49 Effect of Zeolite Crystallite Size on the Selectivity Kinetics of the Heterogeneous Catalyzed Isomerization of Xylenes
Downloaded by COLUMBIA UNIV on July 29, 2012 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch049
P. CHUTORANSKY, JR. and F. G. DWYER Mobil Research and Development Corp., Research Department, Paulsboro, N. J. 08066
Using the monomolecular rate theory developed by Wei and Prater, we have analyzed the kinetics of the liquid-phase isom erization of xylene over a zeolitic catalyst. The kinetic anal ysis is presented primarily in terms of the time-independent sele tivity kinetics. With the establishment of the basic kinetics the role of intracrystalline diffusion is demonstrated by analyzing the kinetics for 2to4 μ zeolite catalyst and an essentially diffusion -free 0.2 to 0.4 μ zeolite catalyst. Values for intracrystalline diffusivities are presented, and evidence is given that the isom erization is the simple series reaction o-xylene m-xylene p-xylene. y t d v a n c e s i n k i n e t i c a n a l y s i s (1) a n d t h e h i g h a c t i v i t y zeolite c a t a l y s t s provide powerful tools to investigate catalysis.
T h e zeolite c a t a l y s t s
a l l o w s t u d y of reactions u n d e r c o n d i t i o n s where heterogeneous c a t a l y s i s was p r e v i o u s l y ineffective.
W i t h k i n e t i c a n a l y s i s techniques, results c a n be
interpreted quantitatively. xylene isomerization.
O n e s y s t e m t h a t fits i n t o t h i s c a t e g o r y is
T h i s process is c o m m e r c i a l l y
r e a d i l y c a t a l y z e d i n t h e l i q u i d phase b y
significant a n d is
a zeolite-containing
referred t o as A P or a r o m a t i c s processing c a t a l y s t .
catalyst
P r e v i o u s studies of t h i s
r e a c t i o n c a t a l y z e d b y s i l i c a - a l u m i n a i n the gas phase (2) a n d b y
AP
c a t a l y s t i n t h e l i q u i d phase (3) h a v e s h o w n t h a t t h e k i n e t i c s c a n be r e a d i l y analyzed b y using the monomolecular rate theory.
W i t h t h i s t h e o r y as t h e
basis, c a t a l y s t p a r a m e t e r s s u c h as i n t r a c r y s t a l l i n e diffusion, c a t a l y t i c site d e n s i t y , a n d s t r e n g t h of a c i d sites c a n be i n v e s t i g a t e d q u a n t i t a t i v e l y a t commercial operating conditions. I n t r a p a r t i c l e diffusion c a n affect c a t a l y s t s e l e c t i v i t y a n d a c t i v i t y . S i m i l a r l y , i n t r a c r y s t a l l i n e diffusion c a n affect t h e s e l e c t i v i t y a n d a c t i v i t y of z e o l i t i c c a t a l y s t s w h e r e i n t r a p a r t i c l e diffusion is negligible.
T h e r e f o r e , one
540
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
49.
541
Xylene Isomerization
CHUTORANSKY AND DWYER
of t h e first goals was t o d e t e r m i n e q u a n t i t a t i v e l y t h e effect of i n t r a c r y s t a l l i n e diffusion b y v a r y i n g t h e c r y s t a l l i t e size of t h e z e o l i t i c c o m p o n e n t of t h e A P catalyst. T h i s w o r k presented here covers t h e basic e x p e r i m e n t a l techniques a n d d a t a a n a l y s i s procedures together w i t h t h e a n a l y s i s of t h e c o n t r i b u t i o n of i n t r a c r y s t a l l i n e diffusion t o t h e performance of A P c a t a l y s t s . Theoretical
Background
T h e procedure
u s e d for t h e k i n e t i c a n a l y s i s is t h a t described
by
W e i a n d . P r a t e r (1), a n d i t has been a p p l i e d i n t h e f o l l o w i n g m a n n e r . Downloaded by COLUMBIA UNIV on July 29, 2012 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch049
T h e i s o m e r i z a t i o n of xylenes is a s s u m e d t o be k i n e t i c a l l y first order a n d c a n be described b y t h e f o l l o w i n g a p p a r e n t r e a c t i o n scheme : Αι
A
+=±-
3
A
2
where A i is o-xylene, A is ra-xylene, a n d A is p - x y l e n e . 2
3
T h e rate equation
for t h i s r e a c t i o n s y s t e m is g i v e n b y
where A is t h e x y l e n e c o m p o s i t i o n v e c t o r a n d Κ is t h e m a t r i x of r e a c t i o n r a t e constants (&21
Κ =
+
&3l)
— &12
fc l
—
(&12 +
2
— hi
—
— &32
&13
— #23
hi) (&23
+
hi)
T h e s y s t e m described is h i g h l y coupled, a n d a l t h o u g h i t c a n be s o l v e d a n a l y t i c a l l y b y c o n v e n t i o n a l m e t h o d s , s u c h a s o l u t i o n requires s u b s t a n t i a l d a t a t o ensure r e l i a b l e e v a l u a t i o n of t h e r a t e constants.
