Chapter 7
Melt Flow of Polyethylene Blends L. A. Utracki
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
Industrial Materials Research Institute, National Research Council of Canada, Boucherville, Québec J4B 6Y4, Canada
The rheology of polyethylene blends i s discussed with an emphasis on those containing the linear low density polyethylenes, LLDPE. Flow of LLDPE with other types of LLDPE's, with low density polyethylene, LDPE, and with polypropylene, PP, was studied in steady state shear, dynamic shear and uniaxial extensional fields. Interrelations between diverse rheological functions are discussed i n terms of the linear viscoelastic behavior and i t s modification by phase separation into complex morphology. One of the more important observations i s the difference i n elongational flow behavior of LLDPE/PP blends from that of the other blends; the strain hardening (important for e.g. film blowing and wire coating) occurs i n the latter ones but not i n the former. P o l y e t h y l e n e s , PE, c o n s t i t u t e an important p a r t o f t h e p l a s t i c s market (see T a b l e I ) . S i n c e t h e i r d i s c o v e r y i n 1933 t h e y have seen c o n t i n u o u s r i s e i n consumption t o t h e p r e s e n t l e v e l o f 25M tons p e r annum, o r 42% o f a l l p l a s t i c s (1_). T h i s extended p e r i o d o f growth o r i g i n a t e s i n continuous development and m o d i f i c a t i o n o f t h e s e r e s i n s , r e s u l t i n g from a w i d e n i n g range o f p o l y m e r i z a t i o n t e c h n i q u e s . The h i s t o r y o f PE c a n be d i v i d e d i n t o t h r e e p e r i o d s : 1. t h e i n i t i a l , c h a r a c t e r i z e d by predominence o f t h e r a d i c a l p o l y m e r i z a t i o n of e t h y l e n e , C , a t h i g h temperature and p r e s s u r e , 2. development o f c o o r d i n a t i o n c o p o l y m e r i z a t i o n o f C w i t h o t h e r c t - o l e f i n s , and 3. development o f polymer b l e n d i n g t e c h n o l o g y . I t i s interesting that new methods have been developed w i t h o u t t h e o l d e r ones becoming obsolete. Thus i t i s d i f f i c u l t t o p u t f i r m d a t e s on t r a n s i t i o n s between these t h r e e p e r i o d s . Development o f Z i g g l e r - N a t t a c a t a l y s t s r e s u l t e d i n c o m m e r c i a l i z a t i o n o f h i g h d e n s i t y p o l y e t h y l e n e , HDPE, w h i c h had t o be "toughened" by c o p o l y m e r i z a t i o n w i t h butene, C^. Next was development o f t h e l i n e a r l o w d e n s i t y p o l y e t h y l e n e s , LLDPE, by DuPont Canada i n t h e l a t e 1950's. The polymer was prepared by c o o r d i n a t i o n p o l y m e r i z a t i o n i n s o l u t i o n o f C w i t h 10 t o 20 mol% o f C , C o r C . I n 1979 U n i o n C a r b i d e p a t e n t e d the gas phase f l u o d i z e d 2
2
2
4
6
8
0097-6156/89A)395-0153$14.70A) © 1989 American Chemical Society
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Low d e n s i t y PE
Very low d e n s i t y PE
U l t r a low d e n s i t y PE
3.
4.
5.
3
low p r e s s u r e ; gas phase, s o l u t i o n o r s u s p e n s i o n
high pressure ; pipe o r autoclave reactor
low p r e s s u r e ; gas phase o r s o l u t i o n
low p r e s s u r e ; gas phase o r s o l u t i o n
LLDPE
LDPE
VLDPE
ULDPE
process
process
low p r e s s u r e ; gas phase, s o l u t i o n o r s u s p e n s i o n
Process
HDPE
Code
( a ) i n kg/m ; (b) i n m i l l i o n t o n s p e r annum.
Linear low d e n s i t y PE
2.
Note:
High d e n s i t y PE
1.
No. Type
Table I . G l o b a l Consumption o f P o l y e t h y l e n e (PE)
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
-885
900-915
915-930
915-940
940-970
a
0.03
12.3
3.4
8.95
1986
^)
?
