — a n d I w a n t t o m a k e a p o i n t of t h i s — t h e h y d r o g e n p e r o x i d e a n i o n is a b e t t e r n u c l e o p h i l i c reagent t h a n the h y d r o x i d e i o n b y a f a c t o r of a b o u t 50, e v e n t h o u g h h y d r o g e n p e r o x i d e is a s t r o n g e r a c i d t h a n w a t e r b y a f a c t o r of a b o u t W e c o n v e r t w a t e r t o the same u n i t s as h y d r o g e n
10 . 4
peroxide.
T h i s is a n e x a m p l e of w h a t J o h n E d w a r d s a n d I c a l l the a l p h a effect.
I think
i t i s v a l u a b l e because i t does e n a b l e us t o generate q u i t e e a s i l y a v e r y p o w e r f u l n u c l e o p h i l i c reagent i n w a t e r , t h i s h y d r o g e n p e r o x i d e a n i o n . T h i s p a r t i c u l a r n u c l e o p h i l i c r e a c t i v i t y series w h i c h w e find for s i l i c o n ( I V ) is n o t n e c e s s a i i l y c h a r a c t e r i s t i c of w h a t one w o u l d e x p e c t t o find for a l l different m e t a l ions.
A n d i n f a c t , we k n o w i n t h e case of p l a t i n u m ( I I ) , w h e r e SAT2 r e a c t i o n s seem
t o o c c u r q u i t e c o m m o n l y , t h a t we get q u i t e a different n u c l e o p h i l i c r e a c t i v i t y series. T h e v a r i a t i o n i n r a t e s for p l a t i n u m ( I I ) is a l m o s t as large as t h i s . t h a t a n a c t u a l range of 10
9
I don't
know
has been c o v e r e d y e t , b u t the o r d e r of t h e different
n u c l e o p h i l e s is q u i t e d i f f e r e n t . T h e n e x t t w o figures i n t r o d u c e some t e r m i n o l o g y a b o u t h a r d a n d soft t h a t I a m p u s h i n g a t t h e m o m e n t , because I t h i n k i t is u s e f u l .
D a r y l e B u s c h suggested
t h i s t o m e one t i m e a n d I p i c k e d i t u p a n d f o u n d i t u s e f u l . Hard Bases OH-, F S O r , PO4-3 CH3COO-, R O Cl", N H 2
3
Figitre D.
Soft Bases I", R S, R P CO, C N - , R C N C H , C H H-, R2
6
6
3
2
4
Examples of some hard and soft bases
W e define a h a r d base s i m p l y as one t h a t is n o t v e r y p o l a r i z a b l e .
It usually
m e a n s a l s o t h a t t h e b a s i c a t o m is one of h i g h e l e c t r o n e g a t i v i t y a n d n o t v e r y e a s i l y oxidized.
T h e t y p i c a l h a r d bases w o u l d be o x y g e n a t o m l i g a n d s a n d fluoride i o n ,
w i t h c h l o r i d e i o n a n d a m m o n i a c e r t a i n l y n o t as h a r d as those, because c h l o r i d e is m o r e p o l a r i z a b l e t h a n fluoride, a n d a m m o n i a is m o r e p o l a r i z a b l e t h a n w a t e r . B y soft bases I m e a n h i g h l y p o l a r i z a b l e bases.
T h i s usually means not o n l y
large a t o m s s u c h as i o d i d e a n d s u l f u r , b u t a l s o u n s a t u r a t e d s y s t e m s s u c h as t h e n i t r i l e s , t h e olefins, the a r o m a t i c s , a n d t h e a l k y l a n d h y d r i d e i o n s w h i c h are k n o w n e x p e r i m e n t a l l y t o be h i g h l y p o l a r i z a b l e .
S o f t bases a r e of l o w e l e c t r o n e g a t i v i t y
and easily oxidized. F i g u r e Ε shows t h e c o r r e s p o n d i n g e n t r i e s i n t h e case of t h e a c i d s w h i c h c o o r d i n a t e to these v a r i o u s bases, f o r m i n g o u r f a m i l i a r c o o r d i n a t i o n c o m p o u n d s i n some
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
24
MECHANISMS
O F I N O R G A N I C REACTIONS
Hard Acids
Soft Acids
H+, Mg+ , A l Cr+ , Si+ , As+ BF , PR0 , R S 0 R C+, RCO+ H X ( h y d r o g e n bonders) 2
3
3
+ 3
4
Cu+, Pt+ , Hg+ R S + , I+, H 0 + I9, n i t r o b e n z e n e , q u i n o n e s O, C l , R C M e t a l atoms 2
b
3
2
+
2
+
3
Figure
E.
2
3
Examples
of some hard and soft acids
cases, o r p e r h a p s o t h e r t y p e s of complexes, s u c h as charge t r a n s f e r complexes, i n o t h e r cases.
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
W e define t h e h a r d a c i d s s i m p l y as those of low p o l a r i z a b i l i t y . of s m a l l size a n d h i g h p o s i t i v e c h a r g e .
T h e y w o u l d be
T h e soft a c i d s w o u l d be those of h i g h
p o l a r i z a b i l i t y , large size, a n d l o w p o s i t i v e c h a r g e .
