32 Mineral Matter Analysis: A Technique To Improve Bituminous Coal Beneficiation
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 17, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch032
Richard B. Muter and William F. Lawrence College of Mineral and Energy Resources, West Virginia University, Morgantown, WV 26506
Mineral matter analysis can provide a more accurate and complete representation of the minerals present in bituminous coal and the effects of beneficiation processes upon them. Comparisons with conventional analytical methods are made which demonstrate some of the potential advantages of this technique in the monitoring or design of coal cleaning operations.
As a new g e n e r a t i o n o f c o a l c l e a n i n g t e c h n o l o g y becomes more commonly p r a c t i c e d , i t i s r a p i d l y becoming a p p a r e n t t h a t a new g e n e r a t i o n o f a n a l y t i c a l methods t o m o n i t o r t h e s e p a r a t i o n c h a r a c t e r i s t i c s i s a l s o r e q u i r e d . The a n a l y t i c a l methods which a r e i n p r e s e n t useage do n o t a c c u r a t e l y r e p o r t t h e m a t e r i a l s which a r e b e i n g b e n e f i c i a t e d ; r a t h e r , t h e y r e p o r t elements which a r e w i t h i n t h e m a t e r i a l s . W h i l e t h i s i n d i r e c t measurement method i swidely a c c e p t e d , b o t h because i t i s w e l l known and because i t has h i s t o r i c a l l y proven o f v a l u e t o t h e c o a l i n d u s t r y , i t may p r o v i d e a v e r y f a l s e p i c t u r e o f what t r u l y o c c u r s d u r i n g c o a l p r o c e s s i n g . C o n v e n t i o n a l c o a l c l e a n i n g o r b e n e f i c i a t i o n i s used t o remove t h o s e m a t e r i a l s w i t h i n t h e c o a l seam which a r e d e l e t e r i o u s t o c l e a n e f f i c i e n t combustion o r c o n v e r s i o n . However, a problem a r i s e s i n t h a t d i f f e r e n t m i n e r a l forms, even though t h e y may c o n t a i n t h e same e l e m e n t s , may r e a c t d i f f e r e n t l y d u r i n g c l e a n i n g . Most common a n a l y t i c a l methods d e s t r o y t h e m i n e r a l o g i c a l s t r u c t u r e s and g i v e t h e i m p r e s s i o n t h a t c o a l s a r e t o a l a r g e e x t e n t homogeneous and c o n s i s t e n t i n m i n e r a l c o n t e n t . T h i s i s a f a l s e i m p r e s s i o n as c o a l i s , i n r e a l i t y , heterogeneous i n n a t u r e and i t s m i n e r a l c o n t e n t can change markedly from sample t o sample t a k e n from t h e same s o u r c e . I t i s t h i s v a r i a b i l i t y i n m i n e r a l s c o n t e n t which r e d u c e s t h e e f f e c t i v e n e s s o f common b e n e f i c i a t i o n methods. S u l f u r a n a l y s i s p r o v i d e s a good example o f t h e f a l s e c o n c l u s i o n s which can be drawn based upon good a n a l y t i c a l t e c h n i q u e . I t i g n o r e s m i n e r a l o g i c a l c o m p o s i t i o n , a l t h o u g h i t can be improved i f an a n a l y s i s o f s u l f u r forms i s performed. However, knowing t h a t "x" p e r c e n t a g e o f p y r i t i c s u l f u r i s p r e s e n t i s s t i l l n o t s u f f i c i e n t f o r t h e d e s i g n o f t h e most e f f e c t i v e c l e a n i n g p r o c e s s . F u r t h e r i n f o r m a t i o n as t o t h e s i z e o f t h e m i n e r a l g r a i n s 0097-6156/86/0301-0443S06.00/0 © 1986 American Chemical Society
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 17, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch032
444
MINERAL MATTER AND ASH IN COAL
p r e s e n t and whether t h e y a r e f i n e l y e n g r a i n e d w i t h i n t h e c o a l m a t e r i a l i t s e l f i s needed; and a d e t e r m i n a t i o n o f t h e o t h e r s u l f u r m i n e r a l s p r e s e n t , i f any, c o u l d l e a d t o f u r t h e r r e f i n e m e n t s i n t h e c l e a n i n g methods employed and t h e i r improved e f f e c t i v e n e s s . The a n a l y s i s o f s i l i c a , however, p r o v i d e s a b e t t e r example of t h e problem which e x i s t s . S i l i c o n i s t o m i n e r a l o g y what carbon i s t o o r g a n i c c h e m i s t r y and appears i n c o a l i n many forms from s i m p l e q u a r t z t o complex c l