Molecular Sieve Zeolites-II

of adsorption interaction is determined by nature of the ... sodium zeolites by means of ion exchange and by the technique worked out earlier (28). ...
0 downloads 0 Views 1MB Size
57 Influence of Zeolite Cation Nature on Adsorption and Chromatographic Properties G. V. TSITSISHVILI and T. G. ANDRONIKASHVILI Institute of Physical and Organic Chemistry, Academy of Sciences of the Georgian SSR, Tbilisi, USSR

For zeolites

with 1-, 2-, and 3-charge

of adsorption cations

interaction

replacing

sodium

by population

of single-cation pronounced

positions, influence

sodium

ions on sorption

zeolites

of type A. Chromatographic

the number decreases,

the values

metal cations lattice

volumes

cations

essentially

volumes

type

fac­

of

values

of the

for when zeolite

hydrocarbon

The nature of

and their positions

influence

of the compounds

the

replacing

data show that

decrease.

of type X zeolites

of

exchange,

has been established

of retention

monoxide

of

and by other

of

of cations in a unit cell of a faujasite

gases and carbon crystal

kinetics

specificity

by nature

ions, by the degree

tors.

A more

cations, the

is determined

alkali in the

retention

studied.

Ο tudies o f n e w p e r s p e c t i v e fine porous c r y s t a l zeolites h a v e s h o w n that ^

t h e i r properties d e p e n d s t r o n g l y o n cations c o m p e n s a t i n g t h e n e g a ­

tive charge of the aluminosilicate framework. W i t h i n one t y p e of zeolite, a d s o r p t i o n , c h r o m a t o g r a p h i c ,

catalytic,

a n d other properties are d e t e r m i n e d to a c e r t a i n extent b y t h e n a t u r e o f i o n exchange cations, b y t h e i r n u m b e r p e r u n i t c e l l , b y t h e degree of p o p ­ u l a t i o n o f single centers ( p o s i t i o n s )

i n the crystal framework, a n d b y

other t h i n g s . T h e c r y s t a l structure of zeolites A , X , a n d Y is c o m p a r a t i v e l y w e l l s t u d i e d b y x-ray c r y s t a l analysis (5, 6, 7, 11, 24).

T h e existence of single

centers of c a t i o n l o c a l i z a t i o n is established f o r faujasite g r o u p zeolites, a n d their populations have been forms (7,9,

10,18,23,

d e t e r m i n e d f o r a n u m b e r of c a t i o n

26). 217

218

M O L E C U L A R SIEVE

ZEOLITES

II

T h i s is v e r y i m p o r t a n t i n analysis of the i n f l u e n c e of i o n exchange cations o n different p r o p e r t i e s of zeolites, a n d i t was t a k e n i n t o accounti n our work. T h i s p a p e r presents some results of the studies of the i n f l u e n c e of i o n exchange cations o n a d s o r p t i o n , k i n e t i c s , a n d c h r o m a t o g r a p h i c char­ acteristics of zeolites of types A , X , a n d Y . Κ. E . A v a l i a n i , D . N . B a r n a b i s h v i l i , M . S. S h u a k r i s h v i l i , E . P . G r i g o l i a , M . G . A d o l a s h v i l i , Sh. D . S a b e l a s h v i l i , Ζ. I. K o r i d z e , a n d S. S. C h k h e i d z e h a v e t a k e n p a r t i n this w o r k . D i f f e r e n t c a t i o n f o r m s of zeolites h a v e b e e n o b t a i n e d f r o m o r i g i n a l s o d i u m zeolites b y means of i o n e x c h a n g e a n d b y the t e c h n i q u e w o r k e d o u t earlier ( 2 8 ) .

T h e c o m p o s i t i o n w a s d e t e r m i n e d b y c h e m i c a l analysis,

a n d s t a b i l i t y of the z e o l i t e c r y s t a l lattice b y x-ray t e c h n i q u e . T h e studies of a d s o r p t i o n c a p a c i t y of vapors w e r e m a d e b y m i c r o b a l a n c e t e c h n i q u e , a n d k i n e t i c characteristics w e r e d e t e r m i n e d o n a d y ­ n a m i c apparatus.

T h e statics of v a p o r a d s o r p t i o n w a s s t u d i e d at 20 ° C .

T h e specimens w e r e d e h y d r a t e d at 350 ° C a n d f o r a d s o r p t i o n studies the v a c u u m c o r r e s p o n d e d to 1 0 " m m of m e r c u r y .