A s y o u c a n see, there are m a n y
o t h e r a c i d s besides m e t a l ions w h i c h c a n be classified i n t h i s w a y . N o w as f a r as m e t a l ions are c o n c e r n e d , t h i s classific at ion is i d e n t i c a l w i t h — i n fact I use t h e same o p e r a t i o n a l d e f i n i t i o n as t h a t w h i c h C h a t t , A h r l a n d , a n d D a v i e s use.
H a r d a c i d s w o u l d be C l a s s A m e t a l ions a n d soft a c i d s w o u l d be C l a s s
Β m e t a l i o n s ; b u t I d o n ' t t h i n k C l a s s A a n d C l a s s Β m e a n q u i t e t h e same t h i n g as h a r d a n d soft, because h a r d a n d soft h a v e w i d e r a p p l i c a b i l i t y i n t h a t y o u c a n d isc u ss o t h e r s y s t e m s as w e l l .
A n d f u r t h e r m o r e , I t h i n k bases c a n be classified as h a r d a n d
soft, a n d t h e n one has t h i s v e r y useful r u l e t h a t h a r d a c i d s l i k e t o c o m b i n e w i t h h a r d bases, a n d soft a c i d s l i k e t o c o m b i n e w i t h soft bases.
T h i s is j u s t a n e m p i r i c a l
o b s e r v a t i o n — v a r i o u s theories c a n be p u t f o r w a r d t o a c c o u n t for i t — b u t i t is a f a c t , a n d t h e reason we s h o u l d be a w a r e of i t is because if we a r e l o o k i n g a t k i n e t i c s , i f we are l o o k i n g a t r e a c t i o n r a t e s , t h e n we s h o u l d r e m e m b e r t h a t o u r s u b s t r a t e , t h a t is, t h e c o m p l e x w h i c h is g o i n g t o lose a g r o u p , w i l l p r o v i d e t h e a c i d site. a t o m w i l l be t h e e l e c t r o p h i l i c c e n t e r o r t h e a c i d site.
T h e metal
Depending upon whether that
is a h a r d a c i d site o r a soft a c i d site, we w i l l e x p e c t t h a t n u c l e o p h i l e s , e i t h e r h i g h l y basic t o w a r d s the p r o t o n (the p r o t o n is t h e k e y h a r d a c i d , t h e p r o t o t y p e h a r d a c i d ) o r else the p o l a r i z a b i l i t y p h e n o m e n o n w i l l be i m p o r t a n t — o n e o r t h e o t h e r .
For
s i l i c o n ( I V ) i t seems t h a t b a s i c i t y is i m p o r t a n t , for p l a t i n u m ( I I ) i t seems t h a t p o l a r i z a b i l i t y o r l o w e l e c t r o n e g a t i v i t y is i m p o r t a n t .
S o we e x p e c t t o get different
n u c l e o p h i l i c orders, c e r t a i n l y . I w a n t t o s a y s o m e t h i n g a b o u t the e n d of D r . T o b e ' s p a p e r o n base h y d r o l y s i s . T h e U n i v e r s i t y C o l l e g e S c h o o l has been f e u d i n g w i t h s o m e of us o n t h i s side of t h e ocean r e g a r d i n g t h e m e c h a n i s m of base h y d r o l y s i s of c o b a l t p e n t a m m i n e s for s o m e years, a n d t h e y are extremely ingenious a t coming up w i t h alternative explanations for a l l of the c o n c l u s i v e e x p e r i m e n t s t h a t we seem t o d o .
However, I a m strongly
of t h e o p i n i o n t h a t m u c h of t h i s resembles the c l o u d s of b l a c k i n k t h a t t h e c u t t l e f i s h is s a i d t o e m i t w h e n i t is e s c a p i n g f r o m s o m e p u r s u e r . Co(NH ) Cl+ + O H " Co(NH ) NH Cl+ + H 0 Co(NH ) NH Cl+ Co(NH ) NH + + Cl~ C o ( N H ) N H + + H 0 -» Co(NH ) OH+ 3
2
5
3
3
4
3
2
4
Figure
3
2
2
F.
2
SNICB
4
4
2
2
2
2
3
5
2
Mechanism
F i g u r e F shows t h e c o n j u g a t e base m e c h a n i s m for base h y d r o l y s i s .
D r . Tobe
suggests e s s e n t i a l l y t h a t i n base h y d r o l y s i s , the h y d r o x i d e i o n o c c u p i e s a u n i q u e p o s i t i o n for one of s e v e r a l reasons. P e r h a p s t h e h y d r o x i d e i o n is h y d r o g e n b o n d e d
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1·
TOBE
25
Discussion
to an N H group, and that is the reason why it is special. wouldn't be bonded to an N H group escapes me.
Why
other anions
T h e other thing is that perhaps
the hydroxide ion can penetrate to a reaction site very quickly by a " G r o t t h u s " chain mechanism.
In other words, we might always have water close to chloride
ion, which is going to be a leaving group; then as the cobalt—chlorine bond stretches, that water molecule might instantaneously be converted to a hydroxide ion by a proton transfer mechanism.
