(Methylamino)propylamine with Water, N ... - ACS Publications

Nov 15, 2013 - Experimental density data of the binary mixtures of 3-(methylamino)propylamine with water, N-methyldiethanolamine, ...
0 downloads 0 Views 329KB Size
Article pubs.acs.org/jced

Volumetric Properties of Binary Mixtures of 3‑(Methylamino)propylamine with Water, N‑Methyldiethanolamine, N,N‑Dimethylethanolamine, and N,N‑Diethylethanolamine from (283.15 to 363.15) K Xiaopo Wang,* Kai Kang, Wei Wang, and Yuansi Tian Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China ABSTRACT: Experimental density data of the binary mixtures of 3-(methylamino)propylamine with water, N-methyldiethanolamine, N,N-dimethylethanolamine and N,N-diethylethanolamine were reported at atmospheric pressure over the entire composition range at temperatures from (283.15 to 363.15) K. The densities were measured using an Anton Paar digital vibrating U-tube densimeter. Excess molar volumes of the mixture were calculated from the experimental densities and correlated as the Redlich−Kister equation. The optimized sets of parameters of the equation were obtained by the leastsquares method at each temperature. Infinite dilution partial molar volumes and the corresponding excess partial molar volumes at infinite dilution were calculated and discussed. Thermal expansivities for the binary mixtures were presented.

1. INTRODUCTION Fossil fuel burning has increased CO2 concentration in the atmosphere over the past 200 years. Researchers over the world have been investigating effective methods to manage CO2 emissions. In addition, in the petroleum and natural gas industry, the removal of CO2, H2S, or other acid constituents from process gas streams is also very important. Chemical absorption is known to be the most reliable and economical process for acid gas removal. Aqueous solutions of alkanolamines are of great interest as chemical absorbents. A wide variety of aqueous alkanolamines, such as monoethanolamine (MEA), diethanolamine (DEA), diisopropanolamine (DIPA), or N-methyldiethanolamine (MDEA) have been extensively studied for this purpose. In the past few years, different studies have proposed the use of aqueous blended amine solutions, such as a primary or secondary alkanolamine with a tertiary alkanolamine, as a substitute for the aqueous solutions of a single alkanolamine in industrial level applications for CO2 capture. Those solutions combine the advantages of each individual amine and can produce a considerable improvement in absorption characteristics. Very recently, 3-(methylamino)propylamine (N-methyl-1,3propane diamine, MAPA) has received increasing attention for CO2 capture.1 Because of its fast reaction rate and high CO2 solubility, it has been considered as a promoter to tertiary amines (such as N-methyldiethanolamine (MDEA), N,N-dimethylethanolamine (DMEA), or N,N-diethylethanolamine (DEEA)) or carbonate solutions for improving the process of CO2 removal. For example, investigation showed that the MAPA + DMEA + H2O system had faster kinetics and higher CO2 capacity than 30 mass % MEA.2 At the same time, this system was found to have a potential for both lower heat of regeneration and lower environmental impact than MEA.3 © 2013 American Chemical Society

To design and optimize CO2 capture facilities, knowledge of physicochemical properties like densities, vapor−liquid equilibrium, viscosities, and surface tensions of those solvents are essential. Bruder4 studied the vapor−liquid equilibrium of the CO2 + MAPA + DMEA system. Vapor pressure of pure MAPA and the vapor−liquid equilibrium of MAPA + H2O and MAPA + MDEA + H2O systems were measured by Kim.5 The vapor− liquid−liquid equilibrium of the MAPA + DEEA + CO2 + H2O system was calculated using the electrolyte NRTL model.6 In addition, enthalpies of absorption of CO2, equilibrium solubilities and volatility data of MAPA had also been reported.7−9 Densities of the binary mixtures of amines can be used to determine the physical solubility of CO2 in solvent, mass transfer, and solvent kinetics. The accuracy of the densities of the solvents affects the reliability of process design calculations for designing the equipment. The derived volumetric properties, such as excess molar volume and partial molar volume at infinite dilution from density data, can be used to extend our understanding of molecular interactions in mixtures. Unfortunately, to our knowledge, the density of pure MAPA and aqueous blended MAPA solutions are not found in the literature. Before thinking about modeling the ternary mixtures, such as MAPA + DMEA + H2O or MAPA + MDEA + H2O, it is important to perform accurate modeling of the concerned binaries. In this work, densities of the binary mixtures of MAPA with water, MDEA, DMEA, and DEEA have been measured for the whole composition range. The excess molar volumes, partial molar volumes, and thermal expansivities were obtained. Received: July 24, 2013 Accepted: November 2, 2013 Published: November 15, 2013 3430

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Table 1. Sample Descriptions abbreviated name

IUPAC name

CAS No.

source

initial mole fraction purity

MAPA MDEA DMEA DEEA

1,3-propanediamine, N-methylN-methyldiethanolamine 2-(N,N-dimethylamino)ethanol ethanolamine, N,N-diethyl-

6291-84-5 105-59-9 108-01-0 100-37-8

Sigma-Aldrich Aladdin Chemistry Sigma-Aldrich Aladdin Chemistry

≥ 0.98 ≥ 0.98 ≥ 0.995 ≥ 0.99

Figure 1. Curves of excess molar volumes VE as a function of MAPA mole fraction for the binary mixtures at 333.15 K: ■, H2O; ●, MDEA; ▲, DEEA; ▼, DMEA. Solid line: calculated results from Redlich−Kister equation.