a y s ( T a b l e 1 ) . However, most a n a l y t i c a l methods d e s t r o y m i n e r a l forms t h r o u g h h i g h temperature o x i d a t i o n ( a s h i n g ) and t h e r e s u l t s a r e determined as t h e amount o f s i l i c o n p r e s e n t . Two c o a l s may have t h e same S1O2 c o n t e n t when a n a l y z e d , but t h e p h y s i c a l p r o p e r t i e s o f t h e p a r e n t m i n e r a l s may be q u i t e d i f f e r e n t . D i f f e r e n t m i n e r a l s , even o f s i m i l a r c o m p o s i t i o n s , may r e q u i r e d i f f e r e n t c l e a n i n g p r o c e s s e s and have d i f f e r e n t e f f e c t s upon p r o c e s s i n g equipment. Sand might be e a s i l y removable t h r o u g h washing o r f r o t h f l o t a t i o n ; whereas c l a y w i t h a s i m i l a r s i l i c o n c o n t e n t might adhere t o t h e c o a l m a t e r i a l o r c o l l o i d a l l y d i s p e r s e w i t h i n t h e p r o c e s s waters and be d i f f i c u l t t o remove. P h y s i c a l b e n e f i c i a t i o n i s g e n e r a l l y c o n s i d e r e d t o be a "mature" s u b j e c t i n t h a t most changes which have o c c u r r e d o v e r t h e p a s t few y e a r s have been i n terms o f equipment d e s i g n and r e f i n e m e n t o r i n t h e o r d e r i n which p a r t i c u l a r o p e r a t i o n s a r e performed. These o p e r a t i o n s a r e g e n e r a l l y based upon d i f f e r e n c e s i n p h y s i c a l c h a r a c t e r i s t i c s ( e g . s p e c i f i c g r a v i t y , hardness or b r i t t l e n e s s ) between t h e m i n e r a l s o f i n t e r e s t and t h e c o a l y m a t e r i a l s . However t h e s e p r o c e s s e s a r e s t i l l m o n i t o r e d u s i n g elemental analyses r a t h e r than s p e c i f i c m i n e r a l c o n c e n t r a t i o n measurements. F r o t h f l o t a t i o n , c o n s i d e r e d t o be a h i g h e r l e v e l o f s o p h i s t i c a t i o n i n b e n e f i c i a t i o n , i s a l s o based on d i f f e r e n c e s i n m i n e r a l o g i c a l p r o p e r t i e s . Based upon p a r t i c l e s u r f a c e c h a r a c t e r i s t i c s , t h e s e p a r a t i o n method i s more c h e m i c a l than p h y s i c a l i n n a t u r e . T e n d e n c i e s o f s p e c i f i c m i n e r a l p a r t i c l e s t o be h y d r o p h i l i c o r h y d r o p h o b i c a r e enhanced through t h e u s e o f c h e m i c a l a d d i t i v e s and t h e n a p h y s i c a l s e p a r a t i o n i s made. However, i t i s s t i l l m i n e r a l s and n o t elements which a r e b e i n g s e p a r a t e d even though c o n v e n t i o n a l a n a l y t i c a l methods would imply o t h e r w i s e . The n e x t l e v e l o f s o p h i s t i c a t i o n i n c o a l c l e a n i n g w i l l most l i k e l y be t h a t o f c h e m i c a l c o a l c l e a n i n g . I t w i l l a l s o be t h e most c o s t l y l e v e l t o d a t e , e s p e c i a l l y when t h e l a r g e tonnage amounts i n v o l v e d i n c o a l u t i l i z a t i o n a r e c o n s i d e r e d . I n o r d e r t o keep t h e s e c o s t s t o a minimum, w h i l e s t i l l a t t a i n i n g d e s i r e d r e s u l t s , p r o c e s s o p e r a t i o n s w i l l have t o be c a r e f u l l y p l a n n e d and c l o s e l y m o n i t o r e d . P r o c e s s d e s i g n e r s w i l l need t o know which m i n e r a l s a r e i n v o l v e d and whether any o f them can be removed b e f o r e employing c h e m i c a l c l e a n i n g . A c q u i r i n g a b e t t e r knowledge o f what m i n e r a l s o c c u r i n s p e c i f i c c o a l s and how t h e y a r e a f f e c t e d by l e s s e x p e n s i v e p h y s i c a l b e n e f i c i a t i o n p r o c e s s e s i s an o b v i o u s f i r s t step. As p a r t o f a much l a r g e r e f f o r t by t h e U.S. Department o f Energy, t h e C o a l R e s e a r c h Bureau o f t h e C o l l e g e o f M i n e r a l and Energy R e s o u r c e s a t West V i r g i n i a U n i v e r s i t y has been c h a r a c t e r i z i n g t h e m i n e r a l o g y and p e t r o g r a p h y o f t h r e e major b i t u m i n o u s c o a l s i n an e f f o r t t o determine whether t h e
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 17, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch032
32.
