13 Sulfur Solubility in Slags for Cyclone Coal Combustors David H. DeYoung
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
Smelting Process Development Division, Alcoa Laboratories, New Kensington, PA 15068
The absorption of sulfur by coal slags has been investigated to evaluate in-situ desulfurization of gases in coal combustors. Slag compositions which consisted of coal ash and inorganic additives, and which had low fusion temperatures and high capacities for sulfur, were identified. The sulfide capacities [(% S) (P /P )½] of these slags were measured at 1000 to 1300°C, and at oxygen potentials ranging from 10 to 10 atm, respectively. Results for slags based on the FeO-Al O -SiO , CaO-Al O -SiO , and Na O-Al O -SiO systems showed that at a given basicity the sulfide capacities were ranked in the order FeO > CaO > Na O. These results were used to quantitatively evaluate desulfurization in a staged, slagging, cyclone combustor. slag
O2
S2
-13
-11
2
2
2
3
3
2
2
3
2
2
2
T h i s study was conducted t o s e l e c t p o t e n t i a l s l a g c o m p o s i t i o n s f o r use i n a s l a g g i n g , s t a g e d , c y c l o n e c o a l combustor, and t o obtain the necessary data t o evaluate the d e s u l f u r i z i n g a b i l i t y o f t h e combustor. The f i r s t s t a g e o f such a combustor would be o p e r a t e d q u i t e r e d u c i n g t o f a c i l i t a t e s u l f u r removal by a s l a g formed from t h e c o a l ash and i n o r g a n i c a d d i t i v e s (e.g., lime). A t a n g e n t i a l motion imparted t o t h e gas would throw ash, c o a l , and a d d i t i v e s t o t h e combustor w a l l where they would combine t o form a molten s l a g . T h i s s l a g , c o n t a i n i n g some d i s s o l v e d s u l f u r , would c o n t i n u a l l y d r a i n out o f a t a p h o l e at t h e e x i t end o f t h e h o r i z o n t a l l y - p l a c e d c y l i n d r i c a l combustor. Advantages o f t h i s t y p e o f combustor a r e removal o f some s u l f u r , low p a r t i c u l a t e e m i s s i o n s , and low N0 emissions. T h i s paper w i l l be d i v i d e d i n t o t h r e e p a r t s . F i r s t , the s e l e c t i o n o f s l a g c o m p o s i t i o n s w i l l be o u t l i n e d . Second, s u l f i d e c a p a c i t y measurements o f t h e s e s l a g s w i l l be d i s c u s s e d . Third, the d e s u l f u r i z i n g p o t e n t i a l of a slagging, cyclone combustor w i l l be e v a l u a t e d u s i n g t h e s e measurements. X
0097-6156/ 86/ 0301 -0170506.00/ 0 © 1986 American Chemical Society
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
DE YOUNG
Sulfur Solubility
Slag Composition
171
in Slags
Selection
The s t r a t e g y was f i r s t t o s e l e c t p o s s i b l e a d d i t i v e s , t h e n l o c a t e phase diagrams f o r systems o f major ash components p l u s a d d i t i v e s , and f i n a l l y , s e l e c t l o w - m e l t i n g e u t e c t i c c o m p o s i t i o n s as c a n d i d a t e s l a g s . A d d i t i v e s were chosen f o r t h e i r known a b i l i t y t o form l o w - m e l t i n g s i l i c a t e s ( e . g . , t h e a l k a l i s ) or f o r t h e i r known a b i l i t y f o r d e s u l f u r i z a t i o n ( e . g . , t h e a l k a l i n e e a r t h e l e m e n t s ) . An e a s t e r n c o a l was used f o r t e s t s o f a p i l o t combustor. I t s ash c o m p o s i t i o n , used t o c a l c u l a t e a d d i t i v e compositions, i s given i n Table I. Major components, S1O2, AI2O3, and F e 0 3 , account f o r a p p r o x i m a t e l y 80% o f t h e ash. T e r n a r y phase diagrams f o r t h e S i 0 2 ~ A l 2 0 3 ~ a d d i t i v e and S i 0 2 ~ F e O - a d d i t i v e systems were i n v e s t i g a t e d f o r p o s s i b l e s l a g compositions. U n l e s s o t h e r w i s e n o t e d , a l l phase diagrams were t a k e n from L e v i n , et a l (1-3) or Roth, et a l ( 4 ) . The s e l e c t e d c o m p o s i t i o n s which were t e s t e d a r e g i v e n i n T a b l e I I , as are estimated l i q u i d u s temperatures. Obviously, the l i q u i d u s temperature o f t h e s l a g c o n s i s t i n g o f c o a l ash and t h e a d d i t i v e w i l l be d i f f e r e n t from t h o s e g i v e n by t h e phase diagrams because o f t h e minor components o f t h e ash. However, t h e phase diagrams p r o v i d e r e a s o n a b l e i n i t i a l s e l e c t i o n s . A d d i t i v e c o m p o s i t i o n s and q u a n t i t i e s a r e g i v e n i n T a b l e I I I .
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
2
S u l f i d e C a p a c i t y Measurements S u l f i d e c a p a c i t i e s o f t h e s e l e c t e d s l a g c o m p o s i t i o n s were measured t o r a t e t h e s l a g s and t o p r o v i d e d a t a f o r e v a l u a t i o n of t h e o p e r a t i o n o f a combustor w i t h t h e s e s l a g s . Chemistry o f S u l f u r i n S l a g s . There has been c o n s i d e r a b l e r e s e a r c h on t h e c h e m i s t r y o f s u l f u r i n s l a g s r e p o r t e d i n t h e literature. Most was aimed toward u n d e r s t a n d i n g and improving t h e d e s u l f u r i z a t i o n o f i r o n and s t e e l . These s t u d i e s (5-7) have shown t h a t at h i g h oxygen p o t e n t i a l s s u l f u r d i s s o l v e s i n s l a g s as a s u l f a t e , and at low oxygen p o t e n t i a l s , t h e c o n d i t i o n r e l e v a n t t o t h e two-stage combustor, s u l f u r d i s s o l v e s as a sulfide. T h i s can be r e p r e s e n t e d by t h e r e a c t i o n , 2
S ( g ) + (o ~)=
1/2
1/2 0 ( g )
2
2
+ (s2-).