Figure 2. Comparison of excess molar volumes of various aqueous amine systems at 333.15 K: ■, MAPA; ●, MDEA;19 ★, DEEA;20 ▲, DMEA.16

Table 2. Comparison between the Experimental and Literature Data for Density Values of Pure Components at Different Temperatures ρ/g·cm−3 component

T/K

this work

lit. data

MDEA

293.15 303.15 313.15 323.15 333.15 343.15 353.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15 293.15 303.15 313.15 323.15 333.15 353.15

1.040060 1.032468 1.024862 1.017212 1.009506 1.001732 0.993889 0.876155 0.866828 0.857388 0.847839 0.838157 0.828488 0.818597 0.886560 0.878059 0.869428 0.860655 0.851720 0.833288

1.04060,12 1.0315,10 1.03306,12 1.0249,10 1.02519,11 1.02545,12 1.0174,10 1.01699,11 1.0098,10 1.00960,11 1.0023,10 1.00183,11 0.994610 0.8752,13 0.8665,13 0.8657,14a 0.8555,13 0.8567,14a 0.8474,14a 0.8379,14a 0.8282,14a 0.8184,14a 0.88747,15 0.8875,17 0.87878,15 0.87835,16 0.8793,17 0.87025,15 0.86986,16 0.8692,17 0.8614,17 0.85189,16 0.83375,16

DEEA

DMEA

a

Figure 3. VE/(x1x2) as a function of MAPA mole fraction at atmospheric pressure and different temperatures: ■, 293.15 K; ●, 313.15 K; ▲, 333.15 K; ▼, 353.15 K.

using an analytical balance (model AB204-N, Mettler-Toledo) with an accuracy of ±0.1 mg. The uncertainty of the mole fraction was less than 2.0 × 10−4. Density measurements were performed by means of an Anton Paar digital vibrating U-tube densimeter (model DMA 5000 M). The temperature was determined with two integrated Pt 100 platinum thermometers, and the temperature in the cell was regulated to ±0.01 K. The densimeter was calibrated at atmosphere pressure with bidistilled and degassed water and dry air before and after measuring each sample. The uncertainty of density values was less than 5·10−6 g·cm−3 and the repeatability of density values is specified as 1.0·10−6 g·cm−3. During the measurement, the mixed sample density was measured at thermal

Calculated results.

2. EXPERIMENTAL SECTION Table 1 shows the sample descriptions used in the present work. All the solvents were used without further purification. Bidistilled water was used to prepare aqueous solutions. The binary mixtures under investigation in this work were prepared by mass 3431

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Table 3. Densities and Excess Molar Volumes for the Binary Mixtures from (283.15 to 363.15) K at Atmospheric Pressure (0.1 MPa)a x1b

ρ/(g·cm−3)

VE/(cm3·mol−1) 283.15 K

0.0000 0.0051 0.0200 0.0400 0.0599 0.0800 0.1001 0.1496 0.2001 0.2996 0.4001 0.4995 0.5998 0.6995 0.7976 0.9010 1.0000

0.999701 0.998237 0.994774 0.992840 0.991664 0.991853 0.990982 0.985446 0.975602 0.953237 0.932582 0.915228 0.900588 0.888711 0.879041 0.869652 0.860459

0.0000 0.0051 0.0200 0.0400 0.0599 0.0800 0.1001 0.1496 0.2001 0.2996 0.4001 0.4995 0.5998 0.6995 0.7976 0.9010 1.0000

0.992212 0.990476 0.985566 0.980873 0.976614 0.973774 0.970258 0.961197 0.950269 0.927601 0.906849 0.889428 0.874666 0.862629 0.852787 0.843170 0.833715

0.0000 0.0051 0.0200 0.0400 0.0599 0.0800 0.1001 0.1496 0.2001 0.2996 0.4001 0.4995 0.5998 0.6995 0.7976 0.9010 1.0000

0.977760 0.975769 0.969886 0.963394 0.957198 0.952467 0.947339 0.935674 0.923678 0.900476 0.879715 0.862344 0.847577 0.835508 0.825611 0.815925 0.806370

0.0000 0.1001 0.2003

1.040060 1.026934 1.012695

0.0000 −0.0452 −0.1890 −0.4275 −0.6748 −0.9542 −1.2074 −1.7228 −2.0636 −2.3721 −2.3920 −2.2299 −1.9441 −1.6016 −1.2268 −0.7088 0.0000 313.15 K 0.0000 −0.0529 −0.2056 −0.4338 −0.6543 −0.9000 −1.1191 −1.6003 −1.9543 −2.3204 −2.3864 −2.2582 −1.9925 −1.6592 −1.2855 −0.7503 0.0000 343.15 K 0.0000 −0.0585 −0.2218 −0.4498 −0.6600 −0.8909 −1.0952 −1.5560 −1.9155 −2.3152 −2.4148 −2.3104 −2.0551 −1.7240 −1.3451 −0.7915 0.0000 293.15 K 0.0000 −0.4516 −0.8221

ρ/(g·cm−3)

VE/(cm3·mol−1)

MAPA (1) + H2O (2) 293.15 K 0.998208 0.996630 0.992593 0.989571 0.987189 0.986200 0.984300 0.977467 0.967230 0.944826 0.924145 0.906757 0.892069 0.880119 0.870383 0.860902 0.851605 323.15 K 0.988140 0.986217 0.980949 0.975589 0.970587 0.967022 0.962871 0.952860 0.941571 0.918738 0.897972 0.880556 0.865773 0.853712 0.843839 0.834181 0.824673 353.15 K 0.971788 0.969700 0.963520 0.956509 0.949885 0.944681 0.939185 0.926784 0.914460 0.891074 0.870324 0.852997 0.838260 0.826212 0.816324 0.806659 0.797093 MAPA (1) + MDEA (2) 303.15 K 1.032468 1.019313 1.005007 3432

ρ/(g·cm−3)

VE/(cm3·mol−1) 303.15 K

0.0000 −0.0477 −0.1938 −0.4267 −0.6624 −0.9277 −1.1667 −1.6689 −2.0140 −2.3456 −2.3833 −2.2340 −1.9567 −1.6180 −1.2450 −0.7221 0.0000

0.995651 0.993985 0.989479 0.985557 0.982161 0.980175 0.977400 0.969396 0.958776 0.936290 0.915578 0.898165 0.883427 0.871429 0.861635 0.852078 0.842690

0.0000 −0.0531 −0.2094 −0.4370 −0.6529 −0.8921 −1.1045 −1.5779 −1.9345 −2.3142 −2.3929 −2.2738 −2.0122 −1.6805 −1.3057 −0.7644 0.0000

