8 Methods for Introducing Atoms Other than Oxygen
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
into Sugar Rings ROY L. WHISTLER and ABUL K. M. ANISUZZAMAN Department of Biochemistry, Purdue University, Lafayette, Ind. 47907
Introduction In the last fifteen years some attention has been directed toward the production of modified sugars wherein the normal ring oxygen atom is replaced by another heteroatom. In some instances syntheses have been induced with the desire to create analogs which might possess interesting and even potentially use ful properties and in some instances synthesis has reflected simply a basic interest in chemical structures and reaction chemistry. Our laboratory originally became interested in sugar analogs with sulfur replacing the ring oxygen because we antici pated that such analogs, but especially the analog of D-glucose, might possess new and useful biochemical effects. Our first sulfur analog was methyl 5-thio-α-D-xylopyranoside where the sulfur was locked into the ring by glycoside formation (1). Although we thought we were the first to introduce sulfur into a sugar ring and so commented at the time of writing, two other groups (2,3) reported 5-thio-D-xylose with the suggestion of sulfur as the ring heteroatom in November 1961 while our methyl D-xyloside analog manuscript was received by the Journal of the American Chemical Society on December 2, 1961. Since that ini tial period many sugars with ring atoms of sulfur and some with nitrogen, selenium and phosphorus have been prepared. Those with the greatest biochemical interest and hence with the greatest potential medical value have, so far, continued to be the sulfur analogs. This review will report a short description of methods for introducing heteroatoms that may become part of the sugar ring system. Introduction of potential ring heteroatoms may be accom plished rather easily, in general, by simple nucleophilic dis placement of a good leaving group such as the p-tolylsulfonyloxy or methylsulfonyloxy. This technique works well for primary po sitions and usually well at chiral secondary positions where the 133
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
134
SYNTHETIC METHODS FOR CARBOHYDRATES
enantiomorphic Naturally, applied
o r
capable a
obtained other
o f
placed
carbon of
or
form
giving r i n g a i n
o r
o f
a
e q u i l i b r i u m w i l l
p o s i t i o n
t o
higher give
t o
involving c i t y
o f
e x i s t
a
higher
r i n g
substituents
a
n e g l i g i b l e
while
i n 4-thio-g-glucose Normal oxygen a
family
a c y c l i c
form
i n c l i n e d
o f
predominating a c e t y l a t i n g
isomers a
Of
by
glucose.
o f
sugar
analogs
monosaccharide
i n enzyme
5-thio-D-glucose that
i s
analog
not a i s
for
large
ber
o f
highly
2
>
s t a b i
are
i n
have
This
w i l l r i n g
n u c l e o p h i l i -
-NH > -0H> 2
are
the a
give
s o l u
present
prevalent
p r o c l e v i t y amount
also
t o
o f
appears
β-D-fructofuranose a c i d
c a t a l y s t
i s
t h e a c y l i c
a
heteroatom
biochemically
(UDPTG)
as
u r i d i n e
have
shown
reactions.
acts
agent
c o n t r o l l i n g
nor a
t o x i c
substance
continuously
a
Since
r e v e r s i b l e
examined
i t s present
new s i m p l i f i e d A unique
increases
a
Most
f i r s t
hormone
as
with
under
5 - t h i o -
the a c t i v i t y
o f o f
other pathway
5 ( 5 - t h i o - a unusually
c o n t r o l male
(6).
UDPTG
use
o f
male
f e r t i l i t y This
sugar
a n t i c i p a t e d
o f
than
5 - t h i o - D -
s i g n i f i c a n t l y
synthesis
synthesis
feature
i s
i t s g l y c o l y t i c
such
alone
desirable. i t
(5)
Lewis
analog,
analogs
c o n t r o l l e d
amounts.
percent
to
isomers
w i l l
o f
f a i r
i s t h e
being
steps,
amounts, 500
I t
a
with
containing
i n t e r e s t i n g
D-glucopyranosyl)pyrophosphate
f e r t i l i t y .
i s
shown
with
o f
close
membered
t h e sugar
forms
furanoid
t h e main product
and i t s nucleotide
fulness
furanose
isomers
and
i n 5-thio-D-glucose
always
i n t h e presence
f a r t h e most This
analogs
t h e have
H
the
pentaacetate.
a l l the
oxygen,
o f
occur.
p
to
carbon
r e l a t i v e
with
-SH>-
5-Thio-D-fructose
conditions
keto-D-fructose
that
i n s o l u t i o n
mixture
but
-SeH>
(4)
ketosesT
present.
toward
i s
carbon
the rings
w i l l
and
normal
than oxygen
The order
show
i n
may r e a c t
t h e i r
isomers
o r
size
and s i x
be
produce
The various
group
o f
to
pyranose
may o p e n
t o
ring
aldose
carbonyl
hydroxyl
opening
p o r t i o n
been
i t w i l l
While
five
n u c l e o p h i l i c
carbonyl
that
epsilon
ring.
i n proportion
an
on the
the
the r i n g
proper
more
have
carbon
stable
o r
t h e p a r t i c u l a r nucleophile.
only
so
depend
attack
membered
population
tions
form
sugar
carbony1
a c y c l i c ando f
t h e
C-5 o f
the heteroatom.
hemiketal,
Experimental r e s u l t s
form.
ketose
moderately
a
carbon.
the monosaccharide
carbon
on the d e l t a
seven
with
reactive
NHCOR.
o f
o f
heteroatoms
react
o f
o r
on the
i n a
s t a b i l i t y and less
r i s e
part
a
o f
procedures
discussed.
s t a b i l i t y w i l l
and, on occasion,
When
a
attack
portions
p o r t i o n
l i t i e s .
be
C-4,
C-6 of
t h e oxygen
hemiacetal
forms
i n v e r s i o n
can n u c l e o p h i l i c a l l y
various
minute
become
c h a r a c t e r i s t i c s
group a
w i l l
hemiketal
by
introductory
carbon
The r i n g
monosaccharides carbonyl
to on
C-5 o r
ring.
e l e c t r o n i c
to
these
n u c l e o p h i l i c
hemiacetal
furanose
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
i s o f
heteroatom
normally
sugar
form
number
a n d some
The is
a
demand
involves
a
num
5-thio-D-glucose i s
glycogen
that,
i s
i n
s m a l l
synthetase
some
(7).
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
8.
Sugar
Rings 1.
Containing
N u c l e o p h i l i c
Nucleophilic most
widely
with
a t h i o a k y l
as
used
charide the
xide,
thiocyanate
reduced group
(1)
with
sodium
y i e l d s
a n d require
primary, of
a
good
a p r o t i c
with
allowed following
Best
s u l f u r .