(1)
A q u a n t i t y c a l l e d t h e s u l f i d e c a p a c i t y (6) can be d e f i n e d a s :
=
(wt % S)
I 3 _ ]
1
/
2
(2)
where wt % S r e f e r s t o s u l f u r d i s s o l v e d i n t h e s l a g , and P Q and P s a r e t h e p a r t i a l p r e s s u r e s o f oxygen and s u l f u r i n t h e atmosphere w i t h which t h e s l a g i s e q u i l i b r a t e d . The s u l f i d e c a p a c i t y f o r many s l a g s has been found C5,6) t o be independent of s u l f u r and oxygen p o t e n t i a l s f o r wide r a n g e s , and t h e r e f o r e is a useful quantity for rating slags. One e x c e p t i o n r e l e v a n t t o 2
9
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
172
M I N E R A L M A T T E R A N D A S H IN C O A L
Table I .
Ash From L o v e r i d g e Seam (West V i r g i n i a ) C o a l
Component A1 0 Si0 Fe 0 CaO MgO Na 0 K 0 Ti0 2
Wt P e t . 18.4 44.5 15.9 4.56 1.08 1.10 1.11 1.20 9.02 0.33
3
2
2
3
2
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
2
2
so p o 3
2
Ash A n a l y s i s N o r m a l i z e d ( e x c l u d i n g s u l f u r and t a k i n g i r o n as FeO)
5
24.1 47.8 17.4 4.9 1.2 1.5 1.3 1.1 0.5
Table I I . Normalized _ _ _ _ _ _
Composition, S l a g No.
S i
°2
A 1
2°3
F
e
°
2-A-l 2-A-2 2-A-3 2-A-7 2-A-8 2-A-9 2-A-10
46.0 40.0 18.1 43.3 35.3 27.0 23.6
2-B-l 2-B-2 2-B-3 DSE-1 DSE-2
39.3 56.4 33.2 42.5 37.0
48.0 21.8 26.2 28.9 26.0
2-C-l
37.7
46.4
2-D-l 2-D-2 2-D-3
43.8 62.7 61.6
18.2 23.2 12.2
2-E-l
42.1
20.1
2-1-1
55.3
21.5
19.9 12.0 5.9 19.8 14.1 8.3 5.9
Compositions o f C a n d i d a t e Major Components Only
L i q u i d u s Temperature (°C) (Major
Wt. P e t . N
a 2
°
C
a
0
34.1 48.0 76.0 36.9 50.6 64.4 70.4
Components O n l y )
1205 1083 1148 1220 1200 1150 1155 12.7 21.8 40.6 28.6 37.0
1000 1050 900
15.7 37.9 14.0 26.2
13.1
1093 915 1063 732
37.8 10.0
Slags -
1265 990
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
75.5 10.9 43.8 46.3 6.3
0.61 0.93 0.40 1.60 0.43 0.99
2-C-l
2-D-l 2-D-2 2-D-3
2-E-l
2-1-1
49.1
75.8 81.5
24.2 18.5
0.69 0.97
DSE-1 DSE-2
37.4
89.1 56.2 53.7
34.2 96.1 81.1
2
65.7 3.9 18.9
3
0.69 0.30 1.20
77.1 73.0 92.6 87.2 92.6 92.6 86.1 86.1 86.1 86.1 73.5 86.7 86.1
2
2-B-l 2-B-2 2-B-3
3
3
93.7
24.5
2.5
2
5
3
2
14.7 % MgO 3.4 % C a F
2
2
Other
5.8 % C a F 5.8 % B 0 5.8 % P 0
A d d i t i v e C o m p o s i t i o n , Wt. P e t . Na C0 CaO Fe 0
13.5
2
A1 0
0.34 1.20 3.52 3.74 3.52 3.52 0.36 0.89 2.19 3.47 4.07 3.49 4.99
22.9 27.0 7.4 7.0 1.6 1.6 13.9 13.9 13.9 13.9 11.8 7.5 13.9
sio
A d d i t i v e Compositions For Candidate Slags
2-A-l 2-A-2 2-A-3 2-A-4 2-A-5 2-A-6 2-A-7 2-A-8 2-A-9 2-A-10 2-A-10b 2-A-ll 2-A-12
S l a g No.
A d d i t i v e Mass g/g Ash
Table I I I .