0.983197 0.981304 0.975762 0.969758 0.964115 0.959923 0.955236 0.944358 0.932714 0.909696 0.888926 0.871523 0.856742 0.844674 0.834781 0.825100 0.815559

0.0000 −0.0598 −0.2259 −0.4539 −0.6640 −0.8924 −1.0949 −1.5504 −1.9109 −2.3184 −2.4267 −2.3285 −2.0756 −1.7447 −1.3638 −0.8058 0.0000

0.965305 0.963045 0.956663 0.949281 0.942172 0.936552 0.930768 0.917665 0.905046 0.881470 0.860741 0.843475 0.828782 0.816767 0.806909 0.797262 0.787723

0.0000 −0.4744 −0.8620

1.024862 1.011658 0.997273

0.0000 −0.0503 −0.1996 −0.4294 −0.6564 −0.9106 −1.1385 −1.6294 −1.9780 −2.3296 −2.3827 −2.2446 −1.9732 −1.6380 −1.2651 −0.7365 0.0000 333.15 K 0.0000 −0.0571 −0.2179 −0.4445 −0.6570 −0.8913 −1.0987 −1.5653 −1.9237 −2.3141 −2.4036 −2.2920 −2.0339 −1.7030 −1.3261 −0.7784 0.0000 363.15 K 0.0000 −0.0594 −0.2298 −0.4603 −0.6684 −0.8951 −1.0976 −1.5474 −1.9092 −2.3225 −2.4382 −2.3458 −2.0947 −1.7635 −1.3810 −0.8167 0.0000 313.15 K 0.0000 −0.4964 −0.9009

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Table 3. continued x1b

ρ/(g·cm−3)

0.2999 0.3997 0.5000 0.5999 0.7001 0.8002 0.9000 1.0000

0.997588 0.981393 0.964134 0.944646 0.923928 0.900759 0.876717 0.851605

0.0000 0.1001 0.2003 0.2999 0.3997 0.5000 0.5999 0.7001 0.8002 0.9000 1.0000

1.017212 1.003953 0.989479 0.974031 0.957394 0.939738 0.919850 0.898494 0.874972 0.850467 0.824673

0.0000 0.1001 0.2003 0.2999 0.3997 0.5000 0.5999 0.7001 0.8002 0.9000 1.0000

0.993889 0.980415 0.965631 0.949783 0.932732 0.914593 0.894290 0.872517 0.848523 0.823509 0.797093

0.0000 0.0999 0.2000 0.3001 0.3997 0.5000 0.5998 0.7001 0.8000 0.8996 1.0000

0.894423 0.892458 0.890440 0.888023 0.885377 0.882338 0.878902 0.874969 0.870601 0.866062 0.860459

0.0000 0.0999 0.2000 0.3001 0.3997 0.5000 0.5998 0.7001 0.8000 0.8996 1.0000

0.866828 0.865456 0.863792 0.861601 0.859082 0.856105 0.852691 0.848689 0.844237 0.839530 0.833715

0.0000 0.0999

0.838157 0.837416

VE/(cm3·mol−1)

ρ/(g·cm−3)

293.15 K

VE/(cm3·mol−1)

ρ/(g·cm−3)

303.15 K −1.1274 −1.3607 −1.5298 −1.4870 −1.3542 −0.9793 −0.5339 0.0000

0.989787 0.973417 0.956077 0.936426 0.915360 0.892077 0.868035 0.842690

0.0000 −0.5189 −0.9403 −1.2794 −1.5297 −1.7157 −1.6751 −1.5069 −1.1116 −0.6210 0.0000

1.009506 0.996181 0.981607 0.966033 0.949272 0.931432 0.911414 0.889941 0.866238 0.841566 0.815559

323.15 K

313.15 K −1.1776 −1.4128 −1.5926 −1.5466 −1.3862 −1.0046 −0.5626 0.0000

0.981940 0.965391 0.947946 0.928152 0.907016 0.883714 0.859287 0.833715

0.0000 −0.5413 −0.9792 −1.3298 −1.5898 −1.7765 −1.7376 −1.5690 −1.1589 −0.6507 0.0000

1.001732 0.988342 0.973656 0.957953 0.941042 0.923056 0.902895 0.881277 0.857422 0.832576 0.806370

333.15 K

353.15 K 0.0000 −0.5876 −1.0602 −1.4335 −1.7097 −1.9069 −1.8693 −1.6916 −1.2593 −0.7122 0.0000 283.15 K 0.0000 −0.1073 −0.2211 −0.2933 −0.3487 −0.3727 −0.3635 −0.3159 −0.2375 −0.1657 0.0000 313.15 K 0.0000 −0.1945 −0.3562 −0.4529 −0.5160 −0.5358 −0.5143 −0.4396 −0.3305 −0.2177 0.0000 343.15 K 0.0000 −0.2936

363.15 K 0.985958 0.972409 0.957499 0.941523 0.924324 0.906038 0.885584 0.863668 0.839559 0.814342 0.787723 MAPA (1) + DEEA (2) 293.15 K 0.885356 0.883574 0.881665 0.879317 0.876712 0.873685 0.870252 0.866283 0.861885 0.857283 0.851605 323.15 K 0.857388 0.856219 0.854692 0.852583 0.850120 0.847171 0.843770 0.839765 0.835289 0.830547 0.824673 353.15 K 0.828488 0.827843 3433

VE/(cm3·mol−1) −1.2280 −1.4652 −1.6539 −1.6075 −1.4521 −1.0759 −0.5915 0.0000 343.15 K 0.0000 −0.5650 −1.0189 −1.3813 −1.6485 −1.8406 −1.8021 −1.6295 −1.2077 −0.6800 0.0000

0.0000 −0.6126 −1.1016 −1.4885 −1.7732 −1.9768 −1.9389 −1.7574 −1.3174 −0.7452 0.0000 303.15 K 0.0000 −0.1339 −0.2626 −0.3427 −0.4013 −0.4238 −0.4110 −0.3541 −0.2666 −0.1818 0.0000

