Chapter 6
Downloaded via TUFTS UNIV on July 10, 2018 at 03:12:00 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
and
Mechanisms of Product Yield Selectivity Control with Octane Catalysts John S. Magee and James W. Moore
Katalistiks International, Inc., 4810 Seton Drive, Baltimore, MD 21215 It i s generally accepted that aluminum deficient structures derived from type Y zeolite alter the extent of hydrogen transfer reactions which ordinarily favor the formation of paraffins and aromatics at the expense of olefins and naphthenes. This octane reducing reaction i s controlled principally by the silica/alumina ratio of the zeolite and i t s rare earth content(1). Furthermore, i t has been shown that octane enhancement occurs through the formation of different molecular types in "light" (b.p. 100 to 260°F) versus "heavy" (bp 260 to 430°F) gasoline(1,2,3). Enhanced olefins in l i g h t gasoline account for substantial increases in that fraction's research octane number (RON C) while higher concentrations of aromatics, for the most part, improve both RON C and MON C in the heavy gasoline. The present paper describes studies done which show that the ratio of hydrogen transfer to cracking (H-t/C) controls product quality and the presence of non-selective but c a t a l y t i c a l l y active debris is a contributor to losses in product y i e l d . W o r l d - w i d e t h e r e i s a p p r o x i m a t e l y 1000 t o n s o f fluid c r a c k i n g c a t a l y s t manufactured each day. Of t h i s , a b o u t 35% c o n t a i n s s o m e f o r m o f a l u m i n u m deficient z e o l i t e Y , one whose S i 0 / A l 0 r a t i o exceeds 5.5:1, and whose p e r f o r m a n c e i s g e n e r a l l y c h a r a c t e r i z e d by enhanced o l e f i n f o r m a t i o n and h i g h e r g a s o l i n e research and motor o c t a n e number. The aluminum deficient 2
c
2
3
0097-6156/88/0375-0087$06.00/0 1988 A m e r i c a n C h e m i c a l Society
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
88
F L U I D C A T A L Y T I C C R A C K I N G : R O L E IN M O D E R N R E F I N I N G
z e o l i t e s used i n these "octane c a t a l y s t s " are either chemical or hydrothermal derivatives of type Y z e o l i t e . L e s s commonly u s e d a r e shape s e l e c t i v e m o l e c u l a r sieves (SSMS), which a r e d e r i v a t i v e s o f t h e p e n t a s i l s . In all, some 8 0 - 1 0 0 t o n s o f a l u m i n u m d e f i c i e n t z e o l i t e are produced each day f o r consumption i n octane catalysts w i t h a m u c h s m a l l e r a m o u n t o f SSMS b e i n g manufactured for this purpose. V i r t u a l l y a l l the growth i n t h i s area has occurred s i n c e 1976 when t h e f i r s t o c t a n e c a t a l y s t s w e r e commercially used(4). I n s p i r i n g t h i s use has been legislation dictating reductions in lead tetraethyl usage t o the p o i n t were i t s usage i s a p p r o a c h i n g zero i n b o t h the U n i t e d S t a t e s and Europe. The r e s u l t i n g octane d e b i t from the c a t c r a c k e r s c o n t r i b u t i o n t o the gasoline pool i s the p r i n c i p a l reason for the outstanding growth i n usage of octane catalysts.
Experimental Catalysts F i v e c a t a l y s t s were used i n t h i s s t u d y : the predomin a t e l y g a s o l i n e o r i e n t e d f u l l r a r e e a r t h exchanged EKZ4, a p a r t i a l l y r a r e e a r t h exchanged gasoline/octane c a t a l y s t S I G M A 3 0 0 , a c o m p e t i t i v e USY c o n t a i n i n g o c t a n e c a t a l y s t "COM-USY", K a t a l i s t i k s ' p r i n c i p a l octane b a r r e l c a t a l y s t , ALPHA 5 0 0 , a n d maximum o c t a n e catalyst BETA 500. P h y s i c a l and c h e m i c a l p r o p e r t i e s are g i v e n i n Table I
Catalyst
Pretreatment
Prior to evaluation i n the p i l o t plant, a l l catalysts were steam t r e a t e d t o s i m u l a t e e q u i l i b r i u m a c t i v i t y . The steaming procedure used f o r a l l c a t a l y s t s i s as follows: c a l c i n a t i o n i n n i t r o g e n atmosphere a t 1350°F f o r t h r e e h o u r s f o l l o w e d b y s t e a m i n g a t 1 3 5 0 ° F f o r 14 h o u r s w i t h 100% s t e a m a t a t m o s p h e r i c pressure. Catalyst
Evaluation
P i l o t p l a n t t e s t s w e r e made i n a c y c l i c f i x e d fluidized bed u n i t over a range of c o n d i t i o n s . Catalyst-to-oil r a t i o w a s v a r i e d f r o m 3 t o 5 a n d WHSV w a s v a r i e d from 32 t o 5 3 , i n v e r s e l y . The r e a c t o r temperature w a s h e l d a t 975°F f o r t h e c r a c k i n g and steam s t r i p p i n g c y c l e s , and a t 1200°F f o r t h e r e g e n e r a t i o n c y c l e s . After regeneration, c a r b o n o n c a t a l y s t was e f f e c t i v e l y zero.
