2 Mechanisms of Substitution Reactions of Cobalt (III) Cyanide Complexes
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
ALBERT H A I M , ROBERT J. G R A S S I , a n d University
of Southern
California,
Los Angeles,
W A Y N E K. Calif.
WILMARTH
90007
A r e v i e w h a s b e e n m a d e o f t h e kinetic data f o r t h e substitution reactions of t h e Co(CN) X-3 ions, w h e r e X refers to a n y one of various l i g a n d s . The e v i d e n c e s u g g e s t s t h a t the p e n t a - c o o r d i n a t e Co(CN)5-2 is g e n e r a t e d a s a r e a c t i v e i n t e r m e d i a t e in t h e substitution of w a t e r in Co(CN)5OH2-2 b y v a r i o u s n u c l e o p h i l e s a n d i n t h e aquation of the various C o ( C N ) X ions. P r e l i m i n a r y studies indicate t h a t t h e interm e d i a t e detected by the scavenger action of Brand SCN- in the reaction of H N O and Co(CN)5N3-3 is a d i f f e r e n t s p e c i e s t h a n t h e o n e discussed a b o v e . 5
3
5
2
Jhe
r e s u l t s b e l o w c o n s i s t of k i n e t i c s t u d i e s of t h e f o l l o w i n g r e a c t i o n s : a) t h e s u b s t i t u t i o n of w a t e r i n C o ( C N ) O H ~ ~ b y v a r i o u s n u c l e o p h i l e s (3, 7) i n c l u d i n g 6
2
2
H 2 O , b) t h e a q u a t i o n (3, 7) of C o ( C N ) $ X " ~ , w h e r e X " ~ r e p r e s e n t s one of a v a r i e t y of 1 8
3
n u c l e o p h i l e s , c) t h e s c a v e n g e r (3, 7) a c t i o n of S C N ~ " for t h e r e a c t i v e i n t e r m e d i a t e g e n e r a t e d i n t h e a c i d - c a t a l y z e d a q u a t i o n of C O ( C N ) B N " " , a n d d ) t h e 3
scavenger
3
a c t i o n (5) of B r ~ a n d S C N ~ " for t h e r e a c t i v e i n t e r m e d i a t e f o r m e d i n t h e r e a c t i o n of C o ( C N ) N ~ w i t h H N 0 , a process w h i c h p r o d u c e s C o ( C N ) O H ~ i n t h e a b s e n c e of 6
3
3
2
5
2
2
scavengers.
Anation
of
Co(CNhOH 2
2
A l l e x p e r i m e n t s were c a r r i e d o u t a t c o n s t a n t i o n i c s t r e n g t h a n d
constant
c a t i o n c o n c e n t r a t i o n , a r e s t r i c t i o n d e s i g n e d t o m i n i m i z e m e d i u m effects (10,
11).
N e g a t i v e l y c h a r g e d n u c l e o p h i l e s were i n t r o d u c e d i n t o t h e s o l u t i o n as s o d i u m s a l t s , a n d t h e i o n i c s t r e n g t h w a s a d j u s t e d t o t h e d e s i r e d v a l u e b y a d d i t i o n of t h e a p p r o p r i a t e a m o u n t of N a C 1 0 4 .
I n t h e presence of a l a r g e excess of a
nucleophile,
X ~ , t h e r a t e of f o r m a t i o n of C o ( C N ) 5 X " ~ is c h a r a c t e r i z e d a t e a c h c o n c e n t r a t i o n of 3
X " ~ b y a p s e u d o - f i r s t - o r d e r r a t e c o n s t a n t , k, t h e n u m e r i c a l v a l u e of w h i c h m a y b e e v a l u a t e d f r o m t h e slope of t h e l i n e a r p l o t of l o g (D -D ) œ
t
vs. t i m e , w h e r e D% a n d
D
œ
a r e t h e m o l a r a b s o r b a n c i e s of t h e s o l u t i o n a f t e r a r e a c t i o n t i m e t, a n d a f t e r a t i m e long enough
for t h e s y s t e m t o a p p r o a c h e q u i l i b r i u m , r e s p e c t i v e l y .
Numerical
v a l u e s of k w e r e o b t a i n e d for e a c h n u c l e o p h i l e a t a n u m b e r of X " ~ c o n c e n t r a t i o n s . 31
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
32
M E C H A N I S M S O F I N O R G A N I C REACTIONS T h e f o r m a t i o n of C o ( C N ) 5 X ~ b y a r a t e - d e t e r m i n i n g b i m o l e c u l a r r e a c t i o n of 3
C O ( C N ) B O H 2 ~ " a n d X " " w o u l d i m p l y t h a t i n t h e a b s e n c e of m e d i u m effects the r a t i o 2
k/ÇKr) s h o u l d be a c o n s t a n t , i n d e p e n d e n t of t h e X ~ c o n c e n t r a t i o n , for a n y g i v e n nucleophile.
However, i n experiments at unit ionic strength, it was found that the
q u a n t i t y k/ÇKr)
decreased w i t h i n c r e a s i n g X ~ c o n c e n t r a t i o n , w i t h t h e d e v i a t i o n
f r o m c o n s t a n c y g e n e r a l l y i n c r e a s i n g w i t h i n c r e a s i n g r e a c t i v i t y of t h e n u c l e o p h i l e . T h i s b e h a v i o r is i l l u s t r a t e d i n F i g u r e 1, a p l o t of k vs. X ~ for t w o t y p i c a l n u c l e o p h i l e s , Ns~ and B r ~ .
F o r e a c h n u c l e o p h i l e t h e p o i n t a t (X"~) = Ο represents the a q u a t i o n
r a t e of C o ( C N ) 5 X * ~ , t h e a p p r o p r i a t e i n t e r c e p t for e i t h e r a n S # l o r Sjy2 m e c h a n i s m .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
3
T h e p o i n t s for Br~", a r a t h e r u n r e a c t i v e n u c l e o p h i l e , define a s t r a i g h t l i n e t o w i t h i n t h e l i m i t of e r r o r of t h e m e a s u r e m e n t s .
B y c o n t r a s t , the p o i n t s for t h e m u c h m o r e
r e a c t i v e N " ~ f a l l o n a c u r v e w i t h t h e l i m i t i n g slopes, c o r r e s p o n d i n g t o t h e d o t t e d 3
lines i n t h e figure, h a v i n g t h e n u m e r i c a l v a l u e s of 80 χ 1 0 ~ a n d 38 χ 1 0 ~ a t zero a n d 5
1.0M
respectively.
δ
O t h e r n u c l e o p h i l e s , t o be d i s c u s s e d
below,
analogous behavior.
kx I0 ,sec"i 60 5
50 -
40 -
//
30
20
f
10
0
u
1
1
1
1
.2
.4
.6
.8
1
1.0 (X"),M
Figure
1.
Pseudo
first-order
rate constants vs. anion
tion at 40° C. and ionic strength
concentra
1.0AI
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
show
an
2.
HAIM ET A L .
Cobalt (III) Cyanide
Complexes
33
C u r v a t u r e i n a p l o t of k vs. (X~~) suggests t h a t t h e s u b s t i t u t i o n r e a c t i o n u n d e r c o n s i d e r a t i o n is o c c u r r i n g b y a l i m i t i n g t y p e of Sjvl m e c h a n i s m i n w h i c h X ~ is r e a c t i n g w i t h a r e a c t i v e i n t e r m e d i a t e , f o r m e d f r o m C o ( C N ) 5 0 H ~ a n d h a v i n g a life 2
2
time l o n g enough to distinguish between various nucleophiles i n the s o l u t i o n .
In
t h e r e a c t i o n sequence b e l o w , w h i c h w i l l be a d o p t e d i n t h e f o l l o w i n g d i s c u s s i o n of m e c h a n i s m s , the p r o p o s e d CO(CK)B~
2
r e a c t i v e i n t e r m e d i a t e has been a s s i g n e d t h e f o r m u l a
a n d is r e g a r d e d as a
five-coordinate
C o ( I I I ) complex
of
unspecified
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
geometry. Co(CN) OH 5
2
Co(CN) ~ 5
2
^
+
2
Co(CN) 5
X -
â
+
2
H 0
(1)
2
Co(CN) X-«
(2)
6
T h e f o r w a r d a n d reverse p a t h s of R e a c t i o n s 1 a n d 2 serve t o define t h e r a t e c o n s t a n t s fa, fa, fa, a n d fa, t h e s y m b o l s p l a c e d o v e r o r u n d e r t h e a p p r o p r i a t e a r r o w s , w i t h t h e e x c e p t i o n t h a t t h e c o n c e n t r a t i o n of w a t e r is i n c l u d e d i n fa i n t h e c u s t o m a r y f a s h i o n . If w e a s s u m e t h a t t h e a c t i v i t y coefficients of X ~ " a n d H 0 are i n d e p e n d e n t of 2
the X ~ concentration at a n y given ionic strength, then the usual steady
state
t r e a t m e n t l e a d s , w i t h o u t f u r t h e r a p p r o x i m a t i o n , t o E q u a t i o n 3, a r e l a t i o n s h i p b e t w e e n t h e p s e u d o first-order r a t e c o n s t a n t a n d t h e o t h e r k i n e t i c p a r a m e t e r s .
+ -
+
h/h
fa
fa/fa
. ν
(Χ")
w
W h e n t h e reverse of R e a c t i o n 2, t h e a q u a t i o n of C o ( C N ) 5 X ~ , is r e l a t i v e l y s l o w , as i t 3
i s for N3"* a n d S C N ~ , t h e n fa(X~) y> fa fa/fa a n d t h e o m i s s i o n of t h e s e c o n d t e r m i n t h e n u m e r a t o r of E q u a t i o n 3 i s a v a l i d a p p r o x i m a t i o n .
Equation 3 may
be
r e a r r a n g e d a n d w r i t t e n a s E q u a t i o n 4, a f o r m w h i c h i n d i c a t e s m o r e c l e a r l y t h a t £1 — fa a n d fa/fa m a y be e v a l u a t e d f r o m t h e i n t e r c e p t 1 k
—
fa fa —
W h fa
(fa —
fa)(X
a n d t h e r a t i o of s l o p e t o i n t e r c e p t i n a p l o t of l/(k fa a r e l i s t e d i n T a b l e I V .
( 4 )
)
— fa) vs. l/(X~).
V a l u e s of
W h e n fa(Xr~) ϊζ> fafa/fa, t h e n fa m a y be o m i t t e d f r o m t h e
d e n o m i n a t o r of e a c h of t h e t e r m s of E q u a t i o n 4, a n d fa a n d fa/fa m a y be e v a l u a t e d f r o m a p l o t of l/k vs. l / ( X ~ ) . T h e i n v e r s e p l o t s of l/(k
— fa) vs. l / ( X " ~ ) for t h e n u c l e o p h i l e s N 3 ~ , S C N ~ , I"",
a n d B r ~ a r e p r e s e n t e d i n F i g u r e 2, w i t h t h e p o i n t s r e p r e s e n t i n g t h e d a t a a t 40°C. and unit ionic strength.
O n l y t h e d a t a a t c o n c e n t r a t i o n s a b o v e 0.1 M h a v e been
i n c l u d e d i n o r d e r t o p r o v i d e a n a d e q u a t e e x p a n s i o n of scale, so t h a t t h e r e g i o n n e a r t h e i n t e r c e p t m a y be c l e a r l y v i s i b l e .
A n y reasonable straight line d r a w n t h r o u g h
t h e p o i n t s i n F i g u r e 2 for N$~, S C N ~ ~ , a n d p e r h a p s I , w h e r e t h e d a t a a r e s o m e w h a t -
less r e l i a b l e , w o u l d s e e m t o r e q u i r e a n o n z e r o i n t e r c e p t , t h e c h a r a c t e r i s t i c feature of a l i m i t i n g S^l m e c h a n i s m .
T h e t w o p o i n t s for B r ~ are i n c l u d e d o n l y t o i n d i c a t e
t h e r e l a t i v e p o s i t i o n of t h e p o i n t s , a l l of w h i c h lie o n a s t r a i g h t l i n e , b u t w i t h a slope so great t h a t t h e i n t e r c e p t is p o o r l y defined a n d t h e z e r o v a l u e c o u l d e q u a l l y w e l l h a v e been c h o s e n .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
34
MECHANISMS OF INORGANIC
REACTIONS
l/(X");M"'
Figure
2.
A
plot of
Kf/(k-k )
vs. the
4
reciprocal of the anion concentration for data obtained at 40° C. and ionic strength 1.0 M T h e intercept o n the ordinate i n F i g u r e 2 corresponds t o a numerical value of &i of 1.60 χ 10~~ /sec.
I n p h y s i c a l t e r m s , t h e r a t e c o n s t a n t k\ r e p r e s e n t s t h e r a t e
3
c o n s t a n t f o r g e n e r a t i o n of C o ( C N ) ~ 5
from C o ( C N ) O H .
2
5
2
I t also represents t h e
r a t e c o n s t a n t f o r f o r m a t i o n of C o ( C N ) s X ~ b y a h y p o t h e t i c a l n u c l e o p h i l e s o efficient 3
i n i t s s c a v e n g e r a c t i o n t h a t i t w o u l d b e a b l e t o c a p t u r e a l l of t h e C O ( C N ) B "
2
gener
a t e d i n R e a c t i o n 1 before r e a c t i o n w i t h w a t e r c o u l d o c c u r . T h e r a t i o o f s l o p e t o i n t e r c e p t f o r t h e v a r i o u s l i n e s i n F i g u r e 2 leads t o n u m e r i c a l v a l u e s of k /k 2
z
of 1.90, 2.95, 5.15 a n d 10 f o r N ~ , S C N ~ , I ~ , a n d B r ~ , r e s p e c t i v e l y . 3
T h e s e n u m b e r s r e p r e s e n t t h e r e l a t i v e efficiencies w i t h w h i c h w a t e r c o m p e t e s w i t h the various nucleophiles for CO(CN)Ô"" , t h e competing reactions being R e a c t i o n 2 2
a n d t h e réverse o f R e a c t i o n 1.