0.876155 0.874574 0.872785 0.870463 0.867945 0.864940 0.861519 0.857522 0.853099 0.848439 0.842690

0.0000 −0.2255 −0.4060 −0.5109 −0.5773 −0.5950 −0.5683 −0.4848 −0.3634 −0.2368 0.0000

0.847839 0.846874 0.845474 0.843452 0.841042 0.838132 0.834751 0.830750 0.826265 0.821487 0.815559

0.0000 −0.3112

0.818597 0.818122

0.0000 −0.1634 −0.3083 −0.3894 −0.4570 −0.4782 −0.4620 −0.3953 −0.2979 −0.1992 0.0000 333.15 K 0.0000 −0.2576 −0.4556 −0.5695 −0.6383 −0.6550 −0.6233 −0.5312 −0.3984 −0.2568 0.0000 363.15 K 0.0000 −0.3406

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Table 3. continued x1b

ρ/(g·cm−3)

0.2000 0.3001 0.3997 0.5000 0.5998 0.7001 0.8000 0.8996 1.0000

0.836147 0.834206 0.831853 0.828978 0.825629 0.821629 0.817142 0.812342 0.806370

0.0000 0.0998 0.2000 0.3001 0.4000 0.4997 0.5993 0.6999 0.7990 0.9000 1.0000

0.894959 0.893869 0.892030 0.889578 0.886723 0.883310 0.879367 0.875276 0.871091 0.866659 0.860459

0.0000 0.0998 0.2000 0.3001 0.4000 0.4997 0.5993 0.6999 0.7990 0.9000 1.0000

0.869428 0.868337 0.866420 0.863872 0.860932 0.857442 0.853398 0.849183 0.844832 0.840193 0.833715

0.0000 0.0998 0.2000 0.3001 0.4000 0.4997 0.5993 0.6999 0.7990 0.9000 1.0000

0.842604 0.841562 0.839622 0.837042 0.834073 0.830555 0.826477 0.822212 0.817780 0.813022 0.806370

VE/(cm3·mol−1) 343.15 K −0.5098 −0.6312 −0.7024 −0.7165 −0.6805 −0.5780 −0.4335 −0.2772 0.0000 283.15 K 0.0000 −0.2729 −0.4635 −0.5846 −0.6585 −0.6673 −0.6123 −0.5415 −0.4506 −0.3342 0.0000 313.15 K 0.0000 −0.3050 −0.5135 −0.6461 −0.7298 −0.7451 −0.6897 −0.6143 −0.5119 −0.3768 0.0000 343.15 K 0.0000 −0.3385 −0.5652 −0.7100 −0.8030 −0.8230 −0.7666 −0.6866 −0.5734 −0.4200 0.0000

ρ/(g·cm−3)

VE/(cm3·mol−1)

353.15 K 0.826695 0.824829 0.822533 0.819712 0.816396 0.812413 0.807931 0.803118 0.797093 MAPA (1) + DMEA (2) 293.15 K 0.886560 0.885469 0.883599 0.881113 0.878225 0.874783 0.870800 0.866663 0.862415 0.857904 0.851605 323.15 K 0.860655 0.859574 0.857639 0.855069 0.852112 0.848606 0.844543 0.840300 0.835912 0.831218 0.824673 353.15 K 0.833288 0.832286 0.830357 0.827791 0.824830 0.821322 0.817252 0.812995 0.808563 0.803789 0.797093

ρ/(g·cm−3)

VE/(cm3·mol−1) 363.15 K

−0.5466 −0.6768 −0.7523 −0.7685 −0.7300 −0.6208 −0.4668 −0.2980 0.0000

0.817116 0.815306 0.813074 0.810325 0.807063 0.803095 0.798611 0.793772 0.787723

0.0000 −0.2837 −0.4800 −0.6052 −0.6823 −0.6933 −0.6382 −0.5659 −0.4710 −0.3481 0.0000

0.878059 0.876968 0.875071 0.872551 0.869634 0.866166 0.862148 0.857970 0.853666 0.849087 0.842690

0.0000 −0.3161 −0.5304 −0.6667 −0.7536 −0.7708 −0.7153 −0.6382 −0.5323 −0.3906 0.0000

0.851720 0.850654 0.848712 0.846131 0.843164 0.839647 0.835571 0.831314 0.826896 0.822163 0.815559

0.0000 −0.3510 −0.5839 −0.7335 −0.8292 −0.8506 −0.7936 −0.7126 −0.5962 −0.4365 0.0000

0.823754 0.822801 0.820903 0.818354 0.815413 0.811930 0.807876 0.803636 0.799198 0.794432 0.787723

−0.5976 −0.7317 −0.8107 −0.8298 −0.7897 −0.6710 −0.5038 −0.3179 0.0000 303.15 K 0.0000 −0.2945 −0.4968 −0.6257 −0.7061 −0.7194 −0.6641 −0.5904 −0.4917 −0.3628 0.0000 333.15 K 0.0000 −0.3272 −0.5477 −0.6881 −0.7781 −0.7967 −0.7408 −0.6627 −0.5527 −0.4051 0.0000 363.15 K 0.0000 −0.3635 −0.6039 −0.7572 −0.8556 −0.8789 −0.8206 −0.7378 −0.6157 −0.4510 0.0000

Standard uncertainties u are u(x1) = 2.0·10−4, u(T) = 0.01 K, u(ρ) = 5·10−6 g·cm−3, and u(VE) = 2.0·10−3 cm3•mol−1. bx1: the mole fraction of MAPA.

a

equilibrium after changing the temperature following successive increments.

range from (283.15 to 363.15) K at atmospheric pressure, are given in Table 3. Table 3 also includes the density data of the MAPA + MDEA system at the temperature range from (293.15 to 363.15) K. Excess thermodynamic properties are of great importance in understanding the nature of molecular interaction existing in the binary mixtures. The density values were used to calculate excess molar volume VE using the following equation:

3. RESULTS AND DISCUSSION To check the purities of the components in this work, comparisons between the experimental data and literature values of densities of pure MDEA, DMEA, and DEEA are presented in Table 2. It can be observed that results in this work agree well with the literature. The experimental data of the binary mixtures, MAPA + H2O, MAPA + DMEA, and MAPA + DEEA, over the temperature

V E = (x1M1 + x 2M 2)/ρ − (x1M1/ρ1 + x 2M 2 /ρ2 ) 3434

(1)

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Table 4. Redlich−Kister Coefficients and Standard Deviations for the Binary Mixtures at (283.15 to 363.15) K T

A0

A1

A2

A3

A4

A5

A6

σ

K

cm3·mol−1

cm3·mol−1

cm3·mol−1

cm3·mol−1

cm3·mol−1

cm3·mol−1

cm3·mol−1

cm3·mol−1

283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

−8.861 −8.865 −8.897 −8.941 −9.023 −9.068 −9.142 −9.216 −9.311

4.346 4.224 4.125 4.028 3.971 3.868 3.795 3.721 3.703

−3.890 −4.181 −4.378 −4.628 −3.979 −4.692 −4.539 −4.423 −3.588

−7.634 −6.520 −5.514 −4.767 −3.542 −3.408 −2.879 −2.539 −1.511

7.268 3.921 1.288 −1.153 −0.177 −3.898 −4.296 −4.673 −2.312

0.014 0.014 0.014 0.015 0.011 0.015 0.015 0.014 0.010

293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

−6.033 −6.260 −6.502 −6.763 −7.014 −7.270 −7.534 −7.810

−1.471 −1.381 −1.510 −1.512 −1.566 −1.626 −1.682 −1.755

0.984 0.998 0.823 0.837 0.775 0.714 0.650 0.568

283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

−1.463 −1.682 −1.896 −2.129 −2.366 −2.605 −2.851 −3.059 −3.302

0.051 0.030 0.061 0.160 0.237 0.303 0.381 0.408 0.421

−0.038 0.003 −0.056 −0.126 −0.187 −0.261 −0.356 −0.376 −0.429

283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

−2.599 −2.701 −2.802 −2.902 −3.003 −3.105 −3.207 −3.315 −3.425

0.532 0.510 0.489 0.471 0.452 0.439 0.431 0.422 0.419

−0.898 −0.943 −0.995 −1.041 −1.090 −1.143 −1.197 −1.267 −1.316

MAPA (1) + H2O (2) 3.244 −2.779 2.168 0.156 1.241 2.383 0.571 4.495 −0.384 2.999 −0.552 6.522 −0.949 6.579 −1.211 6.631 −1.900 3.826 MAPA (1) + MDEA (2) 1.501 1.365 1.417 1.387 1.395 1.427 1.417 1.425 MAPA (1) + DEEA (2) −0.665 −0.423 −0.330 −0.354 −0.338 −0.308 −0.256 −0.314 −0.201 MAPA (1) + DMEA (2) −1.430 −1.428 −1.434 −1.440 −1.439 −1.453 −1.479 −1.509 −1.516

where ρ is the measured density of the binary mixtures, x1, M1, and ρ1 are the mole fraction, molar mass, and density of pure MAPA, x2, M2, and ρ2 are the mole fraction, molar mass, and density of the second pure component (H2O, MDEA, DMEA, and DEEA). The VE values of the binary mixtures are also given in Table 3. The uncertainty of the excess molar volumes was estimated to be less of 2.0·10−3 cm3·mol−1. Excess molar volume results in this work were correlated as the Redlich−Kister equation,18 which has the following expression:

i=0

(2)

Ai are adjustable parameters, n is the number of the coefficients in the equation which was determined by standard deviation, σ. The standard deviation was calculated by E σ = [∑ (V E − Vcal )/(Nexp − n)]1/2

0.011 0.009 0.011 0.010 0.010 0.010 0.011 0.011 0.013 0.017 0.017 0.018 0.018 0.019 0.019 0.016 0.017 0.018

where Nexp is the number of experimental points, VEcal is the calculated results from eq 2. The Redlich−Kister coefficients, Ai, were determined with the least-squares method at each temperature and are given in Table 4 along with the standard deviations of the fit. Figure 1 shows the dependence of VE on concentration at 333.15 K for the binary mixtures, the solid lines represent results calculated from eq 2. From Table 1 and Figure 1, we can see that all VE values are negative. Negative VE values indicate that packing effects become dominant in the mixture compared to the pure components. The negative values of VE for the studied mixtures follow the order H2O > MDEA > DMEA > DEEA. The minimum value of VE of the mixture MAPA + H2O occurs at x1 = 0.4, however for the MAPA + DEEA system the value shifts to x1 = 0.5. The magnitude of VE reflects the compactness. The large negative VE is a consequence of a complex formation through very strong molecular interactions between the −OH group of the four components (H2O, MDEA, DMEA, and DEEA) and −NH2 group of MAPA molecules. MDEA has two −OH groups, DEEA and DMEA has one −OH group, so the volume contraction between

n

V E = x1x 2 ∑ Ai (x1 − x 2)i

0.017 0.019 0.016 0.016 0.016 0.016 0.016 0.016

(3) 3435

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

hydrophobic solutes in water, VE/(x1x2) will generally go through a minimum in the water rich region. Coquelet et al.22 investigated VE/ (x1x2) for several of aqueous amine solutions, such as 3(dimethylamino)propylamine + water and isopropanolamine + water, and found the existence of the expected minimum at high water concentrations or dilute amine concentrations. In this work, for the binary mixture of MAPA + water, the quantities VE/(x1x2) were also calculated to see the intermolecular interactions at low MAPA concentrations, and the results are presented in Figure 3. It shows that there exists a prounced minimum at about 0.15 mol fraction of MAPA. MAPA has two amine groups. Interactions between the amine group and water make the existence of the minimum, which means there is a breakup of the intermolecular interactions between water and MAPA at high water concentration. The partial molar volume of MAPA at infinite dilution in water, MDEA, DMEA, or DEEA (x1|→ 0), V1∞, and the partial molar volume of water, MDEA, DMEA, or DEEA at infinite dilution in MAPA (x2 → 0), V 2∞, were obtained using the method proposed by Maham et al.23

