Monomers and Polymers Based on Mono- and Disaccharides - ACS

13 Jul 1990 - Polymers containing mono- or disaccharides in the main chain or as pendant groups are receiving increasing attention. They possess a ...
0 downloads 0 Views 1MB Size
Chapter 16

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

Monomers and Polymers Based on Mono- and Disaccharides Stoil K. Dirlikov Coatings Research Institute, Eastern Michigan University, Ypsilanti, MI 48197

Polymers containing mono- or disaccharides in the main chain or as pendant groups are receiving increasing attention. They possess a number of attractive, useful, and unique properties such as high hydrophilicity, optical activity (chirality), etc. In a d d i t i o n , some of these polymers have biological a c t i v i t y . Others are anticipated to be tractable and combine useful propert i e s of both natural polysaccharides and synthetic polymers. F i n a l l y , polymers based on saccharide monomers are expected to undergo easier biodegradation than the synthetic polymers. Consequently, t h i s class of biodegradable polymers has potential u t i l i t y in reducing "plastic" p o l l u tion which is a major problem in our modern world. Many "saccharide monomers" such as glucose, sucrose, etc. or t h e i r d e r i v a tives, s o r b i t o l , gluconic acid, and others, are i n d u s t r i a l l y produced in large s c a l e from sugar waste, s t a r c h , e t c . and are available at a low price normally less than one d o l l a r per pound. Other mono- and disaccharides are p o t e n t i a l l y a v a i l a b l e from different renewable resources (biomass), again at low cost. Glucosamine is available from c h i t i n and cellobiose, which i s the c e l l u l o s e dimer, can be o b t a i n e d from c e l l u l o s e by enzymatic degradation. 0097-6156/90AM33-0176$06.00A) © 1990 American Chemical Society

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides

Our r e s u l t s o n t h e p r e p a r a t i o n , c h a r a c t e r i z a t i o n , and potential applications of different monoand disaccharides a s monomers i n p o l y m e r chemistry are discussed i n the present report.

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

ISOSORBIDE Sorbitol ( I ) i s an a t t r a c t i v e a n d i n e x p e n s i v e raw material a v a i l a b l e from r e n e w a b l e r e s o u r c e s . Iti s i n d u s t r i a l l y produced by hydrogénation o f g l u c o s e ( I I ) from sugar waste and i s a v a i l a b l e a t about 50 cents/pound. A l t e r n a t i v e s o r b i t o l c a n be p r o d u c e d f o r m cellulose. S o r b i t o l e a s i l y d e h y d r a t e s i n t o i t s 1: 4-3 : 6 - d i a n h y d r o d e r i v a t i v e , i s o s o r b i d e ( I I I ) , i n t h e p r e s e n c e o f an a c i d c a t a l y s t such as s u l f u r i c , h y d r o c h l o r i c , or toluenesulf o n i c a c i d o r a c a t i o n exchange r e s i n i n a o n e - s t e p p r e p aration i n high y i e l d (75-85%)(1): CH 0H

CHO

9

I

I

CHOH

2

CHOH

CHOH

I

I

HOCH

-CH

HOCH

I

CH

I

CHOH

I

CHOH

I

I

CHOH CH OH

CHOH -CH.

I

CH OH CHOH 2

2

III

II

Isosorbide i s a r i g i d d i o l w i t h two n o n - e q u i v a l e n t h y d r o x y l g r o u p s (endo-5 a n d exo-2) a n d two tetrahydrofuran rings i n i t s structure: CH

C

CHOH

I

HO>

-CH

I CH

I CHOH

I CH

OH 0

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

1

AGRICULTURAL AND SYNTHETIC POLYMERS

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

178

I t s p o l y m e r s , t h e r e f o r e m i g h t have good c o m p l e x a t i o n ability. A l i t e r a t u r e s e a r c h shows t h a t i s o s o r b i d e h a s b e e n used i n the preparation of polyesters (2) and polycarbonates (3,4). We have p r e p a r e d a n d c h a r a c t e r i z e d t h r e e l i n e a r i s o ­ sorbide containing polyurethanes with toluene diisocyanate (TDI), 4,4'-diphenylmethane d i i s o c y a n a t e (MDI), and 1 , 6 - h e x a m e t h y l e n e d i i s o c y a n a t e (HMDI): P ( I - T D I ) , P ( I MDI), and P(I-HMDI). These p o l y u r e t h a n e s have been s y n ­ t h e s i z e d as d e s c r i b e d i n t h e e x p e r i m e n t a l s e c t i o n by solution polymerization of isosorbide with the corre­ sponding d i i s o c y a n a t e i n dimethylacetamide using d i b u t y l t i n d i l a u r a t e a s t h e c a t a l y s t a t 75°C f o r 24 h o u r s . A l l polymers have been i s o l a t e d i n q u a n t i t a t i v e y i e l d by p r e c i p i t a t i o n i n methanol o r water ( 5 ) .

HOCH

I —CH

Ο

CH

+

OCN.R.NCO



I Ο

CHOH

I

I

I

CH

2

I

1

0—CH

I CH

I CH CH—Ο­

OC.NH.R.NH.CO-

Ι CHo A l l polyurethanes have b e e n o b t a i n e d b y r e a c t i n g 1:1 molar r a t i o s o f i s o s o r b i d e and d i i s o c y a n a t e . A slight e x c e s s o f a b o u t 5-10% o f t h e d i i s o c y a n a t e o r o f t h e d i o l r e s u l t e d i n the generation o f soluble polyurethanes with lower m o l e c u l a r weight and p o s s e s s i n g e i t h e r f u n c t i o n a l isocyanate o r hydroxyl groups, r e s p e c t i v e l y . A l l three polymers possess high molecular weights i n t h e r a n g e o f 20-25,000 b y g e l p e r m e a t i o n c h r o m a t o g r a p h y . They a r e s o l u b l e i n p o l a r s o l v e n t s s u c h a s d i m e t h y l a c e t a ­ mide, d i m e t h y l s u l f o x i d e , a n d d i m e t h y l f o r m a m i d e , a n d i n ­ s o l u b l e i n non-polar s o l v e n t s such as c h l o r o f o r m and