Among
groups
d e r i v a t i v e s t o remove
t h e benzyl and t h i o -
i n ammonia
a n d t h i o s u l f a t e times
i n
been
d i f f i c u l t
conditions
require
been
displaced
i n t h e synthesis
5-thio-D-ribopyranose (11), 5-thio-D-glucose 4-thio-D-xylose
(JL6) s t r u c t u r e s .
parative
sequences
a n d i s easy
were t o
used
(9,10), (12),
6.
t h e f o l l o w i n g
a t
(DMF).
thiobenzyl, o f
5 - t h i o -
6-deoxy-44 - t h i o - ^ -
(15), a n d 6 - t h i o - D -
The method
5-thio-g-fructofuranose,
r e a c t i o n
with
A l l
than
t h e use
as N,N-dimethylformamide
(13,14),
most
a t primary carbons.
a r e more
o r
poor
displacements
have
such
anions
(8)
give
have
(1-3),
require
a r e u s u a l l y
Thiocyanate
l i t h i u m
by
a r e b e n z y l t h i o -
nucleophiles
positions
such
monosac-
carbon,
b u t these
reduction
these
oxygen
t h e sugar
used
ammonia
o r i s
t h i o l a c y l
groups
D-ribofuranose t o prepare
anions
ester
a
containing agents
i n displacements
o r t h i o l b e n z o y l
galactoseptanose
form
(tosyloxy)
nucleophile
solvent
thio-D-glucofuranose
(15 )
long
Hence
a t secondary
p-Tolylsulfonyloxy
and
deblock
Thiocyanate
rather
Groups.
blocked
t h e carbonyl
i n l i q u i d
(2).
a p p l i e d
D-xylopyranose
w i l l
Thiobenzyl
a s may be expected.
t h i o l a c e t y l
Commonly
i n a properly
by reduction
carbons.
displacements
s u l f u r
and 1,2-diphenylethane.
borohydride
s a t i s f a c t o r i l y
by a
d i s p l a c i n g
t h e t h i o l .
a r e cleaved
secondary
ring
Sulfonyloxy
monosaccharide
o r t h i o s u l f a t e
form
sodium on
a
t o attack
containing
as toluene
s u l f a t e
group
acetolysis
t h e stable
s u l f u r t o
o f
p - t o l y l s u l f o n y l o x y
because,
s u l f u r
other
reduction
a
f o r r e p l a c i n g
d e r i v a t i v e , o f
o f
(mesyloxy)
i s used
introduced
a c e t y l a t i o n
Displacement
o r t h i o l a c y l group.
t h i o l a c e t y l
135
into Sugar Rings
Sulfur
displacement
methylsulfonyloxy
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
Heteroatoms
WHISTLER A N D A N i s u z z A M A N
was recently
While
s e v e r a l
i l l u s t r a t e s t h e
conduct.
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
used
p r e -
136
SYNTHETIC METHODS FOR CARBOHYDRATES
Here (40%) at
1,2-£-isopropylidene-|j-sorbopyranose,
with
0°
to
an
equimolar
produce
the
y i e l d s
the
a c e t y l
d e r i v a t i v e ,
t o s y l
di-O-acetate, 4
fluoroacetic
a c i d
fructopyranose,
at
80°. on
methoxidej" produces
t i v e l y
methyl
t i v e l y
tosylated
indicated
i s
w i t h
2,
which on
3~~is
high
above,
but
chloride
a c e t y l a t i o n
converted
potassium
Hydrolysis of
4
to
the
t h i o -
t h i o l a c e t a t e w i t h
i n
aqueous
deacetylation,
i n
methanol
5-thio-D-fructofuranose,
1,3-0-benzylidene-L-sorbofuranoside i n
tosylated
t r i -
3,4-di-0-acetyl-5-S-acetyl-5-thio-P-D-
which
sodium
as
1,
p-toluenesuïïonyl
Compound
r e a c t i o n
y i e l d s
5,
of
d e r i v a t i v e ,
3.
by
N , N - d i m e t h y I f o r mamicfe
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
q u a n t i t y
y i e l d the
at
C-5
number
of
and
the
containing
6.
A l t e r n a -
may
be
selec-
reactions
synthetic
steps
continued i s
increased. 5-Thio-P-D-fructofuranose, α-D-is
also
produces sugar
obtained.
the
thiophene
d e r i v a t i v e s
r a t i o n
to
mineral
by
a c i d
very
where
a
somewhat
excellent
compound
d e r i v a t i v e
that
be
subsequent
ribofuranose degradation i n
a c i d
anhydride
i s
easy
from
more
thiophene,
also
convert than
i n
to
the
mono-
and
r e a d i l y
degradation
of
that
desatu-
s i m i l a r
compounds
degree
the
i n d i c a t i o n
than
s t a b i l i z e d 5 - t h i o - D -
4-thioaldoses the
5-thioketose
room or
groups
to
the
converted
to
of
I t the
nucleophile
forms
the
at by
i n
can
glycosides
displacement
the
preparation
and
be
but
r e a d i l y
d i r e c t l y being
sugar or
Displacement
groups
cold
methyl
2,3-di-O-isopropylidene
0-4.
the
acetate
acetochloro
i s
t h i o l a c e t a t e
blocking
temperatures
base.
p-tolysulfonyloxy s t a r t i n g m a t e r i a l i s
t o s y l a t e d
stable
i n p y r i d i n e ;
converted
further
at
i s
The
e a s i l y
hydrolysis
which
of
s u l f u r
(20).
which can
a
4-0-p-toluenesulfonyloxy
be
acids
example
containing
j-lyxopyranoside
phene
r e a c t i o n
obtaining
less
is
but
temperatures
undergo
decompose the
anomer high
(19).
4-thio-D-ribofuranose
and
form
furan
makes
Mineral
to
or
There
The
of
major
acids
7.
ketoses
energy,
easy. but
Another by
formation
(17)
the
thiofuranose
The~~possibility of
thiophene
r e a c t i o n
i s
strong
d e r i v a t i v e ,
the
induced
(18).
6
of
d e r i v a t i v e s .
higher"resonance
fructose to
of
thiophene
polysaccharides aldoses
Use
gives
the
the
slow
dehydrates
acetylated
s u l f u r
4 - t h i o - D -
undergoes
stable.
using
of
introduces
to
by
t h i o a c e t i c i t
can
normal reactions
and
nucleosides
Further (13,21,22).
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
8.
WHISTLER
Heteroatoms
AND A N i s u z z A M A N
137
into Sugar Rings
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
OAc
• CH OAc 2
Although
displacement
ion
normally
ous
rearrangement
t i o n
o f
proceeds
methyl
t h e sulfonyloxy
i n v e r s i o n
and i n v e r s i o n
2,3-
rhamnopyranoside, expected
o f
with
o f
group
by t h e
configuration,
c a n also
occur.