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
6.
MAGEE AND M O O R E
Table
Catalyst:
Surface
I.
EKZ-4
Catalyst
SIGMA-
Properties
"COM-" TTSY
ALPHA-
BETA500
Area,
mVg Pore Volume, cc/g A1 0 , wt% Re 0 , wt% Unit Cell Size, a A 2
89
Yield and Selectivity with Octane Catalysts
182
157
238
283
278
0.30
0.31
0.32
0.36
0.35
27.8
37.3
34.8
33.9
32.7
4.40
1.46
0.50
-2
+
n
C
paraffin
r a
H2m-6
aromatic
N a p h t h e n e C r a n k i n g (Γ) 3C H multi-ring naphthene x n
2 m
^
CmH olefin 2 l n
+
2C H naphthene m
2 m
A n a p h t h e n e i s u s e d f o r t h i s i l l u s t r a t i o n a s we b e l i e v e t h a t t h e r e l a t i v e amounts o f naphthene c r a c k i n g versus hydrogen t r a n s f e r c o n t r o l product d i s t r i b u t i o n s and q u a l i t i e s i n octane c a t a l y s t systems. Gasoline s e l e c t i v e c a t a l y s t s favor hydrogen t r a n s f e r reactions with these molecules with consequent formation o f coke. Results of the present study at constant c o n v e r s i o n a r e shown i n T a b l e s I I I A a n d Β a n d I V A a n d B . As s u g g e s t e d by t h e model e q u a t i o n s i l l u s t r a t e d above a n d l a t e r i n t h e t e x t we h a v e p o s t u l a t e d t h a t t h e o v e r a l l hydrogen t r a n s f e r r e a c t i o n forming aromatics and p a r a f f i n s from o l e f i n s and naphthenes c a n be controlled at various intermediate stages. These stages a r e c h a r a c t e r i z e d by high o l e f i n y i e l d s i n t h e light gasoline with progressively higher concentrations
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
6.
M A G E E AND M O O R E
Yield and Selectivity with Octane Catalysts
Table
II.
Feedstock
Gravity, °API Sulfur, wt% Basic Nitrogen, PPM Ramsbottom Carbon, wt% Aniline Point, °F Pour Point, °F Molecular weight UOP Κ Factor Distillation (D1160), °F 5 vol% 10 v o l % 30 v o l % 50 v o l % 70 v o l % 90 v o l % Hydrocarbon Type Distribution Aromatics (C ) Naphthenes (C ) Paraffins (d>) A
N
Properties
Paraffinie Feed »P» 25.9 0.53 920 0.59 196 95 391 12.0
Aromatic Feed "A" 21.2 1.19 596 2.17 186 85 390 11.7
658 700 782 845 918 1030
615 667 762 825 898 1014
14.4 26.5 59.1
20.3 26.9 52.8
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
91
F L U I D C A T A L Y T I C C R A C K I N G : R O L E IN M O D E R N R E F I N I N G
92
o f heavy g a s o l i n e a r o m a t i c s formed as the S i 0 / A l 0 of the steam d e a c t i v a t e d c a t a l y s t i n c r e a s e s . A l s o observed are measurable q u a l i t y changes i n both the l i g h t cycle (LCO) and heavy c y c l e o i l (HCO). In the case of "non-octane" c a t a l y s t s , H-transfer i s v i r t u a l l y complete and t h e r e a c t i o n proceeds (through aromatic condensation reactions) to coke. Clear cut control of these stages is related to both the silica/alumina r a t i o of the zeolite present (its u n i t c e l l s i z e ) and t h e amount o f s i l i c a / a l u m i n a debris present. Silica/alumina debris is a reaction product from the hydrothermal d e c o m p o s i t i o n o f the zeolite p r e s e n t and i s c a l c u l a t e d by assuming t h a t A 1 0 is the p r i n c i p a l degradation product i n the conversion from low t o h i g h s i l i c a / a l u m i n a r a t i o . Both s t a r t i n g and p r o d u c t r a t i o s are d e r i v e d from u n i t c e l l measurements according to the Breck/Flanigen c o r r e l a t i o n (5a). An a p p r o x i m a t i o n o f t h e e x t e n t o f hydrogen t r a n s f e r r e a c t i o n s o c c u r r i n g compared t o c r a c k i n g r e a c t i o n s and t h e n e t e f f e c t on p r o d u c t d i s t r i b u t i o n c a n be i n i t i a l l y seen by a c o n s i d e r a t i o n o f t h e zeolite properties of the catalysts tested i n the present study: 2
2
ratalysfr! a
Q
A
/
Si0 Al 0 2
2
3
2
F1K7.-4
SIGMA100
24.50
24.33
8.8
22
12 28
>
% "Debris" > 3
#
Tetrahedral sites/U.C. > 4
x
2
3
4
> > > >
Competitive Calculated. Calculated. Calculated.
