Molecular Sieves

Davison silica and freshly prepared sodium aluminate solution as sources of silica and ... Freshly prepared Na + -TMA + - o m e g a zeolite has a very...
0 downloads 0 Views 1MB Size
53

Downloaded by NANYANG TECHNOLOGICAL UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch053

Synthesis and Properties of Zeolite Omega Preparation and Use of Dual-Function Catalysts Based on Hydrogen-Omega J. F. COLE Shell Development Co., MTM Process Research and Development Laboratory, P. O. Box 100, Deer Park, Texas 77536 H. W. KOUWENHOVEN Koninklijke/Shell-Laboratorium Amsterdam, Badhuisweg 3, Amsterdam N., The Netherlands

A study is presented of the synthesis and properties of the novel synthetic zeolite omega. The synthesis variables and kinetics formation are discussed, as well as the ion exchange, sorption, and thermal properties. By decomposition of imbibed tetra­ methylammonium ions and exhaustive treatments of the zeolit with ammonium ions, a pure hydrogen form can be obtained which is a suitable substrate for the preparation of hydrocarbon conversion catalysts. Several catalysts were prepared an utilized to isomerize n-hexane, and to hydrocrack a heavy gas oil. Tn their pioneering work on zeolite synthesis, Barrer and Denny introduced the use of large organic cations to replace or partly replace the

A

a l k a l i m e t a l cations s u c h as N a w h i c h are n o r m a l l y present i n classical zeolite syntheses (1). I t was a r g u e d t h a t i f i n a zeolite c a v i t y several s o d i u m or other a l k a l i m e t a l i o n s c o u l d be r e p l a c e d b y one b u l k y organic c a t i o n of u n i t charge, the s i l i c o n - a l u m i n u m r a t i o of t h e zeolitic f r a m e w o r k w o u l d h a v e t o be c h a n g e d to preserve electrical n e u t r a l i t y , a n d i n f a c t w o u l d h a v e t o be increased. T h e a p p l i c a t i o n of t h i s a r g u m e n t i n p r a c t i c e l e d to t h e use of v a r i o u s t e t r a a l k y l a m m o n i u m ions i n zeolite synthesis. +

T h i s s p e c u l a t i o n was n o t o n l y c o m p l e t e l y v i n d i c a t e d i n t h e p r e p a r a t i o n of s i l i c a - r i c h forms of a v a r i e t y of k n o w n zeolites (2, 8) : i t w a s f o u n d t h a t direct use of organic cations i n syntheses p r o m o t e d u n u s u a l s t r u c t u r a l designs w h i c h l e d t o n o v e l zeolites. Z e o l i t e o m e g a (Ω) was one s u c h m a t e r i a l a n d was first s y n t h e s i z e d b y F l a n i g e n a n d K e l l b e r g (4). These 583 In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

584

MOLECULAR SIEVES

a u t h o r s gave s t r a i g h t f o r w a r d s y n t h e t i c routes, i n f o r m a t i o n a b o u t

the

s o r p t i v e properties a n d e s t i m a t e d the pore size to be a b o u t 1.1 n m .

Downloaded by NANYANG TECHNOLOGICAL UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch053

The Crystal Structure of Zeolite Omega F i g u r e 1 is a n i d e a l i z e d r e p r e s e n t a t i o n of t h e s t r u c t u r e p r o p o s e d for zeolite Ω b y B a r r e r a n d V i l l i g e r o n the basis of x - r a y p o w d e r d a t a (5). The intersections of the s t r a i g h t lines represent p o i n t a l u m i n u m or s i l i c o n a t o m s , each of w h i c h is b o n d e d t o four t e t r a h e d r a l l y disposed o x y g e n atoms.

Figure 1.

A schematic representation of the structure of zeolite omega.