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides

carbon t e t r a c h l o r i d e . The other p r o p e r t i e s o f these p o l y mers d e p e n d on t h e d i i s o c y a n a t e u s e d i n their preparation. The i s o s o r b i d e polyurethane based on the a l i p h a t i c d i i s o c y a n a t e P(I-HMDI) i s f l e x i b l e . I t i s a thermop l a s t i c with a g l a s s t r a n s i t i o n temperature of 110°C and s o f t e n i n g temperature o f 190°C. Both t r a n s i t i o n s a r e w e l l below i t s d e g r a d a t i o n onset which o c c u r s a t approximately 260°C. I t forms good f i l m s by evaporation from i t s s o l u t i o n s and c o l o r l e s s transparent compression moldings· The i s o s o r b i d e polyurethanes based on the aromatic d i i s o c y a n a t e s P(I-TDI) and P(I-MDI), possess more r i g i d s t r u c t u r e s with both polymers forming b r i t t l e f i l m s and b r i t t l e compression m o l d i n g s . Their glass transition temperatures are above t h e i r decomposition temperature of 260^0. The t h e r m o s t a b i l i t y o f i s o s o r b i d e polyurethanes correspond to that of c o n v e n t i o n a l p o l y u r e t h a n e s with s i m i l a r s t r u c t u r e based on 1,4-cyclohexanedimethanol f o r which d e g r a d a t i o n temperature o f 260°C h a s been determined. The l i m i t i n g oxygen index (LOI) corresponds to the minimum oxygen content i n a i r which supports combustion i n the polymer. LOI of P(I-MDI) i s 25 and i t i s not flammabe s i n c e atmospheric a i r has only 21% oxygen. In c o n t r a s t , the conventional polyurethane with a s i m i l a r s t r u c t u r e based on MDI and 1,4-cyclohexanedimethanol has LOI o f 20 and i t i s flammable i n a i r . I t i n d i c a t e s that i s o r s o r b i d e polyurethanes r e q u i r e higher oxygen content to support combustion and they have lower f l a m m a b i l i t y than the corresponding " s y n t h e t i c " polymers. Isosorbide polyurethanes, e s p e c i a l l y those based on a l i p h a t i c isocyanates, may be u s e f u l i n the same a p p l i c a t i o n s as conventional polyurethanes i . e . t h e r m o p l a s t i c s , c o a t i n g s , and foams. In f a c t , e x c e l l e n t r i g i d foams have been o b t a i n e d from P ( I - M D I ) ( 5 ) . I s o s o r b i d e h a s a low melting p o i n t of 61°C and i t i s s u i t a b l e f o r use i n react i v e i n j e c t i o n molding processes alone o r i n the form of a mixture with other conventional d i o l s . In a d d i t i o n , i t s polymers may a l s o f i n d s p e c i f i c a p p l i c a t i o n s due to the a n t i c i p a t e d h i g h c o m p l e x a t i o n a b i l i t y o f t h e two tetrahydrofuran rings i n t h e i r isosorbide units. ISOMANNIDE Isomannide or 1,4 : 3,6-dianhydromannitol (IV) i s an isomer of i s o s o r b i d e . I t has been prepared by dehydration of mannitol (V) according to a procedure s i m i l a r to that f o r the p r e p a r a t i o n o f i s o s o r b i d e (6) which has been described previously. Isomannide i s a r i g i d d i o l with a low melting p o i n t of 85°C. I t has two adjacent t e t r a h y d r o f u r a n r i n g s i n a "clam" c o n f i g u r a t i o n and two e q u i v a l e n t hydroxyl groups, both i n t h e e n d o - c o n f i g u r a t i o n , s u i t a b l y s i t u a t e d f o r

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

AGRICULTURAL AND SYNTHETIC POLYMERS

180

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

c o m p l e x a t i o n v i a t h e i r o x y g e n atoms. One c o u l d s p e c u l a t e t h a t isomannide w i l l have b e t t e r c o m p l e x a t i o n ability t h a n i s o s o r b i d e s i n c e i t s f o u r o x y g e n atoms a r e o r i e n t e d i n t h e same d i r e c t i o n .

There i s a growing i n t e r e s t i n polymers which c o n t a i n t e t r a h y d r o f u r a n r i n g s i n t h e i r main c h a i n s because o f t h e i r g o o d / e x c e l l e n t a b i l i t y t o complex w i t h different cations. The a p p l i c a t i o n s , h o w e v e r , a r e l i m i t e d by difficult m u l t i - s t e p p r e p a r a t i o n s . Isomannide polymers a p p e a r t o be a t t r a c t i v e c a n d i d a t e s a n d e a s y a l t e r n a t i v e s i n such a p p l i c a t i o n s . Isomannide p o l y u r e t h a n e s have been p r e p a r e d by t h e same p r o c e d u r e d e s c r i b e d f o r i s o s o r bide polyurethanes i n the experimental s e c t i o n . Their p r o p e r t i e s a r e under i n v e s t i g a t i o n . DIMETHYL ISOSORBIDE O t h e r m o l e c u l e s o f t h e same t y p e , w h i c h a r e e x p e c t e d t o have good c o m p l e x a t i o n a b i l i t y , a r e t h e m e t h y l o r e t h y l ethers of i s o s o r b i d e , isomannide, and i s o i d i d e . They a p p e a r t o have t h e p o t e n t i a l a s s o l v e n t s w i t h h i g h s o l v a t i o n power a n d l o w r e a c t i v i t y . A l l these molecules p o s s e s s r i g i d s t r u c t u r e s w i t h two a d j a c e n t t e t r a h y d r o f u r a n r i n g s i n " c l a m - l i k e " c o n f i g u r a t i o n and f o u r oxygen atoms w i t h glyme d i s t r i b u t i o n , -CH0OCH2CH2OCH2CH2OCH2. They a r e e x p e c t e d , t h e r e f o r e , t o e x h i b i t s t r o n g e r s o l v a t i n g power a n d c o m p l e x a t i o n a b i l i t y i n c o m p a r i s o n t o t h a t o f t e t r a h y d r o f u r a n and o t h e r glymes. Dimethyl i s o s o r b i d e ( V I ) and d i m e t h y l i s o m a n n i d e (VII) i l l u s t r a t e the s t r u c tures of these m a t e r i a l s . D i m e t h y l i s o s o r b i d e (VI) has been p r e p a r e d i n q u a n t i tative yield from isosorbide and d i m e t h y l sulphate a c c o r d i n g t o known p r o c e d u r e (1). It i s a liquid p o s s e s s i n g a low v a p o r p r e s s u r e a t room t e m p e r a t u r e and b o i l i n g p o i n t o f 95°C a t 0.1 mm Hg. In a d d i t i o n , i t a l s o possesses o p t i c a l a c t i v i t y . I t i s e x p e c t e d t o be a r e l a t i v e l y i n e x p e n s i v e s o l v e n t ( f o r an o p t i c a l a c t i v e s o l v e n t w i t h 100% p u r i t y o f t h e o p t i c a l i s o m e r ) i n c o m p a r i s o n t o

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides

o t h e r " s o l v a t i n g " s o l v e n t s s u c h a s t e t r a h y d r o f u r a n (one d o l l a r p e r l i t e r ) , d i o x a n e (one d o l l a r p e r l i t e r ) , a n d p y r i d i n e (two d o l l a r s a n d 50 c e n t s p e r l i t e r ) . MeO>

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

OMe VI D i m e t h y l i s o m a n n i d e ( V I I ) h a s b o t h methoxy g r o u p s i n e n d o - p o s i t i o n and might even have b e t t e r complexation than dimethyl i s o s o r b i d e (as d i s c u s s e d above f o r isomannide). However, i t d o e s n o t have o p t i c a l a c t i v i t y . Dimethyl i s o i d i d e i s t h e t h i r d p o s s i b l e isomer with two exo g r o u p s . 1,4:2,5:3,6-TRIANHYDROMANNITOL 1,4 : 2,5 : 3 , 6 - t r i a n h y d r o m a n n i t o l (VIII) i s another attract i v e monomer. I t i s o b t a i n e d f r o m i s o s o r b i d e i n a twos t e p s y n t h e s i s w i t h a b o u t 50% o v e r a l l y i e l d a s o u t l i n e d below ( 7 , 8 ) . CH