I n c o m p a r i n g t h e r e l a t i v e efficiencies o f w a t e r a s a
s c a v e n g e r f o r C o ( C N ) 5 ~ w i t h t h a t of a g i v e n n u c l e o p h i l e , i t m i g h t b e s o m e w h a t 2
m o r e r e a l i s t i c t o define t h e r a t e of t h e reverse of R e a c t i o n 1 a s e q u a l t o
fotCoCCN^""* ]
[ Η 0 ] , a change w h i c h w o u l d f o r m a l l y c o r r e c t f o r t h e w a t e r c o n c e n t r a t i o n . 2
p r o c e d u r e were a d o p t e d , a l l of t h e v a l u e s of k /k 2
a p p r o x i m a t e c o n c e n t r a t i o n of w a t e r i n t h e s y s t e m . m a y b e a p p l i e d t o t h e r a t i o k /k 2
z
z
2
If this
w o u l d be d i v i d e d b y 52, t h e However, a n y correction which
i n a n effort t o c o r r e c t f o r t h e w a t e r c o n c e n t r a t i o n
is, a t best, a r a t h e r a r b i t r a r y o n e .
T h e water molecule entering the coordination
sphere o f t h e C o ( C N ) ~ i o n m a y w e l l be p a r t of a h i g h l y o r d e r e d s o l v a t i o n s h e l l , a n d 6
2
t h e reverse of R e a c t i o n 1 a m u l t i m o l e c u l a r process i n v o l v i n g t h e s y n c h r o n i z e d a c t i o n of a n u m b e r of w a t e r m o l e c u l e s (8).
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM §1 AL
35
Cobalt (III) Cyanido Complexes
Experimental. I n o r d e r t o s t u d y t h e n u c l e o p h i l i c p r o p e r t i e s of Is*", i t w a s necessary t o a d d excess I"~ t o t h e s o l u t i o n s t o p r e v e n t p r e c i p i t a t i o n of I . T h e r a t e of f o r m a t i o n of C o ( C N ) 5 i ~ w a s f o l l o w e d s p e c t r o p h o t o m e t r i c a l l y a f t e r t h e l a i n a l i q u o t s of t h e s o l u t i o n t a k e n a t s u i t a b l e t i m e i n t e r v a l s w a s r e d u c e d t o Γ" b y a r s e n i t e i o n . A t y p i c a l set of e x p e r i m e n t s w a s c a r r i e d o u t a t 4 0 ° C . a n d u n i t i o n i c s t r e n g t h , w i t h a l l s o l u t i o n s c o n t a i n i n g 0.5 Ai l~ a n d v a r i a b l e I3"" a t a m a x i m u m c o n c e n t r a t i o n of 0 . 2 8 M , t h e a p p r o x i m a t e u p p e r l i m i t i m p o s e d b y s o l u b i l i t y r e s t r i c t i o n s . T h e r e s u l t s a r e p r e s e n t e d i n F i g u r e 3 as a p l o t of k', t h e s y m b o l used for t h e p s e u d o first-order r a t e c o n s t a n t for t h i s s y s t e m , vs. l / ( I ) . I t i s a p p a r e n t t h a t I ~~ i s a r e m a r k a b l y efficient n u c l e o p h i l e , w i t h a r e a c t i o n r a t e c o n s i d e r a b l y g r e a t e r t h a n t h a t f o u n d for I ~ a t c o m p a r a b l e c o n c e n t r a t i o n s . T h e points i n F i g u r e 3 also show d e t e c t a b l e d e v i a t i o n f r o m l i n e a r i t y , d e s p i t e t h e l i m i t e d r a n g e of 13" c o n c e n t r a t i o n which was available. 2
3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
3
kxlO
5
_
3
sec"' 35
30
25
20
(I - ) , M
Figure
3.
Pseudo first-order rate constant vs.
Iz~ concentration at 40°C.
and ionic strength
1.0M A s t h e d i s c u s s i o n b e l o w w i l l i n d i c a t e , t h e i n t e r p r e t a t i o n of t h e I 3 " d a t a i s s o m e w h a t m o r e a m b i g u o u s t h a n t h a t of t h e s y s t e m s c o n s i d e r e d a b o v e .
An
obvious
m e c h a n i s m , w h i c h a d e q u a t e l y r e p r e s e n t s t h e d a t a , m a y be b a s e d o n E q u a t i o n s 1, 2, 5, a n d 6. Co(CN) ~ 6
2
+
Ir
£
Ii + I-
CoCCNW-
^
3
+
If
h"
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
(5) (6)
36
M E C H A N I S M S O F I N O R G A N I C REACTIONS
T h e s t e a d y state t r e a t m e n t c o u p l e d w i t h the m i c r o s c o p i c r e v e r s i b i l i t y r e s t r i c t i o n y i e l d s E q u a t i o n 7. fafe(ir) ^
=
k
——
+
-
fa fa
j
+
r
(7)
(i-)
+(ir)
«5 L ^ 3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
In E q u a t i o n 7 the symbols
a n d k are used t o represent t h e p s e u d o
r a t e c o n s t a n t for t h e I ~ s y s t e m , t h e p s e u d o
first-order
3
first-order
r a t e c o n s t a n t for t h e
0.5M
s o l u t i o n n o t c o n t a i n i n g I ~\
I n s p e c t i o n of E q u a t i o n 8, o b t a i n e d b y r e a r r a n g i n g
E q u a t i o n 7, shows t h a t
2
3
+ (I~)] m a y be e v a l u a t e d f r o m t h e r a t i o of slope
fa/fa[k /fa
t o i n t e r c e p t i n a p l o t of l/(k'
— k) vs. l / ( I * ~ ) . 3
ι
k
3
k' -
+ ^
k k/kz(l~)
k
2
2
falfa
' "
J
7
(8)
fak(h-)/fa(l~)
T h e p o s i t i o n of t h e s o l i d l i n e i n F i g u r e 3 has been d r a w n u s i n g t h e r e s u l t i n g v a l u e of
fa/fa
T h e n u m e r i c a l v a l u e of t h e r a t i ofa/fa= 0.61 i m p l i e s t h a t I "~ i s a
= 0.31.
3
s o m e w h a t m o r e r e a c t i v e n u c l e o p h i l e t h a n I ~ o r a n y of t h e o t h e r species so f a r c o n sidered.
T h e possible significance of t h i s r e s u l t w i l l be d i s c u s s e d b e l o w .
A t t h i s p o i n t i t is necessary t o c o n s i d e r s e v e r a l possible sources of a m b i g u i t y i n i n t e r p r e t a t i o n of t h e I "~ d a t a .
F i r s t , i t s h o u l d be n o t e d t h a t l m a y f o r m a n a d d i 2
3
t i o n c o m p l e x (2, 9) w i t h C o ( C N ) I ~ , j u s t as i t does w i t h a l k y l i o d i d e s i n n o n a q u e o u s 5
solution.
3
( E x p e r i m e n t s b e a r i n g o n t h i s q u e s t i o n a r e i n progress.)
Fortunately,
t h e presence of s u c h a c o m p l e x w o u l d n o t a l t e r t h e n u m e r i c a l v a l u e s of t h e k i n e t i c parameters.
S e c o n d l y , there i s t h e p o s s i b i l i t y t h a t R e a c t i o n 5 is a t r i m o l e c u l a r
process, w i t h t h e I a n d Γ~ r e a c t a n t s a d d i n g t o C o ( C N ) e " " a t s e p a r a t e stages of the 2
2
reactant. Co(CN) 5
2
+
I
2
+
I"
^
Co(CN) I5
3
+
I
(9)
2
T h i s f o r m u l a t i o n , w h i c h is k i n e t i c a l l y i n d i s t i n g u i s h a b l e f r o m t h a t g i v e n b y E q u a t i o n 5, w o u l d r e q u i r e t h a t the n u m e r i c a l v a l u e of 0.31 be a s s i g n e d t o t h e q u a n t i t y faK/fa , f
w h e r e Κ is t h e a s s o c i a t i o n c o n s t a n t for I
3
formation.
_
Finally, it should
b e e m p h a s i z e d t h a t n o t h i n g i s k n o w n a b o u t t h e g e o m e t r y of t h e a c t i v a t e d c o m p l e x g e n e r a t e d b y e i t h e r R e a c t i o n 5 o r 9.
T o be m o r e specific, t h e I2 m o l e c u l e m a y be
b o n d e d t o I"", t o a c y a n i d e l i g a n d , o r t o t h e t
e l e c t r o n s of t h e C o ( I I I ) i o n .
2g
In w e a k l y acidic solutions the various anation reactions are not p H dependent. H o w e v e r , w h e n f o r m a t i o n of C O ( C N ) Ô O H ~ t i o n , t h e r e i s a m a r k e d decrease i n r a t e . in some detail i n this p H region.
3
becomes a p p r e c i a b l e i n a l k a l i n e s o l u
T h e a n a t i o n r e a c t i o n of N ~ " w a s s t u d i e d 3
T y p i c a l results are given i n T a b l e I.
T w o a l t e r n a t e S # l r e a c t i o n s m u s t be c o n s i d e r e d for t h e r e a c t i o n i n b a s i c s o l u tion.
T h e first a l t e r n a t i v e assumes t h a t C o ( C N ) O H 5
- 3
is completely
unreactive
a n d t h a t a t a n y g i v e n p H , N * ~ reacts o n l y w i t h t h a t f r a c t i o n of the c o m p l e x 3
as C o ( C N ) 5 0 H ~ . 2
2
present
I n t h i s f o r m u l a t i o n the p H a n d a z i d e i o n d e p e n d e n c e of
p s e u d o first-order r a t e c o n s t a n t is g i v e n b y E q u a t i o n 10.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
the
2.
HAIM ET AL.
Cobalt (III) Cyanide
T a b l e I.
37
Rate of Formation of Co(CN) N 5
3
at 4 0 C .
3
Ionic strength 1.0M, p H 6.4 k χ 10* 10*xk/(Nr), Wr), M M~ seer seer
\Co(CN) OHc*], Μ χ 10*
k χ 10* sec. (calcd.)
t
b
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
Complexes
l
1
1
0.86
0.0355
9.30
3.30
1.72
.071
8.80
6.25
6.89
.142
7.89
2.95 5.78 11.2
11.2
6.89
.212
7.48
16.1
16.0
5.32
.45
6.78
30.5
30.6
2.83
.45
6.82
30.7°
30.6
1.00
.45
6.85
30.8°
30.6
5.67
.725
6.14
44.5
44.4
7.50
.725
6.03
43.7
5.68
.90
5.61
50.5
5.48
54.8 '
5.70
1.0
E
44.4 51.5
b
6
55.2
C
" I n these experiments the C o ( C N ) * O H 2 was p r e p a r e d b y h y d r o l y s i s of C o C C N ^ B r . U n b u f f e r e d perchloric a c i d solutions_at p H 6.7. In this experiment the Co(CN)60H2 was prepared b y a c i d h y d r o l y s i s of C o f C N H N s " " . 2
- 5
6
2
e
8
,
M H ) (ΝΓ) +
" In equation
10
K
a
Kh/h
+
(ΝΓ)][Κ.
+
refers t o t h e a c i d i t y c o n s t a n t of
(H+)]
U
Co(CN)50H2~" .
10
;
I t has t h e
2
n u m e r i c a l v a l u e of 2.0 χ 10~~ a t 4 0 ° C . a n d u n i t i o n i c s t r e n g t h .
u
I n the s e c o n d of t h e
two alternative mechanisms, the further assumption is made that CO(CN)ô"" m a y 2
a l s o b e g e n e r a t e d b y R e a c t i o n 11. ki ^
f
Co(CN) OH-* 6
(In
fa'
Co(CN) 5
2
+
O H -
(11)
d e r i v i n g E q u a t i o n 1 0 a n d 11 t h e a q u a t i o n r a t e of t h e r e a c t i o n
Co(CN)5N3~~ has been neglected. 3
product
T h i s is a v a l i d a p p r o x i m a t i o n w h i c h somewhat
s i m p l i f i e s t h e f o r m o f t h e e q u a t i o n s a n d h e l p s t o c l a r i f y t h e p h y s i c a l significance o f the various kinetic parameters.) W h e n R e a c t i o n 11 i s i n c l u d e d i n t h e m e c h a n i s m , t h e e x p r e s s i o n f o r t h e r a t e constant is given b y E q u a t i o n 12.
fe(H+) + tfq](N 1 3
[(fa/fa)
+
(fa*/fa) ( O H " )
+
(ΝΓ)] [K
a
+
(H+)]
{
E q u a t i o n 1 0 does n o t p r o v i d e a n a d e q u a t e r e p r e s e n t a t i o n o f t h e d a t a .
l
}
First,
the rate constants calculated using this equation for experiments carried o u t a t a p H greater t h a n 10 are 1 5 - 2 0 % smaller t h a n t h e e x p e r i m e n t a l l y determined values. A s e c o n d , a n d p e r h a p s m o r e c o m p e l l i n g p o i n t i s t h a t E q u a t i o n 10 does n o t c o r r e c t l y p r e d i c t t h e d e p e n d e n c e of r a t e u p o n Ν3"" c o n c e n t r a t i o n i n t h e m o r e a l k a l i n e s o l u tions.
I n q u a l i t a t i v e t e r m s w h a t i s o b s e r v e d i s t h a t t h e p o i n t s i n a p l o t of k vs.
(N3-") a p p r o a c h l i n e a r i t y a s t h e a l k a l i n i t y of t h e s o l u t i o n i s i n c r e a s e d .
A p l o t of t h e
d a t a i n T a b l e I I o b t a i n e d a t p H 10.1 e x h i b i t s m u c h less c u r v a t u r e t h a n t h a t p r e s e n t e d i n F i g u r e 1.
I n a s i m i l a r p l o t of t h e d a t a i n T a b l e I I I o b t a i n e d a t a h y d r o x i d e
i o n c o n c e n t r a t i o n of 9 χ 10""~ Af t h e r e i s n o d e t e c t a b l e d e v i a t i o n f r o m l i n e a r i t y . 3
T h e d a t a u n d e r c o n s i d e r a t i o n a l l agree w e l l w i t h t h e p r e d i c t i o n s of E q u a t i o n 1 1 . T o test t h e v a l i d i t y of t h i s e q u a t i o n , i t is necessary t o e v a l u a t e t h e n e w k i n e t i c p a r a m e t e r s fa' a n d fa'/ fa. F r o m i n s p e c t i o n of t h e e q u a t i o n v a l u e s of [K
a
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
+
(H )]/ +
MECHANISMS OF INORGANIC
38 T a b l e II.
REACTIONS
Rata of Formation of Co(CN) N ~ at 4 0 C . 5
3
3
k χ 10* seer (calcd.)