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
174
M I N E R A L M A T T E R A N D A S H IN C O A L
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
t h i s study i s t h a t , f o r s l a g s c o n t a i n i n g FeO, Cg i s expected t o change w i t h oxygen p o t e n t i a l as the r a t i o o f f e r r o u s t o f e r r i c i o n s i n t h e s l a g changes. A r e v i e w o f t h e l i t e r a t u r e (5-22) showed t h a t v i r t u a l l y a l l work on s u l f u r i n s l a g s was on systems r e l e v a n t t o t h e d e s u l f u r i z a t i o n o f i r o n and s t e e l and at temperatures r a n g i n g from 1400-1600°C. No d a t a were found f o r l o w - m e l t i n g s l a g s ( l i q u i d u s t e m p e r a t u r e s , a p p r o x i m a t e l y 1000-1100°C), and p a r t i c u l a r l y f o r t h e i r o n - a l k a l i - a l u m i n o s i l i c a t e s from which many o f t h e proposed c o m p o s i t i o n s a r e composed. T h e r e f o r e , e x p e r i m e n t a l measurements were n e c e s s a r y t o o b t a i n t h e d a t a needed f o r s e l e c t i o n o f s l a g s . E x p e r i m e n t a l Method. An e q u i l i b r a t i o n t e c h n i q u e was chosen t o measure t h e s u l f i d e c a p a c i t i e s o f t h e c a n d i d a t e s l a g s . Slag samples were e q u i l i b r a t e d w i t h a CO-C02"*S0 gas m i x t u r e h a v i n g f i x e d oxygen and s u l f u r p o t e n t i a l s , quenched t o room temperature, and a n a l y z e d f o r s u l f u r . S u l f i d e c a p a c i t i e s were t h e n c a l c u l a t e d from t h e s u l f u r c o n c e n t r a t i o n s u s i n g E q u a t i o n 2. T h i s t e c h n i q u e was chosen because i t i s a d i r e c t method, and because t h e oxygen and s u l f u r p o t e n t i a l s c o u l d be a c c u r a t e l y c o n t r o l l e d , and, i f n e c e s s a r y , t h e s e c o u l d be s e t t o match t h e a c t i v i t i e s f o r oxygen and s u l f u r which were a n t i c i pated i n t h e a c t u a l c o a l combustor. The apparatus used f o r s u l f i d e c a p a c i t y measurements i s shown s c h e m a t i c a l l y i n F i g u r e 1. S l a g s were p r e p a r e d by m i x i n g preweighed amounts o f a d d i t i v e s and c o a l a s h . The c o a l ash was o b t a i n e d from Bituminous C o a l R e s e a r c h , I n c . I t was p r e p a r e d by a s h i n g L o v e r i d g e Seam, West V i r g i n i a c o a l i n a i r at 750°C, f o l l o w e d by a r e d u c t i o n i n a 60%CO-40%CO2 gas at 1000°C, t h e n c o o l e d under nitrogen. The gas c o m p o s i t i o n s f o r each experiment were chosen t o o b t a i n as low an oxygen p o t e n t i a l as p o s s i b l e , w i t h o u t r e d u c i n g FeO t o Fe m e t a l . They were a l s o chosen t o o b t a i n as low a s u l f u r p o t e n t i a l as p o s s i b l e t o match a n t i c i p a t e d c o n d i t i o n s i n t h e a c t u a l combustor, yet l a r g e enough so t h a t they c o u l d be p r e p a r e d by m i x i n g g a s e s . The e q u i l i b r a t i o n time f o r s l a g samples was determined by p e r i o d i c a n a l y s e s o f t h e gas e x i t i n g the r e a c t o r . Quenched s l a g samples were a n a l y z e d f o r s u l f u r u s i n g a Leco t i t r a t o r , and were a n a l y z e d f o r S i , A l , Fe, Na, K, Ca, Mg, T i , and Ρ by atomic a b s o r p t i o n . 2
Results. T a b l e IV g i v e s t h e r e s u l t s f o r a l l s u l f i d e c a p a c i t y measurements. F i g u r e s 2 and 3 show t e r n a r y phase diagrams f o r s e l e c t e d systems on which t h e r e s u l t s are shown. Compositions shown were o b t a i n e d by t a k i n g t h e t h r e e major components from t h e s l a g a n a l y s e s and n o r m a l i z i n g t o 100%. The s u l f i d e c a p a c i t i e s a r e shown as a f u n c t i o n o f b a s i c i t y i n F i g u r e 4, which summarizes a l l r e s u l t s o f t h i s s t u d y . Molar b a s i c i t i e s (Emole f r a c t i o n bases/Emole f r a c t i o n a c i d s ) were c a l c u l a t e d from the s l a g analyses. I t was found t h a t a f t e r e q u i l i b r a t i o n w i t h t h e s u l f u r i z i n g gas, c e r t a i n s l a g s i n t h e F e O - A l 2 0 3 - S i 0 system c o n s i s t e d o f two i m m i s c i b l e l i q u i d s at 1100°C. One phase was a 2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
13.
DEYOUNG
Sulfur
Solubility
175
in Slags
Radiation Shields
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
/Gas Out
Closed-End Alumina Tube
Stainless Steel Flange
'Alumina Reaction Tube Sample Tray
F i g u r e 1.
Reactor
used f o r s u l f i d e c a p a c i t y measurements.
F i g u r e 2. The FeO-Al 0 - S i 0 phase diagram (1) w i t h measured s u l f i d e c a p a c i t i e s i n d i c a t e d . Oxide phases i n e q u i l i b r i u m with m e t a l l i c iron. Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 1. C o p y r i g h t 1964 American Ceramic S o c i e t y . 3
2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
176
M I N E R A L M A T T E R A N D A S H IN C O A L
T a b l e IV. Exp't. No.