Thus,
simultane t h e
reac
0-isοpropy1idene-4-0-p-1οlyIsu1fοny1-a-L-
8 with
potassium
6-deoxy-4^thio-Ir-talose
thiolbenzoate
d e r i v a t i v e ,
gives
n o t t h e
9 b u t methyl 5 - S -
benzoyl-6-deoxy-2,3-0-isôprypylidene-5-thio-O^L-talofuranoside, 10 y s i s
(2'3).
Reaction
talopyranose, size
o f
10 w i t h
a n d deacetylation^gives 11.
contraction
I n general under
a
sodium
methoxide
c r y s t a l l i n e L-rhamnose
number
o f
followed
by
a c e t o l -
6-deoxy-5-thio-£tends
conditions
t o
undergo
(24,25).
CH„ H-OSBZ OMe
C(CH3)
2
10
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
ring
138
SYNTHETIC METHODS FOR CARBOHYDRATES
Reaction
of
Qxirane
Terminal hexoses,
and
r e a c t i o n
with
for
s u l f u r
s i s
of
oxirane are
r i n g s
are
convertable
thiourea.
i n t r o d u c t i o n
e a s i l y
i n
good
produced,
y i e l d
A
good
example
of
that
used
one
5-thio-D-glucose
(26).
i n
Here
produce
t o s y l a t e d
C-6
saponifies
a l l o w i n g
the the
0-6
t i o n
of
urea
produces
Acetoxy
the
to
produces
and
the
then
benzoyl
oxygen
t e r m i n a l
attack
conditions s i s
ester
to
group
epoxide,
expected
12.
t h i r a n e
p r e f e r e n t i a l at 13
which
with
C-6
form.
~
at
the
the
i n
r i n g s
of
t h i s
f o r
the
i n
the
cold
form
the
C-5
primary
t o s y l
This
on
r i n g
w i t h
i n
14,
use
route
to
gives
sodium
5^Ehio-D-glucose,
the
benzoylated
displace
e s p e c i a l l y
t h i r a n e
by method
synthe-
3 - 0 - b e n z y l - l , 2 - 0 -
i s
the
to
i s
isopropylidene-D-glucofuranose A l k a l i
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
Rings
w i t h
forma-
w i t h
i n v e r s i o n of
r i s e
e a s i l y
p o s i t i o n
group
treatment
l i q u i d
to ester.
under
t h i o C-5.
a c e t y l a t i n g
ammonia
and
h y d r o l y -
c r y s t a l l i z e d i n
the
a-D
~~ ÇH OA ζ c 0
C ( C H
The p r i a t e
oxirane
potassium
t h i o l a c e t a t e
t o l y l s u l f o n a t e methoxide the
s t r u c t u r e
can
be
obtained
5 , 6 - d i - 0 - p - t o l y l s u l f o n y l d e r i v a t i v e d e r i v a t i v e
forms
t h i r a n e
r i n g
CH OTs 0
ι ^
H-CO-TS
to
a
produce that
on
5 , 6 - e p i s u l f i d e can
proceed
i n
CH SAc 2
H-COTS
the
the
by
from
the
)
2
an
appro
a c t i o n
of
6 - S - a c e t y l - 6 - t h i o - 5 - 0 - p -
treatment r i n g
also
3
(27).
normal
w i t h
cold
Further
sodium opening
ways. CH„
CH
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
of
8.
Heteroatoms
WHISTLER AND A N i s u z z A M A N
into Sugar
Rings
139
Another way of forming thirane rings from terminal oxirane rings i s by treatment with thiocyanate anion (28). H2
Î> âss>
H-C'
HÇ-S
H C-S-CN
1
N
© CN
H-C-0
v
H-C-O
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
CH„ H-C-O-CN
7
N
+
CH
®OCN
I S t i l l another route to an appropriate terminal thirane ring is from the 5,6-dideoxy-5,6-dichloro sugar derivative produced, for example, from 3-0-benzoyl-l,2-0-isopropylidene-a-Dglucofuranose by reaction with a mixture of carbon tetrachloride and triphenylphosphine (29). Thiolacetate easily displaces the primary chlorine anion and subsequent treatment with potassium hydroxide causes the S-6 sulfur to displace the secondary chlorine to form the expected thirane ring with normal inversion at carbon C-5. CH_OH H.CC1 2ι H
C
S
A
c
A possible mechanism for the halogenation reaction is shown. Ph P:
CCI.
3
Ph PO 3
Ph PClCCl 3
RC1
ROE 3
®
Θ
Ph FORCI 3
CHC1„
Direct opening of an oxirane ring by a nucleophilic sulfur compound may also be easily effected. Thus 5,6-anhydro-l,2-0isopropylidene-a-D-glucofuranose on treatment with sodium Cfrtoluene thioxide produces the 6-S-benzyl-6-thio compound (16). Treatment of 1,6:3,4-dianhydro-P-D-galactopyranose, 15 (4) with a-toluenethioxide produces preferential attack at C-4 with forma tion of the D-glucose derivative, 16. The 1,6-anhydro ring i s not
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
140
S Y N T H E T I C M E T H O D S FOR
opened
under
Reductive a c e t o l y s i s the
the
gives
of
the
forms
glucopyranose to
pyranose
of
the
i n
analog
s o l u t i o n ,
forms,
of
group
i t s
r i n g
is
i n
great
followed or
hydrolysis
acetate.
or
Since
e q u i l i b r i u m w i t h
produces
i n d i c a t i n g the
s t a b i l i t y .
by
i t s
p r i n c i p a l l y the
a c e t y l a t i o n
acetates
s u l f u r
because
benzyl
4-thio-D-glucofuranose
underivatized sugar
isomeric
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
conditions
removal
CARBOHYDRATES
other
4-thio-D-
a
7:3
comparative
r a t i o
of
furanose
greater
s t a b i l i t y
forms.