F o r chromatographic

6

studies, z e o l i t e granules w i t h a l k a l i m e t a l cations, b e f o r e t h e y w e r e p l a c e d i n t o a c h r o m a t o g r a p h i c c o l u m n , h a d b e e n h e a t e d at 4 5 0 ° C w i t h t h e r m a l treatment i n t h e flow of the c a r r i e r gas at 3 0 0 ° C . It is better to g i v e e x p e r i m e n t a l d a t a not o n l y i n the u s u a l f o r m of isotherms, w h e r e the a d s o r p t i o n v a l u e is expressed i n m i l l i m o l e s p e r mmo e g r a m of adsorbent as a f u n c t i o n of r e l a t i v e ( r e d u c e d ) pressure, a ^ / Ρ \ S = /( p- J, b u t also i n the f o r m of isotherms w h e n the v a l u e of a d s o r p t i o n r a m

is d e t e r m i n e d b y the n u m b e r of the a d s o r b e d m o l e c u l e s p e r u n i t c e l l d e p e n d i n g o n the r e l a t i v e pressure,

a ~ m

=

f(Jr^-

T h e n u m b e r of u n i t

cells c o r r e s p o n d i n g to a u n i t mass of z e o l i t e w a s d e t e r m i n e d b y M . M . D u b i n i n ( 12,13,15

). S u c h a n a p p r o a c h eliminates the influence of c a t i o n

masses, w h i c h is felt p a r t i c u l a r l y i n h e a v y cations.

D u r i n g the analysis

of a d s o r p t i o n d a t a , one s h o u l d p a y the m a i n a t t e n t i o n to the p o r t i o n of the i s o t h e r m c o r r e s p o n d i n g to l o w pressures.

T h e influence of cations

i n zeolites o n i n t e r a c t i o n w i t h m o l e c u l e s of the a d s o r b e d substances at l o w coverages is c l e a r l y seen w h i l e s t u d y i n g c h r o m a t o g r a p h i c processes (8,16,17,19,

20, 21,

37,39).

S t u d y of v a p o r a d s o r p t i o n o n p o t a s s i u m - s o d i u m zeolites of the f a u jasite t y p e ( t h e r a t i o of s i l i c a to a l u m i n a η =

2.49)

has s h o w n that a d ­

s o r p t i o n c a p a c i t y f o r w a t e r is decreased a n d for b e n z e n e i n c r e a s e d w i t h the degree of e x c h a n g e a =

0.44

=

t o

c o m p a r e i t w i t h the

s o d i u m f o r m . T h e o b s e r v e d character of the a d s o r p t i o n process m a y b e

57.

T s i T S i S H V i L i AND

Influence of Zeolite Cation

ANDRONiKASHViLi

c a u s e d b y w e a k e n i n g of electrostatic dispersion.

219

i n t e r a c t i o n a n d s t r e n g t h e n i n g of

A l m o s t l i n e a r decrease o f a d s o r p t i o n c a p a c i t y has b e e n w i t h t h a l l i u m - s o d i u m zeolites of t y p e A (n =

observed

1.98) f o r w a t e r v a p o r

w i t h a n increase o f t h e degree o f e x c h a n g e ( F i g u r e 1 ) . T h i s is a result of a decrease of t h e c a t i o n electric field w h i c h causes a decrease of t h e a d s o r p t i o n l a y e r density. U s i n g t h a l l i u m - s o d i u m zeolites o f t y p e X ( η =

2.30 ), w e o b s e r v e d

a n increase of a d s o r p t i o n c a p a c i t y f o r w a t e r v a p o r a n d b e n z e n e at 3 8 % r e p l a c e m e n t o f s o d i u m ions b y t h a l l i u m ions, a n d t h e n its decrease w i t h a n increase i n t h e degree of exchange. ions i n t h e p o s i t i o n S

m

A s t h a l l i u m ions r e p l a c e s o d i u m

(25) w e m a y assume r e d i s t r i b u t i o n of cations at

d e h y d r a t i o n u n d e r t h e c o n d i t i o n s of h i g h v a c u u m a n d t h e r m a l treatment at 3 5 0 ° C , a n d stronger c h e m i c a l b o n d s of t h a l l i u m atoms i n screened positions i n c o m p a r i s o n w i t h s o d i u m atoms. T h e r e p l a c e m e n t of s o d i u m ions b y ions of c a l c i u m a n d s t r o n t i u m leads to a decrease i n the a d s o r p t i o n v a l u e p e r u n i t c e l l . A s i m i l a r p i c ­ ture is o b s e r v e d i n studies of a d s o r p t i o n of benzene v a p o r o n c a l c i u m forms. P r o p e r t i e s of c a l c i u m a n d s t r o n t i u m zeolites a p p a r e n t l y are c a u s e d b y t h e f a c t that ions of c a l c i u m ( s t r o n t i u m )

d u r i n g t h e process of ex­

change o c c u p y t h e screened positions Si a n d S , a n d t h e n u m b e r n

(den­

sity ) o f c a t i o n centers p e r u n i t c e l l decreases ( 32, 34 ). I n p r i n c i p l e , h y d r o l i t i c e x c h a n g e ( 3 5 , 36) also m i g h t influence t h e a d s o r p t i o n c a p a c i t y ; h o w e v e r , s u c h a n a s s u m p t i o n is d i f f i c u l t to b r i n g into a g r e e m e n t w i t h t h e d a t a of x-ray c r y s t a l studies of c a l c i u m a n d