S u l f i d e C a p a c i t y Measurements Run Time (h)
Τ (°C)
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
1100
24
1100
115
US l L aa gg Composition
γ
Wt % S
S
4.22 5.34
-4.31 -4.21
2-B-l 2-B-2 2-D-l 2-D-f 2-D-3
6.05 0.26 0.96 0.87 0.69
-4.16 -5.52 -4.96 -5.00 -5.10
DSE-1 2-A-l 2-A-2 2-A-3 2-A-4 2-C-l
4.31 4.80
-4.06 -4.01
22.5 23.5 7.91
-3.34 -3.32 -3.79
2-A-5? 2-A-6 2-A-7 2-A-8 2-A-9 2-A-10^ 2-A-ll 2-B-3
20.2 13.4 5.06 9.81 16.6 19.1
-3.38 -3.56 -3.99 -3.70 -3.47 -3.41
2.65
-4.27
2-Α-ί 2-A-4 2-A-5* 2-A-6 2-A-l(£ 2-A-ll? 2-A-12^ 2-A-3a 2-1-1
25.4 25.1 25.5 24.1 23.6 24.2 25.8 26.3 0.44
-5.04
2-A-3
2.67 1.97 3.10
-2.86 -3.00 -2.80
d
e
144.6
g
DSE-1
6
1100
-,
°
e
e
d
7
f
1000
168.75
b
b
K
b
11 §
1300
70.0
2-A-10 2-A-10b
-14 = 7.2 χ 10' '20 ^ Gas c o m p o s i t i o n : 70.2% C0X
—4 = 5.4 χ 10 .
s
b
D i d not m e l t .
c
9
2 2 9 t 6.°/ % nry C 0 -_0. . 2 5 % au S0 . X χ 1 10U ; ; Λ X - = 1.6 χ 1 θ " x = O6.8 .O Χ ι e °22 . d_ , e_ ff 2^2 Sample c r e p t o u t . Two phases. Gas c o m p o s i t i o n : 74.5% C0o
1 4
9
u
0
Z - J / o
4
n
r
2
25.3%
S
4
C0 -0.18% S 0 .
= 6.8 χ 10 ; X = 1.6 χ 1 θ " . 2 2 Gas composition: 66.3% CO-33.6% C0 -0.14% S 0 . Χ = 4.9 χ -11 -4 °2 10 ; X = 1.9 χ 10 9
z
0
1
c
u
b
g
6
o
2
o
Λ
2
c
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
DEYOUNG
Sulfur Solubility
in Slags
s.o
2
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
(17,3 ΐ5·!
2-B-3 Ο
charged composition
•
analyzed after experiment
F i g u r e 3. The F e 0 - N a 0 - S i 0 phase diagram (2) w i t h measured sulfide capacities indicated. Oxide phases i n e q u i l i b r i u m with m e t a l l i c iron. Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 2. C o p y r i g h t 1969 American Ceramic S o c i e t y . ?
I
-3
9
I I I I I I Τ = 1300X
^ w/MgO
h
w/CaO
w/B 0 2
3
CO
Ο
0> Ο
System · , Δ 2-A
FeO - A l 0
- Si0
2
FeO - N a 0 - S i 0
2
2
Ο 2-B A 2-C -
3
2
FeO - CaO - S i 0
2
5
I
I Q|
I I
I
I
• 2-D
Na 0 - A l 0
•
CaO - A l 0
2
2-E
2
2
I I I '
'
ι
« I
3
3
- Si0 - Si0
» '
2
2
J J
'
Molar basicity Figure 4. Measured s u l f i d e c a p a c i t i e s o f c a n d i d a t e s l a g s . B a s i c i t y c a l c u l a t e d from c h e m i c a l a n a l y s e s . P o i n t s denoted by W/P2O5 and W/B2O3, r e p r e s e n t s l a g s i n which 5% S i 0 was r e p l a c e d by 5% o f t h e s e o x i d e s . P o i n t denoted by w/CaO i s f o r s l a g t o which 5% C a F was added, but a l l f l u o r i n e was l o s t d u r i n g e x p e r i m e n t . P o i n t denoted by w/MgO f o r s l a g t o which 12% MgO was added. 2
2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
178
M I N E R A L M A T T E R A N D A S H IN C O A L
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
glass. The o t h e r phase had a m e t a l l i c appearance and w i l l be r e f e r r e d t o as t h e "matte phase". The s u l f i d e c a p a c i t i e s f o r t h e s e s l a g s s h o u l d be c o n s i d e r e d as " a p p a r e n t " because t h e s u l f i d e c a p a c i t y i s d e f i n e d f o r a s i n g l e l i q u i d phase. The matte phase i n a l l o f t h e s e double-phased s l a g s c o n t a i n e d 27-31% S, w h i l e t h e g l a s s phase c o n t a i n e d from 0.2 t o 13% S. X-ray d i f f r a c t i o n a n a l y s e s showed t h e g l a s s phase t o be amorphous and t h e matte phase t o c o n t a i n FeS and FeS2* Discussion. S l a g c o m p o s i t i o n s 2 - A - l , 2-A-7, 2-B-2, 2 - C - l , 2-D-2, and 2 - E - l were c l o s e s t t o t h e c o a l ash c o m p o s i t i o n g i v e n i n T a b l e I , c o n t a i n i n g 25-38% a d d i t i v e . As seen from T a b l e IV, l o g Cg ranged from a p p r o x i m a t e l y -3.8 t o -5.5 at 1100°C. U s i n g t h e b a s i c i t y o f t h e ash c a l c u l a t e d from T a b l e I and t h e d a t a shown i n F i g u r e 4, t h e s u l f i d e c a p a c i t y f o r pure ash i s e s t i m a t e d t o be a p p r o x i m a t e l y l o g Cg = -5.2. This i s quite low as compared t o r e s u l t s o b t a i n e d f o r s l a g s c o n t a i n i n g s i g n i f i c a n t quantities of additives. As w i l l be demonstrated l a t e r i n t h e r e p o r t , s u l f u r c a p t u r e d by c o a l ash s l a g w i t h t h i s s u l f i d e c a p a c i t y would be i n s i g n i f i c a n t even at v e r y f a v o r a b l e c o n d i t i o n s - v e r y low oxygen p o t e n t i a l