C I ^ C I ^ S
Oxetane
Ring
Oxetane the
same
r i n g
way
Opening rings as
can
are
be
use
i n
carbohydrates
nitrogen
i s
with
D-xylopyranose l a t t e r
the
and
compound
by
n u c l e o p h i l i c
rings.
for
The
only
rings
i n
from
with
Treatment
i n
group
allows
C-5
by
the
i n s e r t
occurs
on
the
0-3
displacement to
group. a c e t y l
oxygen
of
the
s u l f u r
major
C-5
treatment
displacement
and
produce
the
p-tolysulfonyloxy
at
dimethylformamide
to
and
with
at of
s i m i l a r
displacement
5-azido
d e r i v a t i v e
and
also
of
1,2-0-isopropylidene-a-
or
sodium
a
The
to
the
oxetane
oxetane group. the
s t e r i c oxygen
the
6-0sodium
n u c l e o p h i l i c r i n g
by
azido
the
i n
group
at to
on
ensuing
of
the
ring
configuration
hinderance occurs
metho-
attack
Opening D-gluco
QKtoluenethioxide
Due with
without
methanol w i t h
r e e s t a b l i s h
150°, occurs
much
oxetane
3-0-acetyl-l,2-0-isopropylidene-5-0~
triphenylmethyl removes
s u l f u r
i n
of
1,2-0-isopropylidene-P-^-idofuranose.
made
p-tolylsulfonyl-a-D-glucofuranose xide
reagents
example
i n t r o d u c t i o n of
3,5-anhydro
i n
i s
opened
oxirane
N, N at
C-5
C-3 (30).
give
(31).
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
the
the A
8.
A l t e r a t i o n I t s u l f u r
of
i s at
E x i s t i n g
sometimes an
p a r t i c i p a t e
Sulfur
i n
the
is
often
be
isomerized
sought or
to
caused
ing
reactions
to
produce
the
preparation of In
the
i n s e r t
sugar
the
to
find
good
i n
monosaccharide
a
ring.
s u l f u r
undergo
the
methods
i n t o
a
structure
sugar
methyl
intermediate
serve
desired.
s t a r t i n g material.
excise
carbon
i n the
and
the
isopropylidene
benzyl
ammonium t o by
a
The
groups
produce
Methyl y i e l d
one.
Thus,
of
group
and is
r e d u c t i v e l y
long
free
displaced
r i z e d
Raney
n i c k e l
by
D-glucofuranose.
by
to
This
cold
to
i s
then
This
opened This
introduce
w i t h
a l k a l i benzyl
product
t h i o l a c e t a t e This
i s
product
the
sugar.
the
a c e t y l
remains
i s
group
the
to
to
a may to
o x i d i z e d to
a
sodium
i s
to
glycoside
i n
l i q u i d
prepared
i n
good
1 , 2 : 5 , 6 - d i - 0 -
i s
t o s y l a t e d
and
the
the
a t
0-3,
sugar
the
d e s u l f u -
group
produce the
w i t h
and
the
the
i s i s
not
Under a c i d i c
benzoylated
group
to
displaced by
excise
oxidized
by
to
conditions
with
carbon
one
oxide
but
methanol
the
methyl
5-0-benzyl-2-deoxy-4-thio-D-erythropentofuranoside
i s
formed
and
i n
l i q u i d
ammonia.
One
the
of
containing
the
treated
with
d e r i v a t i v e
with
However,
most
s u l f u r ,
fructopyranose i s
benzyl
while
major and
loss
from
s u l f u r
i s
is
not
i n
i s
can r i n g
and
the
the
removed
by
up due
and
a
part
i s
hence
a
N i c e l y isolated.
to
the
high
l i m i t e d
the
i s
for no
to
r i n g
(33).
isomerase e q u i l i b r i u m
q u a n t i t a t i v e
the
s t a b i l i t y
tendency
compound
pyranose
lack
sugar,
D-fructose
i s w i t h
6-thio-D-glucose
c r y s t a l l i n e The
of of
6-thio-P-D-
l a t e r
nearly from
one
of
the
e s s e n t i a l l y
be
i t s
of
to
substrate
formation
loss.
e a s i l y
When t h e
sodium
of
formation
isomerized
conversion
d i s u l f i d e
work
probably
fructopyranose
i t
becoming
r a t h e r
being
i s
6-thio-D-glucose.
6-thio-D-glucose
general
reversion
another
isomerase
but
fructopyranose
r e d u c t i v e l y
i n t e r e s t i n g transformations
into
from
6-thio-D-fructose established
group
i s
hydrolysis.
attachment
the
i n
which
d e r i v a t i v e .
removed
negative
i n
tosylated.
5,6-epoxide,
tosyloxy
less
i s then
6-0-benzyl
periodate
s u l f u r
3-deoxy-l,2-0-
product
isopropylidene
s u l f u r
uneffected.
to The
o b t a i n
and
the
o x i d i z e d the
by
(32)
This
converted
tosylated
Since
(12)
hydrolyzed
converted
t h i o l a c e t a t e
t r e a t e d
and
i s
periodate
s t a r t i n g w i t h
6-0-benzoyl
anion
anion
are
3 - d e o x y - l , 2 : 5 , 6 - d i - 0 - i s o p r o p y l i d e n e - a -
is a
examples
5-thio-D-glucose
removed
isopropylidene-a-D-glucofuranose. the
then then
isopropylidene-a-D-glucofuranose. group
then
shorten-
D-arabinofuranos ide.
route
tosyloxy
may
5 - S - a c e t y l - 3 , 6 - d i - 0 - b e n z y l -
2-deoxy-4-thio-D-riboside r a t h e r
can
or
4-thio-D-arabinoside
synthesis
product
the
which Two
i t
expedient
2-deoxy-4-thio-D-ribose
1,2-0-isopropylidene-5-thio-D-glucofuranose the
the
lengthening
and
i n s e r t i n g
that
structures.
preparation of
remove
for
Therefore
chain
4-thio-D-arabinose
possible as
to
p o s i t i o n
intended
141
into Sugar Rings
Containing Structure
d i f f i c u l t
appropriate
(C-4-thio-g-deoxyribose)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
Heteroatoms
WHISTLER AND ANisuzzAMAN
6-thio~-P-D-
of of
s i g n i f i c a n t the
open
to
6 - t h i o - D provide
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
142
SYNTHETIC METHODS FOR CARBOHYDRATES
the It
a c y c l i c is
form
fructopyranose than
for
i n t e r e s t i n g
i s
the
enzyme
to
sweetest
note
binding that
sugar
and
i n
There nium
as
routes
the i s
the
Sugar
only
r i n g
known
being
one
example
those
proceeds
α- D - x y l o f u r a n o s e
which to
with
sodium
methanolic
is
diastereomers
of
sugar
analog
The
compound
the
s u l f u r
with
Removal
of
ammonia
chloride
D-threo-3,
phene-2-dimethyl from
nmr
and
Nitrogen An
i n
j o i n i n g
the
the
the
and
gives
syntheses
group the
s t a r t
containing
ment
a
a
sodium
benzyl
mixture
reactions
nitrogen
although of
a
of
desired
often
of
a
of
to
sugar. to
water
solution,
methanolic
methyl
group
In
the
by
before
4:1.
and When
e q u i l i b r a t e s
hydrogen
above
forms
containing
r i n g
group.
can by
Thus
(benzyloxycarbonyl) favor
of
bases
ammonia
u s e f u l
a
a l l
n i t r o
monosaccharide by
i n
d i s p l a c e
the
form
of
w i t h
chloride
the
produces
an
early
i n
methanol
removing
c y c l i z e s
to
the
produce
5-acetamido-5-deoxy-D-
e i t h e r the
was
1,2-0-isopropylidene-
ammonia
form
other the
of
the
compounds be an i f
the
a l t e r e d
is
heated
form.
two
i n
Treatment
r i n g
increase the
amino
pyranose
e q u i l i b r i u m between
i n
favor
i n
the
acetamido group,
form.