0.2
10.0
7.5
9.96
1990
Density^ ^Consumption
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
Melt Flow ofPolyethylene Blends
155
bed p o l y m e r i z a t i o n p r o c e s s * I t n o t o n l y made LLDPE more p o p u l a r around the w o r l d but a l s o l e d t o an i n g r e s s o f b l e n d i n g methods a s w e l l a s t o development o f new PE copolymers w i t h v e r y low d e n s i t y , butene based, VLDPE, and u l t r a l o w d e n s i t y , o c t e n e b a s e d , ULDPE. B o t h VLDPE and ULDPE a r e b a s i c a l l y LLDPE copolymers w i t h l o w crystallinity. I t i s e s t i m a t e d t h a t 60 t o 7 0 % LLDPE ( i n c l u d i n g VLDPE and ULDPE) e n t e r s t h e market a s b l e n d s . One may d i s t i n g u i s h s e v e r a l c a t e g o r i e s o f PE-blends. (i) PE blends w i t h a small q u a n t i t y o f " e x t e r n a l l u b r i c a n t " : f l u o r o - p o l y m e r s , s i l o x a n e s , PE-waxes, e t c . These blends a r e p r i m a r i l y f o r m u l a t e d f o r improvement o f p r o c e s s a b i l i t y w i t h o u t a f f e c t i n g the PE performance (2^). ( i i ) PE b l e n d s w i t h h i g h c o n c e n t r a t i o n o f r i g i d polymer. To t h i s category b e l o n g blends o f e n g i n e e r i n g r e s i n s w i t h up t o 10% o f non-compatibilized PE a c t i n g as a toughening agent. Development o f PE-ionomers and m a l e a t e d PE a l l o w s f o r i n c r e a s e o f PE c o n t e n t , g e n e r a t i n g a new c l a s s o f m a t e r i a l s . ( i i i ) PE b l e n d s w i t h up t o 30 wt% o f a r i g i d polymer. The a d d i t i o n a l polymer p l a y s the f i l l e r r o l e i n c r e a s i n g b o t h the modulus a n d t h e heat d e f l e c t i o n temperature. At l o w c o n c e n t r a t i o n , s a y below 5% o f r i g i d polymer, t h e c o m p a t i b i l i z a t i o n i s seldom n e c e s s a r y , but i t i s a must f o r b l e n d s a t h i g h e r l o a d i n g s . ( i v ) LLDPE b l e n d s w i t h o t h e r p o l y o l e f i n s o r e l a s t o m e r s . These blends a r e m a i n l y d e s i g n e d f o r improved p r o c e s s a b i l i t y v i a i n c r e a s e o f the melt s t r e n g t h i n f i l m b l o w i n g o r w i r e c o a t i n g applications. (v) PE b l e n d s w i t h p o l y p r o p y l e n e , PP, and/or w i t h one o f t h e i r copolymers, EPR, EPDM, e t c . c o n s t i t u t e a l a r g e and i m p o r t a n t segment o f the p l a s t i c s market. I n t h i s c h a p t e r o n l y blends ( i v ) and (v) w i l l be d i s c u s s e d . PART I , LITERATURE SURVEY The methods o f PE p o l y m e r i z a t i o n and c h a r a c t e r i z a t i o n o f PE s t r u c t u r e s can be found i n r e c e n t p u b l i c a t i o n s ( 3 - 6 ) . The melt f l o w o f PE's and t h e i r blends has been reviewed by P l o c h o c k i (7-9) and U t r a c k i ( 1 0 , 11). In the f o l l o w i n g t e x t , r e c e n t i n f o r m a t i o n o n PE/PE and PE/PP m e l t r h e o l o g y w i l l be o u t l i n e d . Polyethylene/Polyethylene Blends S i n c e the homologous polymer blends a r e known t o be m i s c i b l e i t i s n o t s u r p r i s i n g t h a t m i x t u r e s o f HDEE w i t h HDPE o r LDPE w i t h LDPE a r e m i s c i b l e a s w e l l (12, 1 3 ) . However, due t o t h e d i v e r s i t y o f p o l y m e r i z a t i o n methods and t h e v a r i e t y o f r e s u l t i n g molecular c h a r a c t e r i s t i c s LLDPE/LLDPE systems a r e n o t always m i s c i b l e ( 1 0 , 14-15). I n our l a b o r a t o r y t h r e e s e r i e s o f blends were prepared by i d e n t i c a l procedure o f m i x i n g the same LLDPE w i t h two o t h e r LLDPE r e s i n s and w i t h LDPE. The z e r o - s h e a r v i s c o s i t y v s . composition dependence, n v s . w , o f t h e s e systems i s p r e s e n t e d i n F i g . 