CH, CHOH CH CH-

CHO-Ts

TsCl 85%

9

r

CH CH-

CHOH

CHO-Ts

CHr

CH

C

NA/C H OH 2

5

60%

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

VIII

182

AGRICULTURAL AND SYNTHETIC POLYMERS

1 , 4 : 2 , 5 : 3 , 6 - t r i a n h y d r o m a n n i t o i has a low m e l t i n g point of 64°C. I t i s a h i g h l y s t r a i n e d molecule with three adjacent tetrahydrofuran rings. I n o u r s t u d i e s , we have f o u n d t h a t i t p o l y m e r i z e s i n m e l t o r i n s o l u t i o n ( i n methylene d i c h l o r i d e ) a t normal o r e l e v a t e d temperature (70°C) i n t h e p r e s e n c e o f B F . 0 ( C 9 H ) as a c a t a l y s t w i t h the f o r m a t i o n o f an i n s o l u b l e polymer. Thermog r a v i m e t r i c a n a l y s i s (TGA) o f t h e s e p o l y m e r s s h o w s a n onset of thermodegradation i n the range o f 135-150°C. The p o l y m e r i z a t i o n e v i d e n t l y p r o c e e d s w i t h o p e n i n g o f one o r two o f t h e t h r e e t e t r a h y d r o f u r a n r i n g s o f t h e monomer. As a r e s u l t o f t h i s o b s e r v a t i o n , we b e l i e v e i t h a s a p o t e n t i a l a s a v o l u m e - e x p a n s i o n monomer a n d t h i s p r o p e r t y i s under i n v e s t i g a t i o n . Another p o s s i b i l i t y f o r i t s u t i l i z a t i o n i s f o r preparation of glyme-like c y c l i c oli­ gomers by o p e n i n g o f o n l y one o f i t s t e t r a h y d r o f u r a n r i n g s by p o l y m e r i z a t i o n o r c o p o l y m e r i z a t i o n o f t h e mono­ mer in solution at milder condition and lower temperatures.

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

3

1,4-LACTONE

2

OF 3.6-ANHYDR0GLUC0NIC ACID

(LAGA)

LAGA ( I X ) i s a v a i l a b l e f r o m g l u c o n i c a c i d (X) a c c o r d i n g t o t h e f o l l o w i n g scheme. G l u c o n i c a c i d (X) i s an i n e x p e n ­ s i v e (70 c e n t s / l b . ) , c o m m e r c i a l l y a v a i l a b l e raw m a t e r i a l p r o d u c e d by o x i d a t i o n o f g l u c o s e ( I I ) f r o m s u g a r w a s t e . C e l l u l o s e c o u l d be u s e d a s a n a l t e r n a t i v e r e s o u r c e . G l u c o n i c a c i d e x i s t s i n i t s " a c i d i c " f o r m o n l y i n aqueous solutions. Upon e v a p o r a t i o n , i t forms i t s c r y s t a l l i n e 1.4- ( X I ) o r 1 , 5 - l a c t o n e s ( X I I ) d e p e n d i n g o n r e a c t i o n conditions. LAGA i s a known compound. I t s p r e p a r a t i o n from g l u ­ cose i n v o l v e s a l o n g , m u l t i - s t e p b l o c k i n g and d e b l o c k i n g p r o c e d u r e w h i c h p r o c e e d s i n low o v e r a l l y i e l d ( 9 - 1 3 ) . We h a v e b e e n a b l e t o d e v e l o p a o n e - s t e p procedure (14) f o r t h e p r e p a r a t i o n o f LAGA by a c i d c a t a l y z e d d e h y ­ d r a t i o n d i r e c t l y f r o m g l u c o n i c a c i d o r f r o m i t s 1,4- o r 1.5- l a c t o n e s : CHO

COOH

I

CHOH

CHOH

I

I I

HOCH

I

CHOH

CHOH

CHOH

ι -

I

CHOH Ο

I

2

- I

I

CHOH

CHOH

I

-CH

HOCH

I I

CH

I CHOH

CH OH CH 2

Ο

I CH OH

CHOH II CH OH

CO-

CH

CHOH

CH OH

CO-

I

I

HOCH

HOCH

CO

2

XII

1

CHOH

—CHo

XI

2

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

IX

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides

I t was f o u n d t h a t t h e 1 , 5 - l a c t o n e o f g l u c o n i c a c i d r e a r r a n g e s i n t o 1 , 4 - l a c t o n e o f LAGA i n t h e c o u r s e o f t h e reaction. The f o r m a t i o n o f t h e 3,6-anhydro r i n g p r o c e e d s e a s i l y i n t h e p r e s e n c e o f DOWEX 50WX4 i o n e x c h a n g e r e s i n as a c a t a l y s t a t 1 1 0 ° C w i t h t h e r e m o v a l o f w a t e r a s a n w a t e r / t o l u e n e a z e o t r o p e . The p r o c e s s was c a r r i e d o u t a s described f o r t h e p r e p a r a t i o n o f i s o s o r b i d e from s o r b i t o l . The p r o c e d u r e , however, h a s n o t been o p t i m i z e d and t h e y i e l d o f LAGA was o n l y 37%. The o p t i m i z a t i o n o f t h e p r o c e d u r e w i l l c e r t a i n l y i n c r e a s e t h e y i e l d o f LAGA, The 1,4-lactones o f other 3,6-anhydro a c i d s a r e a v a i l a b l e i n a s i m i l a r manner. LAGA i s a r i g i d d i o l w i t h a m e l t i n g p o i n t o f 117°C ( l a r g e p r i s m s from e t h y l a c e t a t e ) . I t h a s two n o n equivalent hydroxyl groups i n endo-5 and exo-2 positions.

LAGA i s a m o n o c a r b o n y l d e r i v a t i v e o f i s o s o r b i d e . I n c o n t r a s t t o i s o s o r b i d e , however i t i s n o t h y d r o s c o p i c a n d e a s i l y opens i t s l a c t o n e r i n g w i t h t h e f o r m a t i o n o f potential cross-linking sites. A l i t e r a t u r e s e a r c h does n o t i n d i c a t e any p u b l i ­ cations concerning t h e u s e o f LAGA i n polymer applications. We have p r e p a r e d two l i n e a r s o l u b l e p o l y u r e t h a n e s : P(LAGA-MDI) a n d P(LAGA-HMDI) b y s o l u t i o n p o l y m e r i z a t i o n o f LAGA w i t h MDI a n d HMDI r e s p e c t i v e l y i n d i m e t h y l a c e t amide a s a s o l v e n t u s i n g d i b u t y l t i n d i l a u r a t e a s a c a t a ­ l y s t a t 75°C o v e r 24 h o u r s a c c o r d i n g t o t h e p r o c e d u r e used i n t h e p r e p a r a t i o n o f t h e i s o s o r b i d e polyurethanes as d e s c r i b e d i n t h e e x p e r i m e n t a l s e c t i o n . Both polymers have been i s o l a t e d i n q u a n t i t a t i v e y i e l d i n t h e i r " l a c t o n e " form by p r e c i p i t a t i o n from c h l o r o f o r m ( 1 5 ) . As o b t a i n e d , Ρ ( L A G A - M D I ) a n d P(LAGA-HMDI) a r e s o l u b l e i n p o l a r s o l v e n t s such as d i m e t h y l a c e t a m i d e , dimethyl s u l f o x i d e , and dimethylformamide, and i n s o l u b l e i n nonp o l a r s o l v e n t s as c h l o r o f o r m and carbon tetrachloride. These polymers possess h i g h m o l e c u l a r weight i n t h e range o f 20-25,000. The p r o p e r t i e s o f t h e p o l y u r e t h a n e s d e p e n d o n t h e nature o f t h e d i i s o c y a n a t e used i n t h e i r preparation.