Thus
of
forms
as
isopropylidene,
almost
pyranose
l a r g e r
and
n u c l e o p h i l i c i t y
group
the
the is
replaced
e q u i l i b r i u m is
of by
and
nitrogen the
N -
the
s h i f t e d
i n
5-[(benzyloxycarbony1)amino]-5-
deoxy-1,2-0-isopropylidene-a-g-xylofuranose the
a
D-xylosides.
furanose a c y l
established
occurs
reacted
The r e s u l t i n g s u g a r
r a t i o
i t
5-
C-2
n u c l e o p h i l i c
along
often S h i f f
(35)
5-acetamido-5-deoxy-D-xylopyranose a
with
Consequently
locate
location
group
Szarek
amino
group.
i n
reduc
monosaccharide
due
h y d r o l y t i c
xylofuranose
two
i s
with
isopropylidene
by
reaction
and
and
the
of
bis(methyl
5-0-p-toluenesulfoyl-a-D-xylofuranose acetylated
Pre
employed.
tosyloxy
and
the
most
reduction
are
i n
designed
a
Jones
s a l t
group
which
compound
carbon
of
Thus,
of
positioned r i n g
at
Displacement method.
i n
carbonyl
hydrazones
analog.
information.
group
or
by
Ring
properly
with
s e l e
prepared
sugar
subsequent
structure
Introduction
reactions
oximes
Sugar
containing i s
4-dihydroxy-2,3,4,5-tetrahydroseleno-
the
spectroscopic
p a r t i c i p a t e s
with
chain.
acetal,
mass
amino
structure
5-[
sweeter
5-Se-benzyl-l,2-0-isopropylidene-5-
l i q u i d
hydrogen
making
reacted
give
i n
a
deoxy-a-D-xylofuranosid-5-yl)-5,5'-diselenide
of
30%
1,2-0-isopropylidene-5-£-p-tolylsulfonyΙ
seleno-a-D-xylofuranose. t i o n
of
(34).
for
from
α-tolueneselenol
i n
some
Ring
heteroatom
to
similar
paration
gen
isomerization.
6-thio-P-D-
D-fructose.
Selenium
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
necessary
e s p e c i a l l y
e x c l u s i v e l y
gives,
the
on
hydrolysis
c r y s t a l l i n e
(benzyloxycarbonyl)amino]-5-deoxy-Q5-g-xylopyranose
(36)
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
and
8.
the
six-membered
Amide
I I band For
of
Heteroatoms
WHISTLER AND ANisuzzAMAN
r i n g
s t r u c t u r e
i n t h e i r
follows
form
i s
l i k e w i s e
acetamido-5-deoxy-D-xylose. y i e l d s
syrupy
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
o f a n proportion
compared
w i t h
i n favor
o f
with
o r
a n a c i d
ion-exchange
i n t h e r a t i o
L)-arabinose,
t h e furanose
5 -
5-benzamido-5-deoxy-
c r y s t a l l i n e 5-benzamido-5-deoxy-D-xylopyranose
5-acetamido-5-deoxy-(D
displaced
as
Hydrolysis o f
5-benzamido-5-deoxy-D-xylofuranose
For is
t h e absence
t h e e q u i l i b r i u m
increased,
1,2-0-isopropylidene-a-D-xylofuranose r e s i n
from
143
Rings
spectrum.
5-benzamido-5-deoxy-D-xylose,
t h e pyranose
into Sugar
form.
t h e
Thus,
o f
and 3 : 1 (37).
e q u i l i b r i u m
1,2-0-
isopropylidene-5-0-tolylsulfonyl-P-L-arabinofuranose,
o n
ment
5-acetamido-
with
ammonia
and subsequent
a c e t y l a t i o n ,
y i e l d s
5-deoxy-1,2-0-isopropylidene-P-L-arabinofuranose s i s
o f
t h i s
compound
w i t h
a c i d
gives
(38).
a mixture o f
5-acetamido-5-deoxy-]>arabinopyranose
a n d syrupy
t r e a t Hydroly
c r y s t a l l i n e 5-acetamido-5-
deoxy-L-arabinofuranose. A
s i m i l a r
Azido group
such
r e a c t i o n
i s a good
i s
found
nucleophile
t o proceed t h a t
as p-toluenesulfonyloxy,
a p p l i c a t i o n .
A n example
i s
found
w i t h
r e a d i l y
^-arabinose
displaces
and t h e r e a c t i o n
i n t h e preparation
1,2,3,5-tetra-£-acetyl-4-deoxy-D-xylofuranose,
17.
a
(39).
leaving
has had wide 4-acetamidoReaction
o f
2 , 3 - d i - 0 - b e n z o y l - 4 - (p-tolylsulfonyl) - β - ^ a r a b i n o p y r a n o s i d e , 1 8 w i t h sodium azide g i v e s m e t h y l 4-azido-4-deoxy-a-g-xylopyranoTide, 19
which o n c a t a l y t i c
hydrogénation
3eoxy-a-D-xylopyranoside, a c e t o l y s i s form,
y i e l d s
20.
produces
methyl
N - a c e t y l a t i o n o f
17 a n d p o s s i b l y
a
small
4-amino-4-
19 followed
anount'~~of
i t s
21. ( 4 0 ) .
21
by
pyranose
OAc
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
144
SYNTHETIC METHODS FOR CARBOHYDRATES The
but
i r spectra
there
i s
no
o f
absorption
a t
rable
t h e furanose
w i t h
Another for
6.5μ.