1. Only the LLDPE s prepared w i t h t h e same T i - c a t a l y s t were found t o be m i s c i b l e ( c u r v e 2 ) . N e i t h e r b l e n d o f LLDPE w i t h LDPE ( c u r v e 3) n o r LLDPE prepared w i t h a vanadium c a t a l y s t LLDPE ( c u r v e 1) were miscible. There a r e i n d i c a t i o n s i n t h e l i t e r a t u r e (8) that 0
2
1
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
156
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
F i g u r e 1. C o m p o s i t i o n a l dependence of the z e r o - s h e a r v i s c o s i t y f o r blends o f a l i n e a r low d e n s i t y p o l y e t h y l e n e (LLDPE) w i t h : (1) and ( 2 ) d i f f e r e n t LLDPE r e s i n s , and ( 3 ) w i t h low d e n s i t y p o l y e t h y l e n e , LDPE.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
UTRACKI
Melt Flow ofPolyethylene Blends
157
v a r i a t i o n s o f T)Q w i t h c o m p o s i t i o n such a s shown i n F i g . 1 a r e a r e f l e c t i o n o f s i m i l a r d e n s i t y changes caused by t h e thermodynamic interactions. Dumoulin e t a l . ( 1 6 ) s t u d i e d morphology and p r o p e r t i e s o f HDPE b l e n d e d w i t h a n o t h e r HDPE r e s i n o f n e a r l y i d e n t i c a l d e n s i t y b u t t e n times h i g h e r m o l e c u l a r w e i g h t . The m e l t - b l e n d i n g was c a r r i e d o u t by t h r e e d i f f e r e n t methods. The polymers were found t o be i m m i s c i b l e ; the u l t r a h i g h m o l e c u l a r weight component, UHMWPE, p a r t i a l l y d i s s o l v e d i n t h e normal m o l e c u l a r weight ( M - 280 kg/mole) polymer w i t h t h e r e s t behaving as r e i n f o r c i n g f i l l e r p a r t i c l e s . These o b s e r v a t i o n s were c o n f i r m e d by Vadhar and Kyu (17) who concluded t h a t o n l y by d i s s o l v i n g UHMWPE and LLDPE i n a common s o l v e n t , t h e n c a s t i n g , c o u l d t h e u n i f o r m , m i s c i b l e b l e n d be o b t a i n e d . S i n c e d i s s o l u t i o n o f UHMWPE s t r o n g l y a f f e c t s t h e m o l e c u l a r weight d i s t r i b u t i o n , MWD, o f t h e m a t r i x polymer, any r h e o l o g i c a l f u n c t i o n s e n s i t i v e t o MWD c a n be used t o f o l l o w t h e d i s s o l u t i o n process. The dynamic v i s c o e l a s t i c d a t a p r o v i d e d a s i m p l e and e a s y t o o l ( 1 0 , 1 1 ) . As w i l l be d i s c u s s e d l a t e r , t o a c c o m p l i s h t h i s t h e dynamic d a t a were examined u s i n g e i t h e r : ( i ) Zeichner-Patel cross-point coordinates, ( i i ) Cole-Cole p l o t , o r ( i i i ) the r e l a x a t i o n spectrum. The s t r e s s growth o r r e l a x a t i o n f u n c t i o n s i n s h e a r o r e x t e n s i o n a l s o depend on MWD. These a s w e l l were used i n s t u d i e s o f b l e n d m i s c i b i l i t y by r h e o l o g i c a l means ( 1 1 ) . Use o f r h e o l o g i c a l f u n c t i o n s f o r d e t e c t i n g t h e s t a t e o f PE-blend m i s c i b i l i t y i n t h e melt i s p a r t i c u l a r l y a t t r a c t i v e . The o n l y o t h e r a v a i l a b l e method i s t h e d i r e c t and c o s t l y , Small A n g l e N e u t r o n S c a t t e r i n g , SANS ( 1 