and low t e m p e r a t u r e . There i s a g e n e r a l c o r r e l a t i o n between s u l f i d e c a p a c i t y and b a s i c i t y f o r a g i v e n system, as shown i n F i g u r e 4. There i s a s h a r p drop i n s u l f i d e c a p a c i t y between b a s i c i t i e s o f 1.0 t o 0.5, which c o r r e s p o n d s t o t h e m e t a s i l i c a t e t o d i s i l i c a t e c o m p o s i t i o n s in a binary s i l i c a t e . F o r a g i v e n b a s i c i t y , systems 2-A (FeO) and 2-C (FeO, CaO) have s i g n i f i c a n t l y h i g h e r s u l f i d e c a p a c i t i e s t h a n systems 2-D (Na20) and 2-E (CaO), so t h a t f o r a g i v e n b a s i c i t y , FeO i s s u p e r i o r t o CaO and Na20 as an a d d i t i v e . T h i s i s not what would be expected c o n s i d e r i n g t h e s t a n d a r d f r e e e n e r g i e s o f f o r m a t i o n o f t h e s u l f i d e s and o x i d e s o f Fe, Ca, and Na. C o n s i d e r i n g standard f r e e energies f o r the formation of m e t a l s u l f i d e s from m e t a l o x i d e s , FeO and CaO s h o u l d be a p p r o x i m a t e l y e q u i v a l e n t d e s u l f u r i z e r s and N a 0 s h o u l d be superior. However, s l a g s a r e f a r from i d e a l s o l u t i o n s because o f t h e s t r o n g i n t e r a c t i o n s among s p e c i e s — p a r t i c u l a r l y with Si0 . T h i s i s why e x p e r i m e n t a l measurements o f s u l f i d e c a p a c i t i e s were needed. F r e e energy o f m i x i n g d a t a (24) f o r N a 0 , CaO, and FeO b i n a r y s i l i c a t e s show t h a t t h e c h e m i c a l i n t e r a c t i o n w i t h s i l i c a d e c r e a s e s i n t h e o r d e r N a 0 , CaO, FeO, and f o r a g i v e n b a s i c i t y , t h e a c t i v i t y o f t h e b a s i c o x i d e i n t h e s i l i c a t e s i n c r e a s e i n t h e o r d e r Na20, CaO, and FeO. On t h i s b a s i s , FeO s h o u l d be a b e t t e r d e s u l f u r i z e r t h a n CaO or N a 0 . T h i s i s c o n s i s t e n t with the present r e s u l t s . Not s u r p r i s i n g l y , t h e m e t a l o x i d e - s i l i c a i n t e r a c t i o n i s a major f a c t o r i n t h e d e s u l f u r i z a t i o n a b i l i t y of the s l a g . S e v e r a l m o d i f i c a t i o n s o f s l a g s based on t h e F e O - A l 0 3 - S i 0 2 system were t e s t e d t o determine i f a l e s s e x p e n s i v e a d d i t i v e c o u l d be s u b s t i t u t e d f o r some o f t h e i r o n o r i f a d d i t i v e s c o u l d be used t o reduce l i q u i d u s t e m p e r a t u r e s . F i g u r e 4 shows t h a t r e p l a c i n g a p o r t i o n o f t h e i r o n o x i d e i n s l a g s of the F e O - A l 0 3 - S i 0 system w i t h CaO (5 wt %) or MgO (12 wt %) had no e f f e c t on t h e s u l f i d e c a p a c i t i e s . Results f o r c o m p o s i t i o n 2 - C - l a l s o support t h i s c o n c l u s i o n , because f o r 2
2
2
2
2
2
2
2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
DEYOUNG
Sulfur Solubility
179
in Slags
t h i s c o m p o s i t i o n a p p r o x i m a t e l y 14% o f t h e FeO o f an e q u i v a l e n t c o m p o s i t i o n i n t h e F e O - A l 0 3 - S i 0 2 system was r e p l a c e d by CaO, w i t h o n l y a s l i g h t d e c r e a s e i n s u l f i d e c a p a c i t y . Replacement o f p o r t i o n s o f t h e S 1 O 2 i n F e O - A l 2 0 3 - S i 0 s l a g s by B 0 3 or P 0 5 has no e f f e c t on s u l f i d e c a p a c i t i e s ; t h e r e f o r e , these a d d i t i v e s are p o t e n t i a l l y u s e f u l f o r reducing s l a g l i q u i d u s temperatures. F i g u r e 5 compares some r e s u l t s o f t h i s study t o t h o s e found i n t h e l i t e r a t u r e f o r s i m i l a r s l a g s at h i g h e r t e m p e r a t u r e s . These l i t e r a t u r e d a t a were a d j u s t e d t o a b a s i c i t y o f 1.65 u s i n g d a t a g i v e n i n F i g u r e 4. The d a t a from t h i s study a r e q u i t e consistent with the l i t e r a t u r e data. The l i n e a r i t y o f t h e s u l f i d e c a p a c i t y w i t h i n v e r s e temperature i s c o n s i s t e n t w i t h t h e theoretical relationship, 2
2
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
2
2
L J ^ i
=
- AH° /R * H^o/R - H? /* e
eS
(3)
Ο
where Δ Η 1/2 and
.
i s t h e s t a n d a r d e n t h a l p y change f o r t h e S (g)
+ FeO
HÎ?