I think this sort of thing can indeed happen, and it is
certainly worthwhile considering the possibilities of rapid proton removal converting a weakly nucleophilic water to a strongly nucleophilic hydroxide ion.
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
Incidentally, I should say that the thermodynamic data on cobalt(III) indicates that it is a hard acid, but just barely so, and one might say borderline. little harder than tetrahedral carbon and alkyl halides.
It is a
So hydroxide ion in that
sense would be expected perhaps to be a good nucleophilic reagent, as hard acids would like hydroxide ion. T h e alternate mechanism which opposes the hydroxide ion as actually being the group that slips in either an S.v2 mechanism or some variation of an S#2 mechanism is, of course, the conjugate base mechanism proposed by Garrich in 1937.
The
loss of a proton, with the amido group acting as a powerful activator owing to 7rbonding, would be the first step. five-coordinated
Unimolecular dissociation then occurs forming a
intermediate which has some moderate kinetic stability, at least
under suitable circumstances.
T h e n water is picked up by this
five-coordinated
intermediate, followed by rearrangement of protons and the attainment of the final product. Fred Basolo and I have come up with at least three critical tests of this particular mechanism to distinguish it from an S#2 mechanism.
One critical test is based
on the fact that this mechanism requires acidic protons, whereas other straightforward displacement mechanisms certainly would not require such acidic protons. Admittedly, the concept of hydroxide ion binding to an N H group also requires acidic protons. B y now a great many studies oi such complexes have been made, and D r . Tobe reports one himself, the diarsine complex.
F o r all those cases involving an uni-
dentate leaving group, the rate of the hydrolysis under basic conditions is no different from the rate of hydrolysis under acid conditions.
A s far as I can tell, for
unidentate ligands, at least where the results perhaps are a little less unambiguous compared to chelate leaving groups, the requirements of a conjugate base mechanism have stood up to tests even on the side of the opposition. T h e second critical test of this conjugate base mechanism is based on the fact that this five-coordinated intermediate, if indeed it exists, would not always have to react with the solvent, though the solvent would be what it would react with under most circumstances.
We have run this type of base hydrolysis in the presence
of many anions of high concentration, and the only thing that we can find is the hydroxo complex; so at least in water solution, water seems to be what this fivecoordinated intermediate picks up.
But in dimethylsulfoxide it certainly is pos-
sible to throw in various anions, and since dimethylsulfoxide is not as good as water in coordination, other nucleophiles may react.
We do find in dimethylsulfoxide
that a base, such as hydroxide ion, speeds up the rate of base hydrolysis; but the product, instead of being a hydroxo compound, is the complex corresponding to whatever anion we have added, such as nitrite ion, azide ion, and thiocyanate ion.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
26
MECHANISMS OF INORGANIC
REACTIONS
I t is i n t e r e s t i n g t h a t T a u b e a n d G r e e n h a v e d o n e t h i s s a m e e x p e r i m e n t essen tially i n water.
I s a i d t h a t we c o u l d n ' t d o t h i s e x p e r i m e n t i n w a t e r because w a t e r
a l w a y s w a s the r e a c t a n t a n d n o t o t h e r a d d e d a n i o n s .
B u t Taube and Green very
c l e v e r l y t o o k a d v a n t a g e of t h e fact t h a t a n i s o t o p e d i s c r i m i n a t i o n f a c t o r for o x y g e n 18 s u c h as t h e r a t i o of o x y g e n - 1 8 t o o x y g e n - 1 6 i n w a t e r is n o t t h e same a s t h e r a t i o in hydroxide ion.
T h i s i n effect l a b e l s t h e h y d r o x i d e i o n a n d d i s t i n g u i s h e s i t f r o m
w a t e r , i n s p i t e of t h e f a c t t h a t r a p i d p r o t o n t r a n s f e r is o c c u r r i n g .
Green and Taube
s h o w e d t h a t i n base h y d r o l y s i s i n a q u e o u s s o l u t i o n , t h e h y d r o x o c o m p l e x t h a t t h e y o b t a i n e d h a d a n o x y g e n r a t i o s u c h t h a t t h e h y d r o x o g r o u p m u s t h a v e been d e r i v e d
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
from water a n d not from hydroxide ion.
T h i s e x p e r i m e n t seems t o m e t o
be
p r e t t y u n e q u i v o c a l a n d , i n f a c t , t h e e x a c t a n a l o g of t h e e x p e r i m e n t t h a t w e d i d i n dimethylsulfoxide. T h e t h i r d test of t h e c o n j u g a t e base m e c h a n i s m t h a t w e p u t f o r w a r d w as b a s e d r
o n t h e i d e a t h a t t h e first s t e p s h o u l d be w r i t t e n as a n e q u i l i b r i u m , a n d t h e r e a c t i o n r a t e s h o u l d s h o w specific h y d r o x i d e i o n c a t a l y s i s .