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

AGRICULTURAL AND SYNTHETIC POLYMERS

184 COCHOH -CH

OCN.R.NCO

I CH

I CHOH

-CHr

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

CO-

I OCH -CH

I CH —

I

• CO.NH.R.NH.CO-

CHO-

I PI LAGA-MDI) i s a r i g i d m a c r o m o l e c u l e p o s s e s s i n g a g l a s s t r a n s i t i o n temperature above t h e o n s e t o f d e g r a d a t i o n w h i c h i s o b s e r v e d a t a b o u t 240°C. I t forms b r i t t l e f i l m s and b r i t t l e c o m p r e s s i o n m o l d i n g s . In c o n t r a s t , the a l i p h a t i c p o l y u r e t h a n e , P(LAGA-HMDI) i s a more f l e x i b l e macromolecule. I t i s a thermoplastic with a glass trans i t i o n t e m p e r a t u r e o f 85°C a n d a s o f t e n i n g t e m p e r a t u r e o f 150°C. I t s d e g r a d a t i o n o n s e t i s o b s e r v e d a r o u n d 240°C. T h i s p o l y u r e t h a n e forms good f i l m s f r o m s o l u t i o n a n d c o l o u r l e s s transparent compression moldings. T h e s e r e s u l t s show t h a t i n g e n e r a l , LAGA p o l y u r e t h a n e s i n t h e i r l a c t o n e f o r m have p r a c t i c a l l y t h e same t r a n s i t i o n s and p r o p e r t i e s as t h e c o r r e s p o n d i n g i s o s o r bide polyurethanes. In c o n t r a s t t o i s o s o r b i d e p o l y m e r s p r e c i p i t a t i o n o f t h e i n i t i a l l y f o r m e d LAGA p o l y m e r s i n w a t e r i n s t e a d o f c h l o r o f o r m r e s u l t s i n slow opening o f t h e l a c t o n e r i n g s with formation of hydroxyl and c a r b o x y l groups. This h y d r o l y s i s r e s u l t s i n a d r a m a t i c change i n solubility, TGA, a n d IR, e t c . . A l t h o u g h t h e r a t e o f t h e l a c t o n e r i n g opening i s v e r y slow a t t h e b e g i n n i n g f o r m a t i o n o f t h e c a r b o x y l g r o u p s w i t h t h e advancement o f h y d r o l y s i s l o w e r s t h e pH o f t h e aqueous media a n d a c c e l e r a t e s t h e h y d r o l y s i s of the remaining lactone r i n g s . As a r e s u l t , t h e s o l u b i l i t y o f the polymer i n water s h a r p l y increases with h y d r o l y s i s .

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides COOH

CO

0—CH

0—CH

CH

Ο

CH

CHOH

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

CH Ο

CH—Ο

I

CH

2

Ο

CH

Ο

CH 2

The i n f r a r e d s p e c t r a o f t h e h y d r o l y z e d p o l y m e r show a s t r o n g b r o a d a b s o r p t i o n band i n t h e r a n g e o f 2500-3500 cm which i s not observed i n the s p e c t r a o f the i n i t i a l non-hydrolyzed polymer. T h i s a b s o r p t i o n band c o r r e s p o n d s t o t h e O-H v i b r a t i o n s o f t h e f r e e h y d r o x y l and c a r b o x y l groups. I t s intensity increases with the degree of hydrolysis. The b r o a d c h a r a c t e r o f t h i s absorption w i t h o u t d i s t i n g u i s e d s e p a r a t e band i n d i c a t e s t h a t t h e f r e e h y d r o x y l and c a r b o x y l g r o u p s f o r m intermolecular hydrogen bonding. The TGA c u r v e s o f t h e i n i t i a l Ρ ( L A G A - H M D I ) p o l y m e r i n the lactone form show a weight loss onset at a p p r o x i m a t e l y 240°C. In c o n t r a s t , t h e h y d r o l y z e d polymer i n t h e s o - c a l l e d a c i d i c form i s v e r y h y d r o p h i l i c , a b s o r b s l a r g e amounts o f w a t e r f r o m t h e a i r a t room t e m p e r a t u r e and d e c r e a s e s t h e t e m p e r a t u r e a t which w e i g h t loss occurs. T h i s w e i g h t l o s s w h i c h o c c u r s b e l o w 180°C, p r o ­ bably corresponds e n t i r e l y to the r e l e a s e of absorbed water. The g l a s s t r a n s i t i o n t e m p e r a t u r e o f t h e h y d r o ­ l y z e d p o l y m e r s i s n o t o b s e r v e d i n DSC due t o t h e i n t e r ­ m o l e c u l a r h y d r o g e n b o n d i n g between t h e h y d r o x y l a n d c a r ­ boxyl groups. These p o l y m e r s , w h i c h s l o w l y d i s s o l v e i n w a t e r , m i g h t be s u i t a b l e f o r c o n t r o l r e l e a s e a n d p r e p a r a t i o n o f b i o ­ degradable polymers. LAGA homo- and c o p o l y m e r s open t h e l a c t o n e r i n g s o f t h e i r LAGA monomeric u n i t s w i t h f o r m a ­ t i o n o f h y d r o x y l and c a r b o x y l groups and t h u s , i n c r e a s e the polymer s o l u b i l i t y , h y d r o p h i l i c i t y and t h e r a t e o f t h e i r biodégradation. I n t h i s s e n s e LAGA o f f e r s a new approach f o r polymer controlled biodégradation. The p a r t i a l l y h y d r o l y z e d LAGA p o l y m e r s h a v e free h y d r o x y l and c a r b o x y l groups which a c t as s i t e s f o r c r o s s - l i n k i n g . T h e i r c r o s s - l i n k e d polymers have been obtained i n the presence of a d d i t i o n a l amount o f diisocyanate. l , 4 : 3 6 - D I L A C T O N E OF MANNOSACCHARIC ACID t

A n o t h e r g r o u p o f d i o l monomers o f a s i m i l a r t y p e i s b a s e d on t h e d i l a c t o n e s o f t h e s a c c h a r i c a c i d s (DLSA) ( X I I I ) which exist i n two f o r m s . T h e i r a c i d i c form (XIV) i s

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

18

AGRICULTURAL AND SYNTHETIC POLYMERS

186

f o r m e d o n l y i n aqueous s o l u t i o n s . Upon t h e e v a p o r a t i o n o f w a t e r , t h e s a c c h a r i c a c i d s ( X I V ) c l o s e t h e i r two l a c ­ tone r i n g s p r o d u c i n g t h e c o r r e s p o n d i n g s t a b l e diols (XIII) . COOH

CO-

I

CHOH

I

CHOH

I

-CH

HOCH

CH

I

I

CHOH

I

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

CHOH CO

CHOH

I

XIII

DLSA a r e r i g i d d i o l s . They have COOH t h e same s k e l e t o n a s i s o s o r b i d e a n d LAGA. F o r i n s t a n c e , 1,4 : 3 , 6 - d i l a c t o n e o f m a n n o s a c c h a r i c a c i d i s a d i c a r b o n y l XIV derivative of iso­ mannide a n d m o n o c a r b o n y l d e r i v a t i v e o f t h e l a c t o n e o f t h e anhydromannonic acid. T h e r e f o r e , DLSA c o u l d f i n d a p p l i ­ c a t i o n s as d i o l s and t h e i r polymers a r e e x p e c t e d t o have s i m i l a r p r o p e r t i e s t o t h a t o f i s o s o r b i d e a n d LAGA polymers. T h e r e a r e two p o s s i b l e r o u t e s f o r DLSA p r e p a r a t i o n : 1). They a r e a v a i l a b l e by o x i d a t i o n o f t h e c o r r e s p o n d i n g monosaccharides with n i t r i c a c i d ( 1 6 ) . T h i s reaction g e n e r a t e s r e l a t i v e l y low y i e l d s i n t h e r a n g e o f 40%. CHO

COOH

I

I

HOCH

HOCH

I

I

HOCH

HOCH

I

I

CHOH

CHOH

I

I

CH OH CHOH 2

CHOH

XVI

COOH XVII

I 2 ) . An a l t e r n a t i v e m e t h o d f o r t h e i r o x i d a t i o n o f u r o n i c a c i d s (XV) w h i c h a l g i n i c a c i d s (from k e l p ) .