3
3
ALPHA5UQ
BETA-
24.27
24.26
24.27
40
46
40
25
29
25
18
10
3.4
2.4
3.4
USY-Containing Reference 5a. Reference 5b. Reference 6.
"COM TTSV"*)
2
Octane
Catalyst
Chemical analysis ( T a b l e I) shows t h a t E K Z - 4 , SIGMA 300 a n d " C O M - U S Y " c o n t a i n r a r e e a r t h b u t " C O M USY" f a l l s i n the range a s s o c i a t e d with a high l e v e l of h y d r o g e n t r a n s f e r c o n t r o l (low H - t / C ) a l o n g w i t h ALPHA and BETA. D a t a show a l a r g e A l ( I V ) site separation f o r " C O M - U S Y " , A L P H A 500 a n d B E T A 500 b u t significantly different l e v e l s of c a t a l y t i c a l l y a c t i v e but nonselective "debris" from the d e - a l u m i n a t i o n o c c u r r i n g d u r i n g steam d e a c t i v a t i o n . One o f t h e p r i n c i p a l a d v a n t a g e s o f t h e ALPHA and BETA s y s t e m s i s t h e i r h i g h
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
6.
M A G E E AND M O O R E
Table
III
A.
P i l o t P l a n t R e s u l t s a t 72 P a r a f f i n i e Feed, "P"
Catalyst:
EKZ-4
SIGMA-
"COM-" ITSY
Product PCT C
93
Yield and Selectivity with Octane Catalysts
vol%
Conversion
ALPHAΒΩΩ
BETABOO
Yields,
Feed:
2
,
wt%
1.4
1.3
1.4
1.3
1.3
C
3
,
vol%
2.8
2.2
2.3
1.9
2.0
C
3
,
IC NC C
4
C
5
,
4
3.6
4.0
4.6
4.6
5.1
vol%
8.6
8.5
8.5
7.8
8.9
vol%
2.1
1.8
1.7
1.4
1.6
3.4
4.5
5.0
5.1
6.3
61.4
61.5
61.8
62.2
17.5
17.7
17.7
18.0
vol% ,
4
,
vol%
+
Gasoline,
vol%
61.0
LCO,
vol%
HCO,
vol%
12.0
10.5
10.3
10.3
10.0
Coke,
wt%
4.2
3.8
2.9
3.4
2.4
Light
Gasoline
Yield,
vol%
RON MON Heavy
37.5
36.7
37.1
37.5
37.0
83.8
85.0
87.5
87.2
89.3
78.7
78.4
79.5
79.6
79.8
Gasoline
Yield,
vol%
RON MON LCO
16.0
23.9
24.8
24.7
24.7
24.0
88.8
88.0
89.8
90.7
90.7
79.6
78.4
79.8
81.1
81.1
42
42
53
55
62
Aniline
Pt.,
°F
C Alkylate +Gasoline+LCO 4
83. 5
87.Ί
88.5
89.1
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
90.4
F L U I D C A T A L Y T I C C R A C K I N G : R O L E IN M O D E R N R E F I N I N G
94
Table
III
B.
