Models of the Membrane-Bound Cytochromes: Mössbauer Spectra of

Selma Dhifaoui , Soumaya Nasri , Geoffrey Gontard , Ashta C. Ghosh , Yann Garcia , Cecilia Bonifàcio , Shabir Najmudin , Valérie Marvaud , Habib Nas...
0 downloads 0 Views 187KB Size
Published on Web 01/04/2006

Models of the Membrane-Bound Cytochromes: Mo1 ssbauer Spectra of Crystalline Low-Spin Ferriheme Complexes Having Axial Ligand Plane Dihedral Angles Ranging from 0° to 90° Thomas Teschner,‡ Liliya Yatsunyk,† Volker Schu¨nemann,*,‡,| Hauke Paulsen,‡ Heiner Winkler,‡ Chuanjiang Hu,# W. Robert Scheidt,# F. Ann Walker,*,† and Alfred X. Trautwein*,‡ Contribution from the Institut fu¨r Physik, UniVersita¨t zu Lu¨beck, Ratzeburger Allee 160 D-23538 Lu¨beck, Germany, Department of Chemistry, The UniVersity of Arizona, Tucson, Arizona 85721-0041, Fachbereich Physik, Technische UniVersita¨t Kaiserslautern, Erwin-Schro¨dinger-Strasse 56, D-67663 Kaiserslautern, Germany, and Department of Chemistry and Biochemistry, UniVersity of Notre Dame, Notre Dame, Indiana 46556-5670 Received September 14, 2005; E-mail: [email protected]; [email protected]; [email protected]

Abstract: Crystalline samples of four low-spin Fe(III) octaalkyltetraphenylporphyrinate and two low-spin Fe(III) tetramesitylporphyrinate complexes, all of which are models of the bis-histidine-coordinated cytochromes of mitochondrial complexes II, III, and IV and chloroplast complex b6 f, and whose molecular structures and EPR spectra have been reported previously, have been investigated in detail by Mo¨ssbauer spectroscopy. The six complexes and the dihedral angles between axial ligand planes of each are [(TMP)Fe(1-MeIm)2]ClO4 (0°), paral-[(OMTPP)Fe(1-MeIm)2]Cl (19.5°), paral-[(TMP)Fe(5-MeHIm)2]ClO4 (26°, 30° for two molecules in the unit cell whose EPR spectra overlap), [(OETPP)Fe(4-Me2NPy)2]Cl (70°), perp[(OETPP)Fe(1-MeIm)2]Cl (73°), and perp-[(OMTPP)Fe(1-MeIm)2]Cl (90°). Of these, the first three have been shown to exhibit normal rhombic EPR spectra, each with three clearly resolved g-values, while the last three have been shown to exhibit “large gmax” EPR spectra at 4.2 K. It is found that the hyperfine coupling constants of the complexes are consistent with those reported previously for low-spin ferriheme systems, with the largest-magnitude hyperfine coupling constant, Azz, being considerably smaller for the “parallel” complexes (400-540 kG) than for the strictly perpendicular complex (902 kG), Axx being negative for all six complexes, and Azz and Axx being of similar magnitude for the “parallel” complexes (for example, for [(TMP)Fe(1-MeIm)2]Cl, Azz ) 400 kG, Axx ) -400 kG). In all cases, Ayy is small but difficult to estimate with accuracy. With results for six structurally characterized model systems, we find for the first time qualitative correlations of gzz, Azz, and ∆EQ with axial ligand plane dihedral angle ∆φ.

Introduction

Heme-containing electron-transfer proteins are essential to many biological processes. The two major classes of hemebased electron-transport proteins, having bis-histidine- and histidine-methionine-coordinated heme centers, shuttle between iron(II) and iron(III) oxidation states and are usually called the cytochromes a, b, and c, based on the differing substituents on the periphery of the heme. In addition to relatively small molecular weight heme proteins,1-9 a number of cytochrome‡

Universita¨t zu Lu¨beck. The University of Arizona. | Technische Universita ¨ t Kaiserslautern. # University of Notre Dame. †

(1) Mathews, F. S.; Czerwinski, E. W.; Argos, P. In The Porphyrins; Dolphin, D., Ed; Academic Press: New York, 1979; Vol. VII, pp 108-147. (2) Lederer, F.; Ghrir, R.; Guiard, B.; Cortial, S.; Ito, A. Eur. J. Biochem. 1983, 132, 95-102. (3) Pierrot, M.; Haser, R.; Frey, M.; Payan, F.; Astier, J.-P. J. Biol. Chem. 1982, 257, 14341-14348. (4) Higuchi, Y.; Kusunoki, M.; Matsuura, Y.; Yasuoka, N.; Kakudo, M. J. Mol. Biol. 1984, 172, 109-139. (5) Simo˜es, P.; Matias, P. M.; Morais, J.; Wilson, K.; Dauter, Z.; Carrondo, M. A. Inorg. Chim. Acta 1998, 273, 213-224. 10.1021/ja056343k CCC: $33.50 © 2006 American Chemical Society