MUTER AND LAWRENCE
Mineral
Matter
Analysis
445
m i n e r a l o g i c a l a s s o c i a t i o n s can be c l o s e l y f o l l o w e d t h r o u g h common p h y s i c a l b e n e f i c i a t i o n processes. A l i s t i n g of the minerals commonly p r e s e n t i n bituminous c o a l s i s p r o v i d e d i n T a b l e 1. Methodology R e p r e s e n t a t i v e samples o f t h r e e major bituminous c o a l s were o b t a i n e d f o l l o w i n g ASTM sampling p r o c e d u r e s . The s p e c i f i c c o a l s chosen i n c l u d e d a n o r t h e r n West V i r g i n i a h i g h v o l a t i l e coal, a s o u t h e r n West V i r g i n i a low v o l a t i l e c o a l , and a n o r t h e r n Illinois c o a l . Head c o a l samples were s p l i t o u t f o r each c o a l and then s c r e e n and s p e c i f i c g r a v i t y ( s i n k - f l o a t ) s e p a r a t i o n s were made. S c r e e n f r a c t i o n s produced were +1", l x l / 4 " , l/4"x8M, 8x28M, 28xl00M and -100M. G r a v i t y s e p a r a t i o n s were performed on a l l but t h e -100M f r a c t i o n a t 1.30, 1.40, 1.60, and 1.80 (SG) and a l l samples were analyzed.Déterminâtions were made o f t h e a s h , low temperature a s h , and t h e elements S i , A l , Fe, T i , Ca, Mg, Na, and K, among o t h e r s . The c o n c e n t r a t i o n s o f t h e m i n e r a l s i l l i t e , k a o l i n i t e , q u a r t z , c a l c i t e and p y r i t e were a l s o d e t e r m i n e d . Low temperature a s h i n g t e c h n i q u e s were employed t o reduce t h e o x i d a t i o n and d e c o m p o s i t i o n o f t h e m i n e r a l s which would o c c u r under normal a s h i n g c o n d i t i o n s . M i n e r a l o g i c a l a n a l y s e s were performed u s i n g X - r a y powder d i f f r a c t i o n , i n f r a - r e d s p e c t r o s c o p y , o p t i c a l p e t r o g r a p h y , and s c a n n i n g e l e c t r o n m i c r o s c o p y . E l e m e n t a l d e t e r m i n a t i o n s were performed u s i n g atomic a b s o r p t i o n s p e c t r o s c o p y . Each o f t h e m i n e r a l i d e n t i f i c a t i o n and q u a n t i f i c a t i o n t e c h n i q u e s mentioned met w i t h v a r y i n g degrees o f s u c c e s s f o r each i n d i v i d u a l m i n e r a l . However, f o r ease o f a p p l i c a t i o n a c c u r a c y and r e p r o d u c i b i l i t y , and t h e h i g h e s t degree o f q u a n t i f i c a t i o n , X - r a y a n a l y s i s was d e t e r m i n e d t o be t h e b e s t method. A c c o r d i n g l y , t h e m i n e r a l v a l u e s shown i n t h e t a b l e s were o b t a i n e d by t h i s method. P y r i t e was determined u s i n g ASTM p r o c e d u r e s . R e s u l t s and D i s c u s s i o n In t h i s p r o j e c t , t h e f i r s t o p e r a t i o n s s t u d i e d were s i z e and s p e c i f i c g r a v i t y s e p a r a t i o n s as t h e y a r e t h e most common u n i t o