Metabolic Phenotype Modulation by Caloric Restriction in a Lifelong

May 28, 2013 - Nestle Research Centre, Lausanne, NESTEC Limited, ... caloric restriction, which contributes to longevity studies in caloric-restricted...
0 downloads 0 Views 1MB Size
Article pubs.acs.org/jpr

Metabolic Phenotype Modulation by Caloric Restriction in a Lifelong Dog Study Selena E. Richards,*,†,∥ Yulan Wang,†,⊥ Sandrine P. Claus,†,▽ Dennis Lawler,‡ Sunil Kochhar,§ Elaine Holmes,† and Jeremy K. Nicholson*,† †

Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, U.K. ‡ The Nestle Research CentreSt. Louis, St. Louis, Missouri 63164, United States § Nestle Research Centre, Lausanne, NESTEC Limited, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland S Supporting Information *

ABSTRACT: Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene−environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the 1H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (468 weeks. Choline metabolism is implicated in the aging serum and urine metabolic profile and points to involvement of both mammalian and microbial metabolism. H

dx.doi.org/10.1021/pr301097k | J. Proteome Res. XXXX, XXX, XXX−XXX

Journal of Proteome Research

Article

Analysis of the longitudinal 1H NMR serum profiles has enabled unbiased evaluation of the metabolic markers modulated by lifetime CR. Since many studies conclude that the mechanisms of aging are likely to be multifaceted, caloric restriction is likely to contribute only partially to understanding of etiopathogenic mechanisms of chronic disease. Nevertheless, modeling of these data has provided a framework such that significant metabolites relating to life extension could be differentiated and/or integrated with aging processes. Although these results have specific implications with respect to caloric restriction and the impact of diet on late-life diseases, the approach is generic and can, in principle, be applied to any system in which multiple factors contribute uniquely or in combination to the metabolic phenotype.



(5) Droge, W. Oxidative stress and aging. Adv. Exp. Med. Biol. 2003, 543, 191−200. (6) Cohen, H. Y.; Miller, C.; Bitterman, K. J.; Wall, N. R.; Hekking, B.; Kessler, B.; Howitz, K. T.; Gorospe, M.; de Cabo, R.; Sinclair, D. A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004, 305 (5682), 390−392. (7) Koubova, J.; Guarente, L. How does calorie restriction work? Genes Dev. 2003, 17, 313−321. (8) Comfort, A. Review of “The retardation of aging and disease by dietary restriction” by R. Weindruch and R. L. Walford. Nature 1989, 338 (6215), 469. (9) Kalant, N.; Stewart, J.; Kaplan, R. Effect of diet restriction on glucose-metabolism and insulin responsiveness in aging rats. Mech. Ageing Dev. 1988, 46 (1−3), 89−104. (10) Bartke, A.; Coshigano, K.; Kopchick, J.; Chandrashekar, V.; Mattison, J.; Kinney, B.; Hauck, S. Genes that prolong life: Relationships of growth hormone and growth to aging and life span. J. Gerontol., Ser. A 2001, 56 (8), B340−B349. (11) Tatar, M.; Bartke, A.; Antebi, A. The endocrine regulation of aging by insulin-like signals. Science 2003, 299 (5611), 1346−1351. (12) Kopelman, P. G. Obesity as a medical problem. Nature 2000, 404 (6778), 635−643. (13) Lewis, S. E. M.; Goldspink, D. F.; Phillips, J. G.; Merry, B. J.; Holehan, A. M. The effects of aging and chronic dietary restriction on whole-body growth and protein-turnover in the rat. Exp. Gerontol. 1985, 20 (5), 253−263. (14) Selman, C.; Kerrison, N. D.; Cooray, A.; Piper, M. D.; Lingard, S. J.; Barton, R. H.; Schuster, E. F.; Blanc, E.; Gems, D.; Nicholson, J. K.; Thornton, J. M.; Partridge, L.; Withers, D. J. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol. Genomics 2006, 27 (3), 187− 200. (15) Richards, S. E.; Wang, Y.; Lawler, D.; Kochhar, S.; Holmes, E.; Lindon, J. C.; Nicholson, J. K. Self-modeling curve resolution: a new approach to recovering temporal metabolite signal modulation in NMR spectroscopic data: Application to a life-long caloric restriction study in dogs. Anal. Chem. 2008, 80 (13), 4876−4885. (16) Wang, Y. L.; Lawler, D.; Larson, B.; Ramadan, Z.; Kochhar, S.; Holmes, E.; Nicholson, J. K. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J. Proteome Res. 2007, 6 (5), 1846−1854. (17) Rezzi, S.; Martin, F. P.; Shanmuganayagam, D.; Colman, R. J.; Nicholson, J. K.; Weindruch, R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp. Gerontol. 2009, 44 (5), 356−362. (18) Anson, R. M.; Guo, Z. H.; de Cabo, R.; Iyun, T.; Rios, M.; Hagepanos, A.; Ingram, D. K.; Lane, M. A.; Mattson, M. P. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (10), 6216−6220. (19) Mahoney, L. B.; Denny, C. A.; Seyfried, T. N. Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis. 2006, 5, 13. (20) Roth, G. S.; Ingram, D. K.; Lane, M. A., Caloric restriction in primates and relevance to humans. In Healthy Aging for Functional Longevity; New York Academy of Sciences: New York, 2001; pp 305− 315. (21) Shimokawa, I.; Higami, Y.; Tsuchiya, T.; Otani, H.; Komatsu, T.; Chiba, T.; Yamaza, H. Lifespan extension by reduction of the growth hormone-insulin-like growth factor-1 axis: relation to caloric restriction. FASEB J. 2003, 17 (11), 1108−1109. (22) Mukherjee, P.; El-Abbadi, M. M.; Kasperzyk, J. L.; Ranes, M. K.; Seyfried, T. N. Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br. J. Cancer 2002, 86 (10), 1615−1621. (23) Seyfried, T. N.; Sanderson, T. M.; El-Abbadi, M. M.; McGowan, R.; Mukherjee, P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer 2003, 89 (7), 1375− 1382.