0

25

50

75

100%

Figure 1. Dependence of the num­ ber of adsorbed water molecules per unit cell on the degree of exchange of sodium ions by thallium ions at differ­ ent relative pressures from 0.05 to 0.50

220

M O L E C U L A R SIEVE

ZEOLITES

II

1.2

3 A

100

SO 0

0

0,2

0,04

Ο,Οδ

P/p

0,4

0,6

08

1,0 ρ

Figure 2. Isotherms of adsorption of water vapors on original sodium zeo­ lite X (4) and lanthanum forms (1,2,3, and 5). (1) a = 0.44; (2) a = 0.22; (3) a = 0.50; (5) a = 0.91. s t r o n t i u m zeolites ( 7 ) . B a r i u m zeolites are c h a r a c t e r i z e d b y properties close to those o f c a l c i u m a n d s t r o n t i u m forms. O u r studies h a v e s h o w n that r e p l a c e m e n t

of 2 9 % of s o d i u m ions

b y l a n t h a n u m ions i n a n A zeolite l i t t l e affects its a d s o r p t i o n c a p a c i t y f o r w a t e r v a p o r . O b v i o u s l y , l a n t h a n u m ions o c c u p y c o m p a r a t i v e l y screened positions i n a c r y s t a l . T h e presence of l a n t h a n u m ions u p to t h e degree o f e x c h a n g e a = 0.44 a n d a = a n d Υ (η =

0.64, r e s p e c t i v e l y , i n zeolites X ( n == 2.44)

4.16) promotes a n increase of w a t e r v a p o r a d s o r p t i o n ( F i g ­

u r e 2 ) . A t degrees of e x c h a n g e e x c e e d i n g 0.5-0.6, a d s o r p t i o n p r o b a b l y decreases o w i n g to w e a k e n i n g of the lattice. T h a t is s h o w n b y roentgeno­ g r a m s o f t h e c o r r e s p o n d i n g l a n t h a n u m zeolites. T h e d a t a s h o w that l a n t h a n u m ions i n zeolites X a n d Y , e v e n i n c o m ­ p a r a t i v e l y screened

positions, interact w i t h p o l a r molecules

S u c h a p o i n t o f v i e w is c o n f i r m e d b y t h e results

of water.

of o u r studies of

water vapor adsorption o n sodium a n d lanthanum hydrosodalites. C o n s i d e r a t i o n of isotherms of b e n z e n e

v a p o r a d s o r p t i o n o n speci­

mens of l a n t h a n u m zeolite X shows that u p to 5 0 % r e p l a c e m e n t s o d i u m ions leads to some

increase

of a d s o r p t i o n c a p a c i t y ,

d e e p e r e x c h a n g e promotes decrease of a d s o r p t i o n c a p a c i t y .

of

a n d that Adsorption

of b e n z e n e v a p o r is decreased o n l a n t h a n u m a n d y t t r i u m zeolites of t y p e Y i n c o m p a r i s o n w i t h s o d i u m zeolites ( F i g u r e 3 ) . S u c h a difference i n

57.

Influence of Zeolite Cation

TsiTsiSHviLi AND A N D R O N i K A S H V i L i

221

properties of zeolites X a n d Y a p p a r e n t l y is c a u s e d b y the f a c t

that

l a n t h a n u m ions o c c u p y s t r o n g l y screened positions i n zeolite Y . T h e kinetics o f w a t e r v a p o r a d s o r p t i o n has b e e n s t u d i e d at 25 ° C (j a n d the r e l a t i v e c o n c e n t r a t i o n of the w a t e r v a p o r = 0.10 ( C = 23.1 0

m g / 1 ) , u s i n g a s o d i u m zeolite of t y p e A ( n = l i t h i u m ( d e g r e e of exchange a = (a =

0 . 2 2 ) , a n d c e s i u m (a =

1.95), a n d o b t a i n e d f r o m i t

0 . 6 0 ) , p o t a s s i u m (a =

0.40), r u b i d i u m

0.27) f o r m s . T h e k i n e t i c c u r v e a =

f(t)

f o r t h e s o d i u m f o r m is the highest, w h i l e the l o w e s t is f o r c e s i u m zeolite. C a l c u l a t i o n s of the effective d i f f u s i o n coefficients a c c o r d i n g to D . P . T i m o fejev (27)

s h o w t h a t these values g r a d u a l l y decrease f r o m t h e s o d i u m

zeolite to the c e s i u m one.

D

E

· 10 c m / s e c 7

2

NaA

LiNaA

KNaA

RbNaA

CsNaA

9.0

7.0

6.5

6.3

5.8

T h e d a t a s h o w that a n a p p r e c i a b l e decrease of s o r p t i o n a n d its rate take p l a c e w i t h increase i n the c a t i o n r a d i u s .

W e obtained a smaller

v a l u e f o r the d i f f u s i o n coefficient of the l i t h i u m f o r m t h a n f o r s o d i u m zeolite.