CO

Ί rfj L I

HOCH

CH

0

1

I CHOH

I

CO

XVIII preparation i s by a r e a v a i l a b l e from

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

16.

Monomers and Polymers Based on Mono- and Disaccharides

DIRLIKOV

CHO

COOH

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

I HOCH I HOCH I

1

CO

I HOCH I HOCH I

I HOÇH I I ÇH I

?

I

CH



'

CO

|

CHOH

I CHOH I

CHOH

COOH

I CHOH I

COOH

? ICHOH I

XV

XVII

XVIII

Our e x p e r i e n c e i n d i c a t e s t h a t DLSA a r e l e s s a v a i l a b l e t h a n i s o s o r b i d e a n d LAGA. We h a v e p r e p a r e d mannos a c c h a r i c a c i d ( X V I I ) a n d i t s 1,4 : 3 , 6 - d i l a c t o n e (XVIII) by o x i d a t i o n o f mannose ( X V I ) w i t h n i t r i c a c i d a c c o r d i n g to ( 1 6 ) . P u r e d i l a c t o n e w i t h a m e l t i n g p o i n t o f 187°C has been i s o l a t e d i n 26% y i e l d . I t s p o l y u r e t h a n e s a r e under i n v e s t i g a t i o n . EPOXY RESINS : MANNITOL

1 2 : 5.6-DIANHYDRO-3,4-0-IS0PR0PYLIDENE-D1

One w o u l d a l s o t h i n k t h a t s a c c h a r i d e s a r e more a t t r a c t i v e s t a r t i n g raw m a t e r i a l s f o r d i r e c t p r e p a r a t i o n o f e p o x y r e s i n s than h y d r o c a r b o n s s i n c e they a l r e a d y p o s s e s s oxygen atoms n e e d e d f o r t h e epoxy r i n g s . Such d i e p o x y d e r i v a t i v e s o f h e x i t o l s a r e known c o m p o u n d s , f o r i n s t a n c e 1,2:5,6-dianhydro-3,4-O-isopropylidene-D-mannitol (XIX). T h e i r p r e p a r a t i o n , however i s d i f f i c u l t a n d r e q u i r e s 15 t o 18 s t e p s w h i c h p r o c e e d i n v e r y low o v e r a l l y i e l d ( 1 7 19) . As a f i r s t s t e p i n t h i s d i r e c t i o n , we have b e e n a b l e to prepare 1, 2 : 5 , 6 - d i a n h y d r o - 3 , 4 - 0 - i s o p r o p y l i d e n e - D m a n n i t o l a s a model d i e p o x y h e x i t o l d e r i v a t i v e i n f o u r s t e p s w i t h o v e r a l l 50% y i e l d a c c o r d i n g t o t h e f o l l o w i n g scheme : CH 0H 1 1 HOCH 1 1 HOCH ι 1 CHOH

CH 0. 1

1

CH OH 2

9

9

ι

-*

1

y

CHO ' 1 1 CHOx^ ^ 11 CHO 1

1 CHOH 1 1 CH OH

CH

HOCH CHO.

CH

I

CHO^

I

1 CHOv^

CHOH

CH 0^ 2

2

I CH OH XXI 2

XX

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

CHo CH,

188

AGRICULTURAL AND SYNTHETIC POLYMERS CHr

CH C1 9

I I

2

CH'

HOCH CHO^ CHO'

CHO,

CH.

CHO'

I

CHOH

I

CH C1

CH^ CH.

2

XXII Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

,CH,

CH. 'CH.

XIX

The f i r s t s t e p w h i c h p r o c e e d s i n 75% y i e l d t o f o r m (XX) i n v o l v e s t h e b l o c k i n g o f m a n n i t o l (V) w i t h a c e t o n e at room t e m p e r a t u r e i n t h e p r e s e n c e o f 1% c o n c e n t r a t e d s u l f u r i c a c i d as a c a t a l y s t (20). The s e c o n d s t e p i n v o l v e s u n b l o c k i n g o f t h e p r i m a r y h y d r o x y l g r o u p s i n 70% a c e t i c a c i d a t 40°C f o r 1.5 h o u r s (21). By t h i s p r o c e d u r e , 3,4-O-isopropylidene-D-mannitol (XXI) h a s been o b t a i n e d i n 8 0 % y i e l d . Then, s e l e c t i v e h a l o g e n a t i o n h a s been c a r r i e d o u t a t m i l d c o n d i t i o n s under which o n l y t h e h a l o g e n a t i o n o f t h e two p r i m a r y h y d r o x y l g r o u p s o c c u r s . The s e c o n d a r y h y d r o x y l groups remain i n t a c t under these c o n d i t i o n s . The r e a c t i o n proceeds smoothly with carbon t e t r a c h l o r i d e and t r i p h e n y l p h o s p h i n e i n a n h y d r o u s p y r i d i n e a t 5°C f o r 18 hours (22). 1,6-Dichloro-1,6-dideoxy-3,4-O-isopropylidene-D-mannitol ( X X I I ) h a s been o b t a i n e d a s d e s c r i b e d i n the e x p e r i m e n t a l p a r t i n q u a n t i t a t i v e y i e l d a c c o r d i n g t o t h e NMR s p e c t r u m o f t h e r e a c t i o n p r o d u c t ( 2 3 ) . Its purif i c a t i o n , however, i s d i f f i c u l t and r e q u i r e s t e d i o u s c h r o m a t o g r a p h i c s e p a r a t i o n on a s i l i c a g e l c o l u m n . The p u r i f i c a t i o n c o n d i t i o n s , however, have n o t been o p t i m i z e d and t h i s r e s u l t s i n a l o w e r y i e l d . The NMR a n d IR s p e c t r a c o n f i r m t h e s t r u c t u r e o f 1,6dichloro-1,6-dideoxy-3,4-O-isopropylidene-D-mannitol ( X X I I ) . The r e s o n a n c e s i g n a l s o f t h e CHg p r o t o n s o f t h e i s o p r o p y l i d e n e r e s i d u e s o f b o t h compounds X X I I a n d XIX a p p e a r a t a b o u t 8,60 ppm. The s i g n a l f o r t h e CHOH p r o t o n s o f X X I I a t 5,45 ppm i s n o t o b s e r v e d i n t h e NMR s p e c t r a o f X I X . I n s t e a d , two new m u l t i p l e t s c e n t e r e d a t 6,93 and 7,30 ppm f o r t h e m e t h i n e a n d t h e m e t h y l e n e p r o t o n s o f t h e epoxy g r o u p s o f XIX a p p e a r . A t t h e same t i m e , t h e r e l a t i v e i n t e n s i t y o f t h e >CH-0 a n d - C H ^ - C l p r o t o n s o f X X I I a t 6,15 ppm d e c r e a s e s w i t h s i x p r o t o n s i n t h e s p e c trum o f XIX. The i n f r a r e d s p e c t r u m o f X X I I shows a n a b s o r p t i o n b a n d a t 3500 cm which corresponds t o i t s hydroxyl groups. T h i s band i s n o t o b s e r v e d i n t h e s p e c trum o f X I X .