These
example
absorption
due t o
NH a b s o r p t i o n
a t
and t h e nmr spectra
t h e use o f sugars
o f
amide
17 a r e
displacement nitrogen
r e a c t i o n
as t h e
r i n g
t h e c r y s t a l l i n e
5-acetamido-5-deoxy-a-D-lyxopyranose
22 f r o m
benzyl
2, 3 - £ - i s o p r o p y l i d e n e - 5 - 0 - m e t h y l s u l f o n y l - a - D - l y x o f u r a n o s i d e
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
In (
J
t h e nmr spectrum o f l
22
2
=
2
·
5
Η ) 2
i s t h e a
Tne
o r i g i n o f
r o t a t i o n
a t
and i s a
r o t a t i o n a l
around
Azide
22 t h e 1 - H s i g n a l s
centered
anomer
o f
has been
i s due t o
also
used
(39),
This
dideoxy-D-xylofuranose L)-arabinofuranose
(42,43), (44),
23
(41).
doublets
indicates
that
22a and22b.
r e s t r i c t i o n o f resonance
o f
t h e
type
f o r t h e preparation
o f
5-benzamido-5-deoxy-D-
(37), 5-acetamido-5-deoxy-D-ribopyranose
5-acetamido-5-deoxy-L-arabinopyranose (and
as
i t s rotamers
r e s u l t i n g from
5-acetamido-5-deoxy-D-xylopyranose xylopyranose
appear
4.09 a n d 4.52.
mixture
isomerism
t £ e C-N b o n d
displacement
τ
I I
compa
~ " azide
containing
i s t h e p r e p a r a t i o n o f
OAc and NAc
3 . Ομ o r
s t r u c t u r e .
o f
t h e p r e p a r a t i o n o f
heteroatom
17 s h o w s
evidenceT"for
(39),
(39)
9
4-acetamido-4,5-
4-acetamido-4-deoxy-D 4-acetamido-4-deoxy-L-xylofuranose
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
8.
WHISTLER
(45),
Heteroatoms
AND A N i s u z z A M A N
into Sugar
145
Rings
1,2:3,5-di-^-isopropylidene^4-acetamide-4^deoxy-a-L-
xylofuranose
(45) a n d 4 - a c e t a m i d o - l , 2 , 3 ,5 - t e t r a - i O - a c e t y l - D -
ribofuranose
(46).
The
presence
acetamido
group
c o n f i g u r a t i o n
o f
a
i n a
sulfonate
sugar
through
ester
molecule
neighboring
group
i n a d d i t i o n
c a n r e s u l t
group
i n a
t o a n
change
p a r t i c i p a t i o n .
o f
Thus
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
5-acetamido-5-deoxy--l,2-0-isopropylidene-3-0-methylsulfonyl-Darabinofuranose,
obtained
0-isopropylidene
D-arabinofuranose,~~24,
benzoate
from
5 - 0 - p - t o l y l s u l f o n y l - 5 - d e o x y - l , 2 -
i n N,N-dimethylformamide gives
O-isopropylidene-D-lyxofuranose^25. presumably (47).
proceeds
through
when
heated
w i t h
sodium
5-acetamido~5-deoxy-l,2-
The conversion
t h e o x a z o l i n i u m
o f
24 t o 25
ion-oxazoline
,
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
system
146
SYNTHETIC
Acid
h y d r o l y s i s o f
5-acetamide
Hydrazine the
o f
i s
The
o f
f i r s t
a
step
involves
d i s p l a c i n g agent A convenient
f o r
method
i n t r o -
(48)
neighboring
which
group
with
s u b s t i t u t i o n o f
by hydrazine t o
form
converts
t h e
t o
f o r i s
the
hydrazine.
the
primary
6-hydrazino-5-
a
three-membered
p a r t i c i p a t i o n .
CH OMs
I
a
n u c l e o p h i l i c
group
compound
through
as
sugars.
5-acetamido-5-
1:TT
a n N - a m i n o a z i r i d i n e compound o f hexoses
0-(methylsulfonyl)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
u s e f u l
into
CARBOHYDRATES
c r y s t a l l i n e
5, 6 - d i - 0 - ( m e t h y l s u l f o n y l ) a l d o h e x o s e
methylsulfonyloxy r i n g
mixture o f
i n t h e r a t i o
aTio
n i t r o g e n
p r e p a r a t i o n o f
r e a c t i o n
a
FOR
5-deoxy-a-D-Tyxopyranose, 2 6 a n d s y r u p y
deoxy-lyxofuranose,27 duction
25 g i v e s
METHODS
CH -NHNEL
2
H NNH
\£y
MSO-C-H
J,NHNH
I
2
->
MsO-C-H
H
-
C
^
2
R Reduction 5,6-dideoxy d e r i v a t i v e
with
hydrazine
d e r i v a t i v e s which (49).
Thus,
i n presence c a n be
o f
n i c k e l
c y c l i z e d
1, 2 - 0 - i s o p r o p y l i d e n e - 3 , 5 , 6 - t r i - 0 on
r e a c t i o n
t h e isopropylidene
with
group
dideoxy-P-L-idopyranose, form
rated
chromatography
by
t o
pyridine spectra the
o f
29
yield
Reduction a t
o f
i n d i c a t e w i t h
followed
e x i s t s
4 : 1 .
by
h y d r o l y s i s
i n e q u i l i b r i u m
The compound
reacts
w i t h
a c e t i c
d e r i v a t i v e ,
t h a t
both
these
s u b s t i t u e n t s
aluminium
d e r i v a t i v e ,
to
a t
28
with
i s
sepa-
ariKydride a n d
30.
The nmr
compounds
prefer
C - l and C-5 being
32 a n d a
Hydrolysis
oT^these
from
free
which
hydroxy1
1:1
used
t o
i n
amine,
mixture o f
The nmr spectra
s u l f u r
w i t h
t h e free
amino
t h e
k e t o -
d i m e t h y l sulfoxide and i s
a
dioxide
a r e obtained o f
produce Thus
2 , 3 : 5 , 6 - d i - O - i s o p r o p y l i d e n e - D reduced
gives
l i t h i u m
sugars
derivative^33.
b i s u l f i t e
by r e a c t i o n
t h e p y r r o l i n e
w i t h
4-amino-4-deoxy-D-glucose
4-amino-4-deoxy-D^-galactose w i t h
sugars
i n e q u i l i b r i u m
from
be
molecules.
by o x i d a t i o n with
with a
can a l s o
i n sugar
31 obtained
r e a c t i o n hydride
(50)
l o c a t i o n
dimethyl aceta1
subsequent
e x i s t
and i t
oximes
s p e c i f i c
d e r i v a t i v e ,
glucose
xide.
This o f
from
position
groups oxime
28.
prepared
5-(benzyloxycarbonylamino)-5,6-
i t s t r i - O - a c e t y l
C l ( L ) conformation
a x i a l
gives
i n t h e raîfio
28 a n d 3 0
5-amino-
amino-pyranose
(methylsulfonyl-a-D-glucofuranose
benzyloxyformyl c h l o r i d e
furanose
gives
a n
5 - a m i n o - l , 2 - 0 - i s o p r o p y l i d e n e - 3 - 0 -
(methylsulfonyl)-5,6-dideoxy-P-£-idofuranose
of
t o
with
i n d i c a t e
form
and a
adduces
barium
t h a t
hydro-
these
dimeric
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
form.