S u c h a result m a y b e c a u s e d b y a strong h y d r a t i o n of l i t h i u m

i o n that does n o t a l l o w , u n d e r t h e u s u a l c o n d i t i o n s of d e h y d r a t i o n , c o m p l e t e e l i m i n a t i o n of w a t e r m o l e c u l e s i n a l i t h i u m zeolite. M a y b e t h e d a t a (38)

i n d i c a t i n g that the effective d i a m e t e r of w i n d o w s i n l i t h i u m

Figure 3. Isotherms of adsorption of benzene vapors on the original sodium zeolite Y (1) and lanthanum forms (2,3, and 4). (2) a — 0.31; (3) a = 0.59;

(4)a

=

0.64.

222

M O L E C U L A R SIEVE

zeolites t y p e A is close to 3 A is c a u s e d b y this fact.

ZEOLITES

II

W e have not ob­

s e r v e d s u c h a n a p p r e c i a b l e i n f l u e n c e o n s o r p t i o n rate f o r t y p e X zeolites w h e n s o d i u m i o n is r e p l a c e d b y cations of other a l k a l i metals.

Appar­

e n t l y , this is d e t e r m i n e d b y a n essential difference i n the diameters e n t e r i n g " w i n d o w s " of zeolites of t y p e A ( 3 - 5 A ) a n d t y p e Χ

of

(8-9A).

C a t i o n s o c c u p y i n g positions i n the e n t e r i n g " w i n d o w s " of z e o l i t e A p r o b a b l y decrease t h e i r effective d i a m e t e r (14),

c a u s i n g a decrease of

the d i f f u s i o n coefficients. A m i x t u r e of h y d r o c a r b o n gases C i - C , c a r b o n m o n o x i d e , a n d h y ­ 4

d r o g e n w a s u s e d as a m o d e l m i x t u r e f o r c h r o m a t o g r a p h i c studies. Zeolites of t y p e N a X a n d N a Y h a v e p r a c t i c a l l y i d e n t i c a l structure, b u t differ f r o m e a c h other b y the n u m b e r of cations p e r u n i t c e l l . A d e ­ crease of c a t i o n d e n s i t y i n a zeolite takes p l a c e b e c a u s e of d e c a t i o n i z a t i o n of the positions S . m

A s o u r d a t a s h o w ( T a b l e I ), the values of the r e t e n t i o n v o l u m e s of a l l s t u d i e d c o m p o u n d s w e r e decreased w i t h a decrease of the t o t a l n u m ­ b e r of cations p e r u n i t c e l l . T h e r e are 84 N a p e r u n i t c e l l for N a X a n d +

62 N a

+

f o r N a Y . T h e values of the r e t e n t i o n v o l u m e s for

o n h y d r o g e n a n d d e c a t i o n i z e d f o r m s also are d e c r e a s e d T h e m a x i m u m r e p l a c e m e n t of N a b y N H +

4

was 7 5 % .

+

components

(3). A t such an

exchange, r e p l a c e m e n t of cations a p p a r e n t l y takes p l a c e m a i n l y o n the sites S

n

and S

(25).

i n

T h e values of the r e t e n t i o n v o l u m e s o n the h y d r o g e n f o r m w i t h 3 5 % r e p l a c e m e n t of N a b y N H +

4

+

, w h e r e the S

m

sites are p r o b a b l y v a ­

cant, a p p r o a c h the values o b t a i n e d for z e o l i t e N a Y . T h e h i g h e r the re­ p l a c e m e n t of N a b y N H +

4

+

is, the greater decrease of the r e t e n t i o n v o l u m e s

f o r a l l s t u d i e d c o m p o n e n t s is o b s e r v e d . R e f . 22.

S i m i l a r results are o b t a i n e d i n

S u c h a decrease of r e t e n t i o n v o l u m e s o n these f o r m s m a y b e

c a u s e d b y a decrease of the c a t i o n c o n c e n t r a t i o n p e r u n i t c e l l ( the sites S and

S

in

become vacant)

zeolite structure. Table I. Specific Retention Volumes of Hydrocarbon Gases C i — C and C O , Expressed at Flowmeter Temperature, 2 0 ° C Components Methane Ethane Propane Butane Carbon monoxide Ethylene Propylene

Column Temp., °C

n

a n d p e r h a p s b y a p a r t i a l d e s t r u c t i o n of the

HX,

35%

DcX,

35%

HX,

4

DcX,

75%

75%

NaX

NaY

25 80 140 140

25.9 56.0 67.0 194.0

14.3 25.4 20.8 118.9

14.6 29.2 34.0 131.2

16.4 32.0 40.8 148.1

3.9 8.1 9.1 37.2

5.0 8.7 10.1 37.4

25 140 200

63.8 62.9 71.1

25.7 20.8 47.3

27.0 26.4 54.3

31.0 32.4 59.2

4.9 5.2

7.5 6.7

c

-

c

-

57.