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides

F i n a l l y , epoxy r i n g f o r m a t i o n h a s been c a r r i e d o u t i n m e t h a n o l a t room t e m p e r a t u r e w i t h sodium methoxide as a catalyst ( 2 4 ) . 1,2:5,6-Dianhydro-3,4-O-isopropylidene-Dm a n n i t o l (XIX) has been o b t a i n e d i n n e a r quantitative yield. T h i s d i e p o x y m a n n i t o l d e r i v a t i v e c u r e s w i t h amines a t room o r e l e v a t e d t e m p e r a t u r e s . When r e a c t e d w i t h V e r s a m i d 140 p o l y a m i d e r e s i n ( H e n k e l C o r p o r a t i o n ) w i t h a n amine v a l u e o f 370-400, commonly u s e d f o r curing of c o m m e r c i a l e p o x y r e s i n s , a t epoxy/amine m o l a r r a t i o o f 1:1, i t produces epoxy r e s i n s with good "physicomechanical" p r o p e r t i e s and e x c e l l e n t adhesion t o g l a s s . The homogeneous m i x t u r e i s c u r e d a s a t h i n l a y e r between two (glass) microslides. The c u r i n g i s c a r r i e d o u t e i t h e r a t room t e m p e r a t u r e f o r 24 h o u r s a n d t h e n a t 150°C f o r 2 h o u r s , o r a t room t e m p e r a t u r e f o r 7 days. In both cases, transparent cured epoxy r e s i n s a r e o b t a i n e d . A t t e m p t s t o s e p a r a t e t h e two m i c r o s l i d e s a l w a y s r e s u l t i n breaking the m i c r o s l i d e which i n d i c a t e s s t r o n g epoxy r e s i n / g l a s s adhesion. The c u r i n g p r o c e s s i s n e a r l y comp l e t e s i n c e e x t r a c t i o n with d i f f e r e n t s o l v e n t s does n o t g i v e any e x t r a c t a b l e s . Other renewable r e s o u r c e s : sorbitol (I), cellobiose ( X X V ) , e t c . c a n be u s e d i n s i m i l a r w a y s a s s t a r t i n g m a t e r i a l s i n t h e p r e p a r a t i o n o f epoxy r e s i n s . We a r e now w o r k i n g on a d i r e c t t w o - s t e p p r e p a r a t i o n o f d i e p o x y s o r b i t o l d e r i v a t i v e s by d i r e c t h a l o g e n a t i o n o f t h e two p r i mary h y d r o x y l g r o u p s w i t h t h e f o r m a t i o n o f 1 , 6 - d i c h l o r o 1 , 6 - d i d e o x y - s o r b i t o i , ( X X I I I ) , f o l l o w e d by epoxy r i n g f o r m a t i o n (1,2 : 5 , 6 - d i a n h y d r o s o r b i t o l ( X X I V ) : CH 0H 9

CHOH

CH C1 9

I

2

CHOH

I

HOCH CHOH

HOCH — CHOH

I

I

CHOH

CHOH

I CH OH 2

I Diepoxy compound.

derivative

I CH C1 2

XXIII of s o r b i t o l

XXIV i s a known

stable

CELLOBIOSE C e l l o b i o s e (XXV), t h e b a s i c u n i t o f c e l l u l o s e , i s a p o t e n t i a l l y i n e x p e n s i v e monomer o b t a i n e d i n 90-95% y i e l d by b a c t e r i a l h y d r o l y s i s o f c e l l u l o s e . I t i s another

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

1

190

AGRICULTURAL AND SYNTHETIC POLYMERS

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

a t t r a c t i v e d i s a c c h a r i d e w i t h many p o t e n t i a l a p p l i c a t i o n s i n polymer c h e m i s t r y . The two p r i m a r y h y d r o x y l g r o u p s o f c e l l o b i o s e have higher r e a c t i v i t y than the remaining s i x secondary hydrox y l groups. K u r i t a and c o - w o r k e r s have r e c e n t l y r e p o r t e d t h e p r e p a r a t i o n o f s o l u b l e p o l y u r e t h a n e s by d i r e c t p o l y a d d i t i o n of c e l l o b i o s e to diisocyanates without blocking the e x c e s s h y d r o x y l g r o u p s o f c e l l o b i o s e by u s i n g t h e d i f f e r e n c e i n r e a c t i v i t y between i t s p r i m a r y and s e c o n dary h y d r o x y l groups (25,26):

We have c a r r i e d o u t t h e p o l y m e r i z a t i o n o f c e l l o b i o s e w i t h MDI i n d i m e t h y l a c e t a m i d e a t 17°C w i t h s t i r r i n g f o r 24 h o u r s as d e s c r i b e d by K u r i t a ( 2 5 , 2 6 ) . The p o l y m e r i z a t i o n proceeds without g e l formation. The p o l y m e r has been i s o l a t e d i n q u a n t i t a t i v e y i e l d by p r e c i p i t a t i o n i n chloroform. This cellobiose polyurethane i s soluble i n polar s o l v e n t s as d i m e t h y l a c e t a m i d e , d i m e t h y l s u l f o x i d e , and d i m e t h y l f o r m a m i d e , and i n s o l u b l e i n n o n - p o l a r s o l v e n t s as c h l o r o f o r m and c a r b o n t e t r a c h l o r i d e . I t i s a very hydrop h i l i e p o l y m e r and r a p i d l y a b s o r b s w a t e r f r o m a i r . TGA a n a l y s i s shows t h a t i t r e l e a s e s a b s o r b e d w a t e r up t o a p p r o x i m a t e l y 200°C w i t h a 12% d e c r e a s e i n w e i g h t . It has u n e x p e c t e d l y h i g h a v e r a g e m o l e c u l a r w e i g h t i n t h e range of 100,000. Polymers p r e p a r e d from several d i f f e r e n t p o l y m e r i z a t i o n r u n s g i v e r e p r o d u c i b l e t h e same molecular weight. T h i s h i g h m o l e c u l a r weight indicates t h a t some b r a n c h i n g p r o b a b l y o c c u r s d u r i n g t h e p o l y m e r i z a t i o n by t h e p a r t i c i p a t i o n o f s m a l l amount o f t h e s e c o n d a r y h y d r o x y l g r o u p o f c e l l o b i o s e i n a d d i t i o n t o t h e main t y p e o f p o l y m e r i z a t i o n o f i t s two p r i m a r y h y d r o x y l groups.

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

16. DIRLIKOV

Monomers and Polymers Based on Motto- and Disaccharides

The p e n d a n t h y d r o x y l g r o u p s o f c e l l o b i o s e have been c o n f i r m e d t o be u s e f u l f o r c r o s s l i n k i n g o f i t s p o l y m e r s i n t h e p r e s e n c e o f a d d i t i o n a l amount o f d i i s o c y a n a t e . C r o s s - l i n k e d i n s o l u b l e f i l m s have b e e n o b t a i n e d b y c a s t i n g a p o l y m e r s o l u t i o n i n d i m e t h y l a c e t a m i d e c o n t a i n i n g 7% o f a d d i t i o n a l amount o f MDI. The p o l y m e r l i m i t i n g o x y g e n i n d e x ( L O I ) v a l u e i s 26,5 which corresponds to that of the i s o s o r b i d e p o l y urethanes. I t i s a g a i n h i g h e r than t h a t o f c o n v e n t i o n a l MDI p o l y u r e t h a n e s w i t h s i m i l a r s t r u c t u r e b a s e d on 1,4cyclohexanedimethanol (LOI = 20) a n d i n d i c a t e s lower f l a m m a b i l i t y o f c e l l o b i o s e polymers. TGA a n a l y s i s shows t h a t p o l y m e r d e g r a d a t i o n s t a r t s a t a b o u t 235°C w h i c h c o r r e s p o n d s t o t h e t e m p e r a t u r e o f d e c o m p o s i t i o n o f t h e c e l l o b i o s e monomer (m.p. 239°C w i t h decom.). T o r s i o n B r a i d a n a l y s i s and d i f f e r e n t i a l scanni n g c a l o r i m e t r y measurements show t h a t t h i s p o l y m e r i s v e r y r i g i d and does n o t e x h i b i t any t r a n s i t i o n i n t h e r a n g e o f -100 t o +250°C, e . g . t h e p o l y m e r decomposition o c c u r s below any t r a n s i t i o n t e m p e r a t u r e . This result i s e x p e c t e d s i n c e b o t h o f t h e monomers, c e l l o b i o s e and MDI, have r i g i d m o l e c u l e s a n d b e c a u s e c e l l o b i o s e u n i t s o f t h e polymer form i n t e r m o l e c u l a r hydrogen bondings. Cellobiose polyurethanes based on a l i p h a t i c diisoc y a n a t e s , e . g . HMDI, a r e e x p e c t e d t o be more f l e x i b l e . D-GLUCOSE