1
M
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
0.18 .27 .45 .72 .90
2.67 2.49 2.36 2.29 2.19
T a b l e III.
4.64 6.80 10.8 16.2 19.5
4.81 6.72 10.6 16.5 19.7
Rate of Formation of Co(CN) N 5
3
a t 40°C.
3
-ι
WD, M 0.19 .45 .90
2.37 2.29 2.28
0.43 1.03 2.05
0.42 1.04 2.05
[ & i ( H ) -f- fa'K ] a n d of (fa/fa) + fa*/fa) (OH"") m a y be o b t a i n e d f r o m t h e i n t e r c e p t +
a
a n d t h e r a t i o of t h e s l o p e t o t h e i n t e r c e p t i n t h e l i n e a r p l o t s of l / k vs. l / ( N " ~ ) . 3
Use
of t h e d a t a of T a b l e s I I a n d I I I a n d t h e p r e v i o u s l y e v a l u a t e d q u a n t i t i e s fa, fa/fa, and K , a
w e o b t a i n Κχ
= 6.5 χ 1 0 - / s e c . 4
a
n
d k /fa
= 3.0 χ 10 . s
2
T h e excellent
a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t m a y be seen b y r e f e r r i n g t o T a b l e s I, I I , a n d I I I w h e r e e x p e r i m e n t a l v a l u e s of k m a y b e c o m p a r e d w i t h t h o s e c a l c u l a t e d f r o m E q u a t i o n 11. I n s p e c t i o n of t h e n u m e r i c a l v a l u e s of t h e k i n e t i c p a r a m e t e r s i n d i c a t e s t h a t R e a c t i o n 11 i s s o m e w h a t less efficient t h a n R e a c t i o n 1 as a g e n e r a t i n g s o u r c e for Co(CN)b"" . 2
A
fa'/fa,a n
m o r e s u r p r i s i n g r e s u l t i s t h e large v a l u e of
i n d i c a t i o n of
t h e efficiency w i t h w h i c h O H ^ c o m p e t e s w i t h w a t e r for c a p t u r e of C o ( C N ) 5 .
fa'/faw i t h
p a r i s o n of t h e v a l u e of
fa/fav a l u e s c i t e d suggests t h a t t h e
the
of r e a c t i o n of O H ~ w i t h C o ( C N ) ~ differs f r o m t h a t of o t h e r n u c l e o p h i l e s . 3
5
Com
mechanism Quite
p o s s i b l y t h e c a p t u r e of O H ~ is f a c i l i t a t e d b y a G r o t t h u s c h a i n m e c h a n i s m i n v o l v i n g p r o t o n t r a n s f e r t h r o u g h t h e s o l v a t i o n s p h e r e of t h e C o ( C N ) 5 ~ i o n . 2
T h e observa
t i o n t h a t O H ~ c o m p e t e s so f a v o r a b l y w i t h w a t e r i m p l i e s t h a t t h e w a t e r r e a c t i o n has e i t h e r a r a t h e r a p p r e c i a b l e a c t i v a t i o n e n e r g y , o r a n u n f a v o r a b l e a c t i v a t i o n e n t r o p y (or b o t h ) .
I t i s p r e s u m a b l y these f a c t o r s w h i c h e n a b l e o t h e r n u c l e o p h i l e s
t o c o m p e t e w i t h w a t e r , e v e n w h e n t h e l a t t e r is p r e s e n t a t a m u c h h i g h e r c o n c e n t r a tion. O u r d i s c u s s i o n of t h e r e a c t i o n m e c h a n i s m i n a l k a l i n e s o l u t i o n has a s s u m e d t h a t t h e b i m o l e c u l a r r e a c t i o n of C o ( C N ) O H ~ a n d N ~ does n o t p r o v i d e a n i m p o r t a n t 3
6
3
p a t h for f o r m a t i o n of C o ( C N ) N ~ . B
Co(CN) OH~ 6
3
3
+
3
N
3
-
Co(CN) N 6
3
3
+
O H -
(13)
F o r t u n a t e l y , t h e r e is a n e x p e r i m e n t a l test of t h e v a l i d i t y of t h i s a s s u m p t i o n .
I n the
d i s c u s s i o n of t h e a q u a t i o n r e a c t i o n s , t o be p r e s e n t e d b e l o w , i t w i l l be s h o w n t h a t t h e a q u a t i o n r a t e C o ( C N ) N 3 ~ i n a l k a l i n e s o l u t i o n is p H i n d e p e n d e n t , c l e a r l y i n d i 6
c a t i n g t h a t t h e reverse of R e a c t i o n 13 is u n i m p o r t a n t .
Consequently, the m i c r o
s c o p i c r e v e r s i b i l i t y r e s t r i c t i o n r e q u i r e s n o a p p r e c i a b l e f o r m a t i o n of
Οο(ΟΝ)^ζ~^
b y R e a c t i o n 13.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM ET AL.
Cobalt (III) Cyanide
Complexes
39
A f t e r c o m p l e t i o n of t h e e x p e r i m e n t s a t u n i t i o n i c s t r e n g t h , e x p l o r a t o r y s t u d i e s were c a r r i e d o u t a t m u c h h i g h e r n u c l e o p h i l e c o n c e n t r a t i o n s , d e s p i t e t h e possible u n c e r t a i n t y i n v o l v e d i n i n t e r p r e t a t i o n of t h e p h y s i c a l significance of s u c h d a t a . T h e r e s u l t s of a n a t i o n s t u d i e s u s i n g Ν 3""" a n d S C N " * a t 2 0 ° C . a n d a n i o n i c s t r e n g t h of 5.0 are p r e s e n t e d i n F i g u r e 4 as a p l o t of k vs. t h e X " c o n c e n t r a t i o n .
T h e points
show a v e r y pronounced d e v i a t i o n from linearity, as E q u a t i o n 3 w o u l d predict, a n d a n d i n t h e N e " s y s t e m t h e r a t e b e c o m e s a l m o s t z e r o - o r d e r i n N3"" a b o v e a c o n c e n t r a t i o n a p p r o x i m a t e l y 3.0ilf. of h = 51 χ 10*" s e c .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
5
- 1
T h e i n v e r s e p l o t s , b a s e d o n E q u a t i o n 4, y i e l d e d a v a l u e
a n d k /kz v a l u e s of 3.0 a n d 5.0 for N e " a n d S C N ~ 2
respectively.
T h e p o s i t i o n of t h e c u r v e s i n F i g u r e 4 were c a l c u l a t e d u s i n g these n u m e r i c a l v a l u e s of t h e k i n e t i c p a r a m e t e r s .
T h e d a t a for t h e S C N " " s y s t e m c o n f o r m c l o s e l y t o t h e
p r e d i c t i o n s of E q u a t i o n 4.
H o w e v e r , the observed deviations from linearity i n the
N 3 - system are somewhat more pronounced t h a n the theory would predict. kxl0 ,sec-' 5
Figure 4.
Pseudo first-order rate constants vs. anion concen tration at 20°C. and ionic strength 5.0M
M o r e r e c e n t l y , u n p u b l i s h e d s t u d i e s (6) h a v e been c o m p l e t e d i n t h e B r " * s y s t e m a t 2 0 ° C . a n d a t a n i o n i c s t r e n g t h of 5.0.
T h e r e s u l t s o b t a i n e d a t 0.5, 1.0, 3.0, a n d
5.0ikf Br~* m a y be a d e q u a t e l y r e p r e s e n t e d b y t h e E q u a t i o n , k = [1.2 4.9 Χ 10~" ( B r ~ ) ] / s e c . δ
X
10~"
6
+
T h e i n t e r p r e t a t i o n of t h e c o n s t a n t 1.2 X 1 0 ~ V s e c . p r e s e n t s
n o p r o b l e m since i t w o u l d r e p r e s e n t a n o t u n r e a s o n a b l e v a l u e for k\ t h e r a t e c o n y
s t a n t for s o l v o l y s i s of C o ( C N ) ô B r ~ . 3
H o w e v e r , t h e l i n e a r d e p e n d e n c e of k u p o n t h e
B r " " c o n c e n t r a t i o n i s n o t i n a g r e e m e n t w i t h c a l c u l a t i o n s b a s e d o n t h e v a l u e of k\ cited above.
I t s h o u l d p r o b a b l y be c o n c l u d e d , a s k i n e t i c i s t s g e n e r a l l y h a v e i n t h e
p a s t , t h a t t h e r e i s c o n s i d e r a b l e u n c e r t a i n t y i n t h e i n t e r p r e t a t i o n of k i n e t i c d a t a o b t a i n e d a t so h i g h a n i o n i c s t r e n g t h .
A p a r t f r o m t h i s n o t e of c a u t i o n , n o v e r y
u s e f u l g e n e r a l i z a t i o n m a y be d r a w n because of t h e v e r y l i m i t e d a m o u n t of a n a l o g o u s data i n the chemical literature. B e f o r e c o n c l u d i n g t h e d i s c u s s i o n of t h e a n a t i o n r e a c t i o n , s o m e c o n s i d e r a t i o n s h o u l d be g i v e n t o a l t e r n a t i v e f o r m u l a t i o n s o f t h e r e a c t i o n m e c h a n i s m .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
In parti-
40
M E C H A N I S M S O F I N O R G A N I C REACTIONS
cular, there is the question whether the reaction might not be proceeding by an Sj\r2 mechanism, with the decrease in k/ (X~)
with increasing (X~~) merely representing a
medium effect arising from the replacement of CIO4"" by X ~ .
M e d i u m effects could
be attributed either to the usual long range interaction of ions, or to ion pairs, or triplets having the formulas C o ( C N ) O H - - X ~ , or C o ( C N ) O H - N a + - X ~ . 5
2
2
5
2
Driv
ing force for the formation of ion pairs presumably would arise from hydrogen bond ing of the sort C o - r O r V ·Χ~~ or from electrostatic interaction of X ~ with an i n completely shielded Co(III) ion.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
It does not seem to us that long range interaction provides a very plausible explanation of the data.
In a reaction of two negative ions both theory and ex
periment seem to indicate that the value of the rate constant is not sensitive to the nature of the negative ions in the solution as long as the positive ion environment is held constant (11).
If the rate law for the Nf
system were formulated in terms of
the Brônsted-Bjerrum equation, the data of Figure 1 would require that the activity coefficient ratio change by a factor of two when the medium is changed from l . O M NaNe to l.OM
NaC104.
Further, the data would require the rather unlikely
coincidence that large changes in the activity coefficient ratios occur only with reactive nucleophiles. A n explanation based upon ion pairing would require that a substantial fraction of the C o ( C N ) O H 2 ~ be associated with X~~ ions. 2
5
In view of the unfavorable
electrostatic interaction of two anions, it hardly seems likely that extensive ion pairing would occur. It is interesting to consider whether an S ^ l mechanism might have been anticipated in the present system.
In organic systems the presence of a highly electro-
negative cyano substituent would tend to favor an Sjv2 rather than an S.yl mechanism.
T h e presence of a single cyano ligand in a positively charged complex ion
appears to have similar mechanistic consequences.
However, when the number
of cyano ligands is increased to five, the accumulation of negative charge probably produces a relatively high electron density at the cobalt atom, despite the tendency for x-bonding to spread the charge throughout the ligand sphere.
Such an accumu-
lation of negative charge at the cobalt atom should lead to a relatively weak C 0 - O H 2 bond, a weakly acidic complex, and a relatively favorable activation energy for an SjvI reaction path.
T h e observed p K of the complex and the comparatively rapid
water exchange are consistant with this view. For a limiting type of SatI mechanism, it is also necessary that the energy of the reactive intermediate be appreciably lower than that of the preceding activated complex.
In the present system, it can perhaps be argued that the decrease in
coordination number from six to five is accompanied by an increase in bond angles and a decrease in electrostatic repulsion of the negative ligands.
However, it is
difficult to assess the importance of this electrostatic argument since the changes in bond angles and coordination number also imply important changes in bond energies.
Finally, as we have suggested above, it is quite probable that the nature
of the solvation sphere plays an important role in determining the life time of the reactive intermediate.
E n t r y of a water molecule into the solvation sphere of the
Co(CN)5"~ intermediate by a complicated synchronized motion of a number of 2
water molecules obviously represents a process which might have a quite unfavorable enthalpy and entropy of activation.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM ET AL.
Cobalt (III) Cyanide
Rate of Exchange of Co(CN) OHr
with O
2
h
Complexes Labelled
1 8
41 Water
A q u i t e c o n c l u s i v e test of t h e v a l i d i t y of t h e m e c h a n i s m based o n E q u a t i o n s 1 a n d 2 w o u l d be p r o v i d e d b y a n a c c u r a t e m e a s u r e m e n t of t h e exchange r a t e of t h e water i n C o ( C N ) O H " " with H 0 5
2
2
2
has n o t y e t been c o m p l e t e d .
1 8
labelled solvent, a project w h i c h unfortunately
If t h e p r o p o s e d m e c h a n i s m is v a l i d , t h e r a t e c o n s t a n t
for w a t e r exchange s h o u l d e q u a l k\, t h e r a t e c o n s t a n t for f o r m a t i o n of C o ( C N ) ~ 5
from
Co(CN)OH ~ .
Co(CN)5X~
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
2
2
F u r t h e r , the
r a t e of
w a t e r exchange
and
the
f o r m a t i o n s h o u l d be c o m p e t i t i v e processes, w i t h t h e w a t e r
3
rate
2
of
exchange
b e i n g i n h i b i t e d i n t h e presence of a r e a c t i v e n u c l e o p h i l e . E x c h a n g e d a t a w o u l d a l s o test t h e v a l i d i t y of a n a l t e r n a t i v e m e c h a n i s m in
which
the
reactive
Co(CN) (OH ) 6
2
2
2
intermediate
is
formulated
as
the
seven
coordinate
complex.