If t h i s i s i n d e e d i n e q u i l i b r i u m ,
a n d d e u t e r i u m exchange s t u d i e s s a y t h a t i t m u s t be, t h e n t h e r a t e of t h e r e a c t i o n m u s t d e p e n d o n t h e h y d r o x i d e i o n c o n c e n t r a t i o n , a n d o n n o t h i n g else. T h i s is e x p e r i m e n t a l l y w h a t i s f o u n d , of course ; b u t t h e n i t m a k e s one w o n d e r i f S#2 m e c h a n i s m s e x i s t w h e n one n e v e r gets a n y effect of a n y o t h e r a d d e d n u c l e o phile.
W e d i d w h a t I thought was the extreme t h i n g to distinguish between
S j s r l C B m e c h a n i s m s a n d S#2 m e c h a n i s m s .
W e added hydrogen peroxide to the
s o l u t i o n of h y d r o x i d e i o n a n d c o b a l t c h l o r o p e r i t a m m i n e .
N o w , i f i t were a n Sjy2
r e a c t i o n , t h e a r g u m e n t w o u l d be t h a t t h e a n i o n h y d r o g e n p e r o x i d e i n e v e r y case t h a t h a s been t e s t e d — a n d t h e r e a r e a b o u t a d o z e n of t h e m — i s a n y w h e r e f r o m 35 t o 10,000 t i m e s m o r e r e a c t i v e t h a n t h e h y d r o x i d e i o n a s a n u c l e o p h i l i c r e a g e n t .
So,
if t h e r e is a n y Si\r2 c h a r a c t e r t o t h i s r e a c t i o n , i t seems t o us t h a t w e s h o u l d h a v e g o t t e n s o m e increase i n r a t e .
O n t h e o t h e r h a n d , because of t h e f a c t t h a t h y d r o g e n
p e r o x i d e is a s t r o n g e r a c i d t h a n w a t e r , a d d i n g h y d r o g e n p e r o x i d e , of c o u r s e , c u t s d o w n the hydroxide ion concentration drastically.
T h i s draws the equilibrium
w a y b a c k t o t h e left, a n d h y d r o g e n p e r o x i d e s h o u l d decrease t h e r a t e of t h e r e a c tion.
A t IM h y d r o g e n p e r o x i d e , i n fact, one s h o u l d get a decrease i n t h e r a t e of
t h e r e a c t i o n b y a f a c t o r of 150.
H e r e we h a d e i t h e r t h e p o s s i b i l i t y of a n i n c r e a s e d
r e a c t i o n r a t e , o r a decreased r e a c t i o n r a t e b o t h b y a f a c t o r of a 100 o r so.
I hardly
need t o s a y , t h a t t h e r e a c t i o n r a t e decreased b y a f a c t o r of 100. I t seems t o m e t h a t we h a v e g i v e n t h i s p a r t i c u l a r r e a c t i o n m e c h a n i s m as m a n y tests as p o s s i b l e . N o w , let m e dispose of, I h o p e , T o b e ' s a r g u m e n t t h a t p e r h a p s a G r o t t h u s c h a i n transfer mechanism is i n v o l v e d .
T h e a r g u m e n t w o u l d be t h a t t h e h y d r o x i d e i o n
c a n a p p e a r a n y w h e r e b y b e i n g generated f r o m w a t e r b y a p r o t o n t r a n s f e r .
I admit
t h i s , b u t t h e v e r y s i m p l e t h i n g i s , i f h y d r o x i d e i o n c a n generate h y d r o x i d e i o n b y a p r o t o n t r a n s f e r , w h y c a n ' t a l l o t h e r bases generate h y d r o x i d e i o n b y a p r o t o n t r a n s fer?
If a l l one needs t o cause a r a p i d r e a c t i o n of c o b a l t c o m p l e x is t o be a b l e t o
create h y d r o x i d e i o n o n d e m a n d b y a p r o t o n t r a n s f e r , a n y base w i l l d o t h i s ; a n d the hydrogen peroxide a n i o n , i n fact, m a y do i t better t h a n the hydroxide i o n , from t h e v i e w p o i n t of r a t e , n o t e q u i l i b r i u m . B u t we k n o w from m a n y experiments done b y m a n y workers t h a t no other base i n t h e case of t h e t y p i c a l p e n t a m m i n e c o b a l t o r c h l o r a m m i n e c o b a l t s y s t e m s — n o o t h e r base s h o w s a n y k i n e t i c effect a t a l l t h a t I a m a w a r e of.
I t seems t o m e
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1.
TOBE
Discussion
27
a b s o l u t e l y i n c r e d i b l e t h a t o n l y t h e h y d r o x i d e i o n w o u l d be p r i v i l e g e d t o i n d u l g e i n p r o t o n t r a n s f e r , a n d t h a t a l l o t h e r bases w o u l d be e x c l u d e d . I n t h e a c i d h y d r o l y s i s of t h e p e n t a m m i n e c o b a l t c o m p l e x e s w h e r e y o u h a v e a l e a v i n g g r o u p , s u c h as n i t r a t o o r b r o m o , H . T a u b e a n d A . H a i m c a m e o u t w i t h s o m e v e r y i n t e r e s t i n g w o r k , w i t h w h i c h I a m sure y o u are a l l f a m i l i a r . that the
five-coordinated
T h e y suggested
p e n t a m m i n e c o b a l t species w a s f o r m e d w h i c h t h e n d i s
c r i m i n a t e d b e t w e e n v a r i o u s n u c l e o p h i l i c reagents, s o m e t i m e s r e a c t i n g w i t h w a t e r , sometimes with, thiocyanate ion.
