17 Structural Studies on Erionite and Offretite
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
J. ALAN GARD and J. MERVYN TAIT University of Aberdeen, Aberdeen AB9 2UE, Scotland Structure analysis has confirmed the offretite model of Ben nett and Gard and has located cation and water sites, in cluding one K in each cancrinite cage. Electron diffraction of many samples showed that the type locality is unique to date for offretite, which is partly disordered. All natural erionites examined were ordered. No ordered synthetic erionite was observed. One sample of ordered synthetic offretite was identified as "sausage-shaped" particles. The proportion of erionite in disordered intergrowths with offre tite can, in theory, be estimated from intensities of reflec tions with 1 odd, but comparison of x-ray with electron diffraction data on the same samples suggests that x-ray estimates may be low if erionite domains are thin, due to gross broadening of lines with 1 odd. +
^
s t r u c t u r a l scheme for the a l u m i n o s i l i c a t e f r a m e of erionite w a s p r o p o s e d b y Staples a n d G a r d (16)
P6 /mmc, 3
and a =
13.26, c =
w i t h the h e x a g o n a l space g r o u p
15.12 A . Intensity d a t a f r o m x - r a y
r o t a t i o n gave a m e a n r e s i d u a l R =
0.33.
R i n g s of 6 t e t r a h e d r a
fiber are
s t a c k e d i n A A B A A C — s e q u e n c e ( F i g u r e l a ) , so that c o l u m n s of alternat i n g c a n c r i n i t e cages a n d h e x a g o n a l p r i s m s are c r o s s - l i n k e d w i t h single rings, to f o r m cavities w i t h a free d i a m e t e r of 6.3 A , s h a r i n g w i n d o w s 4.7 X 3.5 A . T h i s scheme has b e e n c o n f i r m e d a n d refined b y K a w a h a r a a n d C u r i e n ( J O ) for erionite f r o m M a z e , N i i g a t a , J a p a n [ S h i m a z u a n d Kawakami (15)].
T h e y also l o c a t e d one c a t i o n i n e a c h c a n c r i n i t e cage
a n d 2 peaks o n the axis of e a c h large c a v i t y , w h i c h they i n t e r p r e t e d as w a t e r molecules. P u b l i s h e d c a t i o n exchange studies (4, 6, 11, 14)
have
s h o w n that a residue of 2 K ions i n e a c h u n i t c e l l of erionite or Zeolite Τ +
— a disordered
synthetic erionite (1,
peratures b e l o w 3 0 0 ° C ; loss of K
3)—is
not e x c h a n g e a b l e at t e m
a b o v e 300° appears to cause p a r t i a l
+
d i s r u p t i o n of the frame.
S h e r r y (14)
therefore contains a K
i o n ; this w o u l d agree w i t h the s t r u c t u r a l w o r k
+
suggested that e a c h c a n c r i n i t e cage
230 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
17.
GARD A N D TAIT
Erionite
and
231
Offretite
Figure 1. Projections of the frames of (A) erionite and (B) offretite. Relative heights of the rings of 6 tetrahedra are marked. Some cation sites are shown as Κ, M, and N. m e n t i o n e d a b o v e (10).
Intensity data have been recorded w i t h a H i l g e r
A u t o m a t i c L i n e a r D i f f r a c t o m e t e r f r o m another s a m p l e of e r i o n i t e f r o m M a z e [ H a r a d a et al. ( 8 ) ] , a n d f u r t h e r refinement w i l l b e a t t e m p t e d . Offretite w a s d i s c o v e r e d b y G o n n a r d (7)
i n 1890 o n M t . S i m i o u s e ,
Montbrison, France. F r o m x-ray powder data, H e y a n d Fejer (9) that i t was i d e n t i c a l w i t h erionite.