containing multi-heme protein complexes with bis-histidine coordination are known. These include the cytochromes b of mitochondrial Complexes II,10 III,11-25 and chloroplasts26-29 and the cytochrome a of mitochondrial Complex IV (cytochrome (6) Nørager, S.; Legrand, P.; Pieulle, L.; Hatchikian, C.; Roth, M. J. Mol. Biol. 1999, 290, 881-902. (7) Brennan, L.; Turner, D. L.; Fareleira, P.; Santos, H. J. Mol. Biol. 2001, 308, 353-365. (8) Hamada, K.; Bethge, P. H.; Mathews, F. S. J. Mol. Biol. 1995, 247, 947962. (9) Timkovich, R. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New York, 1979; Vol. 12, pp 241-294. (10) Sun, F.; Huo, X.; Zhai, Y.; Wang, A.; Xu, J.; Su, D.; Bartiam, M.; Rao, Z. Cell 2005, 121, 1043-1067. (11) Xia, D.; Yu, C.-A.; Kim, H.; Xia, J.-Z.; Kachurin, A. M.; Zhang, L.; Yu, L.; Deisenhofer, J. Science 1997, 277, 60-66. (12) Iwata, S.; Lee, J. W.; Okada, K.; Lee, J. K.; Iwata, M.; Rasmussen, B.; Link, T. A.; Ramaswamy, S.; Jap, B. K. Science 1998, 281, 64-71. (13) Zhang, Z.; Huang, L.; Shulmeister, V. M.; Chi, Y.-I.; Kim K. K.; Hung, L.-W.; Crofts, A. R.; Berry, E. A.; Kim, S.-H. Nature 1998, 392, 677684. (14) Berry, E. A.; Huang, L.-S.; Zhang, Z.; Kim, S.-H. J. Bioenerg. Biomembr. 1999, 31, 177-190. (15) Yu, C.-A.; Tian, H.; Zhang, L.; Deng, K.-P.; Shenoy, S. K.; Yu, L.; Xia, D.; Kim, H.; Deisenhofer, J. J. Bioenerg. Biomembr. 1999, 31, 191-199. (16) Berry, E. A.; Guergova-Kuras, M.; Huang, L.; Crofts, A. R. Annu. ReV. Biochem. 2000, 69, 1005-1075. J. AM. CHEM. SOC. 2006, 128, 1379-1389

9

1379

Teschner et al.

