Mineral Matter and Ash in Coal - American Chemical Society

d e p o s i t l a y e r i s by r a d i a t i o n at high temperature. The values o f k ... of the deposit layer. In the range of surface temperatures ...
0 downloads 0 Views 1MB Size
26 Influence of Thermal Properties of Wall Deposits on Performance of Pulverized Fuel Fired Boiler Combustion Chambers W. Richter, R. Payne, and M. P. Heap

Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch026

Energy and Environmental Research Corporation, Irvine, CA 92718

The properties which determine heat transfer through a deposit layer of given thickness are thermal conduc­ t i v i t y , emissivity, and absorptivity. These proper­ ties vary with deposit temperature, thermal history, and chemical composition. Parametric studies and calculations for existing boilers were carried out to show the sensitivity of overall furnace performance, l o c a l temperature, and heat flux distributions to these properties in large p . f . fired furnaces. The property values used cover the range of recent experi­ mental studies. Calculations for actual boilers were carried out with a comprehensive 3-D Monte Carlo type heat transfer model. Some predictions are compared to full-scale boiler measurements. The calculations show that the effective conduction coefficient (k/Δs) of wall deposits strongly influences furnace exit temperatures. eff

The b u i l d u p o f a s h d e p o s i t l a y e r s on tube w a l l s and s u p e r h e a t e r s i n d r y bottom p . f . b o i l e r combustion chambers does n o t o n l y d e t e r i o r a t e f u r n a c e a n d o v e r a l l b o i l e r e f f i c i e n c y , but a l s o i n c r e a s e s t h e tem­ p e r a t u r e l e v e l i n f u r n a c e and c o n v e c t i v e passages and a g g r a v a t e s e x i s t i n g d e p o s i t problems. T h i s can f i n a l l y lead t o expensive out­ a g e s when d e p o s i t f o r m a t i o n c a n n o t be c o n t r o l l e d by s o o t b l o w i n g alone. S i n c e e r r o r s i n f u r n a c e d e s i g n w i t h r e s p e c t t o s l a g g i n g and f o u l i n g o r i n c o r r e c t e s t i m a t e s o f t h e impact o f f u e l c o n v e r s i o n on d e p o s i t f o r m a t i o n a r e so c o s t l y i n l a r g e b o i l e r s , t h e r e i s c o n s i d e r ­ a b l e f i n a n c i a l i n c e n t i v e t o d e v e l o p a n a l y t i c a l methods i n o r d e r t o p r e d i c t f u r n a c e performance f o r a wide range o f c o a l types and oper­ ating conditions. I t i s c l e a r t h a t such methods must take q u a n t i ­ t a t i v e l y i n t o a c c o u n t , among o t h e r t h i n g s , t h e t h e r m a l p r o p e r t i e s o f a s h d e p o s i t s , i . e . t h e r m a l c o n d u c t i v i t y , e m i s s i v i t y , and a b s o r p ­ tivity. The c u r r e n t paper p r e s e n t s r e s u l t s from v a r i o u s s t u d i e s c a r r i e d o u t by t h e a u t h o r s t o show t h e i n f l u e n c e o f t h e r m a l p r o p e r t i e s o f a s h d e p o s i t s on p e r f o r m a n c e o f l a r g e p . f . f i r e d b o i l e r f u r n a c e s . The paper i s d i v i d e d i n t o t h r e e s e c t i o n s . I n the f i r s t s e c t i o n , key 0097-6156/ 86/ 0301 -0375506.00/ 0 © 1986 American Chemical Society

Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

376

MINERAL MATTER AND ASH IN COAL

p a r a m e t e r s o f o v e r a l l f u r n a c e performance a r e i d e n t i f i e d w i t h the h e l p o f a s e n s i t i v i t y s t u d y and r e l a t e d to the ash d e p o s i t prop­ erties. The second s e c t i o n summarizes e x p e r i m e n t a l d a t a of t h e r m a l p r o p e r t i e s o f d e p o s i t s and d e f i n e s t h e r a n g e o f v a l u e s p r o b a b l y o c c u r r i n g i n b o i l e r combustion chambers. In the t h i r d section, t y p i c a l p r o p e r t y v a l u e s a r e used i n c o m b i n a t i o n w i t h a s o p h i s t i c a t e d 3-D h e a t t r a n s f e r model i n o r d e r to demonstrate the e f f e c t of e x i s t i n g d e p o s i t l a y e r s on l o c a l t e m p e r a t u r e and h e a t f l u x d i s t r i b u t i o n and performance o f p a r t i c u l a r b o i l e r f u r n a c e s .

Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch026

Parametric

Study of O v e r a l l Furnace

Performance

The p a r a m e t r i c s t u d i e s w e r e c a r r i e d o u t i n o r d e r t o i d e n t i f y the most i m p o r t a n t p a r a m e t e r s i n f l u e n c i n g o v e r a l l f u r n a c e heat a b s o r p ­ tion. These parameters a r e : ο A d i a b a t i c Flame Temperature ο F i r i n g Density ο Total Emissivity ο Temperature of Heat S i n k S u r f a c e s ο Flow and Heat R e l e a s e P a t t e r n s F i g u r e 1 shows how these q u a n t i t i e s a r e r e l a t e d i n a complex manner to e a c h o t h e r , to f u e l c h a r a c t e r i s t i c s , to f u r n a c e o p e r a t i n g c o n d i t i o n s , and to w a l l d e p o s i t s . Some o f t h e r e l a t i o n s h i p s i n t h i s f i g u r e w e r e i n v e s t i g a t e d u t i l i z i n g a s i m p l e w e l l - s t i r r e d f u r n a c e m o d e l (I) which assumed t r a n s p o r t of gray r a d i a t i o n . This w e l l - s t i r r e d analysis predicted q u a l i t a t i v e l y t h e d e p e n d e n c e o f f u r n a c e e f f i c i e n c i e s r i f and e x i t temperature T , both r e l a t e d by E q u a t i o n 1 e x

T

M C 0

n

f

- ι -

— -

p

ex IT 0

(T

e x

-

T ) 0

(l)

:

Qo on f u r n a c e d e s i g n and o p e r a t i n g c o n d i t i o n s . An important d e s i g n parameter i s the f u r n a c e h e i g h t L r e q u i r e d to o b t a i n a d e s i r e d e f f i c i e n c y o r e x i t t e m p e r a t u r e (1 m of f u r n a c e h e i g h t c o r r e s p o n d s a p p r o x i m a t e l y to $500,000). I t was found t h a t the h e i g h t L depends c o n s i d e r a b l y on the c h a r a c t e r i s t i c s o f the w a l l d e p o s i t s , e s p e c i a l l y in large furnaces. T h i s i s shown i n F i g u r e s 2 and 3 i n which the efficiency i s p l o t t e d over the h e i g h t L w i t h s u r f a c e temperature T o f d e p o s i t s and s u r f a c e e m i s s i v i t i e s e as p a r a m e t e r s . The c a l c u l a t i o n s were c a r r i e d out f o r a r e c t a n g u l a r f u r n a c e box of w i d t h L/3. O t h e r i n p u t parameters a r e l i s t e d i n the f i g u r e s . The s t r o n g impact of w a l l temperatures f o r l a r g e r s i z e s ( F i g u r e 2) i s due t o t h e f a c t t h a t l a r g e f u r n a c e v o l u m e s a p p r o a c h b l a c k r a d i a t o r s and volume e m i s s i v i t i e s cannot be i n c r e a s e d anymore by i n c r e a s e i n s i z e . F o r f u r n a c e s o p e r a t e d w i t h the same t h e r m a l i n p u t a t low e f f i c i e n ­ c i e s , the presence of w a l l d e p o s i t s r e q u i r e s o n l y a moderate increase i n size. A r e d u c t i o n of s u r f a c e e m i s s i v i t i e s from 1 ( c l e a n " s o o t y " w a l l s ) t o 0.4 w h i c h i s t h e l o w e s t range r e p o r t e d f o r ash d e p o s i t s a l s o c a u s e s a drop of r\f o r r e q u i r e s an i n c r e a s e i n h e i g h t i n o r d e r t o m a i n t a i n rif ( F i g u r e 3 ) . The s i z e r e q u i r e d v a r i e s n o n l i n e a r l y w

w

Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

26.

t

RICHTER ET AL.

Adiabatic

Performance

377

Load

Input .

Density • Furnace Geometry Fuel Composition Combustion Conditions

Heat S i n k Area •

Downloaded by FUDAN UNIV on January 10, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch026

Chambers

Heating Value Moisture Content Ash Content Excess A i r A i r & Fuel Preheat

Flame Temperature -

Thermal Firing

of Boiler Combustion

E m i s s i v i t y eg of Combustion Products •

Total

Emissivity · I Emissivity e I s o r p t i v i ty a ι Heat Sink

w

w

Abof Wall

^Therm. C o n d u c t i v i t y •

Temperature of ^ Heat Sink Surface

Net Heat k



Flux

D e n s i t yf