8 ) . The l a t t e r method r e q u i r e s d e u t e r a t i o n o f one component w h i c h may a f f e c t miscibility (19). A l l available i n f o r m a t i o n o n m i s c i b i l i t y o f PE b l e n d s i n d i c a t e s t h a t i n t h e absence o f s t r o n g thermodynamic i n t e r a c t i o n s b o t h t h e d i s s o l u t i o n and t h e phase s e p a r a t i o n a r e d i f f u s i o n c o n t r o l l e d . F r e q u e n t l y , one c a n g e n e r a t e homogeneous m e l t v i a d i s s o l u t i o n i n a common s o l v e n t ( 2 0 ) w h i l e t h e melt b l e n d i n g w i l l r e s u l t i n a p h a s e - s e p a r a t e d m a t e r i a l . There i s d i r e c t e v i d e n c e o f t r u e m i s c i b i l i t y i n homologous polymer b l e n d s , w h i l e even a s m a l l change i n p o l y m e r i z a t i o n method, polymer c o m p o s i t i o n o r s t r u c t u r e may l e a d t o apparent i m m i s c i b i l i t y ( 1 4 , 15). Since f o r t h e h i g h m o l e c u l a r w e i g h t , i n d u s t r i a l PE t h e c o n f o r m a t i o n a l e n t r o p y o f m i x i n g i s n e g l i g i b l y s m a l l and t h e r e a r e no specific i n t e r a c t i o n s between two p o l y e t h y l e n e s of different s t r u c t u r e , one c a n a p p r e c i a t e t h a t i n these systems t h e m i s c i b i l i t y i s c o n t r o l l e d by s m a l l d e p a r t u r e s from zero o f t h e f r e e energy o f mixing. B l e n d s o f HDPE with LDPE were s t u d i e d by Dobrescu ( 1 2 ) by means of a c a p i l l a r y viscometer. The c o n s t a n t s t r e s s v i s c o s i t y , l o g n ( a = c o n s t ) v s . w p l o t i n d i c a t e d a s t r o n g p o s i t i v e d e v i a t i o n , PDB, from t h e l o g - a d d i t i v i t y r u l e :
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
w
1 2
2
log
n - I Wjlog
n i
=
(D
where n n ( c r ) i s t h e c o n s t a n t s t r e s s v i s c o s i t y o f t h e b l e n d and n^, i = 1, 2 t h a t o f t h e components. The blends were r e p o r t e d immiscible. The h i g h e r t h e v i s c o s i t y r a t i o ni/n-j> t h e l a r g e r was t h e PDB d e v i a t i o n . Kammer and Socher ( 2 1 ) s t u d i e d t h e two-phase HDPE/LDPE b l e n d s u s i n g t h e c o n e - a n d - p l a t e , steady s t a t e r o t a t i o n a l 12
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
158
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
rheometer. P l o t s o f the z e r o shear v i s c o s i t y , n , t h e f i r s t normal s t r e s s d i f f e r e n c e c o e f f i c i e n t i|> and t h e p r i n c i p a l r e l a x a t i o n t i m e , T v s . w , a l l i n d i c a t e d PDB. In s p i t e o f i m m i s c i b i l i t y the shear v i s c o s i t y d a t a i n a temperature range from 160 t o 200°C c o u l d be superimposed on a master c u r v e ( 2 2 , 2 3 ) : 0
10
2
n/n
* f(yn /T)
0
(2)
0
a n
1 and f o r those w i t h X < 1; i n t h e f i r s t case t h e d i s p e r s e d phase e x i s t e d i n a form o f f i b r i l l a s , i n t h e second a s s m a l l d r o p l e t s . The d i f f e r e n c e i n s t r u c t u r e o r i g i n a t e d i n t h e k i n e t i c s o f breakage o f f i b r i l l a s c r e a t e d a t t h e e n t r a n c e t o capillary. For systems whose X < 1 t h e f l u i d i t y a d d i t i v i t y e q u a t i o n (34) was found t o be obeyed: 1/n - B i l W i / n i
(6)