TsiTsiSHViLi AND A N D R O N i K A S H V i L i

«V

Influence of Zeolite Cation

223

U N Q X (9Ι·/Ο)

4

3

3 2 λ 0

2

4

G 16

2

18 20 min

4

G S

10 ro.ii

Figure 4. Order of elution of methane and carbon monoxide on type X zeolites containing either sodium or lithium; 1 = hydro­ gen, 2 = methane, 3 = carbon monoxide. The carrier gas is air; rate is 100 ml/min; column temperature is 25° C. CSNQX(5*%)

RINQK(5/%) 3

5

ζ

8 IQm.n

2

2

4

G S

i0 mm

Figure 5. Order of elution of methane and carbon monoxide on potassium, rubidium, and cesium type X zeolites; 1 = hydrogen, 2 — methane, 3 = car­ bon monoxide. The carrier gas is air; rate is 100 ml/min; column tempera­ ture is 25°C. A n increase i n the values of r e t e n t i o n v o l u m e s of c o m p o u n d s o n d e c a t i o n i z e d zeolites m a y b e e x p l a i n e d b o t h b y a stronger d e h y d r a t i o n o f t h e r e m a i n i n g s o d i u m cations a n d b y a p o s s i b l e f o r m a t i o n of a c t i v e three-coordinate a l u m i n u m groups. A n increase of t h e d i s p e r s i o n p a r t of interactions takes p l a c e w i t h enrichment of the cation electron shell, w h i l e the smaller the cation radius is—i.e., t h e h i g h e r t h e c o n c e n t r a t i o n of t h e p o s i t i v e c h a r g e — t h e

more

p r o n o u n c e d t h e electrostatic i n t e r a c t i o n is. T h i s m a y b e i l l u s t r a t e d t a k i n g the

e x a m p l e of s e p a r a t i o n of t h e m i x t u r e

hydrogen-methane-carbon

m o n o x i d e o n t y p e X zeolites w i t h a l k a l i m e t a l cations. A m e t h a n e m o l e c u l e , i n contrast to that o f c a r b o n m o n o x i d e , has n o dipole a n d quadrupole moment.

F o r l i t h i u m a n d s o d i u m f o r m s of a

z e o l i t e , t h e f o l l o w i n g o r d e r o f e l u t i o n is c h a r a c t e r i s t i c :

methane-carbon

m o n o x i d e ( F i g u r e 4 ). O n t h e specimens w i t h a h i g h degree of r e p l a c e m e n t of N a b y K , +

+

a p a r t i a l s e p a r a t i o n o f t h e c o m p o n e n t s takes p l a c e , b u t w i t h the i n v e r s e s e q u e n c e o f e l u t i o n . S e p a r a t i o n of m e t h a n e a n d c a r b o n m o n o x i d e p r o ­ ceeds also w i t h i n v e r s e e l u t i o n o n zeolites c o n t a i n i n g e i t h e r

rubidium

or c e s i u m . M o r e c o m p l e t e s e p a r a t i o n of these c o m p o u n d s is character­ istic f o r c e s i u m f o r m ( F i g u r e 5 ).

224

M O L E C U L A R

SIEVE

ZEOLITES

Π

B o t h the extent o f c a t i o n exchange a n d the t e m p e r a t u r e of c h r o m a ­ t o g r a p h i c c o l u m n h e a t i n g ( J , 2, 4, 29, 30, 31, 33) influence t h e o r d e r o f e l u t i o n o f different components. T e m p e r a t u r e rise leads to a n a p p r e c i a b l e decrease o f i o n - d i p o l e interactions.

Thus, on a specimen w i t h the re­

p l a c e m e n t of N a b y K e q u a l to 2 6 % at 25 ° C , the v a l u e of the r e t e n t i o n +

+

v o l u m e f o r c a r b o n m o n o x i d e is greater t h a n f o r m e t h a n e , the same as o n N a X . H o w e v e r , s e p a r a t i o n of the components does not take p l a c e . T h e rise o f the c o l u m n t e m p e r a t u r e to 40 ° C leads to a l i g n m e n t of t h e values of t h e r e t e n t i o n v o l u m e s . F u r t h e r rise of the c o l u m n t e m p e r a t u r e

leads

to i n v e r s i o n o f e l u t i o n o r d e r f o r these c o m p o u n d s , w i t h their s e p a r a t i o n o n l y at 8 0 ° C .

O n the s p e c i m e n w i t h r e p l a c e m e n t of N a b y K +

+

( 4 8 % ),

t h e inverse e l u t i o n sets u p at r o o m t e m p e r a t u r e ; h o w e v e r , i t is f o l l o w e d b y s e p a r a t i o n o n l y at 6 0 ° C . A s to the f o r m w i t h a h i g h content of potas­ s i u m cations, at 16 ° C the r e t e n t i o n v o l u m e of m e t h a n e is c o n s i d e r a b l y h i g h e r t h a n the r e t e n t i o n v o l u m e of c a r b o n m o n o x i d e , a n d therefore s e p a r a t i o n m a y take p l a c e at the t e m p e r a t u r e m e n t i o n e d a b o v e

(Figure

6 ) and higher. T h e n a t u r e of a c a t i o n influences the sequence o f e l u t i o n of different p a i r s of h y d r o c a r b o n s ; f o r e x a m p l e , ethylene o n N a X is e l u t e d p r o p a n e at t h e c o l u m n t e m p e r a t u r e o f 8 0 ° - 1 0 0 ° C .