Co(CN) OHr 5
Co(CN)
5
(OH ) ~ 2
2
+
2
H 0 2
+
2
X-
%
â±
C o ( C N ) (OH )r 5
2
Co(CN) X-
+
5
(14)
2
2 H 0
(15)
2
T h e a n a t i o n d a t a p r e s e n t e d a b o v e c o u l d e q u a l l y w e l l be i n t e r p r e t e d i n t e r m s of s u c h a mechanism.
H o w e v e r , i f t h e w a t e r molecules i n the c o m p l e x f o r m e d i n E q u a t i o n
14 b e c o m e e q u i v a l e n t , a p l a u s i b l e , a l t h o u g h n o t i n e v i t a b l e , consequence of
the
m e c h a n i s m , t h e n the p r e d i c t e d r a t e c o n s t a n t for w a t e r exchange w o u l d e q u a l k\/2. E a r l i e r a t t e m p t s t o measure t h e w a t e r exchange were b a s e d o n a n a n a l y t i c a l p r o c e d u r e i n v o l v i n g p r e c i p i t a t i o n of t h e p a r t i a l l y l a b e l l e d A g C o ( C N ) O H d e h y d r a 2
t i o n , a n d a n a l y s i s of t h e d e h y d r a t e d w a t e r for O
1 8
5
content.
2
A t t e m p t s to obtain
q u a n t i t a t i v e d a t a were f r u s t r a t e d b y a s i l v e r i o n i n d u c e d exchange process w h i c h occurred w i t h extreme r a p i d i t y , even when the precipitation was carried out i n a q u e o u s m e t h a n o l a t — 50°C.
H o w e v e r , b y v a r y i n g the O
c o n t e n t of t h e m e d i u m
1 8
used i n p r e c i p i t a t i n g A g C o ( C N ) O H , i t w a s possible t o d r a w t h e t e n t a t i v e c o n 2
5
2
c l u s i o n t h a t t h e exchange r a t e c o n s t a n t h a d a n u m e r i c a l v a l u e a p p r o x i m a t e l y e q u a l t o t h a t of k\.
M o r e r e c e n t l y , a l t e r n a t e s e p a r a t i o n p r o c e d u r e s h a v e been d e v e l o p e d ,
a n d i t is h o p e d t h a t exchange d a t a w i l l s o o n b e c o m e a v a i l a b l e .
A s t u d y of t h e
c a t a l y z e d exchange i n d u c e d b y v a r i o u s L e w i s a c i d s w i l l also be u n d e r t a k e n . T h e a q u a t i o n of t h e v a r i o u s C o ( C N ) 5 X " ~ c o m p l e x e s m u s t o c c u r b y a r e a c t i o n 3
p a t h w h i c h is m e r e l y t h e reverse of t h a t f o l l o w e d i n t h e a n a t i o n .
If t h e p r o p o s e d
m e c h a n i s m for t h e a n a t i o n r e a c t i o n is v a l i d , t h e reverse of R e a c t i o n s 1 a n d 2 m a y be u s e d t o describe t h e e q u a t i o n .
I n a n y g i v e n e x p e r i m e n t t h e r a t e of a p p r o a c h t o
e q u i l i b r i u m m a y be c h a r a c t e r i z e d b y a
first-order
t o t h e o t h e r k i n e t i c p a r a m e t e r s b y E q u a t i o n 3.
r a t e c o n s t a n t k w h i c h is r e l a t e d W h e n k%k /kz ^> & i ( X " ~ ) , as i t i s i n 4
t h e a q u a t i o n of C o ( C N ) B r " ~ i n t h e absence of a d d e d B r ~ , t h e n t h e a q u a t i o n p r o 3
5
ceeds t o c o m p l e t i o n , a n d k e q u a l s k . 4
T h e a q u a t i o n r e a c t i o n s of t h e o t h e r c o m p l e x e s d o n o t p r o c e e d t o c o m p l e t i o n , e v e n i n t h e absence of a d d e d X ~ . m a y be u s e d t o e v a l u a t e k . 4
U n d e r these c o n d i t i o n s t w o a l t e r n a t i v e m e t h o d s
I n t h e first m e t h o d k is o b t a i n e d f r o m a s t u d y of t h e 4
i n i t i a l r a t e of a q u a t i o n i n t h e t i m e v i t e r v a l w h e n t h e a n a t i o n r e a c t i o n m a y neglected.
be
I n the second m e t h o d the a q u a t i o n is s t u d i e d i n a l k a l i n e s o l u t i o n w h e r e
the f o r m a t i o n of C o ( C N ) s O H ~ t e n d s t o d r i v e t h e r e a c t i o n t o c o m p l e t i o n . 3
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
42
MECHANISMS OF INORGANIC
REACTIONS
I n a l l of t h e s y s t e m s so f a r i n v e s t i g a t e d t h e a q u a t i o n r a t e has been f o u n d t o be p H i n d e p e n d e n t i n a l k a l i n e s o l u t i o n , a t least u p t o 0.1 I f O H , t h e largest c o n c e n t r a -
tion investigated.
I t m a y be n o t e d t h a t t h i s b e h a v i o r i s e n t i r e l y a n a l o g o u s t o
t h a t of t r i t y l c h l o r i d e a n d o t h e r o r g a n i c h a l i d e s w h i c h u n d e r g o s o l v o l y s i s b y w e l l e s t a b l i s h e d SNI m e c h s n i s m s . (S) N u m e r i c a l v a l u e s of k a n d K, t h e e q u i l i b r i u m c o n s t a n t f o r C o ( C N ) 5 X " ~ f o r m a 3
4
t i o n , h a v e been a s s e m b l e d i n T a b l e I V .
I n t h e three cases w h e r e
temperature
coefficient d a t a i s a v a i l a b l e , i t c a n be seen t h a t t h e r e l a t i v e v a l u e s of £4 a r e d e t e r
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
m i n e d b y t h e differences i n b o t h AH a n d AS.
A c o m p a r i s o n of k a n d Κ i n d i c a t e s 4
t h a t a n increase i n Κ is a c c o m p a n i e d b y a decrease i n £4.
F o r a n y given nucleophile
k a n d Κ m a y b e r e l a t e d b y t h e e x p r e s s i o n Κ — hikz/kifa. 4
T h i s latter expression
h a s been u s e d t o c a l c u l a t e t h e n u m e r i c a l v a l u e s o f Κ f o r t h e S C N ~ ù n d N3""" s y s t e m s w h e r e e q u i l i b r i u m d a t a is n o t a v a i l a b l e .
Table IV. x-
J0 k seer 5.5 80 3.7 78 74 4950 1680
Γ, °C. 40 60 40 60 40 69.9 40
N 3
SCN IBr-
7
1
4
Κ
AH
AS
27.3
-0.6
1530
31.1
11.5
1460
29.7
12.5
39 0.88
42 0.95
T h e r a p i d a n a t i o n r e a c t i o n o b s e r v e d i n t h e presence of I 3 i m p l i e s t h a t I2 -
s h o u l d b e a v e r y efficient c a t a l y s t f o r t h e a q u a t i o n of Co(CN)5Ï~~ . Q u a l i t a t i v e 3
observations confirm this prediction, b u t a careful s t u d y of t h e catalyzed a q u a t i o n has n o t y e t been completed.
A s t u d y of t h e c a t a l y s i s b y o t h e r h a l o g e n m o l e c u l e s
a n d L e w i s a c i d s w i l l a l s o be u n d e r t a k e n i n f u t u r e w o r k . Acid-Catalyzed
Aquation
of
Co(CN)&Nr*
I n a c i d i c s o l u t i o n t h e a q u a t i o n o f C o ( C N ) N ~ ~ w a s f o u n d t o be a c i d - c a t a l y z e d · 6
In
3
3
t h e a b s e n c e of a n i o n s o t h e r t h a n CIO4"", t h e o n l y r e a c t i o n p r o d u c t s
C o ( C N ) O H ~ and H N 3 . 6
2
2
were
T y p i c a l results obtained a t u n i t ionic strength a n d 40°C.
a r e p r e s e n t e d i n c o l u m n 2 o f T a b l e V as p s e u d o first-order r a t e c o n s t a n t s .
Table V .
Acid-Catalyzed Aquation of Co(CN) N - .
(m) 0.0042 .0084 .0168 .0336 .0364 .0505 .091 .166 β
6
t = 40°C, μ 10% sec." 5.90 12.1 23.5 43.2 47.2 64 94 132 1
1.0
3
3
10*k seer calcd. 6.15 12.1 23.5 43.6 47.0 61 95 140
1
a
Calculated using Equation 17.
T h e m e c h a n i s m of t h e a c i d - c a t a l y z e d a q u a t i o n m a y be f o r m u l a t e d i n t e r m s o f E q u a t i o n 16 a n d 17.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM ET A l .
Cobalt (III) Cyanide Co(CN) N 5
Co(CN) N H6
3
2
3
+
- 3
+
H
2
Complexes κ ^±
H+ 0
-»
43
Co(CN) N H 5
3
Co(CN) OH 5
2
(16)
- 2
+
2
H N
(17)
3
A s w e s h a l l s h o w b e l o w , R e a c t i o n 17 does n o t o c c u r i n a single s t e p , b u t t h i s c o m p l i c a t i o n m a y be i g n o r e d f o r t h e m o m e n t .
I f w e a s s u m e t h a t R e a c t i o n 16 i s
r a p i d l y r e v e r s i b l e a n d t h e R e a c t i o n 17 i s r a t e - d e t e r m i n i n g , t h e n i t m a y r e a d i l y b e shown that the expected
d e p e n d e n c e of k u p o n h y d r o g e n i o n c o n c e n t r a t i o n i s
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
g i v e n b y E q u a t i o n 18.
k
ι + K
=
m
(
I n E q u a t i o n 18, Κ a n d k a r e t h e e q u i l i b r i u m c o n s t a n t a n d
first-order
a
for R e a c t i o n s 16 a n d 17, r e s p e c t i v e l y .
1
8
)
rate constant
T h e c o n s t a n t s k a n d Κ m a y be e v a l u a t e d a
b y u s i n g E q u a t i o n 18 a n d t h e d a t a g i v e n i n c o l u r h n s 1 a n d 2 of T a b l e V . T h e p r o c e d u r e i n v o l v e s o b t a i n i n g l/k
a
a n d Κ f r o m t h e i n t e r c e p t a n d t h e r a t i o of i n t e r
c e p t t o slope i n t h e l i n e a r p l o t of l/k vs. l / ( H ) a n d leads t o k = 3.2 χ 1 0 +
and Κ
= 4.7.
sec.
- 3
a
- 1
T h e e x c e l l e n t a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t m a y be
seen b y c o m p a r i n g t h e e x p e r i m e n t a l a n d c a l c u l a t e d v a l u e s of k g i v e n i n T a b l e V . M a j o r r e s u l t s were o b t a i n e d w h e n t h e a c i d - c a t a l y z e d a q u a t i o n was c a r r i e d o u t in
solutions containing S C N ions.
B y carrying out the
-
spectrophotometric
analyses a t a p p r o p r i a t e wave lengths, i t was possible t o follow simultaneously t h e r a t e of d i s a p p e a r a n c e of C o ( C N ) 5 N
3
a n d t h e r a t e of f o r m a t i o n of C o ( C N ) § O H
- 3
I t w a s f o u n d t h a t t h e presence of S C N of C o ( C N ) N r . 5
-
However, both C o ( C N ) O H
3
6
2
and C o ( C N ) N C S -
- 2
5
3
- 2
.
a p p e a r e d as
reaction products, even i n time intervals so short t h a t the C o ( C N ) 6 N C S h a v e been f o r m e d b y r e a c t i o n of C o ( C N ) O H 5
2
and S C N
- 2
these e x p e r i m e n t a l r e s u l t s a r e p r e s e n t e d i n T a b l e V I . constants
2
d i d n o t influence t h e r a t e of d i s a p p e a r a n c e
f o r t h e d i s a p p e a r a n c e of C o ( C N ) N " " 6
3
3
- 3
- 3
could not
D a t a illustrating
.
T h e pseudo
first-order
are listed i n column
rate
3 under
t h e h e a d i n g 1 0 km s e c . , t h e s u b s c r i p t 3 8 0 i n d i c a t i n g t h a t t h e s p e c t r o p h o t o 6
- 1
m e t r i c m e a s u r e m e n t s were c a r r i e d o u t a t λ = 380 πιμ w h e r e C o ( C N ) O H 6
CO(CN)ÔNCS~
have identical molar absorbancy indices.
3
these r a t e c o n s t a n t s agree w i t h those of T a b l e V .
2
- 2
and
W i t h i n the l i m i t of error
B y contrast, the pseudo
first-order
r a t e c o n s t a n t s i n c o l u m n 4 of T a b l e V I , w h i c h m e a s u r e t h e i n i t i a l r a t e of a p p e a r a n c e of C o ( C N ) 5 0 H SCN
-
2
2
- 2
, s h o w a d i s t i n c t decrease i n m a g n i t u d e i n t h e presence of a d d e d
because of t h e p a r a l l e l f o r m a t i o n of C O ( C N ) B N C S .
T O indicate
- 3
more
c l e a r l y t h e n a t u r e of t h e s t u d i e s , t h e r e s u l t s o f a single e x p e r i m e n t are p r e s e n t e d i n m o r e d e t a i l i n F i g u r e 5.
Table V I .
0.019 .092 .091 .091 .166 .166 .166
A c i d - C a t a l y z e d A q u a t i o n o f C o ( C N ) N - a t 40°C.
(SCN-) 0 0.50 .70 .90 0 0.40 .80
s
μ = 1.0, i n the presence of S C N " 10* k Q, 10* k is, sec.~ sec. 94 83 ± 3 * 96 94 80 ± 3 91 66 ± 4 132 133 132 121 ± 5 133 104 ± 4 U
2
1
l
3
3
10* k seer , calcd.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
i7S
' 85 76 69 116 104
1
MECHANISMS OF INORGANIC
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
44
7
8
9
10 II
time,
Figure
5.