WHISTLER AND A N i s u z z A M A N
Heteroatoms
into Sugar Rings
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
8.
American Chemical Society Library 1155 16th St. N. w. Washington, C. 20036 El Khadem, H.; In Synthetic Methods D. for Carbohydrates; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
147
148
SYNTHETIC
ÇH(0Me)
.
0
'
\
_
1.
Me S0-Ac
2.
Η N-OH
2
_
^
3
Ο
CARBOHYDRATES
L i A l H ^
3 ( C
0 1
2
C H
3
>2
É-N-0H
i
i-o Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
FOR
ÇH(OMe),
?
-C(CH )
01
METHODS
C ( C H
3
)
> ( C H
2
)
C H / C
H
2 ° 31
CH(OMe),
CH(OMe),
h^x:(CH ) 3
^ C ( C H
2
)
3
2
O•NH
H N2
> C ( C H
)
C H . O ^ 33
Z
CH OH n
I
2
HO-C-H
H-C-OH
OH
1
CH OH 2
-Cj!-OH CH„OH
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
8.
WHISTLER AND ANisuzzAMAN
Heteroatoms
into Sugar
149
Rings
An example o f t h e use o f a hydrazone d e r i v a t i v e t o i n t r o d u c e nitrogen i n t h e sugar r i n g i s t h e preparation 5-acetamido-5-deoxyD - x y l o p y r a n o s e , 34 f r o m 1,2-cyclohexylidene-a-D-xylopentodialdo1 , 4 - f u r a n o s e p h e n y l h y d r a z o n e , 35 ( 5 1 ) . H y d r o g é n a t i o n o f 35 a f f o r d s t h e a m i n o c o m p o u n d , 3 6 w K i c h o n N - a c e t y l a t i o n gives*** 5-acetamido 1,2-p-cyclohexyli3ene-5-deoxy-D-xylofuranose 37. A 2 : 1 m i x t u r e o f 34 a n d i t s f u r a n o s e i s o m e r 38 i s o b t a i n e d b y ^ t h e a c i d hydro lys i s ~ f 37. B o t h 34 a n d 38 a r e a t a b l e i n n e u t r a l solution but readily^equilibraEe i n acid a t 70°. A benzyl glycos i d e o f 34 consumes two m o l e s o f s o d i u m p e r i o d a t e w i t h t h e l i b e r a t i o n οίΓεΓ m o l e o f f o r m i c a c i d a n d t h i s r e s u l t i s c o m p a t i b l e w i t h a pyranose s t r u c t u r e .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
>
OH
5 - A m i n o - 5 - d e o x y - I r - i d u r o n i c 3'9 a c i d r e l a t e d t o t h e c a r b o h y d r a t e component o f p o l y o x i n s h a s ^ e e n s y n t h e s i z e d r e c e n t l y (52). The r e a c t i o n o f 1,2-0-isopropylidene-5-aldo-D-xylopentodialdofuranose w i t h b e n z y l amine a n d hydrogen cyanide" g i v e s 5 - b e n z y l a m i n o 5-deoxy-l, 2-0-isopropylidene^-L-idofuranonitrile, 40, which on hydrolysis with water y i e l d s 5-benzylamino S"-deoxy-l, 2fr-isopropylidene-L-iduronic acid, 41. Hydrogenolysis o f 41 leads t o t h e f o r m a t i o n o f 5-amino-5-deoxy~"compound, 42 from w h i c h t h e f r e e 5 - a m i n o - 5 - d e o x y - L - i d u r o n i c a c i d 39 i s p r e p a r e d by way o f t h e b e n z y l o x y c a r b o n y l compound, 4 3 . TheT"free a c i d 39 e x i s t s i n a e q u i l i b r i u m o f t h e f u r a n o s e "form a n d p i p e r i d i n e H E b r m a n d t h e l a t t e r s i x membered f o r m p r e d o m i n a t e s . : :
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
150
SYNTHETIC
METHODS
FOR
CARBOHYDRATES
OH Phosphorus i n the Sugar Ring As an exercise i n chemistry and to show the further general i t y of producing sugar rings containing various heteroatoms we undertook the replacement of oxygen by phosphorus i n the six member g-xylose ring (53). i n this sequence, 1,2-0-isopropylidene3-0-methy1-5-0-(p-toluenesulfonyl) c^D-xylofuranose or 5-bromo-5deoxy-1, 2-£-isopropylidene-3-0-methyI-a-D-xylofuranose i s reacted with triethylphosphite to produce the 5-deoxy-5-(diethylphosphinyl) derivative. Reduction with lithium aluminium hydride followed by hydrolytic removal of the isopropylidene group produces i n the one case 5-deoxy-3-jO-methyl-5-phosphinyl-D-xylopyranose, 44 and 5-deoxy-3-£-methyl-5-(phosphinic acid)-D-xylopryanose, 45?~ Formation of 44 and 45 presumably proceed through intermediates 46 and 47. Com^und 4T"does not mutarotate and i s stable toward a i r oxidation. However, with bromine i t i s oxidized to the phosphinic acid 45. The i r spectrum of 44 shows absorption due to the B-H groupT
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
8.