When

after

temperature

rises to 1 2 0 ° - 1 4 0 ° C , there is n o a p p r e c i a b l e s e p a r a t i o n of these c o m ­ ponents.

A t 160 ° C

a n d h i g h e r , separation of the m i x t u r e p r o p a n e -

Figure 6. Separation of the mix­ ture of hydrogen-methane-carbon monoxide on type X potassium zeo­ lites. The carrier gas rate is 100 m l / min; column temperature is 80°C. 1 = NaX, 2 = KNaX (degree of exchange of Na by K is 26% ), 3 = KNaX (degree of exchange of Na by K is 48% ), and 4 = KNaX (degree of exchange of Na by K is 84% ). +

+

+

+

+

+

57.

TsiTSisHviLi AND ANDRONiKASHviLi

Influence of Zeolite Cation

225

e t h y l e n e p r o c e e d s w i t h the i n v e r s e sequence o f e l u t i o n . O n a z e o l i t e w i t h 9 1 % r e p l a c e m e n t of N a b y L i at a n y t e m p e r a t u r e of t h e c o l u m n +

+

h e a t i n g , p r o p a n e is e l u t e d first a n d t h e n e t h y l e n e . O n p o t a s s i u m , r u b i d i u m , a n d c e s i u m f o r m s , after e a c h

saturated

c o m p o u n d a n u n s a t u r a t e d o n e is e l u t e d w i t h the same n u m b e r of c a r b o n atoms i n a m o l e c u l e .

T h e f o l l o w i n g sequence

o f e l u t i o n is o b s e r v e d :

methane-ethane—ethylene—propane-propylene-butane—butylène. S u c h cations as s o d i u m a n d l i t h i u m s h o w a greater a b i l i t y to r e t a i n a c o m p o u n d c h a r a c t e r i z e d b y 7r-bonds t h a n l a r g e r cations

(potassium,

rubidium, cesium). T h e c a t i o n a c t i o n is n o t a l w a y s v e r y s t r o n g . It d e p e n d s o n t h e ar­ r a n g e m e n t of cations i n the c r y s t a l l a t t i c e of a zeolite a n d h e n c e b o t h o n the degree of c a t i o n s c r e e n i n g b y o x y g e n atoms of t h e lattice a n d o n t h e degree of its h y d r a t i o n . T h u s , f o r e x a m p l e , o n a z e o l i t e c o n t a i n i n g l i t h i u m cations at 4 7 % r e p l a c e m e n t o f N a b y L i , a decrease o f t h e r e t e n t i o n +

+

v o l u m e s a n d heats o f a d s o r p t i o n takes p l a c e f o r u n s a t u r a t e d h y d r o c a r ­ bons a n d c a r b o n m o n o x i d e i n s t e a d o f t h e e x p e c t e d increase.

Only an

increase o f t h e degree of exchange to 8 7 % a n d h i g h e r leads to a g r a d u a l increase of the a b o v e q u a n t i t i e s , w h i c h at t h e m a x i m u m L i

+

content

exceeds the values c o r r e s p o n d i n g to these q u a n t i t i e s o n N a X . Table II.

Ratio of Heats of Adsorption

D e g r e e of R e p l a c e ­ m e n t of N a + b y Li+ % QC H /QC H 2

4

2

6

QC H4/QC H6 2

2

5

QC H /QC3H8

0

5

22

43

87

91

1.45

1.38

1.37

1.36

1.75

1.88

3

6

NaX LiX 1.44 1.24

QC H /QC3H 3

6

In

1.38

8

Table

I I , t h e ratios

(?propyiene/Qpro ane P

a

r

e

1.26

1.29

1.29

1.49

o f a d s o r p t i o n heats

(20)

(20)

1.83

Qethyiene/Qethane

and

g i v e n o n N a X a n d zeolites w i t h d i f f e r e n t content

of L i , as w e l l as t h e d a t a o b t a i n e d i n (20). +

T h e r a t i o o f heats is h i g h e r

f o r the s p e c i m e n s w i t h h i g h L i content i n c o m p a r i s o n w i t h N a X . +

A t h i g h degree o f exchange, L i cations are l o c a t e d i n t h e least h y +

d r a t e d sites (25).

S u c h sites m a y b e Si, S/, S u ' (26).