An experiment
etry in the presence measurements
12
REACTIONS
13 14 15 16 17 18 19 2 0 21 2 2
min.
illustrating
of thiocyanate
the change in
at 380 and 278 mμ, respectively;
represents our evaluation
stoichiom-
and Ο
ion; ·
represent
the dotted
of the initial
line
slope.
T h e d a t a of T a b l e I V s t r o n g l y suggest t h a t w a t e r a n d S C N " a r e r e a c t i n g i n a c o m p e t i t i v e fashion, w i t h a reactive intermediate generated i n or after the rated e t e r m i n i n g s t e p of t h e a c i d - c a t a l y z e d a q u a t i o n .
E q u a t i o n s 19, 2 0 , a n d 21 r e p r e
s e n t a p l a u s i b l e m e c h a n i s m f o r g e n e r a t i o n of t h e r e a c t i v e i n t e r m e d i a t e , a s s u m e d t o be C o ( C N ) 5 ~ , a n d i t s c o m p e t i t i v e r e a c t i o n s w i t h w a t e r a n d S C N ~ ~ . 2
Co(CK) N H5
3
Co(CN) -
2
5
Co(CN) 5
2
+
H
+
2
0
2
5
+
2
determining
Co(CN) OH 5
rs Co(CN) -
rate
H N ,
2
(20)
2
CoCCN^NCS-
SCN'
(19)
(21)
3
If w e a s s u m e t h a t t h e c h e m i c a l p r o p e r t i e s o f t h e C o ( C N ) ~ g e n e r a t e d i n R e a c t i o n 19 5
2
a r e i d e n t i c a l w i t h t h o s e of R e a c t i o n 1, t h e n t h e m e a s u r e d v a l u e of k a n d t h e p r e a
v i o u s l y t a b u l a t e d v a l u e of k /k% = 2.95 m a y be u s e d t o c a l c u l a t e km, t h e r a t e 2
constant for f o r m a t i o n of C o ( C N ) O H ~ a t v a r i o u s S C N ~ " concentrations. 6
2
2
The
c a l c u l a t i o n w a s c a r r i e d o u t u s i n g E q u a t i o n 22, a n e q u a t i o n w h i c h w a s d e r i v e d i n t h e a p p e n d i x of o u r o r i g i n a l p u b l i c a t i o n ( 7 ) . kk /fa 2
(SCN") T h e excellent agreement between
+
(22)
k /k 2
z
t h e c a l c u l a t e d a n d e x p e r i m e n t a l v a l u e s o f km
l i s t e d i n T a b l e V I w o u l d s e e m t o p r o v i d e s t r o n g s u p p o r t f o r t h e p r o p o s e d S^rl mechanisms. T h e k i n e t i c p a r a m e t e r s o b t a i n e d i n t h e a b s e n c e of S C N ~ a r e of s o m e i n h e r e n t interest.
T h e a c i d - c a t a l y z e d a q u a t i o n of l i g a n d s w h i c h a r e c o n j u g a t e bases of w e a k
a c i d s h a s been o b s e r v e d i n a n u m b e r of o t h e r s y s t e m s ( i ) , b u t p r e v i o u s s t u d i e s
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM FT AL.
Cobalt (III) Cyanide
Complexes
45
f r e q u e n t l y p r o v i d e a v a l u e o n l y f o r t h e p r o d u c t k K.
T h e n u m e r i c a l values of k
and
Both
a
a r e therefore
Κ
Co(CN) N3~"
some
inherent
appear to undergo
3
5
of
a
interest.
Co(CN) N H"~ and 6
2
3
solvolysis b y a n S ^ l mechanism.
T h e large
i n c r e a s e i n l a b i l i t y c a u s e d b y a d d i t i o n of t h e p r o t o n t o t h e a z i d e l i g a n d i s g i v e n b y t h e r a t i o k /k a
= 5800.
4
I t i s i n t e r e s t i n g t o c o m p a r e t h e a c i d i t y c o n s t a n t of C o ( C N ) c N 3 H HN . 3
T h e a d d i t i o n of C o ( C N )
5
- 2
b y a f a c t o r of a p p r o x i m a t e l y 5 χ 10 .
w i t h t h a t of
T h e a c i d i t y c o n s t a n t of C o ( C N ) 5 0 H
3
l a r g e r t h a n t h a t of H 0 b y a f a c t o r of 2 χ 10 . 5
2
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
- 2
t o t h e l a t t e r species increases t h e a c i d i t y c o n s t a n t 2
- 2
is
T h e s o m e w h a t different b e h a v i o r
of t h e t w o p a i r s of a c i d s i s n o t p a r t i c u l a r l y s u r p r i s i n g , since t h e s t r u c t u r e s of Co(CN) OH 6
Reaction
2
- 2
and Co(CN) N H 5
of Co(CN) Nr*
and
&
An
attempt
3
was made
- 2
are q u i t e different.
HN0
2
t o generate
Co(CN)
5
- 2
b y the rapid reaction
of
C o ( C N ) 5 N 3 ~ a n d H N 0 , a p r o c e s s (4) w h i c h y i e l d s o n l y t h e p r o d u c t s l i s t e d b e l o w 3
2
i n t h e a b s e n c e of a n i o n s o t h e r t h a n CIO4"". Co(CN) N + 5
3
+
3
HN0
-f
2
H+
-»
Co(CN) OH 6
2
+
-
N
+
2
N
0 (23)
2
It w a s h o p e d t h a t a n i n t e r m e d i a t e i n R e a c t i o n 23, p e r h a p s C o ( C N ) 5 N 4 0 , w o u l d T
- 2
contain the nitrogen atoms i n a very weakly bonded ligand, a situation which would f a v o r l i g a n d e x p u l s i o n a n d g e n e r a t i o n of C o ( C N ) 5 ~ .
T h e procedure designed t o
2
d e t e c t t h e presence of C o ( C N ) & ~ i n v o l v e d s t u d y i n g t h e r a t e a n d s t o i c h i o m e t r y of 2
the r e a c t i o n i n t h e presence of a d d e d B r a n d S C N ; t h i s m e t h o d of a p p r o a c h is -
-
e n t i r e l y a n a l o g o u s t o t h a t a d o p t e d i n t h e s t u d y of t h e a c i d - c a t a l y z e d a q u a t i o n of Co(CN)5N
- 3
3
.
However,
t h e r e s u l t s were s o m e w h a t
obtained i n the latter system.
more complex
than
those
A t c o n c e n t r a t i o n s of B r o r S C N i n t h e range of -
-
0.01 ilf, t h e s t o i c h i o m e t r y of t h e r e a c t i o n r e m a i n e d t h a t g i v e n b y E q u a t i o n 23, t h e expected
result a t this l o w scavenger
either B r
-
concentration.
H o w e v e r , t h e presence o f
o r S C N w a s f o u n d t o increase t h e r e a c t i o n r a t e , q u i t e p o s s i b l y because -
of t h e a p p e a r a n c e of a n e w r e a c t i o n p a t h i n v o l v i n g N O X , a r a t h e r c o m m o n of H N 0
feature
reaction mechansims.
2
W h e n t h e c o n c e n t r a t i o n of B r o r S C N w a s i n c r e a s e d f r o m 2.0M t o 5.0il/, a n -
increase i n rate a n d the expected Co(CN)6Br
or C o ( C N ) N C S
- 3
5
- 3
-
scavenger
a c t i o n were
both observed,
a p p e a r i n g as r e a c t i o n p r o d u c t s .
with
I t c a n be c o n
c l u d e d t h a t these l a t t e r p r o d u c t s w e r e f o r m e d b y r e a c t i o n o f B r o r S C N w i t h a -
-
r e a c t i v e i n t e r m e d i a t e , since there w a s n o c o r r e l a t i o n b e t w e e n t h e c h a n g e i n r a t e a n d t h e c h a n g e i n s t o i c h i o m e t r y c a u s e d b y t h e presence of t h e s c a v e n g e r s . e v e r , a n a n a l y s i s o f t h e s t o i c h i o m e t r y d a t a leads t o v a l u e s of kmo/kiC
How
w h i c h are t w o
t o t h r e e t i m e s s m a l l e r t h a n t h e c o r r e s p o n d i n g v a l u e s of k /kz o b t a i n e d f r o m t h e 2
a n a t i o n studies.
P r e l i m i n a r y results are s u m m a r i z e d i n T a b l e V I I .
S e v e r a l a l t e r n a t i v e i n t e r p r e t a t i o n s m a y be suggested results.
First,
CO(CN)Ô , - 2
but with
Co(CN) N40 6
i t is possible
- 2
some
t h a t t h e scavenger other
mentioned above.
reactive
to explain the above
ions are reacting, not w i t h
intermediate
such
a s t h e species
Secondly, there is the p o s s i b i l i t y t h a t C O ( C N ) B
is g e n e r a t e d i n b o t h t h e a c i d - c a t a l y z e d a q u a t i o n a n d t h e H N 0
2
- 2
reaction, but that
t h e t w o r e a c t i o n s m a y p r o d u c e different i s o m e r i c f o r m s of C o ( C N )
6
- 2
, one f o r m
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
46
M E C H A N I S M S O F I N O R G A N I C REACTIONS
Table VII·
Competition of X ~ a n d H 0 f o r t h e Intermediate G e n e r a t e d In t h e C o ( C N ) N - - H N 0 S y s t e m 2
s
3
3
2
kmo/k
x
t 20 40
μ 5.0 1.0
Br~ 15 - 7 . 7 33
SCN3.7 6.7
e
° Values at 1.0, 3.0, and 5.0 M (Br~) are 15, 12 and 7.7, respectively.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
perhaps being trigonal b i p y r a m i d a l a n d the other tetragonal p y r a m i d a l .
As a
t h i r d a n d s o m e w h a t less p l a u s i b l e e x p l a n a t i o n , i t m i g h t be a s s u m e d t h a t a n a t i o n R e a c t i o n 1 a n d 2 a c t u a l l y p r o c e e d e d b y t w o p a r a l l e l r e a c t i o n p a t h s , one c o r r e s p o n d i n g t o t h e m e c h a n i s m d i s c u s s e d a b o v e , a n d t h e o t h e r t o a b i m o l e c u l a r S#2 process. T h i s s i t u a t i o n w o u l d l e a d t o a n i n c o r r e c t a s s i g n m e n t of k /kz v a l u e s .
However,
2
t h i s e x p l a n a t i o n w o u l d seem t o be r u l e d o u t b y t h e fact t h a t i d e n t i c a l v a l u e s of k /kz were o b t a i n e d i n t w o different s y s t e m s , t h e a n a t i o n r e a c t i o n a n d t h e a c i d 2
c a t a l y z e d a q u a t i o n of C o ( C N ) N 3 ~ . 5
Literature
3
Cited
(1) Basolo, F., Pearson, R . G . , " M e c h a n i s m s of Inorganic R e a c t i o n s , " p. 152, W i l e y , N e w Y o r k , 1958. (2) B u j a k e , J. E., Jr., N o y e s , R . M., J. Am. Chem. Soc. 83, 1555 (1961). (3) G r a s s i , R . J., W i l m a r t h , W. K., "Proceedings of the Seventh I n t e r n a t i o n a l C o n f e r ence o n C o o r d i n a t i o n C h e m i s t r y , " p. 242, B u t t e r w o r t h , L o n d o n , 1963. (4) H a i m , A l b e r t . P r e l i m i n a r y results. F u r t h e r w o r k is i n progress. (5) H a i m , A l b e r t , unpublished experiment. (6) H a i m , A l b e r t , unpublished experiments. (7) H a i m , Α., W i l m a r t h , W. K., Inorg. Chem. 1, 573, 583 (1962). (8) Ingold, C . K., " S t r u c t u r e a n d M e c h a n i s m s i n Organic C h e m i s t r y , " section 27d, p. 376, C o r n e l l U n i v e r s i t y Press, I t h a c a , 1953. (9) K a t z i n , L. E., McBeth, E. L., J. Phys. Chem. 62, 253 (1958). (10) K i n g , E . L., chapter i n " H o m o g e n e o u s C a t a l y s i s II," Ed., P . H. E m m e t t , R e i n h o l d , N e w Y o r k , 1955. (11) O l s o n , A. R., Simonson, T . R . , J. Chem. Phys. 17, 1167 (1949). RECEIVED
April
3,
1964.
Discussion I t is a pleasure t o r e p o r t t h e w o r k c a r r i e d o u t b y A l b e r t
Wayne K . W i l m a r t h :
H a i m a n d R o b e r t G r a s s i d e a l i n g w i t h s u b s t i t u t i o n r e a c t i o n s of t h e
pentacyano-
c o b a l t ( I I I ) complexes. I n the p a p e r , we e x p l o r e t h e p o s s i b i l i t y of i n t e r p r e t i n g these r e s u l t s i n t e r m s of a l i m i t i n g t y p e of S i v l m e c h a n i s m w i t h a n i n t e r m e d i a t e w h i c h has a p r o p o s e d l i f e t i m e sufficient t o d i s c r i m i n a t e between v a r i o u s n u c l e o p h i l e s p r e s e n t i n t h e s y s t e m . I h a d h o p e d t h a t we m i g h t h a v e m o r e w o r k t o r e p o r t a t t h i s t i m e , a n d w h i l e we h a v e c a r r i e d o u t c e r t a i n o t h e r s t u d i e s , i n t h e m a i n , t h e y d o n o t change g r e a t l y t h e c o n c l u s i o n s of t h e p a p e r .
I t h i n k , therefore, i n h a r m o n y w i t h t h e p h i l o s o p h y of t h e
F a r a d a y Society, that I w i l l merely conclude the talk at this point a n d a t t e m p t to answer pertinent questions.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM ET AL.
Diêcuuion
47
J o h n B a i l a r p o i n t e d o u t t h a t i n the e a r l y d a y s there
Richard G . Y a l m a n :
were s o m e 30-odd p r o p o s a l s for a W a l d e n r e a r r a n g e m e n t .
A s I l o o k a t the p a p e r s
t o d a y a n d t h e i r different m e c h a n i s m s i t seems t h a t w e a r e t r y i n g t o e s t a b l i s h , for t h e m o s t p a r t , single m e c h a n i s m s t o d e s c r i b e — a n d t h a t ' s a l l we are d o i n g , w e a r e d e s c r i b i n g t h i n g s h e r e — a w i d e v a r i e t y of s y s t e m s .