Pilot Plant Results Aromatic Feed,
Catalyst: Product Yields, PCT Feed: C - , wt% C -, vol% C -, vol% IC , vol% NC , vol% C =, v o l % C + Gasoline, vol% LCO, vol% HCO, vol% C o k e , wt% Light Gasoline Y i e l d , vol% MON MON 2
3
3
4
4
4
5
Heavy Gasoline Y i e l d , vol% RON MON C Alkylate
STGMA-,100
a t 72 "A"
vol%
AT.PHA-50Q
Conversion
BETA-50Q
2.9 2.4 5.2 7.6 1.7 5.2 58.0 18.2 9.8 7.1
1.9 2.1 5.8 7.1 1.4 5.9 58.2 18.6 9.4 6.5
2. 2. 5. 6. 1. 6. 58. 18. 9.3 6.5
34.5 86.2 80.1
34 88 80
35.1 88.6 80.7
23.5 89.3 80.6
24.0 91.7 82.3
23.0 92.4 83.2
85.6
87.4
88.Q
4
+ G a s o l i n e + T.CO
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
6.
M A G E E AND M O O R E
Table
IV
A.
1
vol* IV
SIGMA-
"Com-"
1ΩΩ
Light Gasoline: Paraffins, vol% Olefins, vol% Naphthenes, vol% Aromatics, vol% Heavy Gasoline: Paraffins, vol% Olefins, vol% Naphthenes, vol% Aromatics,
Table
G a s o l i n e PONA s a t 72 V o l % P a r a f f i n i c Feed, "P"
EKZ-4
CATALYST:
B.
Conversion
BETA-
ALPHA-
τι.ςγ
500
500
68.9
64.8
61.5
60.6
58.0
12.7
18.1
21.0
21.6
24.2
10.0
11.3
10.1
11.5
10.8
8.4
5.8
7.4
6.3
7.0
32.5
33.1
30.3
29.4
29.6
2.0
4.4
3.4
6.4
4.3
8.3
8.5
9.5
9.0
8.8
57. 2
54.0
55.2
57.3
56.8
G a s o l i n e PONA s a t Aromatic Feed,
CATALYST: Light Gasoline: Paraffins, vol% Olefins, vol% Naphthenes, vol% Aromatics, vol% Heavy G a s o l i n e Paraffins, vol% Olefins, vol% Naphethenes, vol%
Aromatics. vol %
95
Yield and Selectivity with Octane Catalysts
1
72 V o l % "A"
Conversion
STGMA-300
ΑΤ.ΡΗΑ-5ΩΩ
BETA—
62.8 17.7 12.6 6.9
58.7 22.0 12.3 7.0
57.0 25.1 11.4 6.5
24.8 1.9 6.9 66.4
23.5 1.9 6.4
23.5 1.9 6.2 68.4
fi8.2
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
96
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
hydrothermal s t a b i l i t y which retards debris formation (7) . We e x p e c t w i d e s i t e s e p a r a t i o n (2-3 Al/U.C.) to increase c r a c k i n g versus hydrogen t r a n s f e r i f hydrogen transfer i s a two-center r e a c t i o n l i k e coke formation (8) . Thus more o l e f i n i c p r o d u c t s a r e p r e d i c t e d a n d higher molecular weight products (more g a s o l i n e plus distillate) due t o t h e wide s i t e separation (greater d i s t a n c e s between l o c a t i o n s l i k e l y t o form carbonium ions on t h e carbon chain) i s expected. Finally, the more d e b r i s p r e s e n t i n t h e s e s t r u c t u r e s t h e more n o n s e l e c t i v e cracking of higher molecular weight products w i l l o c c u r i n z e o l i t e s c o n t a i n i n g t h e l e a s t amount o f Al(IV) sites. T h u s , we w o u l d e x p e c t A L P H A , B E T A a n d COM-USY t o h a v e s i m i l a r l y s e p a r a t e d s i t e s b u t t h a t C O M USY w o u l d show p o o r e r g a s o l i n e a n d c o k e s e l e c t i v i t y d u e t o t h e p r e s e n c e o f more " d e b r i s " . A possible mechanism b y w h i c h t h i s n o n - s e l e c t i v e c r a c k i n g may o c c u r i s s h o w n i n F i g u r e 1. H e r e c e t a n e when c r a c k e d i n t h e a b s e n c e of debris, i s i n f l u e n c e d by only one a c t i v e s i t e i n t h e z e o l i t e supercage and high molecular weight products are formed*. D e b r i s , when p r e s e n t , effectively reduces s i t e s e p a r a t i o n and would be expected t o i n f l u e n c e cracking s e l e c t i v i t y by reducing product molecular weight ("overcracking"). Based on c a t a l y s t s and which should r selectivities product yields
the active site properties of the test on t h e proposed product selectivities e s u l t , t h e observed and predicated are virtually identical. F o r example change as follows:
Olefins EKZ4 < S I G - 3 0 0 Coke S e l e c t i v i t y < — C A l k y . + G+D < Gasoline** < LCO < HCO C r a c k . A b i l i t y < 4