p e r a t i o n s p r a c t i c e d . The m i n e r a l o g i c a l d a t a o b t a i n e d was then c o n v e r t e d i n t o w a s h a b i l i t y t a b l e s s i m i l a r t o t h o s e produced u s i n g e l e m e n t a l a n a l y s e s , e.g. a s h w a s h a b i l i t y t a b l e s . T h i s d a t a was then t r a n s f e r r e d t o g r a p h i c form t o produce a m i n e r a l s w a s h a b i l i t y diagram ( F i g u r e 1) f o r t h e head n o r t h e r n West V i r g i n i a c o a l . T h i s f i g u r e i s based on c o n v e n t i o n a l s i n k - f l o a t s p e c i f i c g r a v i t y s e p a r a t i o n s , but i t c o u l d as r e a d i l y have been produced by v a r y i n g t h e p r o c e s s i n g parameters o f a s p e c i f i c u n i t o p e r a t i o n and m o n i t o r i n g t h e m i n e r a l s e p a r a t i o n s which o c c u r e d . Such c u r v e s c o u l d be used as p r e d i c t i v e t o o l s t o e s t i m a t e t h e s e p a r a t i o n s which would o c c u r and a l s o c o u l d p r o v i d e a t h e o r e t i c a l base l i n e f o r monitoring the e f f e c t i v e n e s s of a p a r t i c u l a r cleaning operation. M i n e r a l s were a l s o f o l l o w e d t h r o u g h i n d i v i d u a l u n i t o p e r a t i o n s as p a r t o f t h e r e s e a r c h p r o j e c t . The d a t a o b t a i n e d when c o a l was c l e a n e d u s i n g a p i l o t s c a l e D e i s t e r T a b l e i s p r e s e n t e d i n T a b l e 2. An e x a m i n a t i o n o f t h e a c t u a l m i n e r a l s c o n t e n t s v e r s u s t h o s e p r e d i c t e d by t h e w a s h a b i l i t y d a t a shows a lower y i e l d o f i l l i t e and a h i g h e r c o n c e n t r a t i o n o f k a o l i n i t e and q u a r t z r e p o r t i n g i n t h e c l e a n c o a l . T h i s i m p l i e s t h a t t h e i l l i t e i s b e i n g removed t o a g r e a t e r e x t e n t than e x p e c t e d and t h a t t h e removal o f q u a r t z and k a o l i n i t e i s being retarded r e l a t i v e to p r e d i c t e d values. C o n v e n t i o n a l e l e m e n t a l a n a l y s i s , i n t h i s case f o r S i , would n o t
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
446
MINERAL MATTER AND ASH IN COAL
Table 1
Q
QUARTZ
Q
FELDSPARS
S
Q
Scanning Electron Microscopy
KAOLINITE
Optical Petrography
S
Normative Calculations
ILLITE
Infrared Spectroscopy
X-ray Powder Diffraction
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 17, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch032
M i n e r a l s p r e s e n t i n t h e n o r t h e r n West V i r g i n i a b i t u m i n o u s c o a l . The s y m b o l s i n d i c a t e t h e a n a l y t i c a l p r o c e d u r e s a v a i l a b l e f o r e a c h m i n e r a l a n d w h e t h e r t h e p r o c e d u r e c a n be u s e d f o r quantitative (Q),semi-quantitative (S), o r i d e n t i f i c a t i o n ( I ) analyses only.