W h a t I a m s u g g e s t i n g is t h a t
w h e n we l o o k a t the p e n t a m m i n e s y s t e m , we are l o o k i n g a t the p e n t a m m i n e s y s t e m . W h e n w e are l o o k i n g a t the p e n t a c y a n o s y s t e m , we a r e l o o k i n g a t t h e p e n t a c y a n o system.
W h e n we l o o k a t the b i s e t h y l e n e d i a m i n e s y s t e m , w e a r e l o o k i n g a t t h e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
bisethylenediamine system.
I t does n o t follow t h a t a n y of these s y s t e m s m a y h a v e
related mechanisms. I w o u l d even say that to t r y to look at a system and then analyze our data i n t e r m s of t h e p r o p o s a l of t h e a u t h o r i t y figures is p r o b a b l y d o i n g ourselves a d i s service.
T h i s is n o t t o s a y t h a t these d o n o t serve as w o n d e r f u l guide lines, a n d
t h a t p e r h a p s we w i l l e n d u p u s i n g t h o s e m e c h a n i s m s , b u t I d o h a v e a w o r d of c a u tion. A n o t h e r p o i n t w h i c h I w o u l d l i k e t o b r i n g u p is t h e i m p o r t a n c e of w h a t I w i l l call " o f f - s i t e " reactions.
W e have already touched on this t o d a y i n our discussions
of o t h e r sphere a s s o c i a t i o n . I t h i n k i n the c u r r e n t p a p e r , D r . W i l m a r t h ' s p a p e r w o r k e d on b y D r . H a i m , t h e a c i d c a t a l y s i s of t h e a q u a t i o n of t h e a z i d e s y s t e m i s a n e x a m p l e of w h a t I c a l l an "off-site" reaction.
T h e a t t a c h m e n t of h y d r o g e n t o n i t r o g e n , w h i c h is three
a t o m s a w a y f r o m t h e c o b a l t a t o m b r i n g i n g a b o u t a w e a k e n i n g of the c o b a l t n i t r o g e n b o n d a n d — i f I r e m e m b e r the figures c o r r e c t l y — a 3500-or 5800-fold increase i n the r a t e of a q u a t i o n . F o r those w h o are t u r n i n g t o w a r d b i o l o g i c a l a p p l i c a t i o n s , i t is t h e " o f f - s i t e " r e a c t i o n s w h i c h I t h i n k are g o i n g t o be m o r e i m p o r t a n t t h a n t h e o n - s i t e r e a c t i o n s w h i c h h a v e been t h e s u b j e c t of t h e p r e v i o u s d i s c u s s i o n . A n o t h e r e x a m p l e is t h e increase i n the a q u a t i o n of t h e i o d i d o p e n t a c y a n o s y s t e m i n t h e presence of t h e t r i - i o d i d e i o n .
A g a i n , t h i s is w h a t I w o u l d c a l l a n " o f f - s i t e "
or O S R reaction. A t h i r d e x a m p l e is the r e a c t i o n of n i t r i t e w i t h the a z i d e c o m p l e x . to discuss this more.
I don't want
I t h i n k that C a r l B r u b a k e r would like to talk about this.
I w i s h t o p o i n t o u t t h a t these r e a c t i o n s were s t u d i e d i n e i t h e r n e u t r a l o r a c i d i c solutions where the cyanide cobalt system is really unstable t h e r m o d y n a m i c a l l y . I raise the question about oxidation-reduction i n the iodo complex. mentioned i n the paper.
T h i s wasn't
I t seems t o m e i t w o u l d p r o v i d e a n a l t e r n a t e p a t h w h i c h
m i g h t increase t h e r e a c t i o n rates i n t h e case of the i o d i d e c o m p l e x . I h a v e t o u c h e d o n s o m e of t h e p e r i p h e r a l m a t t e r s . Carl H . Brubaker, J r . :
I agree w i t h D r . Y a l m a n t h a t t h i s r e p r e s e n t s a v e r y
c o m p l e t e piece of w o r k , a n d I t h i n k , t h e m a j o r i t y of t h e c o n c l u s i o n s a r e f a i r l y c l e a r cut.
T h e r e is n o t m u c h t h a t c a n be a d d e d aside f r o m s p e c u l a t i o n .
I would hope
t h a t a l i t t l e l a t e r P r o f . W i l m a r t h o r o t h e r s w i l l s p e c u l a t e a b o u t t h e s t r u c t u r e s of t h i s t r a n s i t i o n s t a t e species, o r s e v e r a l species of t h e p e n t a c y a n o c o b a l t a t e ( I I )
t h a t are
s u p p o s e d t o be the t r a n s i t i o n s t a t e c o m p l e x , o r a n i n t e r m e d i a t e . I a l s o h o p e t h a t someone w o u l d c o m m e n t r e g a r d i n g D r . Y a l m a n ' s c o m m e n t s a b o u t t h e r e a c t i o n between the n i t r i t e i o n a n d t h e a z i d o c o m p l e x .
O n e finds t h a t
t h e s c a v e n g i n g a c t i v i t y o f — I believe i t w a s b r o m i d e a n d t h i o c y a n a t e — i s m u c h m o r e effective i n t h e presence t h a n i n t h e absence of n i t r i t e i n the a z i d e s y s t e m .
A. C. S. Editorial Library In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
The
48
MECHANISMS OF INORGANIC
REACTIONS
s t a t e m e n t i s m a d e t o w a r d the e n d of the p a p e r t h a t t h e e n h a n c e d s c a v e n g i n g a c t i v i t y of t h i o c y a n a t e o r b r o m i d e m i g h t be the r e s u l t of m o r e r e a d y a t t a c k b y t h i o c y a n a t e o r b r o m i d e o n t h e p r o d u c t of t h e r e a c t i o n b e t w e e n t h e n i t r i t e a n d t h e a z i d o c o m p l e x , i n o t h e r w o r d s , a t h i n g d e s i g n a t e d as p e r h a p s b e i n g a n N4 o r a n N4O group; or the pentacyanocobaltate a n o t h e r e n t i r e l y different species.
species i n t h i s case m i g h t be i s o m e r i c w i t h I w o n d e r i f i t w o u l d e n ' t be w o r t h w h i l e t o s p e c u
late as t o w h y one m i g h t e x p e c t t h a t a different species w o u l d r e s u l t f o l l o w i n g t h e e l i m i n a t i o n of a n N4O, o r w h a t e v e r t h e f r a g m e n t s a r e , a n d w h y one m i g h t e x p e c t
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
t h a t t h i s N4O u n i t m i g h t be so m u c h m o r e e f f i c i e n t l y d i s p l a c e d b y t h i o c y a n a t e o r bromide.
I n f a c t , I t h i n k i t m i g h t be w o r t h w h i l e t o d i s c u s s t h e possible s t r u c t u r e
of t h i s p e n t a c y a n o c o b a l t a t e . W i t h respect t o t h e r e a c t i o n of t h e a z i d o c o m p l e x a n d n i t r o u s
Dr. W i l m a r t h :
a c i d , since t h i s w o r k w a s d o n e b y D r . H a i m , I t h i n k he s h o u l d c o m m e n t i f he cares t o d o so. In a d d i t i o n , I t h i n k workers i n D r . T a u b e ' s lab have s t u d i e d i n some detail the r e a c t i o n of a n u m b e r of a z i d o c o m p l e x e s w i t h n i t r o u s a c i d , a n d i t m i g h t be i n t e r e s t i n g t o h a v e a few c o m m e n t s o n t h i s w o r k . I t h i n k t h a t D r . W i l m a r t h a n d his c o - w o r k e r s h a v e p r e s e n t e d
Henry Taube:
e x c e l l e n t e v i d e n c e for t h e e x i s t e n c e of a genuine p e n t a c o o r d i n a t e d i n t e r m e d i a t e i n the c y a n o system.
T h e result reported b y t h e m t h a t the intermediate generated
b y t h e s p o n t a n e o u s r e a c t i o n i s different f r o m t h a t w h i c h m a y be g e n e r a t e d b y t h e r e a c t i o n of H O N O w i t h C o ( C N ) 5 N
3
+ 3
casts d o u b t o n s o m e of t h e c o n c l u s i o n s w h i c h
D r . H a i m a n d I r e a c h e d o n t h e r e a c t i o n of n i t r o u s a c i d w i t h t h e a z i d o p e n t a a m m i n o cobaltic ion.
I n a d d i t i o n , y o u w i l l r e m e m b e r t h a t s o m e of t h e r e s u l t s w h i c h R a l p h
P e a r s o n m e n t i o n e d a l s o cast d o u b t o n o u r c o n c l u s i o n s . I w a n t t o enlarge a l i t t l e o n t h e t h e m e of l o o k i n g for g e n u i n e i n t e r m e d i a t e s . I d o n o t k n o w h o w to u n d e r s t a n d t h e r e s u l t s of D r . P e a r s o n a n d c o - w o r k e r s , b u t a t t h e s a m e t i m e I b e l i e v e e v i d e n c e for the existence of i n t e r m e d i a t e s i n t h e c a t i o n i c species is a c c u m u l a t i n g . which D.
I w o u l d l i k e t o offer a s u g g e s t i o n r e l a t i n g t o t h e w o r k
D r . Pearson has cited a n d
then m e n t i o n some a d d i t i o n a l evidence
by
L o e l i g e r w h i c h fits i n w e l l w i t h t h e r e s u l t s of A . S a r g e s o n , a n d w i t h those of
others.
The
r e s u l t s in
support
toto
the
assumption
that
pentacoordinated
i n t e r m e d i a t e s are f o r m e d i n some s y s t e m s . D r . Pearson presented d a t a on the o p t i c a l density observed w h e n the n i t r a t o c o b a l t i c c o m p l e x r e a c t s w i t h t h i o c y a n a t e i o n , a n d there is n o t h i n g t o o b j e c t t o i n these r e s u l t s .
B u t I t h i n k one m i g h t be c o n c e r n e d a b o u t t h e t h e o r e t i c a l c u r v e
c a l c u l a t e d u s i n g t h e c o m p e t i t i o n r a t i o i n a t a b l e w hich H a i m a n d T a u b e p r e s e n t e d r
in the j o u r n a l . A n i m p o r t a n t p o i n t i n t h i s w o r k w h i c h m u s t be k e p t i n m i n d i s t h a t t h e r e a c t i o n of H O N O w i t h ( N H ) C o N 3
5
3
+ 2
often implicates the ligand, X .
T h o u g h i n some
i n s t a n c e s i t w a s s h o w n t h a t t h e f o r m a t i o n of t h e p r o d u c t ( N H 3 ) C o X 5
+ 2
was not
related to the c o n t r i b u t i o n to the t o t a l reaction b y the p a t h ( Ν Η ) Ο ο Ν 3
HONO
4- X~~, t h i s w a s n o t d o n e i n a l l cases.
δ
3
+
+ 2
I n a n y i n d i v i d u a l case, t h e p o s s i
b i l i t y exists t h a t a species N O X i n r e m o v i n g N ~ places X " ~ o n C o ( I I I ) .
T h e mere
fact t h a t ( N H ) C o X
3
3
3
6
+ 2
is f o r m e d is n o p r o o f t h a t a n i n t e r m e d i a t e ( N H ) C o " 6
, _ 3
f o r m e d ; a n y p r o o f rests r a t h e r o n d e m o n s t r a t i n g t h a t t h e r a t i o , ( ( N H ) Ô C O X 3
( ( N H ) 5 C o O H 2 ) is linear i n ( X ~ ) a n d on 3
+ 3
finding
4 2
is )/
t h e same c o m p e t i t i o n r a t i o i n
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM BT AL.
Discussion
m o r e t h a n one s y s t e m .
49
I n o u r w o r k , t h e v a r i a t i o n of c o m p e t i t i o n r a t i o as a f u n c
t i o n of (X~~) w a s t e s t e d o n l y i n a few cases, a n d o u r r e s u l t s i n a n y e v e n t were n o t v e r y precise.
F o r the system w i t h X ~ = NCS~~ the c o m p e t i t i o n ratio was found
n o t t o be i n d e p e n d e n t of (X~~), a n d t h i s itself is e v i d e n c e t h a t t h e r e is a c o m p l i c a t i o n i n t h i s r e a c t i o n ; t h e c o m p l i c a t i o n m a y be t h a t there is a s t r o n g c o m p o n e n t (ΧΗ ) Ο)Ν 3
δ
3
+ N O X where X
+ 2
is i n s e r t e d w h e n a z i d e i o n leaves (as Ν 2 +
-
from N2O).
R . B . J o r d a n , h a v i n g l e a r n e d a b o u t the w o r k of P e a r s o n a n d M o o r e , has b e c o m e i n t e r e s t e d i n the issues a n d has s e a r c h e d for t h e f o r m a t i o n of ( N H ) 5 C o B r 3
when ( N H ) C o N 0
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
3
5
3
+ 2
reacts i n the presence of B r ~ .
H i s observations
+ 2
suggest
t h a t t h e b r o m o c o m p l e x does a p p e a r i n i t i a l l y , b u t o n c a l c u l a t i n g the c o m p e t i t i o n r a t i o finds i t t o be less b y a f a c t o r of a b o u t 2 t h a n t h a t r e p o r t e d b y H a i m a n d m y self.
J o r d a n has d o n e o n l y a single e x p e r i m e n t o n t h i s .
T h e s u b j e c t is o b v i o u s l y
w o r t h g o i n g i n t o i n some d e t a i l , b u t a t t h i s p o i n t I a m n e i t h e r p r e p a r e d t o s a y t h a t Jordan's result supports the conclusions which D r . H a i m a n d I reached, nor that it does n o t . D r . L o e l i g e r has been s t u d y i n g t h e changes i n c o n f i g u r a t i o n w h i c h a c c o m p a n y substitution in acid solution.
T h e r e l e v a n c e of these e x p e r i m e n t s t o o u r present
c o n c e r n is t h i s : i f i n t e r m e d i a t e s are f o r m e d w h i c h h a v e p r o p e r t i e s i n d e p e n d e n t of h o w t h e y are f o r m e d , t h e n changes i n g e o m e t r y s h o u l d be i n d e p e n d e n t of h o w t h e net s u b s t i t u t i o n is b r o u g h t a b o u t .