Therefore, this
s y s t e m is t r a n s f o r m e d i n t o a n u n c o u p l e d s y s t e m w h e r e i n Bo does not react λι Βχ
0
λ B -*0 2
2
b y the following transformation
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
(2)
542
MOLECULAR SIEVES
Β =
X^A
(3)
T h e t r a n s f o r m a t i o n m a t r i x X is d e t e r m i n e d e x p e r i m e n t a l l y a n d is r e l a t e d t o the rate constant matrix, Κ : Κ
(4)
= ΧΑΧ-
1
where Λ is a d i a g o n a l m a t r i x of t h e r a t e constants i n t h e t r a n s f o r m e d s y s t e m 0 A
(5)
=
λ Downloaded by COLUMBIA UNIV on July 29, 2012 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch049
2
I n a d d i t i o n , W e i (4) has s h o w n t h a t i f i n t r a p a r t i c l e diffusional effects are significant a n d i f t h e diffusivities of t h e r e a c t i n g species are e q u a l , t h e Λ m a t r i x becomes 0 A
+
(6)
=
where ηι a n d η are effectiveness factors defined b y T h i e l e (δ). 2
This rela
t i o n s h i p ( E q u a t i o n 6) p e r m i t s a n a l y s i s of diffusion effects b y u s i n g selec t i v i t y data only.
Experimental M a t e r i a l s . T h e r e a c t a n t s were P h i l l i p s p u r e grade xylenes percolated t h r o u g h a c t i v a t e d a l u m i n a a n d s t o r e d u n d e r n i t r o g e n . A l l c a t a l y s t s used were p r e p a r e d b y t h e C a t a l y s t R e s e a r c h a n d D e v e l o p m e n t G r o u p , M o b i l R e s e a r c h a n d D e v e l o p m e n t C o r p . , i n c l u d i n g b o t h the synthesis of zeolite a n d the t r a n s f o r m a t i o n i n t o the c a t a l y t i c f o r m . A p p a r a t u s . K i n e t i c d a t a were o b t a i n e d i n a c o n t i n u o u s u p f l o w m i c r o reactor s y s t e m . T h e r e a c t o r was 4 X / i n c h i d stainless steel w i t h a t h e r m o w e l l , / i n c h o d stainless steel, e x t e n d i n g a x i a l l y t h r o u g h the bed. X y l e n e feed was c o n t r o l l e d b y a m o d e l 196-32 M i l t o n R o y i n s t r u m e n t m i n i p u m p . R e a c t o r t e m p e r a t u r e s were m a i n t a i n e d b y a three-zone L i n d b e r g H e v i - D u t y furnace. P r o d u c t a n a l y s i s w a s p e r f o r m e d b y gas phase c h r o m a t o g r a p h y u s i n g a t e m p e r a t u r e - p r o g r a m m e d F & M M o d e l 5754 c h r o m a t o g r a p h a n d a 24 f t c h r o m a t o g r a p h i c c o l u m n p a c k e d w i t h 4 % d i i s o d e c a p t h a l a t e , 4 % bentone-34 s u p p o r t e d o n 60-80 mesh C h r o m o s o r b W H M D S . Procedure. B e f o r e e v a l u a t i o n , c a l c i n e d c a t a l y s t samples were d r i e d i n a i r (16 h r at 800° F ) . N o r m a l c a t a l y s t charge w a s 12 m l ; s m a l l e r c a t a l y s t charges were a c h i e v e d b y q u a r t z d i l u t i o n m a i n t a i n i n g the 12 m l t o t a l charge. T h e t e c h n i q u e for c h a r g i n g t h e c a t a l y s t a n d the range of flow rates i n v e s t i g a t e d were designed to m i n i m i z e t h e effects of a x i a l diffusion, b y p a s s i n g , s h o r t - c i r c u i t i n g , a n d excessive b a c k m i x i n g . A f t e r c h a r g i n g the reactor w i t h c a t a l y s t , t h e s y s t e m was pressurized w i t h n i t r o g e n a n d 9
1
1 6
8
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
49.