Bennett and G a r d
f o u n d the c - s p a c i n g to b e h a l f that of erionite. rotation photographs
(I),
stated
however,
C o m p a r i s o n of x - r a y
( F i g u r e 2 ) a n d e l e c t r o n d i f f r a c t i o n patterns
(Fig
u r e 3 ) s h o w c l e a r l y that a l l reflections w i t h 1 o d d for erionite are absent f r o m the offretite patterns. S h e p p a r d a n d G u d e (13)
h a v e s h o w n since
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
232
MOLECULAR SIEVE ZEOLITES
1
Figure 2. X-ray rotation photographs of (A) erionite and (B) offretite. Reflections with I odd are absent from (B), showing that c is halved for offretite.
Figure
3.
Electron diffraction of hOl zones: (A) erionite, (B) offretite, offretite with streaks parallel to c* indicating disorder
(C)
that the o p t i c signs are different; offretite has negative, a n d erionite p o s i t i v e , e l o n g a t i o n . T h e y also gave accurate u n i t c e l l d i m e n s i o n s , a = c =
13.291,
7.582 A for offretite, a n d a c h e m i c a l analysis c o r r e s p o n d i n g to eel]
contents of K i . i C a i . i M g o . 7 S i i 2 . 9 A l 5 . 2 0 3 . o : 1 5 . 3 H 0 . B e n n e t t a n d G a r d p r o 6
2
p o s e d a structure for the offretite f r a m e i n w h i c h the rings of 6 t e t r a h e d r a are stacked A A B A A B — ( F i g u r e l b ) .
A n o r d e r e d offretite s h o u l d h a v e
channels w i t h free d i a m e t e r 6.3 A , a n d s h o u l d b e c a p a b l e of
sorbing
m u c h larger molecules or cations t h a n w o u l d erionite, b u t a v e r y s m a l l degree of s t a c k i n g d i s o r d e r w o u l d constrict the channels w i t h w i n d o w s i d e n t i c a l w i t h those i n erionite. T h e r e s u l t i n g cavities, h o w e v e r , w o u l d b e longer t h a n those of erionite, w i t h f a r - r e a c h i n g effects o n the d i f f u s i o n rates a n d other properties [ R o b s o n et al. (12)"].
Streaks p a r a l l e l to c*
o n e l e c t r o n d i f f r a c t i o n patterns of some flakes (e.g., F i g u r e 3 c ) i n d i c a t e d d i s o r d e r of this t y p e w h i c h w o u l d restrict the channels i n this w a y .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
17.
Erionite
GARD A N D TAIT
and
233
Offretite
I n t e n s i t y d a t a h a v e b e e n c o l l e c t e d w i t h the H i l g e r A . L . D . for 363 i n d e p e n d e n t reflections f r o m a p r i s m of the M t . S i m i o u s e s p e c i m e n B . M . 68970. U s i n g a t o m i c coordinates d e r i v e d f r o m those of Staples a n d G a r d for
erionite, a r e s i d u a l R
=
0.34
was
obtained.
Three-dimensional
F o u r i e r syntheses a n d least squares refinement i m p r o v e d R to 0.15.
Dis
p l a c e m e n t s of t h e f r a m e atoms h a v e d i s t o r t e d b o t h the d o u b l e a n d single 6-rings to d i s t i n c t l y t r i g o n a l s y m m e t r y . O n e K i o n was i d e n t i f i e d i n e a c h +
c a n c r i n i t e cage.
R e m a i n i n g cations w e r e
accounted
for
by
partially
o c c u p i e d sites l o c a t e d o n the axes p a r a l l e l to c of the single 6-rings a n d Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
the large channels ( M a n d Ν i n F i g u r e l b ) . p r e t e d as w a t e r m o l e c u l e s
coordinated
S m a l l e r peaks w e r e i n t e r
to these cations; some w a t e r
m o l e c u l e s w e r e o c t a h e d r a l l y d i s p o s e d a r o u n d cations Ν to f o r m c o l u m n s p a c k i n g the large channels. R e f i n e m e n t is p r o c e e d i n g . S y n t h e t i c zeolites suitable for s i n g l e - c r y s t a l x-ray analysis u s u a l l y can be prepared only under special conditions
[see
e.g.,
Ciric
(5)].