S o m e of t h e d a t a w h i c h L o e l i g e r has o b t a i n e d
together w i t h those of o t h e r s are s h o w n i n t h e f o l l o w i n g t a b l e .
Configuration Changes Accompanying Spontaneous a n d Assisted Aquation Assumed Intermediate trans-Co trans-Co trans-Co trans-Co trans-Co trans-Co a h e
Method of
en N en N en N en H20 en H 0 en H 0 2
3
2
3
2
3
trans-Co trans-Co trans-Co trans-Co trans-Co trans-Co
+ 2
+ 2 + 2
2
2
2
2
2
en (N ) + + en (N ) -f en N Cl+ + en N H 0+ en ClH 0+ en (H 0) 2
3
2
2
2
2
2
3
2
3
2
2
2
2
2
2
%
trans Product
Formation
2
2
+ 3
HN0 Hg+ Hg+ + HN0 + Hg+ + H 0
100 100" 100* 60 ± 5° 60 65 e
2
2
2
2
6
2
c
2
Experiments by D . Loeliger. Sargeson, A . M . , Australian J. Chem., 17(3), 385 (1964). Kruse, W . , Taube, H . , J". Am. Chem. Soc, 83, 1280 (1961). T h e o b s e r v a t i o n s i n w h i c h c o n f i g u r a t i o n is r e t a i n e d (100% t r a n s p r o d u c t ) a r e
o n l y of l i m i t e d usefulness.
T h e e x p e r i m e n t a l r e s u l t s are n o t refined e n o u g h
to
d i s t i n g u i s h b e t w e e n 99.0, 99.9 a n d 99.99% f o r m a t i o n of t h e t r a n s p r o d u c t , y e t these n u m b e r s c o r r e s p o n d t o a v a r i a t i o n i n t h e p r o d u c t r a t i o s b y a f a c t o r of 100.
How
e v e r i n s e v e r a l i n s t a n c e s , p r o d u c t r a t i o s i n t h e range of 0.1 t o 10 h a v e been o b s e r v e d , a n d i f a p a r t i c u l a r p r o d u c t r a t i o i n t h i s range is m a i n t a i n e d w h i l e t h e m e a n s of f o r m i n g t h e a q u o p r o d u c t is a l t e r e d , t h i s o b s e r v a t i o n c a n be r e g a r d e d as s i g n i f i c a n t . O n e of t h e m o s t i n t e r e s t i n g o b s e r v a t i o n s is t h a t i n v o l v i n g / r a w s - C o e m ^ O " as t h e 4
presumed intermediate. the
same
whether the diaquo
Coen N H 0+ 2
3
2
2
3
T h e e x t e n t of i s o m e r i z a t i o n , w i t h i n e x p e r i m e n t a l e r r o r is
with H N 0
2
product
is formed
by
the
r e a c t i o n of
o r of / r a w s - C o e n C l H 0 + w i t h H g + . 2
isotopic studies w i t h 2 r a w 5 - C o e n ( H 0 ) 2
2
2
+ 3
2
2
2
trans-
I n the oxygen
t w o k i n d s of m e a s u r e m e n t s w h e r e m a d e :
t h e exchange of o x y g e n i n t o / m w j - C o e n 2 ( H ? 0 )
2
+3
a n d t h e r a t e of c h a n g e of t h e t r a n s
f o r m t o t h e cis, w h i c h i n v o l v e s i n c o r p o r a t i n g one s o l v e n t o x y g e n for e a c h cis i o n formed.
If i t is a s s u m e d t h a t b o t h processes i n v o l v e a c o m m o n i n t e r m e d i a t e ,
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
50
M E C H A N I S M S O F I N O R G A N I C REACTIONS
/raws-Coen2H20 , w h i c h is p i c k i n g u p a m o l e c u l e of s o l v e n t e i t h e r r e t a i n s c o n f i g u r a +3
t i o n o r changes t o t h e cis f o r m , a n u m b e r c o r r e s p o n d i n g t o t h e r e t e n t i o n of t h e t r a n s c o n f i g u r a t i o n c a n be c a l c u l a t e d w h i c h , w i t h i n e x p e r i m e n t a l e r r o r , is t h e s a m e as for the o t h e r t w o s y s t e m s . fluence
T h e r e s u l t s suggest t h a t t h e l e a v i n g g r o u p does n o t i n
t h e g e o m e t r i c course of t h e r e a c t i o n , a n d t h i s i n t u r n , suggests t h a t a c o m
m o n i n t e r m e d i a t e is f o r m e d w h i c h has lost m e m o r y of h o w i t w a s f o r m e d . Michael Anbar: paper.
I w o u l d l i k e t o a s k t w o o r three q u e s t i o n s p e r t a i n i n g t o t h i s
F i r s t , a c c o r d i n g t o t h i s p a p e r , t h e h y d r o x y l c o m p l e x is f o r m e d a l s o a c c o r d
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
i n g t o t h e same SATI m e c h a n i s m , as f a r as I c o u l d u n d e r s t a n d , w h i c h m e a n s t h a t t h e p r o t o n t r a n s f e r , g o i n g f r o m t h e a q u o t o a h y d r o x i d e , is s l o w e r t h a n a d i s s o c i a t i o n of the a q u o c o m p l e x t o f o r m t h e p e n t a c y a n o c o m p l e x .
C o u l d t h i s be c o r r o b o r a t e d b y
some i n d e p e n d e n t m e t h o d of l o o k i n g a t t h e r a t e of p r o t o n e x c h a n g e ?
In othet
w o r d s , t h e r e a c t i o n exchange a n d t h e o x y g e n exchange s h o u l d be a t t h e s a m e r a t e , according to this mechanism, if I understood it right. T h e o t h e r q u e s t i o n c o n c e r n s the c a t a l y t i c effect of i o d i n e o n t h e i o d i n a t i o n of the p e n t a c y a n o c o m p l e x .
D i d y o u ever o b s e r v e t h e same effect of I2 s a y o n t h e
s u b s t i t u t i o n of b r o m i d e , or t h i o c y a n a t e as w e l l ? A t h i r d q u e s t i o n is w h e t h e r y o u h a v e o b s e r v e d a n y specific c a t i o n i c effect i n changing, at y o u r high concentrations, from s o d i u m to potassium or to another a l k a l i m e t a l — i . e . , w h e t h e r t h i s has a n y effect o n t h e r a t e . ment.
T h e r e is one m o r e c o m
Y o u mentioned a n Sjyl mechanism referring to organic chemistry.
y e a r s ago we p u b l i s h e d r e s u l t s o n t h e h y d r o l y s i s of
fluoroborate
A few
ions where exactly
t h e s a m e m e c h a n i s m w a s p o s t u l a t e d ( / . Phys. Chem. 6 4 , 1896 ( I 9 6 0 ) ) .
Fluorobo
r a t e i o n s u n d e r g o h y d r o l y s i s i n t h e a l k a l i n e r e g i o n i n d e p e n d e n t of O H " c o n c e n t r a -
t i o n ; a n d a g a i n t h i s v e r y h i g h increase i n t h e r a t e of t h e Sjsrl m e c h a n i s m b y p r o t o n a tion occurs.
H B F 4 undergoes a g a i n a n S ^ l c l e a v a g e , b u t t h e r a t e of h y d r o l y s i s i s
a c c e l e r a t e d b y s e v e r a l orders of m a g n i t u d e . Dr. Wilmarth:
F i r s t , w i t h r e s p e c t t o t h e effect of a c i d i t y , i f I u n d e r s t a n d y o u
correctly, y o u are not q u o t i n g the m e c h a n i s m we proposed. ROH 110HR OH 2
£ k
'
R Ι «
+ νγ
H 0 2
>RN
3
I n a c i d s o l u t i o n i t i s a s s u m e d t h a t t h e a q u a p e n t a - c y a n o i o n reacts t o f o r m a n i n t e r m e d i a t e , a n d t h a t t h e i n t e r m e d i a t e m a y r e a c t w i t h w a t e r , o r m a y be p i c k e d u p b y a scavenger s u c h as a z i d e i o n t o f o r m p r o d u c t s .
I t is a l s o a s s u m e d t h a t t h e
c o m p l e x , w h i c h has a p K of 9.8 is i n e q u i l i b r i u m w i t h R O H , t h e p r e d o m i n a n t species in akaline solution.
T h e d e c i s i o n t h a t we h a d t o m a k e w a s w h e t h e r t h e decrease i n
r a t e o c c u r r e d because R O H w a s a c o m p l e t e l y i n e r t species, o r w h e t h e r R O H a l s o underwent a n S#l
m e c h a n i s m as w e l l as t h i s .
It was o u r conclusion t h a t the
e v i d e n c e f a v o r e d t w o p a r a l l e l Sjsrl m e c h a n i s m s . W i t h respect t o t h e g e n e r a l i o d i n e c a t a l y s i s o r h y d r o g e n c a t a l y s i s , t h i s s u b j e c t is s t i l l u n d e r i n v e s t i g a t i o n , a n d p o s s i b l y t h e m e c h a n i s m is m o r e c o m p l i c a t e d t h a n we h a v e i n d i c a t e d i n t h e p a p e r .
W e do k n o w , a m o n g other scattered observations,
t h a t t h e i o d o p e n t a c y a n o c o m p l e x r e a c t s i n t i m e of m i x i n g w i t h a q u e o u s b r o m i n e t o give the bromopentacyano complex.
T h e r e is some s u s p i c i o n t h a t the h y p o i o d o u s
a c i d w o u l d a l s o c a t a l y z e t h e s o l o v c l y s i s of i o d o p e n t a c y a n o c o m p l e x , so t h a t a r a t h e r
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
MAIM IT A l .
51
Dhtutslon
c a r e f u l p H d e p e n d e n c e w i l l be r e q u i r e d t o d e t e r m i n e m o r e a c c u r a t e l y t h e p o s s i b l e mechanisms. W e k n o w r e l a t i v e l y l i t t l e a b o u t t h e effect of c h a n g e i n p o s i t i v e i o n i n t h e s y s t e m , b u t w e t h i n k t h a t t h e r a t e w o u l d p r o b a b l y be f a i r l y s e n s i t i v e t o t h i s .
The only
d e f i n i t e i n f o r m a t i o n w e h a v e i n v o l v e s r e c e n t s t u d i e s of t h e s u b s t i t u t i o n of w a t e r b y p y r i d i n e , a n e u t r a l n u c l e o p h i l e , a n d a r a t h e r efficient one.
H e r e there is perhaps a
20 o r 3 0 % difference i n r a t e d e p e n d i n g o n w h e t h e r w e a r e w o r k i n g i n IM ion or 1M p y r i d i n i u m i o n .
sodium
T h e r a t e is faster i n t h e p y r i d i n i u m i o n s o l u t i o n .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
I n t e r e s t i n g l y , t h e p l o t of k vs. p y r i d i n e c o n c e n t r a t i o n does n o t c u r v e t o t h e extent t h a t we w o u l d expect.
P o s s i b l y this represents a general difficulty i n a t
t e m p t i n g to study neutral nucleophiles. I n t h e s t u d y of a n u c l e o p h i l e s u c h a s a z i d e , i t i s p o s s i b l e t o r e p l a c e p e r c h l o r a t e w i t h azide even t o l i l f concentration w i t h o u t a n appreciable change i n the a m o u n t of w a t e r o r t h e a c t i v i t y of w a t e r i n t h e s y s t e m ; b u t b y t h e t i m e one h a s r e a c h e d
1M
p y r i d i n e , 78 g r a m s of p y r i d i n e , t h e m e d i u m h a s c h a n g e d r a t h e r s u b s t a n t i a l l y , a n d t h e reverse p a t h i n v o l v i n g w a t e r m a y be s u b s t a n t i a l l y effected. Arthur Adamson:
I think D r . Wilmarth
and
co-workers
have
probably
s u p p l i e d t h e b e t t e r a v a i l a b l e e v i d e n c e for t h e p e n t a c o o r d i n a t e d i n t e r m e d i a t e i n a cobalt substitution reaction. H o w e v e r , I t h i n k t h a t a g a i n i t is p o s s i b l e t o t r e a t these d a t a , as I t h i n k a l s o t h a t D r . T a u b e n o t e d , i n t e r m s of t h e s o l v e n t cage p i c t u r e a n d i n t e r m s of t h e i d e a t h a t t h e r e a c t a n t s h a v e p r e a s s e m b l e d before t h e a c t i v a t i o n e n e r g y a r r i v e s . S p e c i f i c a l l y , I a m n o t s u r e t h a t i t ' s a l w a y s safe t o a s s u m e t h a t b e c a u s e o n e species i s n e u t r a l , o r because t h e t w o a r e l i k e i n c h a r g e , t h a t o n e w i l l therefore n o t h a v e i o n a s s o c i a t i o n o r a n y a p p r e c i a b l e preference t o w a r d s a s s o c i a t i o n . I t h a s been o b s e r v e d t h a t i o n - p a i r i n g c o n s t a n t s a r e d i f f e r e n t for C r ( I I I ) a n d C o ( I I I ) complexes.
analogous
T h i s i n d i c a t e s t h a t t h e n a t u r e of t h e c o m p l e x a n d
n o t just the o v e r a l l charge is i m p o r t a n t .
T h e r e is a question as to just how far out,
for e x a m p l e , a p p r e c i a b l e d - e l e c t r o n d e n s i t y m a y be p r e s e n t ; w h e t h e r t h e r e m a y b e , i n f a c t , a g o o d d e a l of c o o r d i n a t i o n p o s s i b l e i n t h e s e c o n d c o o r d i n a t i o n sphere so t h a t o n e h a s forces f a v o r i n g a s s o c i a t i o n w h i c h a r e n o t j u s t e l e c t r o s t a t i c .
Thus
a s s o c i a t i o n s c o u l d p r o v i d e k i n e t i c i n t e r m e d i a t e s e v e n i n these s y s t e m s . J a c k Halpern:
I would like to comment further on the question that D r .