I n fact, t h e y were able t o measure these n u c l e o
p h i l i c d i s c r i m i n a t i o n factors i n a n u m b e r of cases, a n d t h e y w e r e a b l e t o c o r r e l a t e
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
different t y p e s of r e a c t i o n s i n w h i c h t h e p e n t a m m i n e c o b a l t w o u l d be g e n e r a t e d i n different w a y s . I w a s s h o c k e d w h e n I s a w t h i s p a p e r because w e h a v e been of t h e o p i n i o n for a l o n g t i m e t h a t t h i s p e n t a m m i n e c o b a l t species is m u c h t o o h i g h i n e n e r g y t o e x i s t f o r a l o n g e n o u g h t i m e t o d i s c r i m i n a t e b e t w e e n different n u c l e o p h i l i c reagents.
In
f a c t , e v e n i n t h e base h y d r o l y s i s w h e r e w e h a v e a s t r o n g l y a c t i v a t i n g a m i d o g r o u p i t d o e s n ' t seem possible t o get d i s c r i m i n a t i o n i n w a t e r s o l u t i o n . T h e r e are some s i m p l e tests of t h i s h y p o t h e s i s of H a i m a n d T a u b e .
A l l we
h a v e t o d o is t o c a r r y o u t a c i d h y d r o l y s i s of one of these t y p i c a l c o m p l e x e s i n t h e presence of a large a m o u n t of a n a n i o n .
T h e n w e s h o u l d go d i r e c t l y t o t h e a n i o n i c
complex according to H a i m a n d Taube.
I felt t h a t w e w o u l d n o t f o r m a n y large
a m o u n t of t h e a n i o n i c c o m p l e x , because the p e n t a m m i n e c o b a l t i n t e r m e d i a t e is n o t f o r m e d , a n d i n s t e a d w e w o u l d go t o t h e a q u o c o m p l e x a n d t h e n f r o m t h e a q u o c o m p l e x t o the t h i o c y a n a t e c o m p l e x , o r w h a t e v e r i t m i g h t be.
TIME (min.) Figure
G.
Plot
of
[Co(NII ) NO ](NO ) z
H
+
B
z
= 0,02M.
z
2
absorbancy vs.
time for
aquation
(0.01M) in the presence
of
ofOJOMNaSCN;
Upper curve calculated for mechanism involving
a five-coordinate intermediate.
Lower
curve calculated
mechanism involving conversion to Co(NHz)^H20
¥Z
sequently reacts to form Co(NHz)^NCS . +2
mental.
for
which sub-
Points are experi-
(Inorg. Chem. 3, 1334 (1964).
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
28
F i g u r e G shows t h e r e s u l t s of the f o l l o w i n g r e a c t i o n . [Co(NH ) N0 ]+ 3
5
3
2
!H^>
[Co(NH ) (H 0)]+ 3
5
2
+
3
N0 ~ 3
T h i s i s t h e o p t i c a l d e n s i t y p l o t t e d a g a i n s t t h e t i m e for a h e x p e r i m e n t i n w h i c h we t o o k t h e n i t r a t o p e n t a m m i n e c o b a l t c o m p l e x i n t h e presence of 0.50ilf t h i o c y a n a t e i o n since t h e c o m p e t i t i o n r a t i o for t h i o c y a n a t e i o n a n d for w a t e r h a d been d e t e r mined by H a i m and Taube.
K n o w i n g the o p t i c a l d e n s i t i e s of a l l the possible r e a c -
t a n t s a n d p r o d u c t s , we c o u l d c a l c u l a t e w h a t t h e o p t i c a l d e n s i t y s h o u l d be as a f u n c t i o n of t i m e a c c o r d i n g t o the m e c h a n i s m of H a i m a n d T a u b e .
T h i s calculation de
p e n d s u p o n a r a t e c o n s t a n t for t h e a q u a t i o n of the n i t r a t o c o m p l e x w h i c h we t o o k
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
from the literature.
B u t one s h o u l d get a c o n t i n u o u s l y i n c r e a s i n g o p t i c a l d e n s i t y
because t h e t h i o c y a n a t e c o m p l e x has a h i g h e r o p t i c a l d e n s i t y t h a n a n y t h i n g else. H o w e v e r , i f r e a c t i o n w e n t b y w a y of a q u a t i o n t o a n a q u o c o m p l e x a n d t h e n a n a t i o n of i h e a q u o c o m p l e x t o the t h i o c y a n a t o , a n d we k n e w t h i s r a t e c o n s t a n t , t h e n t h e o p t i c a l d e n s i t y w o u l d d o t h e f o l l o w i n g : since the a q u o c o m p l e x has a l o w e r e x t i n c t i o n coefficient t h a n t h e n i t r a t o , t h e d e n s i t y w o u l d d r o p first a n d t h e n e v e n t u a l l y r i s e , a n d of course t h e t w o c u r v e s w o u l d c o m e t o g e t h e r e v e n t u a l l y . T h e e x p e r i m e n t a l p o i n t s here f o l l o w t h e p r e d i c t i o n s of t h e second
mechanism
v e r y c l o s e l y , a n d I w o u l d s a y t h a t n o t m o r e t h a n 2 % of t h i o c y a n a t e c o m p l e x formed directly.