T h e f r a m e w o r k is b u i l t of g m e l i n i t e cages w h i c h share t h e i r u p p e r a n d l o w e r s i x - r i n g faces a l o n g t h e c d i r e c t i o n . I n t h e (a, b) p l a n e , these cages are b r i d g e d b y oxygen a t o m s s u c h t h a t t h e e i g h t - r i n g w i n d o w s of adjacent cages face each other, as s h o w n i n F i g u r e 1. T h e r e s u l t i n g f r a m e w o r k has three i m p o r t a n t features. (1) A s y s t e m of a p p r o x i m a t e l y c y l i n d r i c a l channels r u n s p a r a l l e l t o c. These are b o u n d e d b y 12-membered r i n g s of S i - A 1 0 t e t r a h e d r a a n d h a v e a free d i a m e t e r of a b o u t 0.8 n m . T h e i r i n ­ t e r i o r surfaces are c o m p o s e d of f o u r - a n d s i x - m e m b e r e d r i n g s of S1-AIO4 t e t r a h e d r a . T h i s means t h a t d i f f u s i o n i n the (a, b) p l a n e b e t w e e n a d j a c e n t channels is severely r e s t r i c t e d . (2) A s y s t e m of g m e l i n i t e cages, e a c h of free d i a m e t e r a r o u n d 0.6 n m , is l o c a t e d between adjacent c y l i n d r i c a l channels. (3) A m i n o r c h a n n e l s y s t e m b o u n d e d b y g r e a t l y d i s t o r t e d e i g h t m e m b e r e d rings r u n s p a r a l l e l t o c ( a n d hence t o the m a i n c h a n n e l system) l o c a t e d between adjacent g m e l i n i t e cages. T h e g m e l i n i t e cages o p e n o n t o t h i s c h a n n e l s y s t e m t h r o u g h e i g h t - m e m b e r e d r i n g w i n d o w s . Access t o t h e c o l u m n s of g m e l i n i t e cages is v e r y r e s t r i c t e d . I o n exchange o r s o r p t i o n o n sites w i t h i n these c o l u m n s m u s t necessarily i n v o l v e e x t r e m e l y t o r t u r o u s diffusion p a t h s . A l l these features are s h o w n i n F i g u r e 1. A n i m p o r t a n t 4

In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

53.

585

Zeolite Omega

COLE AND KOUWENHOVEN

p r o p e r t y of t h e present s t r u c t u r e is t h a t t h e m a i n c h a n n e l s y s t e m c a n n o t be b l o c k e d b y s t a c k i n g f a u l t s . Results and

Discussion

Synthesis

of

Zeolite

Omega.

SCOUTING

EXPERIMENTS.

In

pre­

l i m i n a r y e x p e r i m e n t s a n u m b e r of a l u m i n o s i l i c a t e s t a r t i n g m a t e r i a l s of several c o m p o s i t i o n s were s t u d i e d .

T h e m o s t s a t i s f a c t o r y r e s u l t s were

Downloaded by NANYANG TECHNOLOGICAL UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch053

o b t a i n e d u s i n g K e t j e n or D a v i s o n fluid c r a c k i n g c a t a l y s t , or G e m b o

or

D a v i s o n s i l i c a a n d freshly p r e p a r e d s o d i u m a l u m i n a t e s o l u t i o n as sources of s i l i c a a n d a l u m i n a .

Some p r o p e r t i e s of these s t a r t i n g m a t e r i a l s are

given i n Table I. EFFECT

OF STOICHIOMETRY

OF REACTION

MIXTURE.

A

number

c o m p o s i t i o n s w h i c h gave p u r e zeolite Ω are c o l l e c t e d i n T a b l e I . m i x t u r e s h a v e been described u s i n g t h e general f o r m u l a p L i 0 ,

gNa 0,

2

r K 0 , z [ ( C H ) N ] 0 , A 1 0 , 2/Si0 , 2 U 0 . 2

3

4

2

2

3

d u c e d as t h e i r h y d r o x i d e s .

2

of

The 2

T h e a l k a l i n e ions were i n t r o ­

2

U n d e r the p r e v a i l i n g c o n d i t i o n s , a m o r p h o u s

p r o d u c t s are f o u n d i f t h e t o t a l base c o n c e n t r a t i o n (p + q + r + x) is m u c h l o w e r t h a n a b o u t 3.

F o r zeolite f o r m a t i o n t o o c c u r a t a l l u n d e r these

c o n d i t i o n s , h i g h e r r e a c t i o n t e m p e r a t u r e s h a v e t o be used.

A t a t o t a l base

c o n c e n t r a t i o n greater t h a n a b o u t 5, u n d e r t h e c o n d i t i o n s of t i m e a n d t e m p e r a t u r e a p p l i e d i n t h i s s t u d y , c r y s t a l l i n e phases s u c h as zeolite P , sodalite, a n d a n a l c i t e t e n d t o f o r m . A v a r i e t y c h a b a z i t e - g r o u p zeolites is o b t a i n e d a t p + and

100°C.

g + r + x = 4

A t a base c o m p o s i t i o n w h i c h y i e l d s p u r e Ω, i.e., ρ