Table 5. Partial Molar Volumes V i∞and Excess Partial Molar Volumes ( ViE )∞ at Infinite Dilution as a Function of Temperature for the Binary Mixtures T

V1∞

V 2∞

( V1E )∞

( V2E )∞

K

(cm3·mol−1)

(cm3·mol−1)

(cm3·mol−1)

(cm3·mol−1)

283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

94.23 94.67 95.15 95.67 96.67 97.04 97.95 98.94 100.23

293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

98.43 99.36 100.15 101.09 102.02 102.96 103.97 104.99

283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

101.75 102.23 102.92 103.67 104.44 105.22 105.98 107.06 107.95

283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15

99.85 100.78 101.75 102.76 103.78 104.85 105.96 107.09 108.26

MAPA (1) + H2O (2) 9.71 −8.22 8.95 −8.84 8.34 −9.46 7.76 −10.06 8.10 −10.22 7.10 −11.04 6.99 −11.36 6.83 −11.65 7.57 −11.68 MAPA (1) + MDEA (2) 109.55 −5.08 110.14 −5.25 110.50 −5.59 111.09 −5.80 111.63 −6.07 112.20 −6.36 112.74 −6.62 113.28 −6.91 MAPA (1) + DEEA (2) 128.86 −0.70 130.29 −1.29 131.53 −1.68 132.75 −2.06 134.03 −2.45 135.35 −2.86 136.74 −3.33 138.11 −3.53 139.65 −3.95 MAPA (1) + DMEA (2) 95.21 −2.60 95.98 −2.73 96.78 −2.85 97.62 −2.97 98.49 −3.11 99.40 −3.23 100.34 −3.36 101.31 −3.50 102.37 −3.64

−8.31 −9.10 −9.75 −10.40 −10.13 −11.23 −11.43 −11.71 −11.09 −5.02 −5.28 −5.77 −6.05 −6.41 −6.75 −7.15 −7.57

n

V1∞ = V1* +

∑ Ai(−1)i i=0

(4)

n

V 2∞ = V 2* +

∑ Ai i=0

(5)

where V1* and V2* are the molar volumes of the pure compounds. The corresponding excess partial molar volumes at infinite dilution, ( V1E )∞ and ( V2E )∞ are calculated from:

−2.16 −2.07 −2.22 −2.45 −2.65 −2.87 −3.08 −3.34 −3.51

n

(V1E)∞ =

∑ Ai(−1)i i=0

(6)

n

(V2E)∞ =

∑ Ai i=0

−4.40 −4.56 −4.74 −4.91 −5.08 −5.26 −5.45 −5.67 −5.84

(7)

The partial molar volumes at infinite dilution and the excess partial molar volumes at infinite dilution are given in Table 5. All values of the partial molar volume at infinite dilution V1∞ and V 2∞ were smaller than the corresponding molar volumes of pure components. This can be explained by the packing effect between different molecules. For example, the existence of hydrogen bonding can create an “empty” volume in liquid water, and the MAPA molecule partially fills up the open or empty space in liquid water. The thermal expansivities α of the studied binary mixtures were calculated as follows:

MAPA and MDEA is more compact than MAPA with DEEA or DMEA. In addition, water is a solvent with extended hydrogenbond framework and with cavities in the structure, this makes the volume of the MAPA+H2O mixture contract more. Figure 2 shows comparison of the excess molar volumes of (MAPA+H2O), (MDEA+H2O), (DEEA+H2O), and (DMEA+H2O) mixtures against the mole fraction of amines at 333.15 K. It clearly indicates the effect of the −NH2 group presented in MAPA resulting in high negative VE; however, the effect of the −OH group results in less negative values. The excess molar volume of DMEA and DEEA are similar which indicates that the addition of the two −CH2 groups to the DEEA has no obvious effect on the excess molar volume. As the suggestion from Desnoyers and Perron,21 the quality E V /(x1x2) is more appropriate to give information on interactions at low concentrations. At the same time, they also noted that, with

α = −ρ−1(∂ρ /∂T )p , x

(8)

The density was fitted with polynomial of the third degree as a function of temperature at a specified concentration. The (∂ρ/∂T)p,x values can be determined by differentiation of the ρ = f(T)p,x function. Table 6 presents the values of thermal expansivities of MAPA + H2O, MAPA + MDEA, MAPA + DMEA, and MAPA + DEEA at different temperatures. Figure 4 shows the dependence of thermal expansivities of the MAPA + water mixture on the MAPA concentration at different temperatures. All values of thermal expansivities at all temperatures have almost the same trend. And at lower MAPA concentrations α values are increasing sharply, especially at low temperatures. At higher concentrations α values increase more 3436

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Table 6. Thermal Isobaric Expansivities for the Binary Mixtures at Temperatures of (283.15 to 363.15) K α·103/K−1 x1

283.15

293.15

303.15

0.0000 0.0051 0.0200 0.0400 0.0599 0.0800 0.1001 0.1496 0.2001 0.2996 0.4001 0.4995 0.5998 0.6995 0.7976 0.9010 1.0000

0.10 0.12 0.18 0.30 0.42 0.55 0.66 0.80 0.85 0.87 0.90 0.92 0.94 0.96 0.98 1.00 1.03

0.20 0.22 0.27 0.37 0.48 0.59 0.69 0.82 0.87 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

0.30 0.31 0.35 0.44 0.53 0.63 0.72 0.83 0.89 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06

0.72 0.74 0.76 0.78 0.79 0.80 0.82 0.83 0.84 0.85 1.04

0.73 0.75 0.77 0.79 0.82 0.85 0.88 0.93 0.96 1.00 1.06

0.0000 0.1001 0.2003 0.2999 0.3997 0.5000 0.5999 0.7001 0.8002 0.9000 1.0000 0.0000 0.0999 0.2000 0.3001 0.3997 0.5000 0.5998 0.7001 0.8000 0.8996 1.0000