and
2
λ
FeO
1/2
=
H*J
0 ( g ) + FeS 2
reaction, (4)
„
FeS
a r e t h e p a r t i a l molar e n t h a l p i e s o f m i x i n g o f FeO and FeS i n t h e slag. T h i s r e l a t i o n s h i p can be d e r i v e d from E q u a t i o n 2, t h e e q u i l i b r i u m c o n s t a n t f o r E q u a t i o n 4, and t h e G i b b s - H e l m h o l t z equation. Most o f t h e s l a g s t e s t e d were found t o have been p a r t i a l l y or c o m p l e t e l y melted at 1100°C. However, at 1000°C, a l l s l a g s from t h e F e O - A l 0 3 - S i 0 2 system were not m o l t e n . It is thought t h a t f o r t h e s e c o m p o s i t i o n s t h e e n t i r e a d d i t i v e r e a c t e d w i t h s u l f u r s p e c i e s i n t h e atmosphere w h i l e none r e a c t e d w i t h t h e S 1 O 2 or w i t h o t h e r components i n t h e ash. Hence, s u l f i d e c a p a c i t i e s measured from t h i s experiment are not t r u e s u l f i d e c a p a c i t i e s of the s l a g s . Another p o i n t which s u p p o r t s t h i s i s t h a t t h e "measured" s u l f i d e c a p a c i t i e s at 1000°C are g r e a t e r t h a n t h o s e at 1100°C, w h i l e F i g u r e 5 shows t h e o p p o s i t e t r e n d for r e s u l t s f o r molten s l a g s . A l s o , o t h e r l i t e r a t u r e d a t a show t h a t s u l f i d e c a p a c i t i e s g e n e r a l l y i n c r e a s e w i t h temperature. T h i s p o i n t s out an i n h e r e n t d i s a d v a n t a g e i n u s i n g a c o a l ash s l a g f o r d e s u l f u r i z a t i o n . When s i l i c a r e a c t s w i t h t h e d e s u l f u r i z i n g agent, e.g., l i m e , t h e e f f e c t i v e n e s s o f t h e d e s u l f u r i z i n g compound i s g r e a t l y r e d u c e d . Hence, i t i s d e s i r a b l e t o d e s i g n a d e s u l f u r i z i n g combustor i n which t h e ash does not r e a c t w i t h t h e d e s u l f u r i z i n g m a t e r i a l . 2
E v a l u a t i o n Of A P i l o t
Combustor
Calculations. The measured s u l f i d e c a p a c i t i e s were used t o e s t i m a t e s u l f u r e m i s s i o n s from a s t a g e d , s l a g g i n g , c y c l o n e combustor o p e r a t i n g c l o s e t o e q u i l i b r i u m , and t o determine t h e
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
180
MINERAL
MATTER
A N D A S H IN
COAL
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
e f f e c t s o f v a r i o u s o p e r a t i n g v a r i a b l e s on the s u l f u r r e m o v a l . To c a l c u l a t e s u l f u r e m i s s i o n s , an e q u a t i o n f o r g a s - s l a g c h e m i c a l e q u i l i b r i u m f o r s u l f u r ( E q u a t i o n 2) and a mass b a l a n c e f o r s u l f u r are s o l v e d s i m u l t a n e o u s l y . F i r s t , t h e e q u i l i b r i u m gas c o m p o s i t i o n s were c a l c u l a t e d f o r t h e combustion o f c o a l w i t h a i r f o r a range o f s u l f u r c o n c e n t r a t i o n s i n t h e c o a l . T h i s was done u s i n g A l c o a ' s C h e m i c a l E q u i l i b r i u m Computer Program ( 2 3 ) . Next, the c o n c e n t r a t i o n s o f s u l f u r i n t h e s l a g s f o r e q u i l i b r i u m w i t h t h e combustion gases were c a l c u l a t e d . F i n a l l y , t h e q u a n t i t y o f a d d i t i v e s needed t o o b t a i n t h e s e c o m p o s i t i o n s were c a l c u l a t e d from s u l f u r mass b a l a n c e s . Results. F i g u r e 6 shows an example o f t h e r e s u l t s f o r t h e s e c a l c u l a t i o n s , f o r combustion w i t h 55% o f s t o i c h i o m e t r i c a i r ( s t a g e 1) at 1100°C. T h i s i s an i s o t h e r m a l c a l c u l a t i o n , i . e . , b o t h s l a g and gas t e m p e r a t u r e s are assumed t o be 1100°C. O b v i o u s l y , t h i s cannot o c c u r i n p r a c t i c e , but t h e r e s u l t s o f t h e c a l c u l a t i o n s h o u l d p r o v i d e an upper bound f o r s u l f u r r e m o v a l . A r e a s o n a b l e g o a l f o r the s u l f u r c a p t u r e , c o n s i d e r i n g p r o j e c t i o n s o f f u t u r e EPA r e g u l a t i o n s , i s 70%. The s l a g mass can v a r y between 85 and 350 g/kg c o a l ( t h e upper l i m i t was e s t a b l i s h e d from a heat b a l a n c e f o r A l c o a ' s p i l o t combustor), so t h e n e c e s s a r y l o g Cg f o r a 70% s u l f u r removal i s between -2.75 and -3.3. A s u l f i d e c a p a c i t y of l o g C « -3.3 at 1100°C was o b t a i n e d f o r c e r t a i n s l a g s based on t h e FeO-Al203-Si02 system, e.g., c o m p o s i t i o n s 2-A-3 or 2-A-10. T h i s shows t h a t 70% s u l f u r removal i s t h e r m o d y n a m i c a l l y p o s s i b l e . As t h e combustion s t o i c h i o m e t r y i s d e c r e a s e d , t h e c u r v e s i n F i g u r e s 6 are r o t a t e d c o u n t e r c l o c k w