ASSOCIATED CONTENT

S Supporting Information *

One table listing the strength of independent contributions of significant metabolites (468 vs 13 weeks for CR and CF dogs) and diet models at 13, 28−312, 312, 416, and 468 weeks. This material is available free of charge via the Internet at http:// pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*E-mail [email protected] (S.E.R.), hod.surgery. [email protected] (J.K.N.); tel +44(0)20 7594 3195; fax +44 (0)20 7594 3226. Present Addresses ∥

S.E.R.: School of Science and Technology, Nottingham Trent University, Erasmus Darwin Building, Clifton Campus, Nottingham NG11 8NS, U.K. ⊥ Y.W.: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, 430071, PR China. ▽ S.P.C.: Department of Food and Nutritional Sciences, The University of Reading, Reading, U.K. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This research was supported by the Nestle Research Centre, St. Louis, MO (NRC-STL). S.E.R. and Y.W. thank Nestlé Research Centre, Switzerland, for funding. We acknowledge Richard Barton, Andrew Clayton, and Marc Dumas for spectral assignments and helpful comments.



REFERENCES

(1) Weindruch, R.; Walford, R. L., The Retardation of Aging and Disease by Dietary Restriction; Charles C. Thomas Publishing Ltd:: Springfield, IL, 1988. (2) Kealy, R. D.; Lawler, D. F.; Ballam, J. M.; Mantz, S. L.; Biery, D. N.; Greeley, E. H.; Lust, G.; Segre, M.; Smith, G. K.; Stowe, H. D. Effects of diet restriction on life span and age-related changes in dogs. J. Am. Vet. Med. Assoc. 2002, 220 (9), 1315−1320. (3) Masoro, E. J. Overview of caloric restriction and ageing. Mech. Ageing Dev. 2005, 126 (9), 913−922. (4) Ingram, D. K.; Zhu, M.; Mamczarz, J.; Zou, S. G.; Lane, M. A.; Roth, G. S.; deCabo, R. Calorie restriction mimetics: an emerging research field. Aging Cell 2006, 5 (2), 97−108. I