B e c a u s e of t h e i r

l o c a t i o n i n the s c r e e n e d p o s i t i o n s , t h e y i n t e r a c t w e a k l y w i t h m o l e c u l e s of a d s o r b e d substances b u t , as u n d e r t h e a c c e p t e d c o n d i t i o n s of t h e r m a l a c t i v a t i o n other cations are s u r r o u n d e d b y w a t e r m o l e c u l e s , one m a y assume that just these cations f o r m the m a i n centers r e s p o n s i b l e f o r t h e increase o f b o t h r e t e n t i o n v o l u m e s a n d h e a t a d s o r p t i o n of u n s a t u r a t e d compounds a n d carbon monoxide. F r o m the a b o v e a n d other d a t a o n p h y s i c o - c h e m i c a l p r o p e r t i e s o f zeolites, i t f o l l o w s that f o r m o l e c u l a r sieves w i t h one-charge cations, o n e

226

M O L E C U L A R SIEVE

ZEOLITES

Π

observes b o t h some s i m i l a r i t y a n d some d i s c r e p a n c y . T h e same c o n c l u ­ s i o n m a y b e m a d e f o r zeolites w i t h t w o - a n d three-charge

cations.

E a c h c a t i o n f o r m o f a z e o l i t e , i n t h e r e g i o n o f s t a b i l i t y o f t h e i r struc­ t u r e a n d c o m p o s i t i o n , is a n i n d i v i d u a l fine p o r o u s b o d y r e p r e s e n t i n g c o n s i d e r a b l e interest f o r d e t a i l e d studies.

Literature Cited (1) Andronikashvili, T. G., Sabelashvili, Sh. D., Mater. All-Onion Conf. Zeo­ lites, 1st, Akad. Nauk SSSR, Moscow, 1962, 65. (2) Andronikashvili, T. G., Sabelashvili, Sh. D., Tsitsishvili, G. V., Neftekhimiya 1962, 248. (3) Andronikashvili, T. G., Tsitsishvili, G. V., Sabelashvili, Sh. D., Bull. Acad. Sci. Georg. SSR 1969, 56, 113. (4) Andronikashvili, T. G., Tsitsishvili, G. V., Sabelashvili, Sh. D., Chumburidze, Τ. Α., Mater. All-Union Conf. Zeolites, 2nd, Nauka, MoscowLeningrad, 1965, 179. (5) Barrer, R. M., Meier, W. M., Trans. Faraday Soc. 1958, 54, 1074. (6) Baur, W. H., Am. Mineralogist 1964, 49, 697. (7) Bennet, I. M., Smith, I. V., Mater. Res. Bull. 1968, 3, 633. (8) Bosacek, V., Symp. Mol. Sieves, London, April 1967. (9) Breck, D. W.,J.Chem. Educ. 1964, 41, 678. (10) Breck, D. W., Flanigen, Ε. M., Symp. Mol. Sieves, London, April 1967. (11) Broussard, L., Shoemaker, D. P.,J.Am. Chem. Soc. 1960, 82, 1041. (12) Dubinin, M. M., Dokl. Akad. Nauk SSSR 1961, 138, 866. (13) Ibid., 1964, 159, 166. (14) Ibid., 1966, 168, 860. (15) Dubinin, M.M.,Izv. Akad. Nauk SSSR, Ser. Khim. 1961, 1192. (16) Eberly, P. E., Jr., J. Phys. Chem. 1961, 65, 69. (17) Ibid., 1962, 66, 812. (18) Eulenberger, G. R., Shoemaker, D. P., Keil, I. G., J. Phys. Chem. 1967, 71, 1812. (19) Habgood, H. W., Can. J. Chem. 1964, 42, 2340. (20) Habgood, H. W., Chem. Eng. Progr. Symp. Ser. 1967, 63, 45. (21) Kiselev, Α. V., Cheren'kova, Yu. L., Yashin, Ya. I., Neftekhimia 1965, 1, 141. (22) Neddenriep, R. S.,J.Colloid Interface Sci. 1968, 28, 293. (23) Olson, D. H., Kokotailo, G. T., Charnell, J. F., Natl. Colloid Symp., 41st, Buffalo, Ν. Y., 1967. (24) Reed, T. B., Breck, D. W., J. Am. Chem. Soc. 1956, 78, 5972. (25) Sherry, H. S.,J.Phys. Chem. 1966, 70, 1158. (26) Smith, J. V., Bennett, I. M., Flanigen, Ε. M., Nature 1967, 215, 5098, 241. (27) Timofejev, D. P., Erashko, I. T., Izv. Akad. Nauk SSSR, Ser. Khim. 1961, 1192. (28) Tsitsishvili, G. V., Andronikashvili, T. G., Mater. All-Union Conf. Zeo­ lites, 1st, Akad. Nauk SSSR, Moscow, 1962, 117. (29) Tsitsishvili, G. V., Andronikashvili, T. G., Sabelashvili, Sh. D., Chkheidze, S. S., Neftekhimiya 1967, 305. (30) Tsitsishvili, G. B., Andronikashvili, T. G., Sabelashvili, Sh. D., Koridze, Ζ. I., Bull. Akad. Sci. Georg. SSR 1967, 46, 611. (31) Tsitsishvili, G. V., Andronikashvili, T. G., Sabelashvili, Sh. D., Urotadze, S. L., Neftekhimiya 1969, 790.