E l e c t r o n d i f f r a c t i o n patterns of crystals as s m a l l as 1 m i c r o n d i a m e t e r , h o w e v e r , c a n b e o b t a i n e d r e a d i l y . G i v e n s u i t a b l e means for o r i e n t i n g the crystals, electron d i f f r a c t i o n is p a r t i c u l a r l y u s e f u l for d e t e c t i n g d i s o r d e r e d i n t e r g r o w t h s of erionite a n d offretite, w h i c h w e r e Bennett and G a r d
(1)
shown
by
to b e difficult to d i s t i n g u i s h f r o m offretite
by
x-ray p o w d e r t e c h n i q u e s .
N a t u r a l samples d e s c r i b e d as erionite f r o m
12 localities a n d several s y n t h e t i c samples h a v e b e e n e x a m i n e d
with
e l e c t r o n m i c r o s c o p y a n d d i f f r a c t i o n to d e t e r m i n e t h e i r s t r u c t u r a l types a n d the degree of d i s o r d e r , i f any. S y n t h e t i c samples i n c l u d e d : Zeolite Τ f r o m L i n d e D i v i s i o n of U n i o n C a r b i d e ( 3 ) ; 3 samples of " e r i o n i t e " f r o m E s s o R e s e a r c h L a b o r a t o r i e s , B a t o n R o u g e , L a . ( 1 2 ) ; Z e o l i t e Τ f r o m the b a t c h p r e p a r e d a n d assessed b y S h e r r y (14).
T h e f o l l o w i n g conclusions
were d r a w n : ( a ) O n l y one n a t u r a l source of offretite, the t y p e l o c a l i t y i n F r a n c e , w a s i d e n t i f i e d . S o m e fragments w e r e d i s o r d e r e d . ( b ) A l l the other n a t u r a l samples w e r e f u l l y o r d e r e d erionite. N o s t r e a k i n g of reflections, p a r a l l e l to c* or o t h e r w i s e , w a s detected. ( c ) N o f u l l y o r d e r e d s y n t h e t i c erionite has b e e n o b s e r v e d yet. ( d ) O n e s a m p l e of f u l l y o r d e r e d s y n t h e t i c offretite w a s i d e n t i f i e d a m o n g the E s s o samples. It differs m o r p h o l o g i c a l l y f r o m a n y of the s y n t h e t i c d i s o r d e r e d erionites. T h e synthetic offretite is p a r t i c u l a r l y i n t e r e s t i n g , as it appears h a v e the o r d e r e d structure necessary for u n r e s t r i c t e d channels.
We
to do
not h a v e details of the m e t h o d of p r e p a r a t i o n . A l l d i f f r a c t i o n patterns (e.g., F i g u r e 4 a ) w e r e w e a k , b u t c o m p l e t e l y free f r o m spots w i t h 1 o d d or streaks. T h e p a r t i c l e s w e r e " s a u s a g e - s h a p e d " w i t h c - e l o n g a t i o n ure 4 b ) .
(Fig
T h e r o u n d e d shape suggested a c r y s t a l l i n e core enclosed i n a n
a m o r p h o u s l a y e r , b u t this w a s d i s c o u n t e d b y t a k i n g d a r k - f i e l d m i c r o graphs u s i n g o n l y d i f f r a c t e d b e a m s , so that the c r y s t a l l i n e regions a p -
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
234
MOLECULAR SIEVE ZEOLITES
1
Figure 4. Synthetic offretite: (A) Electron diffraction of the hOl zone; odd-l reflections are absent. (B) Typical micrograph of "sausage-shaped" particles with c-elongation. (C) Dark-field image using electrons diffracted by the bottom particle, showing that the outer layer is crystalline.
Figure 5. Electron tion of hOl zone of a of disordered synthetic ite; odd-l spots are and streaked parallel
diffraccrystal eriondiffuse to c*
p e a r e d b r i g h t . T h e b r i g h t outer l a y e r i n F i g u r e 4c is therefore c r y s t a l l i n e ; the t h i c k e r center is d a r k o w i n g to inelastic scatter. T h e other synthetic samples c o m p r i s e d laths. I n electron d i f f r a c t i o n patterns, spots w i t h 1 o d d w e r e a l w a y s diffuse a n d often streaked a l o n g c*
(e.g., F i g u r e 5 ) .