dx.doi.org/10.1021/pr301097k | J. Proteome Res. XXXX, XXX, XXX−XXX

Journal of Proteome Research

Article

(24) Lawler, D. F.; Larson, B. T.; Ballam, J. M.; Smith, G. K.; Biery, D. N.; Evans, R. H.; Greeley, E. H.; Segre, M.; Stowe, H. D.; Kealy, R. D. Diet restriction and ageing in the dog: major observations over two decades. Br. J. Nutr. 2008, 99 (4), 793−805. (25) Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16 (3), 119−128. (26) Lawler, D. E.; Evans, R. H.; Larson, B. T.; Spitznagel, E. L.; Ellersieck, M. R.; Kealy, R. D. Influence of lifetime food restriction on causes, time, and predictors of death in dogs. J. Am. Vet. Med. Assoc. 2005, 226 (2), 225−231. (27) Beckwith-Hall, B. M.; Nicholson, J. K.; Nicholls, A. W.; Foxall, P. J. D.; Lindon, J. C.; Connor, S. C.; Abdi, M.; Connelly, J.; Holmes, E. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem. Res. Toxicol. 1998, 11 (4), 260−272. (28) Holmes, E.; Bonner, F. W.; Sweatman, B. C.; Lindon, J. C.; Beddell, C. R.; Rahr, E.; Nicholson, J. K. Nuclear-magnetic-resonance spectroscopy and pattern-recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2bromoethanamine. Mol. Pharmacol. 1992, 42 (5), 922−930. (29) Keun, H. C.; Ebbels, T. M. D.; Bollard, M. E.; Beckonert, O.; Antti, H.; Holmes, E.; Lindon, J. C.; Nicholson, J. K. Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chem. Res. Toxicol. 2004, 17 (5), 579−587. (30) Cloarec, O.; Dumas, M. E.; Trygg, J.; Craig, A.; Barton, R. H.; Lindon, J. C.; Nicholson, J. K.; Holmes, E. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in H-1 NMR spectroscopic metabonomic studies. Anal. Chem. 2005, 77 (2), 517−526. (31) Cloarec, O.; Dumas, M. E.; Craig, A.; Barton, R. H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J. C.; Holmes, E.; Nicholson, J. K. Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic H-1 NMR data sets. Anal. Chem. 2005, 77 (5), 1282−1289. (32) Wold, S. Cross-validatory estimation of number of components in factor and principal components models. Technometrics 1978, 20 (4), 397−405. (33) Lilliefors, H. W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399− 402. (34) Davies, K. M.; Heaney, R. P.; Rafferty, K. Decline in muscle mass with age in women: a longitudinal study using an indirect measure. Metabolism 2002, 51 (7), 935−939. (35) Dunn, S. R.; Qi, Z.; Bottinger, E. P.; Breyer, M. D.; Sharma, K. Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney Int. 2004, 65 (5), 1959−1967. (36) Rule, A. D.; Larson, T. S.; Bergstralh, E. J.; Slezak, J. M.; Jacobsen, S. J.; Cosio, F. G. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann. Intern. Med. 2004, 141 (12), 929−937. (37) da Silva, R. P.; Nissim, I.; Brosnan, M. E.; Brosnan, J. T. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 2009, 296 (2), E256−E261. (38) Lawler, D. F.; Ballam, J. M.; Meadows, R.; Larson, B. T.; Li, Q. H.; Stowe, H. D.; Kealy, R. D. Influence of lifetime food restriction on physiological variables in Labrador retriever dogs. Exp. Gerontol. 2007, 42 (3), 204−214. (39) Kennedy, E. P.; Weiss, S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 1956, 222 (1), 193−214. (40) al-Waiz, M.; Mikov, M.; Mitchell, S. C.; Smith, R. L. The exogenous origin of trimethylamine in the mouse. Metabolism 1992, 41 (2), 135−136. (41) Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; Dugar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y. M.; Wu, Y.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H.; DiDonato, J. A.;