w i t h W£ r e p l a c e d by $i and t h e s l i p c o e f f i c i e n t For X > 1 a t concentrations w < 0.5 E q u a t i o n ( 1 ) y i e l d e d good a p p r o x i m a t i o n ; a t h i g h e r PP c o n t e n t , E q u a t i o n 6 was obeyed. The e x t r u d a t e s w e l l , B - B ( a ) , f o r HDPE and h i g h PP-content b l e n d s , w ^ 0.75, was independent o f temperature. The p l o t f o r w - 0.25 and 0.5 was temperature s e n s i t i v e , i n d i c a t i n g T-dependent morphology ( 3 2 , 3 3 ) . At h i g h PP c o n t e n t and l o w s t r a i n s t h e l o w e r v i s c o s i t y HDPE drops became deformed a t t h e c a p i l l a r y e n t r a n c e . R e t r a c t i o n o f these f i b e r s caused l a r g e e x t r u d a t e s w e l l . At h i g h s t r a i n s b o t h phases were s t r a i n e d , y i e l d i n g average, smaller B values. For h i g h HDPE c o n t e n t B d e c r e a s e d w i t h t e m p e r a t u r e , T, p r o b a b l y due t o i n c r e a s e d i n t e r l a y e r s l i p caused by l o w e r i n g t h e viscosity. Blends o f t h r e e PP and two HDPE r e s i n s h a v i n g d i f f e r e n t v a l u e s of n were s t u d i e d i n a c a p i l l a r y v i s c o m e t e r ( 3 5 ) . Independently o f the v i s c o s i t y r a t i o , X, a t 200°C a l l blends showed s m a l l n e g a t i v e d e v i a t i o n from t h e l o g - a d d i t i v i t y r u l e , NDB. The n o n - e q u i l i b r i u m e x t r u d a t e s w e l l a t low s t r e s s (measured a f t e r quenching) showed s m a l l p o s i t i v e d e v i a t i o n from t h e a d d i t i v i t y r u l e w h i l e a t h i g h e r s t r e s s e s t h e a d d i t i v i t y . The NDB tendency f o r t h e v i s c o s i t y combined w i t h t h e c o n s t a n t c r i t i c a l shear s t r e s s f o r melt f r a c t u r e , a^F * 2MPa, i n d i c a t e a b e t t e r e x t r u d a b i l i t y o f t h e PP/HDPE blends t h a n t h a t o f the neat r e s i n s . Blends o f PP with LDPE have been o f i n d u s t r i a l i n t e r e s t f o r y e a r s ( 2 4 , 35-38). P l o t s o f n * r\(o ) v s . w i n v a r i a b l y show NDB ( 3 5 , 36, 38) whose magnitude v a r i e s w i t h t h e method o f b l e n d p r e p a r a t i o n ( 3 7 ) and s t r e s s l e v e l ( 2 4 ) . The n e g a t i v e d e v i a t i o n s i n d i c a t e t h a t t h e mechanism r e s p o n s i b l e f o r NDB i s i n t e r l a y e r s l i p . A c c o r d i n g t o L i n (34) t h e i n t e r l a y e r s l i p f a c t o r i n E q u a t i o n 6: 2
1 2
2
2
0
l2
- 1 + (B
1 2
/a
2
1
1 2
) (w w ) /2 1
2
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
(7)
160
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
where 8 i s the c h a r a c t e r i s t i c s l i p f a c t o r of the blend, i . e . the NDB s h o u l d b e , a s o b s e r v e d , more pronounced a t s m a l l a * * e x t r u d a t e s h r i n k a g e was a l s o r e p o r t e d (24, 3 8 ) . Blends w i t h X * l were e x t r u d e d , then p l a c e d i n an o i l b a t h a t 190°C f o r about one h o u r . The s h r i n k a g e was c a l c u l a t e d a s 1 2
T
ie
1 2
e. = I n ( L / L J
(8)
0
where L and L ^ i n d i c a t e t h e i n i t i a l and f i n a l e x t r u d a t e l e n g t h s , respectively. The p l o t o f £«, v s . c o m p o s i t i o n i s p r e s e n t e d i n F i g . 