WHISTLER AND ANisuzzAMAN
Heteroatoms
into Sugar
Rings
151
45 Inokawa and associates recently synthesized a D-ribose deri vative containing phosphorus i n the ring (54). They undertake nucleophilic displacement of the iodo group i n methyl 5-deoxy-5iodo-2, 3-£-isopropylidene-P-g-ribofuranoside with ethyldiethoxyphosphine to produce methyl 5-deoxy-5-(ethoxyethylphosphinyl)-2,3O-isopropylidene-P-D-ribofuranoside 48. Reduction of 48 with sodium dihydro-bis72-methoxyethoxy)'^aluminate i n THF gTves methyl 5-deoxy-(ethylphosphinyl)-2,3-0-isopropylidene-P-D-ribofuranoside 49, acid hydrolysis of which yields 5-deoxy-5-(ethylphospinyl)-DrTbopyranose 50. Evidence for the pyranose structure of 50 i s derived from ΈΚβ absence of characteristic PH peaks i n i~Esf nmr and i r spectra. The reaction of 50 with a mixture of acetic anhy dride and pyridine gives i t s 1, 2,3^~4-tetra-0-acetyl derivative, 51 which reverts to 50 on deacetylation with sodium methoxide i n "~ methanol. By using reactions similar to those described above, 5-(alkylphosphinyl)-5-deoxy-3-0-methyl-(and benzyl)-D-xylopyranoses were also prepared (55 56). 5
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
152
SYNTHETIC METHODS
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
Ο
FOR CARBOHYDRATES
E t
Literature Cited 1. Ingle, D. L. and Whistler, R. L., J. Org. Chem. (1962) 27, 3896. 2. Schwarz, J. C. S. P. and Yule, K. C., Proc. Chem. Soc. (1961) 417. 3. Adley, T. J. and Owen, L. Ν., Proc. Chem. Soc. (1961) 418. 4. Vegh, L. and Hardegger, E., Helv. Chim. Acta (1973) 56, 2020. 5. Chmielewski, M. and Whistler, R. L., J. Org. Chem. (1975) 40, 639. 6. Zysk, J. R., Bushway, Α. Α., Whistler, R. L. and Carlton, W. W., J. Reprod. Fert. (1975) 45, 69. 7. Graham,T.L. and Whistler, R. L. Biochemistry, (1976) 15, 1189. 8. Gross, B. and Driez, F. X., Carbohyd. Res. (1974) 36, 385. 9. Clayton, C. J. and Hughes, Ν. Α., Chem. Ind. (London) (1962) 1975. 10. Clayton, C. J. and Hughes, Ν. Α., Carbohyd. Res. (1967) 4, 32. 11. Owen, L. N. and Ragg, P. L., J. Chem. Soc. (C) (1966) 1291. 12. Whistler, R. L., Nayak, U. G. and Perkins, A. W., Jr., J. Org. Chem. (1970) 35, 519. 13. Reist, E. J . , Gueffroy, D. E. and Goodman, L., J. Am. Chem. Soc. (1963) 85, 3717.
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
8. WHISTLER AND ANISUZZAMAN
Heteroatoms into Sugar Rings
14. Reist, E. J . , Gueffroy, D. E. and Goodman, L., J. Am. Chem. Soc. (1964) 86, 5658. 15. Reist, E. J., Fisher, L. V. and Goodman, L., J. Org. Chem. (1968) 33, 189. 16. Cox, J. M. and Owen, L. N., J. Chem. Soc. (C) (1967) 1121. 17. Newth, F. Μ., Advan. Carbohyd. Chem. (1951) 6, 83; Feather, M.S. and Harris, J. F., Advan. Carbohyd. Chem. (1973) 28, 161. 18. Haworth, W. N. and Jones, W. G. M., J. Chem. Soc. (1944) 667. 19. Whistler, R. L. and Hoffman, D. J . , Carbohyd. Res. (1969) 11, 137. 20. Whistler, R. L., Dick, W. E., Ingles, T. R., Rowell, R. M. and Urbas, B., J. Org. Chem. (1964) 29, 3723. 21. Whistler, R. L., Bobek, M. and Bloch, Α., J. Med. Chem. (1970) 13, 411. 22. Ototani, N. and Whistler, R. L., J. Med. Chem. (1974) 17, 535. 23. Stevens, C. L., Glinsky, R. P., Gutowski, G. E. and Dicker son, J. P., Tetrahedron Lett. (1967) 649. 24. Stevens, C. L., Glinski, R. P., Taylor, K. G., Blumbergs, P. and Sirokoman, F., J. Am. Chem. Soc. (1967) 88, 2073. 25. Kefurt, K., Jary, J. and Samek, Z., Chem. Commun. (1969) 213. 26. Nayak, U. G. and Whistler, R. L., J. Org. Chem. (1969) 34, 97. 27. Creighton, A. M. and Owen, L. N., J. Chem. Soc. (1960) 1024. 28. Hall, L. D., Hough, L. and Pritchard, R. Α., J. Chem. Soc. (1961) 1537. 29. Chiu, C-W. and Whistler, R. L., J. Org. Chem. (1973) 38, 832. 30. Whistler, R. L., Luttenegger, T. J. and Rowell, R. M., J. Org. Chem. (1968) 33, 396. 31. Nayak, U. G. and Whistler, R. L., J. Org. Chem. (1968) 33, 3482. 32. Nayak, U. G. and Whistler, R. L., Chem. Commun. (1969) 434. 33. Chmielewski, Μ., Chen, M. S. and Whistler, R. L., Carbohyd. Res., 000. 34. van Es, T. and Whistler, R. L., Tetrahedron (1967) 23, 2849. 35. Jones, J. Κ. N. and Szarek, W. Α., Can. J. Chem. (1963) 41, 636. 36. Paulsen, H., Leupold, F. and Ίodt, Κ., Ann. (1966) 692, 2001. 37. Patel, M. S., Jones, J. Κ. N., Can. J. Chem. (1965) 43, 3105. 38. Jones, J. Κ. N. and Turner, J. C., J. Chem. Soc. (1962) 4699. 39. Hanessian, S. and Haskell, T. H., J. Org. Chem. (1963) 28, 2604. 40. Reist, E. J . , Fisher, L. V. andGoodman, L., J. Org. Chem. (1967) 32, 2541. 41. Brimacombe, J. S., Hunedy, F. and Stacy, M., J. Chem. Soc. (C) (1968) 1811.
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
153
154 42. 43. 44. 45.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0039.ch008
46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56.
SYNTHETIC METHODS FOR CARBOHYDRATES Brimacombe, J. S. and Bryan, J. G. Η., J. Chem. Soc. (1966) 1724. Hanessian, S., Carbohyd. Res. (1965) 1, 178. Dick, A. J. and Jones, J. Κ. Ν., Can. J. Chem. (1968) 46, 425. Dick, A. J. and Jones, J. Κ. Ν., Can. J. Chem. (1965) 43, 977. Reist, E. J., Gueffroy, D. E., Blackford, R. W. and Goodman, L., J. Org. Chem. (1966) 31, 4025. Hanessian, S., J. Org. Chem. (1967) 32, 163. Paulsen, H. and Stoye, D., Chem. Ber. (1969) 102, 820. Paulsen, H. and Friedmann, Μ., Chem. Ber. (1972) 105, 731. Paulsen, Η., Propp, K. and Heynes, Κ., Tettrahedron Lett. (1969) 683. Paulsen, H., Ann. (1963) 670, 121. Paulsen, H. and Mäckel, Ε., Chem. Ber. (1973) 106, 1525. Whistler, R. L. and Wang, C-C., J. Org. Chem. (1968) 33, 4455. Inokawa, S., Kitagawa, H., Seo, K., Yoshida, Y. and Ogata, T., Carbohyd. Res. (1973) 30, 127. Inokawa, S., Ysuyoshi, Υ., Seo, K. and Ogata, T., Bull. Chem. Soc., Japan, (1971) 44, 2279. Seo, K. and Inokawa, S., Bull. Chim. Soc., Japan (1973) 46, 3301.
In Synthetic Methods for Carbohydrates; El Khadem, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.