i s e about t h e o r i g i n , i . e . , t h e s u l f u r removal i s i n c r e a s e d . An i n c r e a s e i n temperature w i l l have t h e o p p o s i t e e f f e c t . The c u r v e s are r o t a t e d c l o c k w i s e about t h e o r i g i n . However, f o r a p a r t i c u l a r s l a g c o m p o s i t i o n t h e s u l f i d e c a p a c i t y i n c r e a s e s w i t h t e m p e r a t u r e , as shown i n F i g u r e 5. The net r e s u l t o f t h e two o p p o s i n g e f f e c t s ( u s i n g t h e temperature b e h a v i o r shown i n F i g u r e 5) i s t h a t t h e s u l f u r removal d e c r e a s e s w i t h i n c r e a s i n g t e m p e r a t u r e . I n t h e range o f c o a l - s u l f u r c o n t e n t s i n v e s t i g a t e d , 2-6%, t h e f r a c t i o n o f s u l f u r removed by s l a g does not change w i t h s u l f u r content i n t h e coal. The t o t a l s u l f u r e m i t t e d i n c r e a s e s w i t h i n c r e a s i n g s u l f u r c o n c e n t r a t i o n i n t h e c o a l , but the s u l f u r removal by t h e s l a g also increases. s
A f i n a l p o i n t t o note r e g a r d i n g s u l f u r removal i s t h a t as the c o n c e n t r a t i o n o f hydrogen i n t h e combustion gases i s d e c r e a s e d , t h e s u l f u r removal by t h e s l a g w i l l i n c r e a s e . This i s due t o t h e h i g h s t a b i l i t y o f t h e h y d r o g e n - s u l f u r s p e c i e s , such as H S ( g ) , as compared t o t h e c a r b o n - s u l f u r s p e c i e s , such as COS. Thus, d r y i n g and c h a r r i n g o f c o a l would s i g n i f i c a n t l y i n c r e a s e t h e t h e o r e t i c a l removal o f s u l f u r by t h e s l a g . These c a l c u l a t i o n s assume g a s - s l a g e q u i l i b r i u m w i t h r e s p e c t to sulfur. T h i s i s p r o b a b l y o n l y approached at t h e g a s - s l a g s u r f a c e near t h e e x i t o f t h e f i r s t s t a g e . At t h e e n t r a n c e end o f t h e combustor, the c o n d i t i o n s would p r o b a b l y be more o x i d i z i n g t h a n c o n d i t i o n s c a l c u l a t e d from the o v e r a l l combustion s t o i c h i o m e t r y , ff and t h u s s u l f u r s o l u b i l i t y i n t h e s l a g would 2
9
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
DE YOUNG
Sulfur Solubility
in Slags
-T(°C) 1600
1400
I
I
1200 I I
I
I
1000 I
Molar basicity = 1.65 -
-2
—
• Present study • Fincham & Richardson.
-3
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
log C
8
= 2.55 - 8330/T
-4 I
I
I
I
5
I
I
I
I
I
I
6
I
I
I I
7
8
l/T x 1 0 ( K" ) 4
e
1
F i g u r e 5. Comparison o f r e s u l t s from t h i s study t o t h o s e o f Fincham and R i c h a r d s o n (6) f o r an i r o n s i l i c a t e w i t h molar b a s i c i t y o f 1.65· Data from Fincham and R i c h a r d s o n were f o r pure i r o n s i l i c a t e s w h i l e t h e s e from t h e p r e s e n t study c o n t a i n e d some c o a l a s h .
0 Ε 0
I
I
I
I
I
I
1—1
100 200 300 400 500 600 700 Slag mass, g/kg coal
F i g u r e 6. E q u i l i b r i u m s u l f u r removal by s l a g f o r a combustor o p e r a t i n g w i t h L o v e r i d g e Seam (West V i r g i n i a ) coal.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
182
M I N E R A L M A T T E R A N D A S H IN C O A L
be l e s s t h a n t h a t c a l c u l a t e d . At some depth below t h e s l a g s u r f a c e near t h i s e n t r a n c e end o f t h e f i r s t s t a g e , t h e c o n d i t i o n s would be more r e d u c i n g t h a n t h o s e c a l c u l a t e d from t h e o v e r a l l combustion s t o i c h i o m e t r y . T h i s would r e s u l t i n increased s u l f u r s o l u b i l i t y . The a c t u a l combustion p r o c e s s and s u l f u r removal p r o c e s s e s a r e q u i t e complex, and t h e extent o f s u l f u r removal w i l l depend on t h e combustion k i n e t i c s . For example, c o n s i d e r two extreme s i t u a t i o n s . I n one, where most c o a l i s combusted a f t e r i t h i t s t h e s l a g g e d w a l l , s u l f u r removal s h o u l d be r e l a t i v e l y good. I n t h e o t h e r extreme, where a l l t h e c o a l i s combusted b e f o r e i t r e a c h e s t h e s l a g g e d w a l l , s u l f u r removal would be r e l a t i v e l y poor because i t would be dependent on mass t r a n s p o r t through t h e gas phase, and t h e gas has a r e l a t i v e l y short residence time. In summary, t h e k i n e t i c s o f t h e combustion p r o c e s s i s important w i t h r e g a r d t o s u l f u r removal. The k i n e t i c s must be c o n s i d e r e d e i t h e r by m o d e l l i n g or e x p e r i m e n t a t i o n b e f o r e a f i n a l judgment on d e s u l f u r i z a t i o n i n a s l a g g i n g , c y c l o n e combustor can be made. The r e s u l t s o f t h i s study