ARTICLES

oxidase),30 as well as bacterial analogues of these multi-heme electron-transfer proteins and a number of additional multi-heme cytochromes c that are involved in electron transfer and/or redox of the oxides of nitrogen,31-34 sulfur,35 and other main group elements. Complex III, also called the cytochrome bc1 complex or ubiquinol:cytochrome c oxidoreductase, plays an important role in the electron transfer in mitochondria, chloroplasts, and many aerobic and photosynthetic bacteria. It transfers electrons from the lipophilic ubiquinol (a two-electron donor), which was pre-reduced by mitochondrial Complex II, to soluble cytochrome c, a one-electron acceptor; this process is coupled to translocation of two protons across the inner mitochondrial membrane per two electrons passed to cytochrome c, which then carries them, one at a time, to cytochrome oxidase (Complex IV).29 Cytochrome b6 f of photosynthetic bacteria and chloroplasts transfers electrons from the lipophilic plastoquinol (a twoelectron donor), which was pre-reduced by Photosystem II, to a hydrophilic one-electron acceptor (a c-type cytochrome for photosynthetic bacteria or plastocyanin for chloroplasts), which then reduces Photosystem I, and couples this electron transfer to translocation of two protons across the chloroplast membrane.36 The characterization and mechanistic understanding of these high-molecular-weight, membrane-bound, multi-heme systems continues to be a significant challenge. One of the first and most useful spectroscopic tools that provided much insight into the number, properties, and roles of the heme centers in the cytochrome bc1 complex was EPR spectroscopy. The unusual EPR spectra for the cytochrome bc1 complex were first reported by Orme-Johnson, Hansen, and Beinert37 and later analyzed in detail by Salerno.38 EPR data for the bc1 complex show that both of the b hemes (as well as the c1 heme) exhibit the single-feature EPR signals known as highly anisotropic low-spin (HALS) or, preferably, “large (17) Gao, X.; Wen, X.; Yu, C.; Esser, L.; Tsao, S.; Quinn, B.; Zhang, L.; Yu, L.; Xia, D. Biochemistry 2002, 41, 11692-11702. (18) Gao, X.; Wen, X.; Esser, L.; Quinn, B.; Yu, L.; Yu, C.-A.; Xia, D. Biochemistry 2003, 42, 9067-9080. (19) Huang, L.; Cobessi, D.; Tung, E. Y.; Berry, E. A. J. Mol. Biol. 2005, 351, 573-597. (20) Crofts, A. R. Annu. ReV. Physiol. 2004, 66, 689-733. (21) Hunte, C.; Koepke, J.; Lange, C.; Rossmanith, T.; Michel, H. Structure 2000, 8, 669-684. (22) Lange, C.; Nett, J. H.; Trumpower, B. L.; Hunte, C. EMBO J. 2001, 20, 6591-6600. (23) Lange, C.; Hunte, C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2800-2805. (24) Palsdottir, H.; Lojero, C. G.; Trumpower, B. L.; Hunte, C. J. Biol. Chem. 2003, 278, 31303-31311. (25) Berry, E. A.; Huang, L.-S.; Saechao, L. K.; Pon, N. G.; ValkovaValchanova, M.; Daldal, F. Photosynth. Res. 2004, 81, 251-275. (26) Stroebel, D.; Choquet, Y.; Popot, J.-L.; Picot, D. Nature 2003, 426, 413418. (27) Durisu, G.; Zhang, H.; Smith, J. L.; Cramer, W. A. Science 2003, 302, 1009-1014. (28) Cramer, W. A.; Zhang, H.; Yan, J.; Kurisu, G.; Smith, J. L. Biochemistry 2004, 43, 5921-5929. (29) Smith, J. L.; Zhang, H.; Yan, J.; Kurisu, G.; Cramer, W. A. Curr. Opin. Struct. Biol. 2004, 14, 432-439. (30) Michel, H.; Behr, J.; Harrenga, A.; Kannt, A. Annu. ReV. Biophys. Biomol. Struct. 1998, 27, 329-356. (31) Einsle, O.; Messerschmidt, A.; Stach, P.; Bourenkov, G. P.; Bartunik, H. D.; Huber, R.; Kroneck, P. M. H. Nature 1999, 400, 476-480. (32) Einsle, O.; Stach, P.; Messerschmidt, A.; Simon, J.; Kro¨ger, A.; Huber, R.; Kroneck, P. M. H. J. Biol. Chem. 2000, 275, 39608-39616. (33) Jafferji, A.; Allen, J. W. A. Ferguson, J. J.; Fu¨lo¨p, V. J. Biol. Chem. 2000, 275, 25089-25094. (34) Jormakka, M.; To¨rnroth, S.; Byrne, B.; Iwata, S. Science 2002, 295, 18631868. (35) Crane, B. R.; Siegel, L. M.; Getzoff, E. D. Science 1995, 270, 59-67. (36) Breyton, C. Biochim. Biophys. Acta 2000, 1459, 467-474. (37) Orme-Johnson, N. R.; Hansen, R. E.; Beinert, H. Biochem. Biophys. Res. Commun. 1974, 45, 871-878. (38) Salerno, J. C. J. Biol. Chem. 1984, 259, 2331-2336. 1380 J. AM. CHEM. SOC.

9

VOL. 128, NO. 4, 2006

gmax” 39 type with gmax ) 3.41-3.44 and 3.75-3.78 for high and low reduction potential hemes, bH and bL, respectively. Cytochrome b6 f does not yield a resolved EPR signal for the hemes of cytochrome b6 (except for the high-spin heme sometimes called heme x40), but the g-values of hemes bl and bh (also called bn and bp) have been estimated as 3.6 by magnetic Mo¨ssbauer spectroscopy.41 For the cytochrome bc1 complex of mitochondria and the structurally and functionally related cytochrome b6 f complex of chloroplasts, these “large gmax” EPR signals “relax” to normal rhombic EPR signals (with g1, g2, and g3 values observed, and typically 2.9, 2.25, and 1.54, respectively) when the cytochrome b protein is extracted from the membrane and the other proteins of the complex.42-44 In earlier work with bis-imidazole-ligated iron(III) porphyrinates, we have found that the axial ligand arrangement, i.e., the absolute and relative orientations of the two planar axial ligands, is an important factor in defining the EPR spectroscopic properties.39,45-48 Ligand orientation is also likely to be a significant determinant of the reduction potentials of these heme centers. Studies with synthetic ferriheme complexes have shown that the coordination of bulky imidazoles (2-methylimidazole, 1,2-dimethylimidazole, etc.) or some pyridines (3,4-dimethylamino-pyridine, pyridine itself, etc.) to iron(III) tetraphenylporphyrin (TPPFe(III))39,45 or hemin itself ((ProtoIX)Fe(III))49,50 leads to a “large gmax” EPR signal similar to that reported for the bc1 complex.37,38 These signals have one g value g3.2 (sometimes as large as 3.78) and nearly or completely undetectable g2 and g3, and are observable only at very low temperature (