1.01 0.99 0.98 0.97 0.97 0.98 0.98 0.99 1.00 1.01 1.03

1.03 1.01 1.00 0.99 0.99 1.00 1.00 1.01 1.02 1.03 1.04

1.06 1.04 1.02 1.01 1.02 1.02 1.02 1.03 1.03 1.05 1.06

0.0000 0.0998 0.2000 0.3001 0.4000 0.4997 0.5993 0.6999 0.7990 0.9000 1.0000

0.94 0.94 0.94 0.94 0.95 0.97 0.97 0.98 1.00 1.01 1.03

0.96 0.96 0.96 0.96 0.97 0.99 0.99 1.00 1.02 1.02 1.04

0.98 0.98 0.99 0.98 0.99 1.01 1.01 1.02 1.04 1.04 1.06

313.15

323.15

MAPA (1) + H2O (2) 0.38 0.46 0.39 0.47 0.43 0.50 0.51 0.57 0.59 0.64 0.68 0.72 0.75 0.78 0.85 0.88 0.91 0.93 0.95 0.97 0.97 1.00 0.99 1.02 1.01 1.03 1.03 1.05 1.04 1.07 1.06 1.08 1.08 1.10 MAPA (1) + MDEA (2) 0.74 0.75 0.76 0.78 0.78 0.79 0.80 0.82 0.83 0.85 0.86 0.88 0.89 0.91 0.94 0.95 0.97 0.99 1.02 1.04 1.08 1.10 MAPA (1) + DEEA (2) 1.08 1.11 1.06 1.08 1.05 1.07 1.03 1.06 1.04 1.06 1.04 1.06 1.04 1.06 1.05 1.07 1.05 1.08 1.07 1.09 1.08 1.10 MAPA (1) + DMEA (2) 1.00 1.03 1.01 1.03 1.01 1.04 1.01 1.03 1.02 1.04 1.03 1.06 1.03 1.06 1.04 1.06 1.06 1.08 1.06 1.08 1.08 1.10

slowly. The greater α values growth at low MAPA concentration is connected with the H-bonds network existing in water. Figure 4 also indicates that temperature and MAPA concentration influence α values identically. For the binary mixture of

333.15

343.15

353.15

363.15

0.52 0.54 0.57 0.63 0.69 0.76 0.81 0.90 0.96 1.00 1.03 1.04 1.06 1.08 1.09 1.11 1.12

0.59 0.60 0.63 0.69 0.74 0.80 0.85 0.93 0.99 1.03 1.06 1.07 1.09 1.10 1.12 1.13 1.15

0.64 0.66 0.69 0.74 0.79 0.84 0.88 0.97 1.02 1.07 1.09 1.11 1.12 1.13 1.15 1.16 1.17

0.68 0.71 0.74 0.79 0.83 0.88 0.92 1.00 1.06 1.10 1.12 1.14 1.15 1.16 1.17 1.18 1.20

0.76 0.79 0.81 0.83 0.86 0.90 0.93 0.97 1.01 1.06 1.12

0.77 0.80 0.82 0.85 0.88 0.91 0.95 0.99 1.03 1.08 1.15

0.79 0.82 0.84 0.87 0.90 0.93 0.97 1.01 1.05 1.11 1.17

0.80 0.83 0.85 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.20

1.13 1.11 1.10 1.08 1.09 1.09 1.09 1.09 1.10 1.11 1.12

1.16 1.14 1.12 1.11 1.11 1.11 1.11 1.12 1.12 1.13 1.15

1.18 1.16 1.15 1.14 1.14 1.14 1.14 1.14 1.15 1.16 1.17

1.21 1.19 1.18 1.17 1.17 1.17 1.16 1.17 1.17 1.18 1.20

1.06 1.06 1.07 1.06 1.07 1.08 1.08 1.09 1.10 1.11 1.12

1.10 1.10 1.10 1.09 1.10 1.11 1.11 1.11 1.13 1.13 1.15

1.13 1.13 1.13 1.12 1.13 1.14 1.14 1.14 1.16 1.16 1.17

1.17 1.17 1.17 1.16 1.16 1.17 1.17 1.17 1.18 1.18 1.20

MAPA + MDEA, MAPA + DMEA, and MAPA + DEEA, the dependences of thermal expansitivies on MAPA concentration are shown in Figure 5. It can be seen that the composition of MAPA have no obvious influence on α values for the mixture of 3437

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

Notes

The authors declare no competing financial interest. Funding

The authors are grateful to acknowledge financial support for the work by National Natural Science Foundation of China (Grant No. 51006083) and the Fundamental Research Funds for the Central Universities.