Assessment of the p r o p o r t i o n of erionite i n s u c h
i n t e r g r o w t h s is t e c h n i c a l l y i m p o r t a n t , as it affects
d i f f u s i o n rates a n d
c a t a l y t i c properties [ R o b s o n et al. ( 1 2 ) ] . T h e 10.1, 20.1, a n d 21.1 x-ray p o w d e r lines are q u i t e strong for o r d e r e d erionite, b u t t h e y w e r e either undetectable
or v e r y w e a k a n d diffuse for the other 2 E s s o samples.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
17.
GARD
AND
Intensities of
TAIT
odd-1
Erionite
and
235
Offretite
spots o n electron
d i f f r a c t i o n patterns i n d i c a t e d
a
c o n s i d e r a b l e p r o p o r t i o n of erionite, w h i l e s t r e a k i n g s h o w e d the presence of l a m e l l a e less t h a n 50 A w i d e i n the c - d i r e c t i o n .
S h e r r y (14)
estimated
of erionite i n his sample of Zeolite T . I n electron d i f f r a c t i o n p a t
2-3%
terns of this a n d the L i n d e s a m p l e , the odd-1 spots w e r e elongated, not streaked, i n the c * - d i r e c t i o n .
but
P r e l i m i n a r y e s t i m a t i o n of these i n t e n s i
ties suggests a p r o p o r t i o n of erionite significantly h i g h e r t h a n 3%. causes of these discrepancies
must be investigated.
The
T h e proportion
erionite controls the i n t e g r a t e d i n t e n s i t y of e a c h spot w i t h 1 o d d ,
of but
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
e l o n g a t i o n p a r a l l e l to c* increases w i t h " t h i n n e s s " of o r d e r e d d o m a i n s of W h e r e l a m e l l a e are extremely
thin,
x - r a y lines b e c o m e so diffuse t h a t t h e y are i n d i s t i n g u i s h a b l e f r o m
erionite b e l o w a f e w h u n d r e d A .
back
g r o u n d , a l t h o u g h t h e y are s t i l l v i s i b l e as streaks w i t h e l e c t r o n diffraction. Independent
e v i d e n c e for this w a s o b s e r v e d b y B h a t t y et al. (2),
who
f o u n d that several n o r m a l l y strong lines for a n o r t h i t e , w h i c h w e r e absent o w i n g to t w i n n i n g f r o m x - r a y p h o t o g r a p h s
of c e r t a i n s y n t h e t i c
samples,
c o u l d be seen c l e a r l y w i t h electron d i f f r a c t i o n as pairs of spots j o i n e d b y streaks. A n x-ray estimate i n this case w o u l d be zero i n s t e a d of t h e t r u e 100%,
as the t w i n s are s t r u c t u r a l l y i d e n t i c a l . E l e c t r o n d i f f r a c t i o n i n t e n s i
ties also m u s t be treated w i t h c a u t i o n , h o w e v e r , as m u l t i p l e d i f f r a c t i o n c a n e n h a n c e w e a k reflections. Acknowledgment T h e authors t h a n k the B r i t i s h M u s e u m ( N a t u r a l H i s t o r y ) , K . H a r a d a , H . E . R o b s o n , a n d H . S. S h e r r y for specimens a n d a d v a n c e i n f o r m a t i o n , L . I n g r a m a n d B . G . C o o k s l e y for c o l l e c t i n g the A . L . D . i n t e n s i t y d a t a , a n d H . F . W . T a y l o r for his interest i n this w o r k a n d for
advice
o n the structure analysis.