57. TSITSISHVILI AND

ANDRONIKASHVILI

Influence of Zeolite Cation

227

(32) Tsitsishvili, G. V., Bagratishvili, G. D., Avaliani, Κ. E., Andronikashvili, T. G., Barnabishvili, D. N., Intern. Congr. Pure Appl. Chem., 20th, A23, USSR, Moscow, 1965. (33) Tsitsishvili, G. V., Krupennikova, A. Yu., Andronikashvili, T. G., Urotadze, S. L., Bull. Akad. Nauk Georg. SSR 1969, 54, 581. (34) Tsitsishvili, G. V., "Surface Phenomena of Aluminosilicates," p. 5-15, Mecniereba Publ., Tbilisi, 1965. (35) Ward, J. W.,J.Catalysis 1967, 9, 225, 396. (36) Ibid., 1968, 10, 34. (37) Wolf, F., Furtig, H., Symp. Mol. Sieves, London, April 1967. (38) Wolf, F., Furtig, H., Tonind. Ztg. Keram. Rundschau 1966, 90, 297. (39) Wolf, F., Hadicke, U., Tonind. Ztg. Keram. Rundschau 1967, 91, 45. RECEIVED January 23, 1970.

Discussion G . C . Blytas ( S h e l l D e v e l o p m e n t C o . , O a k l a n d , C a l i f . 94623): Y o u r d a t a o f r e t e n t i o n v o l u m e s refer t o l o w degree o f coverage of sorbent. W o u l d y o u care to c o m m e n t o n t h e s e p a r a t i o n factors, f o r e x a m p l e b e ­ t w e e n ethylene a n d ethane, at h i g h e r G . Tsitsishvili:

coverages?

O u r studies o f zeolite c h r o m a t o g r a p h i c

properties

i n d i c a t e d that t h e r e t e n t i o n v o l u m e s , s e p a r a t i o n factors, a n d other c h a r ­ acteristics are strongly d e p e n d e n t o n c a t i o n n a t u r e , degree of exchange, a n d temperature.

W e h a v e o b s e r v e d t h e i n v e r s i o n o f t h e sequence o f

e l u t i o n b y t e m p e r a t u r e alteration. J . D . Eagan ( M c M a s t e r U n i v e r s i t y , H a m i l t o n , O n t a r i o , C a n a d a ) : Is there a n e x p l a n a t i o n f o r t h e decrease i n ^ °

2 H 4

, f o r l o w degrees of L i

VC2H6

exchange, w i t h i n c r e a s i n g L i exchange? +

G . Tsitsishvili: I n t e r a c t i o n o f L i w i t h m o l e c u l e s o f u n s a t u r a t e d h y ­ +

d r o c a r b o n s a n d C O is v e r y sensitive to t h e presence of w a t e r m o l e c u l e s i n a z e o l i t e a n d t o c o l u m n t e m p e r a t u r e increase.

O n a zeolite containing

h y d r o p h i l i c l i t h i u m cations, w i t h most o f t h e substitutions c o r r e s p o n d i n g to L i i n o p e n positions S +

n

and S

m

, t h e a d s o r p t i o n heat o f t h e s t u d i e d

c o m p o u n d s is l o w e r t h a n w i t h t h e s o d i u m f o r m . I n l i t h i u m forms w i t h a h i g h percentage o f l i t h i u m ions, t h e L i i n n o n h y d r a t e d positions i n f l u ­ +

ence adsorbate

m o l e c u l e s , c a u s i n g a n increase

c o m p a r i s o n w i t h N a X zeolite.

o f a d s o r p t i o n heat i n

M i g r a t i o n of L i ions f r o m Si to other +

positions is also possible. J. R. Katzer ( U n i v e r s i t y o f D e l a w a r e , N e w a r k , D e l . 19711): I w a s interested i n t h e c o m m e n t i n y o u r p a p e r that y o u o b s e r v e d a v a r i a t i o n i n t h e rate o f s o r p t i o n w i t h a c h a n g e i n t h e c a t i o n present i n t h e t y p e X zeolite. H o w m u c h v a r i a t i o n d i d y o u find, a n d h o w w e r e y o u r rates o f adsorption determined?

+

228

MOLECULAR

G . T s i t s i s h v i l i : T h e v a r i a t i o n was a b o u t 2 0 - 3 0 %

SIEVE

ZEOLITES

II

at the t r a n s i t i o n

f r o m the s o d i u m to other f o r m s . Rates of a d s o r p t i o n w e r e m e a s u r e d b y f o l l o w i n g the w e i g h t of pellets d u r i n g u p t a k e . F. W o l f ( M a r t i n Luther University, Halle/Salle, Germany, D D R ) : T s i t s i s h v i l i ' s results that there are m a x i m a a n d m i n i m a i n the curves f o r the a d s o r p t i o n amounts as f u n c t i o n s of the degree of i o n exchange w e r e r e p o r t e d at the M o l e c u l a r Sieves

Conference

i n L o n d o n , 1967.

This

seems to b e the general b e h a v i o r of m o l e c u l a r sieves w h e n a d s o r b i n g molecules.