(1) Voice, A. K.; Vevelstad, S. J.; Chen, X.; Nguyen, T.; Rochelle, G. T. Aqueous 3-(methylamino)propylamine for CO2 capture. Int. J. Greenhouse Gas Control 2013, 15, 70−77. (2) Brúder, P.; Svendsen, H. F. CO2 capture into N,N-dimethylethanolamine/ 3-amino-1-methylaminopropane (DMMEA:MAPA) solution. 5th Trondheim Conference on CO2 Capture, Transport and Storage (TCCS-5), 2009, Trondheim, Norway. (3) Brúder, P.; Owrang, F.; Svendsen, H. F. Pilot study-CO2 capture into aqueous solutions of 3-methylaminopropylamine (MAPA) activated dimethy-monoethanolamine (DMMEA). Int. J. Greenhouse Gas Control 2012, 11, 98−109. (4) Brúder, P.; Lauritsen, K. G.; Mejdell, T.; Svendsen, H. F. CO2 capture into aqueous solutions of 3-methylaminopropylamine activated dimethyl-momoethanolamine. Chem. Eng. Sci. 2012, 75, 28−37. (5) Kim, I.; Svendsen, H. F.; Børresen, E. Ebulliometric determination of vapor-liquid equilibria for pure water, monoethanolamine, Nmethyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions. J. Chem. Eng. Data 2008, 53, 2521−2531. (6) Pinto, D. D. D.; Monteiro, J. G. M. S.; Brúder, P.; Zaidy, S. A. H.; Jonassen, Ø.; Hartono, A.; Svendsen, H. F. Correlation and prediction of vapor−liquid−liquid equilibrium using the e-NRTL model applied to the MAPA−DEEA−CO2-water system. 6th Trondheim Conference on CO2 Capture, Transport and Storage (TCCS-6), 2011, Trondheim, Norway. (7) Kim, I.; Svendsen, H. F. Comparative study of the heats of absorption of post-combustion CO2 absorbents. Greenhouse Gas Control 2011, 5, 390−395. (8) Nguyen, T.; Hilliard, M.; Rochelle, G. T. Volatility of aqueous amines in CO2 capture. Energy Procedia 2011, 4, 1624−1630. (9) Chen, X.; Closmann, F.; Rochelle, G. T. Accurate screening of amines by the wetted wall column. Energy Procedia 2011, 4, 101−108. (10) Li, M. H.; Shen, K. P. Densities and solubilities of solutions of carbon dioxide in water + monoethanolamine + N-methyldiethanolamine. J. Chem. Eng. Data 1992, 37, 288−290. (11) Henni, A.; Maham, Y.; Tontiwachwuthikul, P.; Chakma, A.; Mather, A. E. Densities and viscosities for binary mixtures of Nmethyldiethanolamine + triethylene glycol monomethyl ether from 25 to 70 °C and N-methyldiethanolamine + ethanol mixtures at 40 °C. J. Chem. Eng. Data 2000, 45, 247−253. (12) Á lvarez, E.; Gómez-Díaz, D.; Rubia, M. D. L.; Navaza, J. M.; Pacheco, R.; Sánchez, S. Density and speed of sound of binary mixtures of N-methyldiethanolamine and triethanolamine with ethanol. J. Chem. Eng. Data 2007, 52, 2059−2061. (13) Saravanakumar, K.; Baskaran, R.; Kubendran, T. R. Thermophysical properties of acetophenone with N,N-dimethylethanolamine or with N,N-diethylethanolamine at temperatures of (303.15, 313.15 and 323.15) K and pressure of 0.1 MPa. J. Solution Chem. 2011, 40, 955−967. (14) DiGullio, R. M.; Lee, R. J.; Schaeffer, S. T.; Brasher, L. L.; Teja, A. S. Densities and viscosities of the ethanolamines. J. Chem. Eng. Data 1992, 37, 239−242. (15) Zhang, F. Q.; Li, H. P.; Dai, M.; Zhao, J. P. Volumetric properties of binary mixtures of water with ethanolamine alkyl derivatives. Thermochim. Acta 1995, 254, 347−357. (16) Maham, Y.; Teng, T. T.; Hepler, L. G.; Mather, A. E. Volumetric properties of aqueous solutions of monoethanolamine, mono- and dimethylethanolamines at temperatures from 5 to 80°C. Thermochim. Acta 2002, 386, 111−118. (17) Geng, Y. F.; Chen, S. L.; Wang, T. F.; Yu, D. H.; Peng, C. J.; Liu, H. L.; Hu, Y. Density, viscosity and electrical conductivity of 1-butyl-3-

Figure 4. Thermal expansivities, α, as a function of MAPA mole fraction at atmospheric pressure and different temperatures: ■, 293.15 K; ●, 313.15 K; ▲, 333.15 K; ▼, 353.15 K.

Figure 5. Thermal expansivities, α, for the binary mixtures as a function of MAPA mole fraction at atmospheric pressure and at 333.15 K: ■, MDEA; ●, DEEA; ▲, DMEA.

MAPA + DMEA, and MAPA + DEEA. This may be contributed to the one −OH group of DEEA and DMEA. For the MAPA + MDEA system, α values are increasing as the MAPA concentration growth.

4. CONCLUSION New experimental results for densities of binary mixtures of MAPA + H2O, MAPA + MDEA, MAPA + DMEA, and MAPA + DEEA were presented at temperatures (283.15 to 363.15) K and at atmospheric pressure in the whole composition range. Excess volumetric properties of the binary systems were then derived using the Redlich−Kister equation. The excess molar volumes VE for all of the investigated mixtures are negative, and the values of VE follow the order H2O > MDEA > DMEA > DEEA. The deduced partial molar volumes at infinite dilution are smaller than the corresponding molar volumes of pure components.



REFERENCES

AUTHOR INFORMATION

Corresponding Author

*Tel.: +86 29 82668210. Fax: +86 29 82668789. E-mail: [email protected]. 3438

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439

Journal of Chemical & Engineering Data

Article

methylimidazolium hexafluorophosphate + monoethanolamine and + N,N-dimethylethanolamine. J. Mol. Liq. 2008, 143, 100−108. (18) Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345−348. (19) Muhammad, A.; Abdul Mutalib, M. I.; Murugesan, T.; Shafeeq, A. Density and excess properties of aqueous N-mthyldiethanolamine solutions from (298.15 to 338.15) K. J. Chem. Eng. Data 2008, 53, 2217−2221. (20) Lebrette, L.; Maham, Y.; Teng, T. T.; Hepler, L. G.; Mather, A. E. Volumetric properties of aqueous solutions of mono, and diethylethanolamines at temperatures from 5 to 80°C. Thermochim. Acta 2002, 386, 119−126. (21) Desnoyers, J. E.; Perron, G. Treatment of excess thermodynamics quantities for liquid mixtures. J. Solution Chem. 1997, 26, 749−755. (22) Coquelet, C.; Awan, J. A.; Valtz, A.; Richon, D. Volumetric properties of hexamethyleneimine and of its mixtures with water. Thermochim. Acta 2009, 484, 57−64. (23) Maham, Y.; Teng, T. T.; Hepler, L. G.; Mather, A. E. Densities, excess molar volumes, and partial molar volumes for binary mixtures of water with monoethanolamine, diethanolamine, and triethanolamine from 25 to 80 °C. J. Solution Chem. 1994, 23, 195−205.

3439

dx.doi.org/10.1021/je400679k | J. Chem. Eng. Data 2013, 58, 3430−3439