T a u b e a n d H a i m ' s p r e d i c t i o n w o u l d be
W e h a v e d o n e t h e same e x p e r i m e n t , i n c i d e n t a l l y , for t h e and the results are precisely the same.
is
14%. bromopentammine
Y o u will recall that Langford mentioned
t h a t a l s o i n t h e h y d r o l y s i s of t h e c h l o r o p e n t a m m i n e
there was no mass law re
t a r d a t i o n s u c h as w o u l d be p r e d i c t e d f r o m t h e m e c h a n i s m of H a i m a n d T a u b e . Arthur W. Adamson:
I w o u l d l i k e t o s a y t h a t t w o y e a r s ago I h a d t h e p r i v
ilege of a y e a r ' s v i s i t a t U n i v e r s i t y C o l l e g e L o n d o n a n d t h a t D r . T o b e a n d C . K . I n g o l d r e p r e s e n t e d a n i s l a n d of E n g l a n d i n t h e A u s t r a l i a n S e a . I w a n t t o fill i n some of t h e d i s c u s s i o n s we h a d a t U C L o n w h a t I w a s c a l l i n g t h e cage m e c h a n i s m , t o a d d s t i l l a n o t h e r t o t h e l i s t of n a m e s . t h a n the S A D m e c h a n i s m .
I t h i n k i t is b e t t e r
B u t t h e p o i n t t h a t I t h i n k is e s s e n t i a l t o t h e g e n e r a l
i d e a is t h a t w h i c h c o m e s o u t of t h e f o l l o w i n g set of n u m b e r s .
If one considers a
b i m o l e c u l a r gas phase r e a c t i o n , a n d l e t ' s s a y 0.01 M reagents, one c a n e x p e c t a m o l e cule t o e x p e r i e n c e s o m e t h i n g l i k e 10 c o l l i s i o n s p e r s e c o n d . 9
T h e s i t u a t i o n is different w i t h s o l u t i o n s , w h e r e the r e a c t a n t molecules m u s t diffuse t o g e t h e r .
F o r the same 0.01 M c o n c e n t r a t i o n of A a n d Β r e a c t a n t s , t h e
f r e q u e n c y w i t h w h i c h e i t h e r m a k e s a d i f f u s i o n a l e n c o u n t e r w i t h t h e o t h e r w i l l be a b o u t 10 p e r s e c o n d . 7
T h e y w i l l t h e n u n d e r g o a b o u t 100 c o l l i s i o n s o r v i b r a t o r y
i m p a c t s before d i f f u s i n g a w a y , so t h a t i t is t h e p a t t e r n r a t h e r t h a n the t o t a l n u m b e r of c o l l i s i o n s t h a t is different f r o m t h e gas phase case. If, n o w , 20 o r 30 k c a l . of e n e r g y of a c t i v a t i o n are needed for r e a c t i o n , one s u p poses i n t h e gas phase s i t u a t i o n t h a t the c o l l i d i n g molecules m u s t h a v e t h i s a m o u n t of k i n e t i c e n e r g y o r of a v a i l a b l e i n t e r n a l e n e r g y b e t w e e n t h e m .
The approximate
p i c t u r e is t h e n t h a t of s i m u l t a n e o u s a s s e m b l y of t h e e n e r g y a n d of the of t h e t r a n s i t i o n s t a t e .
components
I n t h e case of a l i q u i d p h a s e s i t u a t i o n , h o w e v e r , i t i s u n
l i k e l y t h a t a m o l e c u l e h a v i n g a c c i d e n t a l l y a c q u i r e d t h i s s o r t of e n e r g y w i l l be a b l e t o r e t a i n i t for m o r e t h a n a few v i b r a t i o n a l p e r i o d s . r e a c t a n t spends a b o u t 1 0
- 7
In the above illustration, a
seconds o r a b o u t 10 v i b r a t i o n a l p e r i o d s between e n 5
counters a n d about a hundred such periods d u r i n g an encounter.
I t seems c l e a r
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
1·
TOBE
Discussion
29
t h a t o n l y i f t h e needed a c t i v a t i o n e n e r g y h a p p e n s t o a r r i v e w h i l e r e a c t a n t s are u n d e r g o i n g a n e n c o u n t e r w i l l there be m u c h c h a n c e of r e a c t i o n . T h e a p p r o x i m a t e p i c t u r e p r o v i d e d b y t h e cage m e c h a n i s m i s t h e n one of a p r e assembly
of
the reactants b y diffusional encounters
(whose d u r a t i o n m a y
be
l e n g t h e n e d i f a t t r a c t i v e forces o r c h e m i c a l b o n d i n g a b i l i t y i s present) w i t h subse q u e n t a r r i v a l of t h e e n e r g y of a c t i v a t i o n . T h e c e n t r a l a r g u m e n t , n a m e l y t h a t excess e n e r g y c a n n o t be h e l d for l o n g t i m e s c o m p a r e d t o v i b r a t i o n a l p e r i o d s , is s u p p o r t e d b y o u r o w n w o r k o n p h o t o c h e m i s t r y . H e r e , large a m o u n t s of e n e r g y a r e d e l i v e r e d t o a c o m p l e x i o n a n d m o r e often t h a n
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
n o t , escape as v i b r a t i o n a l o r t h e r m a l e n e r g y w i t h o u t a n y r e a c t i o n ' s o c c u r r i n g .