Q
S
I
Variable
Q
S
I
Al (Si 0 û) (0H)
Q
S
I
Si0
I
Variable
I
KA1
S
MUSCOVITE CARBONATES CALCITE
Q
DOLOMITE
Q
BASSANITE
S
DISULFIDES
Q
4
(AlSi 0
4
3
I
I
CaC0
S
I
I
CaMg(C0 )
I
CaS0 .l/2H 0
S
4
I
FeS
2
2
MARCASITE
s
FeS
2
I
s
RUTILE
s
2
4
FeS
HEMATITE
) (0H)
3
3
S
S
1 0
2
CaS0 .2H 0
I Q
8
2
PYRITE
APATITE
1
S
I
GYPSUM IRON
Q
4
Variable
S
Q
Formulae
Ca (F,Cl,0H) 5
Fe 0 2
I
2
Ti0
3
2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
(P0 ) 4
3
2
Mineral
MUTER AND LAWRENCE
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 17, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch032
Ο J
I
I
I
5 I
I
I
Matter
ι
CUMULATIVE ASH, FLOAT 10 15 ι ι I f ι ι ι I < ι
ι
C U M U L A T I V E C A L C I T E , LBS.
i l l
I
I
0
20
Analysis
1
i ι
ι
ι ,
I
40
I 100
ι
20 I
1
1
1
1
25 I
I
I
1
60
C U M U L A T I V E I L L I T E , KAOLINITE . Q U A R T Z , A N D
[ 0
ι
I
I
I 200
»
80 PYRITE,
1
100 LBS.
— I 300
C U M U L A T I V E TOTAL MINERAL M A T T E R , L B S .
F i g u r e 1. W a s h a b i l i t y Curves f o r t h e Most Common M i n e r a l s i n N o r t h e r n West V i r g i n i a H i g h V o l a t i l e B i t u m i n o u s C o a l .
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
448
MINERAL MATTER AND
ASH IN COAL
show any changes o c c u r r i n g as t h e i l l i t e r e d u c t i o n would be o f f s e t by t h e g r e a t e r t h a n p r e d i c t e d amounts o f the o t h e r two m i n e r a l s . F u r t h e r c l e a n i n g o f t h i s c o a l based upon removing q u a r t z o r k a o l i n i t e would be more e f f e c t i v e t h a n i f a p r o c e s s t o remove i l l i t e were used, but c o n v e n t i o n a l a n a l y s i s would n o t p r o v i d e t h i s type of planning information.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 17, 2017 | http://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch032
T a b l e 2. A c t u a l v s . p r e d i c t e d r e c o v e r y (pounds per t o n o f f e e d c o a l ) o f p r o d u c t s from a N o r t h e r n West V i r g i n i a h i g h v o l a t i l e bituminous c o a l u s i n g a p i l o t s c a l e D e i s t e r t a b l e .
Clean
Coal
Ash
Actual 1705
Predicted 1650
118
120
126
120
Illite
16
29
Kaolinite
34
30
Quartz
21
20
Calcite
13
4
Pyrite
30
23
Mineral
Matter
Future
Impact S a y i n g t h a t m i n e r a l o g i c a l a n a l y s i s may become as common as elemental a n a l y s i s i n the c o a l i n d u s t r y i s not too strong a s t a t e m e n t . F u t u r e p r e p a r a t i o n o p e r a t i o n s w i l l be q u i t e s i m i l a r i n c o m p l e x i t y t o c u r r e n t o r e p r o c e s s i n g p l a n t s w i t h advanced p h y s i c a l and c h e m i c a l b e n e f i c i a t i o n methods b e i n g employed. The p l a n t o f the f u t u r e w i l l be d e s i g n e d based upon t h e p r o p e r t i e s o f t h e s p e c i f i c c o a l s b e i n g p r o c e s s e d and w i l l p r o b a b l y be a m u l t i p l e u n i t o p e r a t i o n , m u l t i p l e end p r o d u c t , end use r e l a t e d p l a n t . The economic s u c c e s s o f such p l a n t s w i l l depend upon t h e a b i l i t y t o m o n i t o r and c l o s e l y c o n t r o l t h e m a t e r i a l s which e n t e r t h e i n d i v i d u a l processes w h i l e having the f l e x i b i l i t y to handle c o a l s from d i f f e r e n t seams. Such c o n t r o l w i l l be d i f f i c u l t w i t h o u t an a c c u r a t e i d e n t i f i c a t i o n o f t h e m i n e r a l s p r e s e n t and a knowledge o f t h e changes w h i c h t h e y undergo i n s p e c i f i c c l e a n i n g o p e r a t i o n s .
REFERENCES Coal Preparation, 4th edition, AIME, New York, N.Y. 1979 ASTM Standards, Section 5, Volume 05.05, 1982 Personal Communications: Dr. John Renton, William Grady, W. Va. Univ. RECEIVED November 4, 1985
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.