Xylene Isomerization
CHUTORANSKY AND DWYER
543
r a i s e d to t h e r e a c t i o n t e m p e r a t u r e . T h e s y s t e m w a s t h e n flooded w i t h x y l e n e at m a x i m u m p u m p rate. W h e n t h e first l i q u i d was o b s e r v e d at t h e s y s t e m o u t l e t , t h e feed r a t e was reset to t h e desired r a t e . T h i s was c o n sidered t h e s t a r t of t h e r u n . B y t h i s s t a r t - u p procedure a n y g r a d i e n t i n c a t a l y s t a g i n g across t h e b e d was e s s e n t i a l l y e l i m i n a t e d . W h i l e p r o d u c t was c o n t i n u a l l y collected t h r o u g h o u t t h e r u n , o n l y t h a t p o r t i o n collected o v e r t h e final 5 m i n of t h e p e r i o d w a s a n a l y z e d .
Downloaded by COLUMBIA UNIV on July 29, 2012 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch049
Data Interpretation T h e techniques of m o n o m o l e c u l a r r a t e t h e o r y easily t r a n s f o r m measured r e a c t i o n d a t a i n t o a f o r m where we c a n a n a l y z e a p p a r e n t k i n e t i c s a n d t h e effects of i n t r a c r y s t a l l i n e diffusion b y t h e use of s e l e c t i v i t y d a t a . T i m e d e p e n d e n c y has b e e n e l i m i n a t e d . Since s e l e c t i v i t y is e x t r e m e l y r e p r o d u c i b l e a n d is i n d e p e n d e n t of s h o r t - t e r m a g i n g effects, t h e n u m b e r of e x p e r i m e n t a l r u n s is r e d u c e d w h i l e d a t a r e l i a b i l i t y is m a i n t a i n e d . F o r c a t a l y s t e v a l u a t i o n a t a n y t e m p e r a t u r e , i t is necessary t o d e t e r m i n e t h e e q u i l i b r i u m composition a n d the straight-line reaction p a t h . W i t h this i n f o r m a t i o n a n y c a t a l y s t c a n be e v a l u a t e d a t t h i s t e m p e r a t u r e w i t h s i m p l y the additional information from a curved-line reaction p a t h . T h e a p p r o a c h used i n t h e a p p l i c a t i o n of m o n o m o l e c u l a r r a t e t h e o r y t o t h e x y l e n e i s o m e r i z a t i o n s e l e c t i v i t y k i n e t i c s is as follows. R e f e r e n c e is m a d e t o t h e c o m p o s i t i o n d i a g r a m , F i g u r e 1.
O-XYLENE
Figure 1.
Composition diagram
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
544
MOLECULAR SIEVES
Xylene Equilibrium Composition.