Were
i t possible for s u c h e n e r g y t o be r e t a i n e d between e n c o u n t e r s , p h o t o c h e m i c a l q u a n t u m y i e l d s s h o u l d a l w a y s be v e r y h i g h . O n e i m p o r t a n t i m p l i c a t i o n of the cage m e c h a n i s m is t h a t those r e a c t i o n s s h o u l d be f a v o r e d for w h i c h there is a h i g h p r o b a b i l i t y for the r e a c t a n t s t o be i n each o t h e r ' s v i c i n i t y o r cage.
H e n c e , the p r e v a l e n c e of a q u a t i o n r e a c t i o n s a n d the i m p o r t a n c e
of i o n p a i r s as i n t e r m e d i a t e s i n a n a t i o n r e a c t i o n s .
I t h i n k i t is v e r y i n t e r e s t i n g t h a t
J o h n B a i l a r ' s e x a m p l e s of stereospecificity i n v o l v e r a t h e r d r a s t i c changes i n t h e i m m e d i a t e e n v i r o n m e n t a r o u n d the c o m p l e x since c o n c e n t r a t e d s y s t e m s were used i n the one set of cases, a n d d i l u t e ones, i n the o t h e r . D r . P e a r s o n has been s o m e w h a t b l u n t .
I t h i n k the Sjv d e s i g n a t i o n s of reac
t i o n s h a v e c o n s t i t u t e d a k i n d of w a s t e l a n d , i n t h a t there has been t o o m u c h t e n dency
to
make
d i s t i n c t i o n s w i t h o u t r e a l differences
h o l i n g of r e a c t i o n s b y l a b e l .
much
pigeon
T h e effect has been t o reduce r a t h e r t h a n
and
too
enhance
understanding. M a r t i n Tobe:*
I w o u l d l i k e t o t a k e t h i s o p p o r t u n i t y of p u t t i n g o n r e c o r d m y
t h a n k s t o D r . C o o p e r L a n g f o r d for the excellent w a y i n w h i c h he rose t o t h e o c c a s i o n a n d presented m y paper. I w a n t t o t a k e issue w i t h P r o f . P e a r s o n o n t w o p o i n t s f r o m h i s s u p p l e m e n t a r y lecture.
I see t h a t he does n o t l i k e a d i s s o c i a t i v e m e c h a n i s m i n w h i c h t h e
c o o r d i n a t e i n t e r m e d i a t e has a finite existence.
five-
I a m n o t q u i t e sure w h e t h e r he i s
a t t a c k i n g t h i s c o n c e p t o n energetic g r o u n d s b u t , if he i s , we a r e h a r k i n g b a c k t o t h e a r g u m e n t s used a g a i n s t D r . I n g o l d i n t h e t h i r t i e s w h e n he p r o p o s e d
the
now
a c c e p t e d u n i m o l e c u l a r m e c h a n i s m for c e r t a i n s u b s t i t u t i o n r e a c t i o n s a t t e t r a h e d r a l carbon.
W e m u s t r e m e m b e r n o w , as t h e n , t h a t w h e n t h e r e i s sufficient s e p a r a t i o n
b e t w e e n r e a c t i o n c e n t e r a n d t h e l e a v i n g g r o u p , t h e g a i n i n s o l v a t i o n e n e r g y of t h e forming components overcompensates the energy required to stretch the bond fur ther a n d
finally
break it.
T h u s , i f D r . P e a r s o n is h a p p y t o s t r e t c h t h e m e t a l —
l i g a n d b o n d t o i t s c r i t i c a l d i s t a n c e , he s h o u l d n o t be s u r p r i s e d i f i t " c o m e s a p a r t i n his h a n d s . "
A s h a s been p o i n t e d o u t m a n y t i m e s , t h e t r a n s i t i o n s t a t e for a u n i
m o l e c u l a r process s t i l l has a p a r t i a l b o n d between t h e r e a c t i o n c e n t e r a n d t h e l e a v i n g g r o u p a n d s h o u l d n o t be c o n f u s e d w i t h t h e i n t e r m e d i a t e of l o w e r c o o r d i n a t i o n n u m b e r , w h i c h is s o m e w h a t m o r e s t a b l e . mediate a n d not the transition state.