Literature Cited (1) Bennett, J. M., Gard, J. Α., Nature, London 1967, 214, 1005. (2) Bhatty, M. S. Y., Gard, J. Α., Glasser, F. P., Mineral. Mag. 1970, in press. (3) Breck, D. W., Acara, Ν. Α., U. S. Patent 2,950,952 (1960). (4) Chen, N. Y., Rosinski, E. J., Wilson, J. R., Jr., private communication to H. S. Sherry, 1969. (5) Ciric, J., Science 1967, 55, 689. (6) Eberley, P. E., Jr., Am. Mineralogist 1964, 49, 30. (7) Gonnard, F., Compt. Rend. 1890, 111, 1002. (8) Harada, K., Iwamoto, S., Kihara, K., Am. Mineralogist 1967, 52, 1785. (9) Hey, M. H, Fejer, Ε. E., Mineral. Mag. 1962, 33, 66. (10) Kawahara, Α., Curien, H., Bull. Soc. Franc. Mineral. Crist. 1969, 92, 250. (11) Peterson, D. L., Helfferich, F., Blytas, G. C., J. Phys. Chem. Solids 1965, 26, 835. (12) Robson, H. E., Hamner, G. P., Arey, W. F., Jr., ADVAN. CHEM. SER. 1971, 101, 607.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
236
MOLECULAR SIEVE ZEOLITES
1
(13) Sheppard, R. Α., Gude, A. J., III, Am. Mineralogist 1969, 54, 875. (14) Sherry, H. S., Troc. Intern. Conf. Ion Exchange, London, 1969, 1970, press. (15) Shimazu, M., Kawakami, T.,J.Japan.Assoc. Mineral. Petrol. Econ. Geol. 1967, 57, 68. (16) Staples, L. W., Gard, J. Α., Mineral. Mag. 1959, 32, 261. RECEIVED February 10, 1970.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch017
Discussion W . H . Flank ( H o u d r y L a b o r a t o r i e s , M a r c u s H o o k , P a . 1 9 0 6 1 ) : S o m e m i c r o g r a p h s of offretite crystallites h a v e b e e n o b s e r v e d i n w h i c h the ends a l o n g the " c " axis a p p e a r e d as sharp i r r e g u l a r t e r m i n a t i o n s , l i k e the f r a c t u r e d e n d of a b u n d l e of p r i s m a t i c needles. T h e o v e r - a l l shape w a s sausage-like. T h i s supports G a r d ' s c o n c l u s i o n f r o m the d a r k - f i e l d m i c r o graphs t h a t the outer l a y e r , as w e l l as the c r y s t a l l i t e core, is c r y s t a l l i n e rather than amorphous. W . Sieber a n d W . M . Meier ( E i d g e n o s s i s c h e T e c h n i s c h e H o c h s c h u l e , Zurich):
A new
m e m b e r of
the c h a b a z i t e
group,
tentatively
named
L O S O D , has b e e n s y n t h e s i z e d i n o u r l a b o r a t o r y . T h e synthesis m i x t u r e contains s o d i u m a n d o r g a n i c cations, b u t o n l y s o d i u m is b u i l t i n t o the structure. T h e synthetic zeolite is h e x a g o n a l ( a =
12.91 a n d c =
10.54
 ) , a n d its f r a m e w o r k is b a s e d o n a n A B A C s t a c k i n g sequence of single 6 - m e m b e r e d rings ( W . T h o n i a n d W . M . M e i e r , i n p r e p a r a t i o n ) . J . A . G a r d : T h i s suggests that t w o d i s t i n c t m e c h a n i s m s of synthesis are i n v o l v e d . D i s c r e t e c a n c r i n i t e cages m a y f o r m a r o u n d K
+
ions d u r i n g
synthesis of erionite, offretite, a n d zeolite L a n d act as precursors w h i c h condense w i t h s i m i l a r units to f o r m d o u b l e 6-rings a n d single r i n g s w h e r e the c o l u m n s cross-link. K
+
ions are a p p a r e n t l y n o t essential for synthesis
of structures c o m p r i s i n g o n l y 6-rings, as they cannot b e m a d e b y d e n s i n g w h o l e c a n c r i n i t e cages.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
con-