show t h a t i t i s theoretically possible. Conclusions S u l f i d e c a p a c i t y measurements o f r e l a t i v e l y low m e l t i n g ( a p p r o x i m a t e l y 1100°C i n most c a s e s ) s l a g s based on t h e FeO-Al203-SiC>2, FeO-Na20-Si0 , FeO-CaO-Si0 , N a 2 0 - A l 0 3 - S i 0 , and C a O - A l 2 0 3 - S i 0 systems but composed o f c o a l ash + a d d i t i v e s , have shown t h a t t h e F e O - A l 0 3 - S i 0 - b a s e d s l a g s had t h e h i g h e s t s u l f i d e c a p a c i t i e s . For a given b a s i c i t y , t h e s u l f i d e c a p a c i t i e s c o u l d be ranked i n t h e f o l l o w i n g o r d e r : FeO-Al 03-Si0 > FeO-CaO-Si0 > FeO-Na20-Si02 > CaO-Al203-Si02 > N a 0 - A l 0 3 - S i 0 2 . The c h e m i c a l i n t e r a c t i o n o f t h e b a s i c o x i d e s w i t h s i l i c a appears t o be a dominant f a c t o r c o n t r o l l i n g t h e s u l f i d e c a p a c i t y . There was good c o r r e l a t i o n between s u l f i d e c a p a c i t y and s l a g b a s i c i t y , and s u l f i d e c a p a c i t i e s i n c r e a s e d with temperature. C a l c u l a t i o n s o f t h e e q u i l i b r i u m s u l f u r removal f o r a commercial combustor u s i n g t h e measured s u l f i d e c a p a c i t i e s , showed t h a t i t was t h e o r e t i c a l l y p o s s i b l e t o remove 70% o r more of t h e s u l f u r i n c o a l . The s u l f u r removal i n c r e a s e s w i t h d e c r e a s i n g temperature, d e c r e a s i n g combustion s t o i c h i o m e t r y i n t h e f i r s t s t a g e o f t h e b u r n e r , i n c r e a s i n g s l a g f l o w , and d e c r e a s i n g c o n t e n t o f hydrogen i n t h e f u e l . T h i s work showed t h a t a s l a g g i n g , c y c l o n e combustor can remove s u l f u r i n t o t h e s l a g , but k i n e t i c m o d e l l i n g and/or e x p e r i m e n t a t i o n i s needed t o prove whether o r not t h e concept w i l l work. 2
2
2
2
2
2
2
2
2
2
2
2
Acknowledgment T h i s work was sponsored by t h e U.S. Department o f Energy under C o n t r a c t No. DE-ACO7-78CS40037, " P u l v e r i z e d C o a l F i r i n g o f Aluminum M e l t i n g F u r n a c e s . "
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
13.
DEYOUNG
Sulfur Solubility
in Slags
183
Downloaded by UNIV OF PITTSBURGH on May 4, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch013
Literature Cited 1. Ε. M. Levin, C. R. Robbins, and H. F. McMurdie: Phase Diagrams for Ceramists, American Ceramic Society, Columbus, OH (1964). 2. Ε. M. Levin, C. R. Robbins, and H. F. McMurdie: Phase Diagrams for Ceramists, 1969 Supplement, American Ceramic Society, Columbus, OH (1969). 3. Ε. M. Levin and H. F. McMurdie: Phase Diagram for Ceramists, 1975 Supplement, American Ceramic Society, Columbus, OH (1975). 4. R. S. Roth, T. Negas, and L. P. Cook: Phase Diagrams for Ceramists, Volume IV, American Ceramic Society, Columbus, OH (1981). 5. G. R. St. Pierre and J. Chipman: Trans. AIME, v. 206, pp. 1474-1483 (1956). 6. C.J.B. Finchman and F. D. Richardson: Proc. R. Soc. Series A223, 40 (1954) and J. Iron Steel Ins., 178, 4 (1954). 7. F. D. Richardson: Physical Chemistry of Melts in Metallurgy, v. 2, pp. 291-304, Academic Press, London (1974). 8. P. T. Carter and T. G. McFarlane: J. Iron Steel Inst., 185, 54 (1957). 9. K. P. Abraham, M. W. Davies, and F. D. Richardson: J. Iron Steel Inst., v. 196, pp. 309-312 (1960). 10. K. P. Abraham and F. D. Richardson: J. Iron Steel Inst., v. 196, pp. 313-317 (1960). 11. E . W. Dewing and F. D. Richardson: J. Iron Steel Inst., v. 194, 194, pp. 446-450 (1960). 12. R. A. Sharma and F. D. Richardson: J. Iron Steel Inst., v. 198, pp. 386-390 (1961). 13. R. A. Sharma and F. D. Richardson: J. Iron Steel Inst., v. 200, pp. 373-379 (1962). 14. G.J.W. Kor and F. D. Richardson: J. Iron Steel Inst. v. 206, pp. 700-704 (1968). 15. G.J.W. Kor and F. D. Richardson: Trans. AIME, v. 245, pp. 319-327 (1969). 16. R. J. Hawkins, S. G. Meherali, and M. W. Davis: J. Iron Steel Inst., v. 209, pp. 646-657 (1971). 17. A. Bronson and G. R. St. Pierre, Met. Trans. Β, v. 10B, pp. 375-380 (1979). 18. A. Bronson and G.R. St. Pierre: Met. Trans. Β, v. 12B, pp. 729-731 (1981). 19. H. B. Bell: Can. Met. Quart., v. 20 (2), pp. 169-179 (1981). 20. J. D. Shim and S. Ban-ya: Tetsu-to-Hagane, v. 68, pp. 251-60 (1982). 21. S. D. Brown, R. J. Roxburgh, I. Ghita, and H. B. Bell: Ironmaking and Steelmaking, v. 9, pp. 163-67 (1982). 22. I. Ghita and H. B. Bell: Ironmaking and Steelmaking, v. 9, pp. 239-43 (1982). 23. W. E . Wahnsiedler: "Chemical Equilibrium Package Users Manual," Alcoa Laboratories Report No. 7-78-25. 24. D. R. Gaskell: Metallurgical Treatises, J. K. Tien and J. F. E l l i o t t , ed., p. 60, TMS-AIME, Warrendale, PA (1981). RECEIVED July 23, 1985
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.