A n b a r r a i s e d a b o u t t h e p o s s i b i l i t y of g e n e r a t i n g t h e p e n t a c y a n o c o b a l t ( I I I ) electron transfer from
by
pentacyanocobalt(II).
S h u z o N a k a m u r a a t t h e U n i v e r s i t y of C h i c a g o h a s b e e n l o o k i n g i n t o t h i s possibility.
T h e reaction i n question is
Co(CN)
Co(CN) Br6
3
T h e r e a c t i o n p r o c e e d s w i t h a r a t e c o n s t a n t i n excess of
+ 10
9
~ sec."" a p
M~
l
1
p r o a c h i n g t h e d i f f u s i o n c o n t r o l l e d l i m i t a n d i m p l y i n g t h a t s u b s t i t u t i o n of a s i x t h l i g a n d i n t o t h e c o o r d i n a t i o n s h e l l of C o ( C N ) 5 ~ " is a n e x t r e m e l y r a p i d process. 3
N o w , i f one o x i d i z e s C o ( C N ) 5 ~ ~ w i t h a n o x i d i z i n g a g e n t s u c h as C o ( N H 3 ) e 3
+ 3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
w h i c h c a n n o t s u p p l y a b r i d g i n g l i g a n d , so t h a t i n n e r sphere e l e c t r o n t r a n s f e r i s p r e c l u d e d , t h e n b y f a r t h e strongest preference of t h e C O ( C N ) Ô ~ u n d e r these c o n d i t i o n s 3
is, i f a t a l l p o s s i b l e , t o p i c k u p a s i x t h c y a n i d e f r o m t h e s o l u t i o n a n d t h u s t o f o r m C o ( C N ) " as t h e p r o d u c t . 3
6
T h e k i n e t i c s of t h i s r e a c t i o n a r e and Ο ο ( Ν Η ) β .
first-order
i n free C N ~ " a s w e l l as i n C o C C N J g "
3
T h i s behavior persists d o w n to extemely low C N ~ concentration.
4 3
3
C N ~ , even i n v e r y small concentration, is the preferred ligand to complete the co ordination shell. I f one r e a l l y forces t h e issue b y g o i n g t o e x t r e m e l y l o w c y a n i d e c o n c e n t r a t i o n s , the reaction becomes exceedingly slow, to the p o i n t where the results are almost unreliable.
U n d e r these c o n d i t i o n s t h e f o r m a t i o n of s o m e C o C C N ^ O F ^ " "
3
as
a
r e a c t i o n prodjuct is d e t e c t a b l e , a n d w e h a v e a t t e m p t e d t o see w h e t h e r t h i s m i g h t arise through the pentacoordinated cobalt(III) t h i s i n t h e p r e s e n c e of i o n s s u c h a s N ~ . of N
3
intermediate CO(CN)B"~ b y doing 2
H o w e v e r , we d o n o t o b s e r v e a n y p i c k u p
3
~ u n d e r these c o n d i t i o n s c o n s i s t e n t w i t h t h e d i s c r i m i n a t i o n p a t t e r n r e p o r t e d b y
H a i m and Wilmarth.
W e thus concluded t h a t the CO(CN)Ô"" reported b y t h e m is 2
n o t f o r m e d u n d e r a n y c o n d i t i o n s i n t h e o x i d a t i o n of C o ( C N ) 5 ~ . 3
T h e r e a r e t w o inferences t h a t n e e d t o be d r a w n h e r e .
O n e concerns the ex
t r e m e l y h i g h r a t e f o r these i n n e r s p h e r e o x i d a t i o n s , c o u p l e d w i t h o u r f a i l u r e t o f o r m Co(CN)50H2~" under a n y but most extreme conditions. 2
I t h i n k this argues v e r y
s t r o n g l y a g a i n s t t h e s u g g e s t i o n t h a t C o ( C N ) g ~ i s a c t u a l l y a n a q u o c o m p l e x (-i.e., 3
Co(CN) OH2~ ).
If i t were, i t is h a r d to u n d e r s t a n d w h y i t fails t o undergo direct
3
6
o x i d a t i o n t o C O ( C N ) B O H 2 ~ , w h i c h i s a p e r f e c t l y s t a b l e species w h e n g e n e r a t e d i n 2
other ways. T h e o t h e r i n f e r e n c e relates t o t h e f a c t t h a t i t a l s o a p p e a r s t o be v e r y d i f f i c u l t e v e n u n d e r c o n d i t i o n s w h e r e one h a s s l o w e d d o w n a l l t h e a l t e r n a t e p a t h s , t o c o n v e r t Co(CN) ~ 5
3
b y d i r e c t o x i d a t i o n t o a species w h i c h i s i d e n t i c a l t o t h e C O ( C N ) B ~
species of D r . H a i m a n d D r . W i l m a r t h .
2
T h i s suggests t h a t t h e t w o species m u s t be
s t r u c t u r a l l y v e r y different, so t h a t t h e t r a n s f o r m a t i o n of o n e t o t h e o t h e r d o e s n o t o c c u r r e a d i l y , b u t r a t h e r t h a t C o ( C N ) " ~ prefers t o e x p a n d i t s c o o r d i n a t i o n s h e l l b y 6
2
c a p t u r i n g a s i x t h l i g a n d before t r a n s f e r r i n g a n e l e c t r o n . I t seems l i k e l y t h e s t r u c t u r e of t h e C o ( C N ) ~ i s t r i g o n a l b i p y r a m i d a l , w h e r e a s 6
3
t h e s t r u c t u r e of t h e C O ( C N ) B ~ ~ i s s q u a r e p y r a m i d a l . 2
Dr. Bru b a k e r :
I have been interested personally i n the w o r k t h a t has come
from A u s t r a l i a i n the last year b y B e t t s a n d W i n f i e l d and others o n the oxidation a l s o of t h e p e n t a c y a n o w i t h o x y g e n .
H e r e t h e y find t h e o x y g e n b i n d s a
i n t e r m e d i a t e species w h i c h m a y be a m o n o p e r o x o m o n o m e r , scavenges
very
well
for
the
decacyano-M-peroxyldicobalt(III)
pentacyanocobalt(II) complex.
and
proposed
which this
forms
the
group
familiar
S o i n t h i s case t o o , t h e o x i d a n t s t i c k s ,
not water.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
2.
HAIM ET AL.
Discussion
53
I w o u l d like to comment on the relative nucleophilic character
Anthony Poe:
t o w a r d s a c t i v e i n t e r m e d i a t e s a n d the fact t h a t i t h a s been s a i d t h a t t h e differences b e t w e e n t h e n u c l e o p h i l i c c h a r a c t e r s of a n i o n s a r e r a t h e r s m a l l . W e w o u l d h a v e t h o u g h t t h e s a m e t h i n g a f t e r s o m e s t u d i e s of t h e c o m p e t i t i o n between c h l o r i d e , b r o m i d e , a n d i o d i d e for s o m e r h o d i u m ( I I I ) c o m p l e x e s , because we f o u n d t h a t t h e r a t i o s of the r a t e c o n s t a n t s a t 50°C. were v e r y n e a r l y 1:1:1.
How
ever, w h e n a c t i v a t i o n energies were m e a s u r e d , we f o u n d t h a t these p r o d u c e a m u c h bigger d i s c r i m i n a t i o n .
I n f a c t , t h e a c t i v a t i o n e n e r g y for t h e a d d i t i o n of i o d i d e t o
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
o u r r e a c t i v e i n t e r m e d i a t e s is n o less t h a n 6 k c a l . g r e a t e r t h a n t h e a c t i v a t i o n e n e r g y for a d d i t i o n of c h l o r i d e a n d b r o m i d e . N o n e of these e x p e r i m e n t s o n r e a c t i v e i n t e r m e d i a t e s has been d o n e o v e r a r a n g e of t e m p e r a t u r e s .
A t least, I t h i n k t h a t is t r u e .
I t w o u l d be i n t e r e s t i n g t o see
w h e t h e r t h i s w o u l d p r o d u c e a bigger d i s c r i m i n a t i o n b e t w e e n t h e v a r i o u s n u c l e o p h i l e s t h a n is g i v e n b y t h e r a t e c o n s t a n t s . W e w o u l d be i n t e r e s t e d i n h a v i n g b e t t e r t e m p e r a t u r e coeffi-
Dr. Wilmarth:
c i e n t d a t a f o r — , b u t i t w o u l d r e q u i r e e x p e r i m e n t s of e x t r e m e a c c u r a c y to o b t a i n a n y i n f o r m a t i o n of i n t e r e s t here.
O n e w o u l d be d e a l i n g w i t h a r a t i o of slopes t o i n t e r
cepts i n plots at two temperatures to obtain this information. I n connection w i t h that, do y o u w a n t to comment on the fact
Dr. Y a l m a n :
t h a t t h e e n t r o p y change t o t h e a z i d e a q u a t i o n i s m a r k e d l y different f r o m t h a t f o r the thiocyanate a n d the iodide?
I t i s q u i t e p o s s i b l e t h a t t h e difference i s m o r e
apparent than real. Dr. Wilmarth: t h e difference i s r e a l .
I d o n ' t h a v e a n y r e a l e x p l a n a t i o n for t h i s , b u t I believe t h a t S i n c e t h e s t r u c t u r e of t h e t w o i o n s is different, i t seems t h a t
t h e AS* v a l u e s m i g h t differ. R e g a r d i n g these
Albert H a i m :
questions
of
the
reactions
of
the
azido
c o m p l e x e s w i t h n i t r o u s a c i d , t h e r e are t w o s y s t e m s t h a t I h a v e t r i e d t o e x p l o r e : the azidopentammine-cobalt(III)
complex
a n d the
azidopentacyanocobalt(III)
complex. W e h a v e t r e a t e d these c o m p l e x e s w i t h n i t r o u s a c i d i n t h e presence of v a r i o u s a n i o n s , a n d we t r i e d t o o b t a i n i n f o r m a t i o n o n t h e k i n e t i c s a n d s t o i c h i o m e t r i e s of t h e reactions.
I t i s c l e a r t h a t t h e k i n e t i c s of t h e r e a c t i o n s of n i t r o u s a c i d w i t h e i t h e r
a z i d o p e n t a m m i n e c o b a l t ( I I I ) o r a z i d o p e n t a c y a n o - c o b a l t ( I I I ) are e x t r e m e l y s e n s i t i v e t o the presence of a n i o n s o t h e r t h a n p e r c h l o r a t e .
I n regard to the kinetic sensi
t i v i t y , w e c a n i n d i c a t e b y a p l u s s i g n t h a t b o t h of these r e a c t i o n s a r e e x t r e m e l y s e n s i t i v e t o the presence of a n i o n s o t h e r t h a n p e r c h l o r a t e . Sensitivity of Kinetics Co(NH ) N + 3
6
3
Co(CN) Nr 5
3
+
2
+
HN0 HN0
2
2
Sensitivity of Stoichiometry
+ +
T h e o t h e r q u e s t i o n i s t h e s e n s i t i v i t y of t h e s t o i c h i o m e t r y of t h e r e a c t i o n .
I f there
is n o t h i n g b u t n i t r o u s a n d p e r c h l o r i c a c i d s i n these s y s t e m s , t h e p r o d u c t s of these reactions are the corresponding aquo complexes.
I f one has, i n a d d i t i o n , t h e a n i o n
X " * a t sufficiently h i g h c o n c e n t r a t i o n of X~~, one d e t e c t s s o m e X - p e n t a m m i n e c o b a l t -
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
54
M E C H A N I S M S O F I N O R G A N I C REACTIONS
(III) or some X - p e n t a c y a n o c o b a l t ( I I I ) .
B u t t h e s e n s i t i v i t y of t h e s t o i c h i o m e t r i c s
t o t h e a d d e d a n i o n is v e r y s m a l l , a n d w e c a n i n d i c a t e t h i s b y a m i n u s s i g n .
I think
t h a t t h e o n l y c o n c l u s i o n t h a t one c a n r e a c h f r o m t h i s t y p e of d a t a i s t h a t t h e r e i s a n intermediate i n the system. N o w the question is, w h a t is this intermediate ? been a b o u t .
T h i s is w h a t the a r g u m e n t has
A s w e suggest i n t h e p a p e r , t h e r e a r e v a r i o u s possible i n t e r m e d i a t e s .
T h e first one t h a t c o m e s t o m i n d i s , b y a n a l o g y t o t h e r e a c t i o n of free a z i d e i o n w i t h n i t r o u s a c i d w h i c h h a s been s t u d i e d b y k i n e t i c a n d t r a c e r s t u d i e s , t h e i n t e r m e d i a t e R N N N N O f o r m e d b y a d d i t i o n of N O " t o t h e a z i d e .
Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 8, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch002
4
fate of t h i s i n t e r m e d i a t e i n t h e p r e s e n t s y s t e m s ?
N o w t h e q u e s t i o n is, w h a t is t h e
I t can react w i t h X ~ , it can react
x RNNNNOH 0 2
dissociation
w i t h H 0 ; or i t can dissociate to give the intermediate, R . 2
T h e p o i n t t h a t needs t o
be e s t a b l i s h e d i s w h i c h , i f a n y , of these a l t e r n a t i v e s is c o r r e c t , a n d i f m o r e t h a n one is c o r r e c t , w h a t a r e t h e r e l a t i v e c o n t r i b u t i o n s .
T h a t is, the possible d i s c r i m i n a t i o n
of t h e R N N N N O i n t e r m e d i a t e for X ~ a n d H 0 m a y be different f r o m t h e possible 2
d i s c r i m i n a t i o n of the p e n t a c o o r d i n a t e d i n t e r m e d i a t e for X ~ a n d H 0 . 2
In addition
t o t h e q u e s t i o n of i n t e r m e d i a t e s of different s t o i c h i o m e t r y , ( R N N N N O a n d
R)
there is the q u e s t i o n of the g e o m e t r y of t h e p e n t a c o o r d i n a t e d i n t e r m e d i a t e .
At
t h i s p o i n t i t w o u l d be o n l y s p e c u l a t i o n t o s a y w h a t the g e o m e t r y of t h i s p e n t a c o ordinated intermediate is.
H o w e v e r , i t is p o s s i b l e , t h a t i n different
different geometries m i g h t be o b t a i n e d .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
reactions,