X y l e n e e q u i l i b r i u m compositions
were d e t e r m i n e d b y i n t e r p o l a t i o n a n d n o r m a l i z a t i o n of p u b l i s h e d t h e r m o d y n a m i c d a t a (6) ( T a b l e I) a n d are l a b e l e d A * i n a l l figures. T a b l e I. Temp., °F
Downloaded by COLUMBIA UNIV on July 29, 2012 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch049
300 350 400 450 500 600
Xylene Equilibrium Compositions, wt % ip-Xylene m-Xylene o-Xylene .194 .200 .207 .214 .219 .228
.564 .558 .552 .546 .541 .534
.242 .242 .241 .240 .240 .238
C u r v e d - L i n e R e a c t i o n P a t h s . A n i n f i n i t e n u m b e r of c u r v e d - l i n e r e a c t i o n p a t h s exist i n t h e r e a c t i o n s i m p l e x at a n y one t e m p e r a t u r e . For a c c u r a c y i n o u r k i n e t i c a n a l y s i s , we prefer a h i g h l y sensitive or c u r v e d p a t h , b u t slow enough t o a c q u i r e accurate r e a c t i o n d a t a . T h e c u r v e d - l i n e r e a c t i o n p a t h t h a t best s u i t s these c o n d i t i o n s is o b t a i n e d w i t h a s t a r t i n g c o m p o s i t i o n of p u r e o-xylene. T h e c u r v e d - l i n e r e a c t i o n p a t h s are generated f r o m i n d i v i d u a l analyses of p r o d u c t d i s t r i b u t i o n s w h i c h c a n be o b t a i n e d either b y c h a n g i n g c a t a l y s t v o l u m e or x y l e n e flow r a t e or m e r e l y b y s a m p l i n g the p r o d u c t as t h e c a t a l y s t d e a c t i v a t e s w i t h t i m e . S e l e c t i v i t y r e m a i n s essentially c o n s t a n t during aging. Straight-Line R e a c t i o n P a t h s . F o r a three-component reversible monomolecular system only two straight-line reaction paths exist; both c a n be observed e x p e r i m e n t a l l y . N o r m a l l y , t h e " s l o w " s t r a i g h t - l i n e r e a c t i o n p a t h is e s t i m a t e d as t h e t a n g e n t to a n y c u r v e d - l i n e r e a c t i o n p a t h at the e q u i l i b r i u m c o m p o s i t i o n . T h i s p a t h is s u b s e q u e n t l y d e t e r m i n e d more p r e c i s e l y i n t h e l a b o r a t o r y . T h e locus of the second, or " f a s t , " s t r a i g h t - l i n e r e a c t i o n p a t h is t h e n c a l c u l a t e d (1 ). T h e t e c h n i q u e for d e t e r m i n i n g s t r a i g h t - l i n e r e a c t i o n p a t h s i n t h i s w o r k differed f r o m t h e u s u a l e x p e r i m e n t a l a p p r o a c h . O u r a p p r o a c h also d e t e r m i n e d the s t r a i g h t - l i n e r e a c t i o n p a t h b y m i n i m i z i n g t h e d e v i a t i o n b e t w e e n t h e e x p e r i m e n t a l d a t a a n d those p r e d i c t e d . E x p e r i m e n t a l l y d e t e r m i n e d v a l u e s of t h e s t r a i g h t - l i n e i n t e r c e p t s are i n excellent agreement w i t h those c a l c u l a t e d i n t h e t e m p e r a t u r e r a n g e 3 0 0 ° 4 5 0 ° F . B e c a u s e of t h e r e d u c e d c u r v a t u r e of t h e r e a c t i o n p a t h s a t 500° a n d 6 5 0 ° F , i t is difficult t o d i s t i n g u i s h b e t w e e n s t r a i g h t - a n d c u r v e d - l i n e r e a c t i o n p a t h s . T h e r e f o r e , e x p e r i m e n t a l s t r a i g h t - l i n e r e a c t i o n p a t h s were n o t d e t e r m i n e d . A t 6 0 0 ° F i t was necessary t o a n a l y z e o-, m - , a n d p - x y l e n e r e a c t i o n p a t h s s i m u l t a n e o u s l y before a j u d i c i o u s choice of s t r a i g h t - l i n e r e a c t i o n p a t h s c o u l d be m a d e . T h e p r e d i c t e d a n d e x p e r i m e n t a l l y d e t e r m i n e d v a l u e s of s t r a i g h t - l i n e i n t e r c e p t a l o n g t h e o r t h o - m e t a x y l e n e l e g of t h e c o m p o s i t i o n d i a g r a m are s h o w n b e l o w .
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
49.