METHACRYLATE

D - G l u c o s e m e t h a c r y l a t e (XXVI) i s t h e l a s t monomer. Its polymers h a v e many p o t e n t i a l a p p l i c a t i o n s i n m e d i c i n e , secondary o i l r e c o v e r y , e t c (27,28). The i n d u s t r i a l p r o d u c t i o n a n d a p p l i c a t i o n s o f Dg l u c o s e m e t h a c r y l a t e a r e l i m i t e d by i t s d i f f i c u l t m u l t i s t e p p r e p a r a t i o n w i t h b l o c k i n g and u n b l o c k i n g p r o c e d u r e s of the secondary h y d r o x y l groups o f g l u c o s e a c c o r d i n g t o the procedures d e s c r i b e d i n the l i t e r a t u r e (28). The p r i m a r y h y d r o x y l g r o u p o f g l u c o s e h a s h i g h e r r e a c t i v i t y than the remaining f o u r s e c o n d a r y h y d r o x y l groups. Our i n i t i a l r e s u l t s i n d i c a t e t h a t d i r e c t p r e p a r a t i o n o f g l u c o s e m e t h a c r y l a t e i s p o s s i b l e from g l u c o s e (II) ( d r i e d over a n d f r e s h l y d i s t i l l e d ( i n vacuum) m e t h a c r o y l c h l o r i d e i n 1:1 m o l a r r a t i o i n a n h y d r o u s d i methylacetamide and p y r i d i n e ( i n molar r a t i o as a h y d r o c h l o r i d e s c a v e n g e r ) a t room t e m p e r a t u r e under n i t r o g e n w i t h s t i r r i n g f o r 20 h o u r s , b y a p r o c e d u r e s i m i l a r t o that described f o r the preparation of c e l l o b i o s e polyurethanes, without blocking/deblocking procedure of the excess secondary hydroxyl groups, j u s t by u s i n g t h e d i f f e r e n c e i n r e a c t i v i t y between g l u c o s e p r i m a r y and secondary hydroxyl groups.

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

1

AGRICULTURAL AND SYNTHETIC POLYMERS

192

A spontaneous p o l y m e r i z a t i o n o f g l u c o s e meth­ a c r y l a t e , however, i s o b s e r v e d d u r i n g t h e monomer p r e p a r ­ a t i o n without g e l f o r m a t i o n and a v e r y h y d r o p h i l i c water s o l u b l e polymer w i t h h i g h v i s c o s i t y i s o b t a i n e d by p r e ­ c i p i t a t i o n i n acetone. This procedure requires f u r t h e r improvement. CH.,

HOCH

I

CH =C-C0C1 2

CHOH

I CHOH

I

I

Ο

HOCH

HOCH

I I

I

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

HOCH

OH CH,

CHOH CH

CHOH

I

CH CH -O.CO-C=CH 2

2

CH OH 2

II

XXVI

EXPERIMENTAL A l l monomers a n d i n t e r m e d i a t e s have been p r e p a r e d a c c o r d ­ ing t o t h e r e f e r e n c e s g i v e n i n t h e t e x t . This experi­ m e n t a l p a r t c o n t a i n s o n l y p r o c e d u r e s w h i c h have n o t b e e n previously published. 1 , 4 - L a c t o n e o f 3 6 - A n h y d r o g l u c o n i c A c i d (LAGA) ( X ) . 50.0 g o f 1 , 5 - l a c t o n e o f g l u c o n i c a c i d ( S i g m a ) , 5.0 g o f DOWEX 50WX4 a n d 500 ml o f t o l u e n e w e r e l o a d e d i n t o a f l a s k equipped w i t h a r e f l u x condensor and a Dean-Stark adapter f o r water s e p a r a t i o n . The m i x t u r e was r e f l u x e d f o r 5 hours and c o o l e d . T o l u e n e was s e p a r a t e d b y d é c a n t a t i o n and t h e r e s i d u e d i s s o l v e d i n 500 ml o f m e t h a n o l . The s o l u t i o n was f i l t e r e d s e v e r a l t i m e s f o r s e p a r a t i o n o f DOWEX r e s i n a n d m e t h a n o l d i s t i l l e d on a R o t a v a p o r . 15.7 g o f p u r e LAGA was i s o l a t e d by vacuum d i s t i l l a t i o n u s i n g a K u g e l r o h r d i s t i l l a t i o n apparatus ( A l d r i c h ) a t 160-170° C/0.2 mm Hg ( t e m p e r a t u r e o f t h e h e a t i n g bath) ( 3 7 % yield). t

1,6-Dichloro-l,6-Dideoxy-3,4-O-Isopropylidene-D-Mannitoi (XXII). 100 ml o f c a r b o n t e t r a c h l o r i d e was g r a d u a l l y a d d e d t o a s o l u t i o n o f 11.1 g (5 mmole) o f 3 , 4 - O - i s o p r o p y l i d e n e - D - m a n n i t o l ( X X I ) a n d 26.3 g (10 mmole) o f t r i phenylphosphine i n 500 ml o f a n h y d r o u s p y r i d i n e a t 0 ° C . A f t e r h o l d i n g t h e r e s u l t i n g s o l u t i o n a t 5°C f o r 18 h o u r s , m e t h a n o l was added, a n d t h e m i x t u r e was e v a p o r a t e d t o a c r y s t a l l i n e r e s i d u e w h i c h was c h r o m a t o g r a p h i c a l l y s e p a r a ted on a s i l i c a g e l c o l u m n . E l u t i o n f i r s t with chloro-