Lusis, A. J.; Hazen, S. L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472 (7341), 57−63. (42) Allison, C.; Macfarlane, G. T. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl. Environ. Microbiol. 1989, 55 (11), 2894−2898. (43) Niu, C. S.; Chen, W.; Wu, H. T.; Cheng, K. C.; Wen, Y. J.; Lin, K. C.; Cheng, J. T. Decrease of plasma glucose by allantoin, an active principle of yam (Dioscorea spp.), in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 2010, 58 (22), 12031−12035. (44) Holmes, E.; Loo, R. L.; Stamler, J.; Bictash, M.; Yap, I. K.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I. J.; Veselkov, K. A.; Daviglus, M. L.; Kesteloot, H.; Ueshima, H.; Zhao, L.; Nicholson, J. K.; Elliott, P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008, 453 (7193), 396−400. (45) Reaven, G. M.; Chen, N.; Hollenbeck, C.; Chen, Y. D. I. Effect of Age on Glucose-Tolerance and Glucose-Uptake in HealthyIndividuals. J. Am. Geriatr. Soc. 1989, 37 (8), 735−740. (46) Lev-Ran, A. Mitogenic factors accelerate later-age diseases: insulin as a paradigm. Mech. Ageing Dev. 1998, 102 (1), 95−113. (47) Parr, T. Insulin exposure controls the rate of mammalian aging. Mech. Ageing Dev. 1996, 88 (1−2), 75−82. (48) Larson, B. T.; Lawler, D. F.; Spitznagel, E. L., Jr.; Kealy, R. D. Improved glucose tolerance with lifetime diet restriction favorably affects disease and survival in dogs. J. Nutr. 2003, 133 (9), 2887−2892. (49) Skutches, C. L.; Holroyde, C. P.; Myers, R. N.; Paul, P.; Reichard, G. A. Plasma acetate turnover and oxidation. J. Clin. Invest. 1979, 64 (3), 708−713. (50) Nicholson, J. K.; Wilson, I. D. Opinion: understanding ’global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003, 2 (8), 668−676. (51) Macfarlane, S.; Macfarlane, G. T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62 (1), 67−72. (52) Knowles, S. E.; Jarrett, I. G.; Filsell, O. H.; Ballard, F. J. Production and utilization of acetate in mammals. Biochem. J. 1974, 142 (2), 401−411. (53) Wong, J. M.; de Souza, R.; Kendall, C. W.; Emam, A.; Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40 (3), 235−243. (54) Siler, S. Q.; Neese, R. A.; Hellerstein, M. K. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am. J. Clin. Nutr. 1999, 70 (5), 928−936. (55) Lambert, A. J.; Merry, B. J. Use of primary cultures of rat hepatocytes for the study of ageing and caloric restriction. Exp. Gerontol. 2000, 35 (5), 583−594. (56) Lee, C. K.; Klopp, R. G.; Weindruch, R.; Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 1999, 285 (5432), 1390−1393. (57) Tavernarakis, N.; Driscoll, M. Caloric restriction and lifespan: a role for protein turnover? Mech. Ageing Dev. 2002, 123 (2−3), 215− 229. (58) Bartus, R. T.; Dean, R. L., 3rd; Beer, B.; Lippa, A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217 (4558), 408−414. (59) Perry, E. K.; Curtis, M.; Dick, D. J.; Candy, J. M.; Atack, J. R.; Bloxham, C. A.; Blessed, G.; Fairbairn, A.; Tomlinson, B. E.; Perry, R. H. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J. Neurol., Neurosurg. Psychiatry 1985, 48 (5), 413−421. (60) Bohnen, N. I.; Kaufer, D. I.; Hendrickson, R.; Ivanco, L. S.; Lopresti, B. J.; Constantine, G. M.; Mathis, Ch, A.; Davis, J. G.; Moore, R. Y.; Dekosky, S. T. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J. Neurol. 2006, 253 (2), 242−247. (61) Zeisel, S. H. The fetal origins of memory: the role of dietary choline in optimal brain development. J. Pediatr. 2006, 149 (Suppl. 5), S131−S136. J

dx.doi.org/10.1021/pr301097k | J. Proteome Res. XXXX, XXX, XXX−XXX

Journal of Proteome Research

Article

(62) Ingram, D. K.; Young, J.; Mattison, J. A. Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 2007, 145 (4), 1359−1364. (63) Sinclair, D. A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 2005, 126 (9), 987−1002. (64) Cartee, G. D.; Kietzke, E. W.; Briggs-Tung, C. Adaptation of muscle glucose transport with caloric restriction in adult, middle-aged, and old rats. Am. J. Physiol. 1994, 266 (5 Pt 2), R1443−R1447. (65) Dean, D. J.; Brozinick, J. T., Jr.; Cushman, S. W.; Cartee, G. D. Calorie restriction increases cell surface GLUT-4 in insulin-stimulated skeletal muscle. Am. J. Physiol. 1998, 275 (6 Pt 1), E957−E964. (66) Wang, T. J.; Larson, M. G.; Vasan, R. S.; Cheng, S.; Rhee, E. P.; McCabe, E.; Lewis, G. D.; Fox, C. S.; Jacques, P. F.; Fernandez, C.; O’Donnell, C. J.; Carr, S. A.; Mootha, V. K.; Florez, J. C.; Souza, A.; Melander, O.; Clish, C. B.; Gerszten, R. E. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17 (4), 448−453. (67) Zhang, X.; Wang, Y.; Hao, F.; Zhou, X.; Han, X.; Tang, H.; Ji, L. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J. Proteome Res. 2009, 8 (11), 5188−5195. (68) Rezzi, S.; Martin, F. P. J.; Shanmuganayagam, D.; Colman, R. J.; Nicholson, J. K.; Weindruch, R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp. Gerontol. 2009, 44 (5), 356−362.

K

dx.doi.org/10.1021/pr301097k | J. Proteome Res. XXXX, XXX, XXX−XXX