300 350 400 450 500 600
Results and
Experimental Intercept, mole fraction o-Xylene
Predicted Intercept, mole fraction o-Xylene
Temp.,
545
Xylene Isomerization
CHUTORANSKY AND DWYER
0.320 0.3150 0.395 0.425
0.317 0.362 0.395 0.427 0.45 0.49
Discussion
Downloaded by COLUMBIA UNIV on July 29, 2012 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch049
Applicability of Monomolecular Rate Theory to Xylene Isomerization T h e k i n e t i c s of l i q u i d - p h a s e
Selectivity Kinetics over Fresh A P Catalyst.
x y l e n e i s o m e r i z a t i o n o v e r fresh zeolite c o n t a i n i n g A P c a t a l y s t a r e effec t i v e l y interpreted b y pseudomonomolecular
rate theory.
T h e agreement
between t h e experimental d a t a (data points) a n d predicted reaction paths (solid lines) f o r o p e r a t i o n a t 400° a n d 600° F i s s h o w n i n F i g u r e 2.
The
c a t a l y s t used w a s i n t h e f o r m of e x t r u d a t e s c o m p r i s e d of t h e zeolite c o m ponent a n d an A 1 0 binder. 2
3
S i n c e x y l e n e d i s p r o p o r t i o n a t i o n t o toluene
a n d t r i m e t h y l b e n z e n e s w a s l o w , s e l e c t i v i t y d a t a were o b t a i n e d b y mere n o r m a l i z a t i o n of t h e x y l e n e c o m p o s i t i o n s (Σ a i n e s = 1.0). xy
Crystallite
Size
Effects
upon
e
A P Catalyst
Selectivity.
Previous
studies h a v e s h o w n t h a t w i t h t h e pellet sizes i n v e s t i g a t e d , gross p a r t i c l e size does n o t affect a c t i v i t y or s e l e c t i v i t y .
I f there are d i f f u s i o n a l l i m i t a
tions, t h e y m u s t b e i n t r a c r y s t a l l i n e a n d therefore a f u n c t i o n of t h e c r y s t a l l i t e size of t h e zeolite c o m p o n e n t . In
this study significant xylene
i s o m e r i z a t i o n s e l e c t i v i t y changes
because of v a r i a t i o n of zeolite c r y s t a l l i t e size were observed.
Qualitatively,
t h e l a r g e r t h e i n d i v i d u a l c r y s t a l l i t e s , t h e more d i f f u s i o n - c o n t r o l l e d t h e c o n v e r s i o n process a n d t h e greater t h e s e l e c t i v i t y f o r p - x y l e n e ( F i g u r e 3 ) . Scanning
electron
micrographs
of t h e zeolite
crystallites used
reveal
a p p a r e n t c r y s t a l l i t e sizes of 2 - 4 a n d 0 . 2 - 0 . 4 μ ( F i g u r e 4 ) . Quantitative
Interpretation
of Intracrystalline
Diffusional
Effects.
Since a q u a l i t a t i v e effect of c r y s t a l l i t e size u p o n s e l e c t i v i t y w a s o b s e r v e d , the n e x t step was t o e x t r a c t some q u a n t i t a t i v e v a l u e s f o r t h e i n t r a c r y s t a l l i n e diffusional p a r a m e t e r s .
T o do t h i s , w e m u s t e i t h e r k n o w t h e i n t r i n s i c o r
diffusion-free k i n e t i c s o r b e able t o m a k e a s i m p l i f y i n g a s s u m p t i o n so t h a t t h e d i f f u s i o n a l p a r a m e t e r s c a n be e x t r a c t e d f r o m t h e a v a i l a b l e d a t a . B a s e d u p o n t h e organic c h e m i s t r y of t h e i s o m e r i z a t i o n of x y l e n e s , t h e p r o b a b i l i t y of a d i r e c t i s o m e r i z a t i o n f r o m o-xylene t o p - x y l e n e is q u i t e small. F u r t h e r m o r e , i n homogeneously catalyzed liquid-phase reaction the s i m p l e series r e a c t i o n scheme has b e e n d e m o n s t r a t e d
(7,8,9,10,11,12).
o-xylene *=>ra-xylene