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

16. DIRLIKOV

Monomers and Polymers Based on Mono- and Disaccharides

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

f o r m a n d t h e n w i t h 6/1 v / v c h l o r o f o r m / a c e t o n e gave X X I I fraction. An a d d i t i o n a l recrystal1ization from t o l u e n e / h e p t a n e p r o d u c e d 6.50 g o f p u r e X X I I ( 5 0 % o f y i e l d ) w i t h m.p. 75-76°C ( l i t . 24: m.p. 7 6 ° C ) . Poly(Isosorbide-Hexamethylene Piisocyanate). HMDI ( P o l y s c i e n c e s ) was p u r i f i e d p r i o r t o u s e b y vacuum d i s t i l l a ­ t i o n t h r o u g h a s h o r t V i g r e u x c o l u m n (10 cm), b . p . 1 2 7 ° C / 1 0 mm. I s o s o r b i d e was p r e p a r e d a c c o r d i n g t o method (1). I t was p u r i f i e d b y v a c u u m d i s t i l l a t i o n u s i n g a Kugelrohr D i s t i l l a t i o n Apparatus ( A l d r i c h ) a t 115-130°C ( t e m p e r a t u r e o f t h e h e a t i n g b a t h ) a n d 0.2 mm v a c u u m , f o l l o w e d by vacuum d r y i n g a t 50°C o v e r phosphorus pentoxide. Ν , N - D i m e t h y l a c e t a m i d e (DMAc) ( A l d r i c h , 99+%, GOLD l a b e l ) was s t o r e d o v e r m o l e c u l a r s i e v e 3A a n d u s e d without further p u r i f i c a t i o n . Dibutyltin dilaurate ( P o l y s c i e n c e s ) was u s e d w i t h o u t p u r i f i c a t i o n . The p o l y ­ m e r i z a t i o n was c a r r i e d o u t i n a n i t r o g e n a t m o s p h e r e i n 250 ml f o u r - n e c k f l a s k e q u i p p e d w i t h a d r o p p i n g f u n n e l , r e f l u x condenser, mechanical s t i r r e r and n i t r o g e n i n l e t tube. 16.82 g (0.1 mole) o f HMDI was a d d e d d r o p w i s e a t room t e m p e r a t u r e from t h e d r o p p i n g f u n n e l i n t o t h e r a p i d l y s t i r r e d s o l u t i o n o f 14.62 g (0.1 mole) o f i s o s o r b i d e i n 100 ml o f DMAc. A f t e r t h e a d d i t i o n was c o m p l e t e d , 0.2 ml o f d i b u t y l t i n d i l a u r a t e a s a c a t a l y s t was added a n d t h e p o l y m e r i z a t i o n was c a r r i e d o u t a t 75°C f o r 24 h o u r s . A v e r y v i s c o u s c o m p l e t e l y t r a n s p a r e n t s o l u t i o n was obtained. I t was c o o l e d t o r o o m t e m p e r a t u r e , diluted w i t h 500 ml o f DMAc a n d p r e c i p i t a t e d b y d r o p w i s e a d d i t i o n i n t o 5 L o f m e t h a n o l (Note 1 ) . The s u s p e n s i o n was l e f t o v e r n i g h t , f i l t e r e d , washed w i t h m e t h a n o l a n d d r i e d i n vacuum a t 2 5 ° C . A w h i t e powder o f P(I-HMDI) was o b t a i n e d i n 100% y i e l d . A l l o t h e r p o l y u r e t h a n e s have been p r e p a r e d i n a s i m i ­ l a r manner. Measurements. The m e l t i n g p o i n t s o f t h e monomers a n d t h e g l a s s t r a n s i t i o n temperatures and s o f t e n i n g p o i n t s o f the p o l y m e r s have been d e t e r m i n e d on c a p i l l a r y m e l t i n g p o i n t a p p a r a t u s , DuPont d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r ( w i t h 10°C/min.), and Dennis thermal bar, r e s p e c t i v e l y . Temperature o f d e c o m p o s i t i o n i s measured as f i r s t onset o f w e i g h t l o s s on t h e t h e r m o g r a v i m e t r i c a n a l y s i s c u r v e i n a i r a t 10°C/min.. L i m i t i n g Oxygen Index i s m e a s u r e d on a home-made i n s t r u m e n t . M o l e c u l a r weight o f the polymers i s d e t e r m i n e d by g e l p e r m e a t i o n c h r o m a t o g r a p h y w i t h a D u P o n t Z o r b a x B i m o d a l PSM 1 0 0 0 s c o l u m n a n d d i m e t h y l s u l f o x i d e as a mobile phase. I n f r a r e d ( i n KBr ) a n d NMR s p e c t r a ( i n d e u t e r o c h l o r o f o r m ) a r e t a k e n on P e r k i n - E l m e r infrared a n d 60 MHz Varian NMR spectrometers, respectively.

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

1

194

AGRICULTURAL AND SYNTHETIC POLYMERS

CONCLUSION Mono- and d i s a c c h a r i d e s appear t o be v e r y a t t r a c t i v e renewable resources f o r p r e p a r a t i o n o f broad v a r i e t y o f unique monomers and polymers.

Downloaded by FUDAN UNIV on January 23, 2017 | http://pubs.acs.org Publication Date: July 13, 1990 | doi: 10.1021/bk-1990-0433.ch016

REFERENCES 1. Montgomery, R.; Wiggins, L.F., J . Chem. S o c . , 1946, 390. 2. Courtaulds L t d . Neth. Appl. 6405497, 1964; Chem. Abstr. 1965, 62, 10588. 3. Medem, H . ; Schreckenberg, M . ; Dhein, R.; Nouvertne, W.; Rudolph, H . ; Ger. Offen 3002762, 1981; Chem. Abstr. 1981, 95, 151439n. 4. Medem, H . ; Schreckenberg, M . ; Dhein, R.; Nouvertne, W.; Rudolph, H . ; Ger. Offen. 2938464, 1981; Chem. Abstr. 1981, 95, 44118k. 5. Dirlikov, S.; Schneider, C . , U.S. Patent 4443563. 6. Montgomery, R . ; Wiggins, L.F., J . Chem. Soc. (London), 1948, 2204. 7. Montgomery, R . ; Wiggins, L.F., J . Chem. Soc. (London), 1946, 393. 8. Cope, A . C . ; Shen, T . Y . , J . Amer. Chem. S o c . , 1956, 78, 3177, 5912, and 5916. 9. Chle, H . ; Dickhauser, E., Chem. Ber., 1925, 58, 2593. 10. Chle, H . ; Von Vargha, L.; Erlbach, Η., Chem. Ber., 1928, 61, 1203. 11. Haworth, W.; Owen, L.; Smith, F., J. Chem. Soc. (London), 1941, 88. 12. Fischer, E.; Zach, Κ., Chem. Ber., 1912, 45, 456. 13. Fischer, E.; Zach, Κ., Chem. Ber., 1912, 45, 2068. 14. Dirlikov, S.; Schneider, C . , U.S. Patent 4581465 15. Dirlikov, S.; Schneider, C . , U.S. Patent 4438226 16. Hayworth, W.; Heslop, D . ; S a l t , Ε . ; Smith, F., J. Chem. Soc. (London), 1944, 217. 17. Jarman, M . ; Ross, W., Carbohydr. Res., 1969, 9, 139. 18. Kuszmann, J., Carbohydr. Res., 1979, 71, 123. 19. I n s t i t o r i s , L., et al.: Arzneimittel-Forsch., 1967, 17, 145. 20. Fischer, Ε . , Chem. Ber., 1895, 28, 1167. 21. Wiggins, L.F., J. Chem. Soc. (London), 1946, 13. 22. Anisuzzaman, Α . ; Whistler, R . , Carbohydr. Res., 1978, 61, 511. 23. Dirlikov, S.; Schneider, C . , U.S. Patent 4709059. 24. Wiggins, L.F., J. Chem. Soc. (London), 1946, 384. 25. Kurita, K. et. al., Makromol. Chem., 1979, 180, 855. 26. Kurita, K. et. al., Makromol. Chem., 1980, 181, 1861. 27. K l e i n , J.; Kulicke, W.M., Polymer P r e - p r i n t s , ACS symposium, March 1982, 88pp. 28. Colquhoun, J . A . ; Dewar, E . T . , Process Biochem., 1968, 31. RECEIVED January 22, 1990

Glass and Swift; Agricultural and Synthetic Polymers ACS Symposium Series; American Chemical Society: Washington, DC, 1990.