< COM-USY Ditto Ditto Ditto Ditto Ditto
< A-500
> > > >
Our d a t a i n d i c a t e d t h a t LCO y i e l d a n d q u a l i t y i m p r o v e d d u e t o t h e c o n v e r s i o n o f HCO m o l e c u l e s (apparently m u l t i - r i n g naphthenes) b y BETA a n d , t o a
* Though ~3 sites/supercage are present (see page 4) literature reports suggest that only one of three sites is actually catalytically active (9). ** ALPHA 500 in this instance actually equilibrated at a slightly lover a (higher Si0 /Al 0 ) than BETA 500. By virtue of this ve may expect somewhat higher gasoline selectivity for ALPHA and the observed product distributions of BETA and Com-USY to be similar. 0
2
2
3
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
MAGEE AND M O O R E
Yield and Selectivity with Octane Catalysts
-25ASU Union Carbide
1
C7 + Cg
LZ-210 (e.g.
ALPHA
and
Su
BETA)
Hydrothermal S t r u c t u r e with A m o r p h o u s Debris
2C + 2C 5
US-Y (e.g.
Figure
"Com-USY")
1.
Stylized cracking
s i t e placement e f f e c t s on i n high S i / A l zeolites.
cetane
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
3
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
98
l e s s e r d e g r e e ALPHA and COM-USY, High l e v e l s of hydrogen t r a n s f e r probably convert these molecules coke. Reaction
i n t o t h e LCO r a n g e . (as i n E K Z - 4 ) would i n t o a r o m a t i c s and
MP.nhani.gm.g
P o s s i b l e r e a c t i o n mechanisms which e x p l a i n t h e t r e n d s observed i n product q u a l i t i e s are i l l u s t r a t e d i n r e a c t i o n s (1) (4) below.
R 5 C . . 3
=
+
R ^
Q
f
R
->
5C 4
8
R
1)
+ "{oXof
R e a c t i o n s (1) a n d (2) illustrate classical complete hydrogen t r a n s f e r between l i g h t o l e f i n s and L C O a n d HCO r a n g e n a p h t h e n e s . R e a c t i o n (3) represents condensation of polynuclear aromatics to coke, while r e a c t i o n (4) represents z e o l i t i c c r a c k i n g of heavy gas o i l n a p h t h e n e s i n t o LCO r a n g e n a p h t h e n e s a n d gasoline range o l e f i n s . Based upon these model r e a c t i o n s , the expected effect of decreasing the rate (amount) of h y d r o g e n t r a n s f e r r e l a t i v e t o c r a c k i n g would be t h e following: 1. 2. 3. 4. 5.
higher gasoline octanes with a s i g n i f i c a n t l y higher olefin content, more o l e f i n i c LPG, w i t h t h e p o t e n t i a l for increased alkylate production, l e s s a r o m a t i c LCO, w h i c h would be o b s e r v e d by a higher aniline point, lower coke y i e l d , h i g h e r LCO y i e l d a t c o n s t a n t c o n v e r s i o n .
Observed
experimental
results
are
as
follows:
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
M A G E E AND M O O R E
6.
Paraffinic
Yield and Selectivity with Octane Catalysts
99
Feed
T h e PONA r e s u l t s a t c o n s t a n t c o n v e r s i o n (72 v o l % ) in t h e s e r i e s f r o m EKZ4 t o BETA 500 show g a s o l i n e olefin c o n t e n t i n c r e a s e d from 8.6 p e r c e n t t o 16.4 p e r c e n t , p a r a f f i n c o n t e n t decreased from 54.7 p e r c e n t t o 46.8 p e r c e n t , and naphthene and a r o m a t i c s c o n t e n t s remained constant. R e s e a r c h o c t a n e i n c r e a s e d 4.2 numbers while m o t o r o c t a n e i n c r e a s e d 1.2 n u m b e r s . The a r o m a t i c s c o n t e n t o f t h e LCO a s m e a s u r e d b y t h e a n i l i n e p o i n t d e c r e a s e d w i t h t h e a n i l i n e p o i n t i n c r e a s i n g f r o m 42 t o 62. LCO y i e l d i n c r e a s e d f r o m 1 6 . 0 v o l u m e p e r c e n t t o 18.0 volume p e r c e n t , w h i l e the coke y i e l d decreased d r a m a t i c a l l y from 4.2 p e r c e n t t o 2.4 percent.