T h e i n c o m i n g reagent enters t h i s i n t e r
W e r e a l l y need a
five-coordinate
intermediate
t o e x p l a i n w h y we h a v e s t e r e o c h e m i c a l change i n c e r t a i n r e a c t i o n s . T h e so c a l l e d " s o l v e n t assisted d i s s o c i a t i o n " m e c h a n i s m i n w h i c h reagent
Y
( w h i c h m a y or m a y n o t be s o l v e n t ) s l i p s i n w h e n t h e b o n d b e t w e e n t h e m e t a l a n d * These comments added after the conference b y i n v i t a t i o n .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
30
t h e l e a v i n g g r o u p is s t r e t c h e d b e y o n d a c r i t i c a l l e n g t h , is i d e n t i c a l i n c o n c e p t t o t h e process t h a t I h a v e d e s c r i b e d for t h e r e a c t i o n s of the ( C o e m A X ) * c o m p l e x e s , w h e r e n
A = N O 2 , N H 3 , a n d C N , the q u a s i b i m o l e c u l a r r e a c t i o n .
I t is s t e r i l e t o a r g u e a b o u t
t h e w o r d s used t o describe i t as l o n g as there is general a g r e e m e n t a b o u t t h e p i c t u r e itself.
T h i s t y p e of process m o s t c e r t a i n l y e x p l a i n s t h e o b s e r v a t i o n t h a t these
complexes
undergo substitution w i t h complete
r e t e n t i o n of c o n f i g u r a t i o n .
m e c h a n i s m is p r o b a b l y general for t h e s u b s t i t u t i o n r e a c t i o n s of a n a l o g o u s and
The
Rh(III)
p o s s i b l y C r ( I I I ) c o m p l e x e s w h e r e r e t e n t i o n of c o n f i g u r a t i o n o n s u b s t i t u t i o n
a p p e a r s t o be the general r u l e .
Downloaded by UNIV OF NORTH CAROLINA on October 23, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch001
F o r m y second p o i n t , I w a n t t o c o m m e n t o n P r o f . P e a r s o n ' s r e a c t i o n t o t h e m i n o r c o m m e n t t h a t t h e c o n j u g a t e base m e c h a n i s m does n o t e x p l a i n a n u m b e r of i m p o r t a n t o b s e r v a t i o n s o n t h e base h y d r o l y s i s r e a c t i o n , a n d t h e i m a g i n a r y feud t o w h i c h he refers.
F o r a n u m b e r of y e a r s , we h a v e a c c e p t e d t h a t a c l a s s i c a l b i
m o l e c u l a r m e c h a n i s m is u n l i k e l y i n t h e s u b s t i t u t i o n r e a c t i o n s of the a m m i n e c o b a l t s , b u t we feel t h a t the u n i q u e n e s s of t h e h y d r o x i d e r e a c t i o n c a n n o t be a t t r i b u t e d t o a n a i v e S&\CB m e c h a n i s m e i t h e r .
Neither mechanism can explain adequately
the
rapidly accumulating d a t a (coming m a i n l y from the group at Northwestern U n i v e r s i t y ) w h i c h s h o w t h a t t h e s p e c i a l r e a c t i v i t y of t h e l y a t e i o n is p e c u l i a r o n l y t o certain C o ( I I I ) a n d R u ( I I I ) complexes.
W h i l e one m a y s t i l l be i n t h e d a r k as t o
p r e c i s e l y w h a t i t is t h a t h y d r o x i d e does w h e n i t p r e s e n t s itself t o t h e c o m p l e x , I s t i l l t h i n k t h a t i t is reasonable t o a t t r i b u t e , as I h a v e d o n e i n t h e p a p e r , a great d e a l of its s p e c i f i c i t y t o the fact t h a t i t is m o b i l e t h r o u g h t h e s o l v e n t s h e l l ( w h i c h i s i n a c c o r d w i t h the o b s e r v a t i o n of large p o s i t i v e e n t r o p i e s of a c t i v a t i o n ) .
D r . Pear
son's " d e m o l i t i o n c h a r g e " for t h e G r o t t h u s c h a i n h y p o t h e s i s c l e a r l y f a i l e d t o e x p l o d e , p o s s i b l y because i t w a s a l i t t l e w e t .
I n the s o l v e n t s y s t e m t h a t he uses for
the h y d r o p e r o x i d e e x p e r i m e n t i t is v e r y u n l i k e l y t h a t the s o l v a t i o n shell of t h e c o m plex c o n t a i n s a n y h y d r o g e n p e r o x i d e m o l e c u l e s . h y d r o p e r o x i d e i o n ' s p r e s e n t i n g itself for r e a c t i o n .
T h e r e is therefore no chance of a (If the r e a c t i o n were c a r r i e d o u t
i n 1 0 0 % h y d r o g e n p e r o x i d e , I have no d o u b t t h a t the r e s u l t s w o u l d be s t a r t l i n g ! ) H y d r o g e n p e r o x i d e , b e i n g a s t r o n g e r a c i d t h a n w a t e r w o u l d m o n o p o l i z e m o s t of t h e G r o t t h u s c h a i n s ( w h i c h is s a y i n g m u c h the same as " h y d r o g e n p e r o x i d e reduces the c o n c e n t r a t i o n of h y d r o x i d e " ) a n d so leads t o a r e d u c t i o n of r a t e ( w h i c h is p r e c i s e l y w h a t was observed).
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.