Aromatic Feed T h e PONA r e s u l t s a t c o n s t a n t c o n v e r s i o n (72 v o l % ) for t h e s e r i e s SIGMA 3 0 0 , ALPHA 500 a n d B E T A 500 show g a s o l i n e o l e f i n c o n t e n t i n c r e a s e d from 11.3 p e r c e n t t o 15.9 p e r c e n t , p a r a f f i n c o n t e n t decreased from 47.4 percent t o 43.7 percent, naphthene content decreased from 10.3 p e r c e n t t o 9.3 p e r c e n t and a r o m a t i c s c o n t e n t remained constant. Research octane increased 2.6 n u m b e r s w h i l e m o t o r o c t a n e i n c r e a s e d 1.4 n u m b e r s . The LCO y i e l d i n c r e a s e d 0 . 5 v o l u m e p e r c e n t w h i l e t h e c o k e y i e l d decreased from 7.1 weight p e r c e n t t o 6.5 weight percent.
Summary 1. C o n t r o l o f t h e e x t e n t r e s p e c t t o c r a c k i n g (the selectivity. As • • • • • • •
of hydrogen t r a n s f e r with H-t/C ratio) controls catalyst
the r a t i o decreases: Gasoline s e l e c t i v i t y increases for the paraffinic feed Coke s e l e c t i v i t y improves f o r b o t h feeds LCO s e l e c t i v i t y i n c r e a s e s f o r b o t h feeds LCO q u a l i t y i m p r o v e s f o r t h e p a r a f f i n i c feed HCO c o n v e r s i o n i m p r o v e s f o r b o t h feeds O l e f i n c o n c e n t r a t i o n i n l i g h t and heavy gasoline increases for both feeds Aromatic content i n heavy g a s o l i n e increases for the aromatic feed
2. R e d u c t i o n o f t h e amount o f n o n - s e l e c t i v e amorphous d e b r i s p r e s e n t as i n ALPHA and BETA c a t a l y s t s increases a l k y l a t e , g a s o l i n e and d i s t i l l a t e y i e l d s and reduces t h e amount o f s e c o n d a r y r e a c t i o n s l e a d i n g t o c o k e and wet gas. 3. A s i d e from t h e i r d e m o n s t r a t e d o c t a n e e n h a n c i n g c a p a b i l i t i e s , c a t a l y s t s w i t h low H - t / C r a t i o s can e f f e c t i v e l y l o w e r t h e y i e l d o f HCO w h i l e i m p r o v i n g b o t h q u a l i t y and q u a n t i t y o f LCO.
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
100
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
REFERENCES 1. 2. 3. 4. 5a. 5b. 6. 7. 8. 9.
Pine, L . A . , Maher, P.J. Wachter, W.A., J.Catal., 1984, 85, 466-476 (1984). Magee, J . S . , Cormier, W.E. , Woltermann, G.M., QGJ, 5/27/85. Andreasson, H.U., Upson, L . L . , Katalistiks 6th Annual Symposium, May 22-23, 1985. Magee, J . S . , Ritter, R.E. "Symposium on Octane in the 1980s," ACS Div. Petro. Chem., Sept. 0-15, (1978) Breck, D.W., "Zeolite Molecular Sieves", Robert E. Krieger Pub. Co., 1984, p94 S.D. Griffith, Private Communication, 1/30/87. John, J . R . , DeCanio, S . J . , Fritz, P.O., Lunsford, J . H . , J.P. Chem, 1986, 90, 4847-4851. Rabo, J . A . , Pellet, R . J . , Magee, J . S . , Mitchell, B.R., Moore, J.W., Magnusson, J.E., Upson, L.L., NPRA AM 86-30, 3/23/86. Bremer, H . , Wendlandt, K.P., Vogt, F . , Becker, Κ., Weber, Μ., Acta Phys. Chem. 1985, 31, 376. Beyerlein, R.A. McVicker, G.G., Yacullo, L.M., Ziemiak, J.J., 1986, Symposium on Fund. Chem. Promoters and Poisons in Hetero. Cat., 190-197.
RECEIVED March 30, 1988
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.