2. I t c a n be shown t h a t w h i l e the a b s o l u t e magnitude o f €«, depends on t h e i n i t i a l a s p e c t r a t i o o f t h e e x t r u d a t e , t h e form o f £«> v s . w does n o t . I t i s apparent t h a t f o r t h e system w i t h X * 1 t h e maximum shrinkage occurs a t w * 0.5 where t h e f i b r i l l a t i o n a f f e c t s b o t h c o - c o n t i n u o u s phases. The f l o w p r o p e r t i e s o f LLDFE/PP b l e n d s were s t u d i e d by Dumoulin et a l . (39-41). T h i s s u b j e c t w i l l be d i s c u s s e d i n the l a s t p a r t o f t h i s chapter. C o n c l u d i n g the l i t e r a t u r e r e v i e w t h e f o l l o w i n g remarks s h o u l d be made: ( i ) the NDB b e h a v i o r o f n • n ( a ) v s . w , a l a r g e e x t r u d a t e s h r i n k a g e near w - 0.5 and a s e n s i t i v i t y o f t h e r h e o l o g i c a l f u n c t i o n s t o methods o f b l e n d p r e p a r a t i o n a l l i n d i c a t e i m m i s c i b i l i t y ( 1 0 , 1 1 , 4 2 , 4 3 ) , ( i i ) t h e s i n g l e phase f l o w o f PE b l e n d s was r e p o r t e d o n l y f o r homologous PE b l e n d s when t h e components' m o l e c u l a r w e i g h t M < 1000 kg/mol; t h e homologous HDPE/UHMWPE b l e n d was found t o form two phases, p r o b a b l y caused by t h e slow r a t e o f UHMWPE d i s s o l u t i o n i n the m e c h a n i c a l l y compounded m i x t u r e s , ( i i i ) b l e n d s o f HDPE w i t h LDPE were found t o be i m m i s c i b l e , although the i m m i s c i b i l i t y may be m a r g i n a l , d i s a p p e a r i n g a t h i g h temperatures f o r low m o l e c u l a r weight components, and ( i v ) blends o f PE w i t h PP show strong, nearly antagonistic immiscibility. 0
2
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
2
1 2
2
2
w
PART I I ,
LLDPE BLENDS WITH PE
A s t a n d a r d commercial f i l m b l o w i n g LLDPE r e s i n , LPX-30, was blended a t d i f f e r e n t r a t i o s w i t h e i t h e r o t h e r LLDPE's o r a LDPE polymer. The c h a r a c t e r i s t i c p r o p e r t i e s o f these m a t e r i a l s are l i s t e d i n Table I I . The r e s i n s were g e n e r o u s l y donated t o t h e p r o j e c t by Esso Chem., Canada. P r i o r t o b l e n d i n g the polymers were t h o r o u g h l y c h a r a c t e r i z e d by SEC, SEC/LALLS, s o l u t i o n v i s c o s i t y , CNMR, Atomic Absorbance, and t h e i r r h e o l o g i c a l b e h a v i o r was c h a r a c t e r i z e d i n steady s t a t e and dynamic shear f l o w a s w e l l a s i n the u n i a x i a l e x t e n s i o n a l d e f o r m a t i o n (44-46). 13
Experimental B l e n d i n g was done u s i n g a W e r n e r - P f l e i d e r e r c o - r o t a t i n g t w i n screw e x t r u d e r , model ZSK-30 a t 140 rpm. The p e l l e t i z e d r e s i n s were p r e - d r y - b l e n d e d and f e d t o t h e e x t r u d e r u s i n g a v o l u m e t r i c m e t e r i n g f e e d e r , I n c r i s o n model 105-C. The f o l l o w i n g temperature p r o f i l e was used: ( f e e d e r ) 158, 192, 214, 196 and ( d i e ) 196°C. The e x t r u s i o n r a t e was Q - 6 t o 8 kg/hr, i n d i c a t i n g e x t e n s i v e b a c k m i x i n g . The e x t r u d a t e s were g r a n u l a t e d , d r i e d and formed i n t o shapes s u i t a b l e f o r rheological testing. The c o m p o s i t i o n , code and m o l e c u l a r w e i g h t
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
C a t a l y s t based on:
Branches C
Zero-shear v i s c o s i t y n
6.
7.
8.
n
Comonomer/concentration (wt%)
0
a t 190°C ( k P a s )
10 p e r 1000 C-atoms
n
5.
w
P o l y d i s p e r s i t y i n d e x (-) M /M
4.
n
M o l e c u l a r w e i g h t s (kg/mol)
3. M
M e l t i n d e x (190°C, 2.16 k g , g/10 min)
2.
(kg/m )
Density
3
(units)
34
0
Ti
V7.4
3.4 ± 0.2 6
645
0
V
C /l.l
11 ± 2
9.3
1.2
-
4.1 ± 0.1
16 ± 1 225 ± 8
17 ± 1 593 ± 11
41 ± 2 272 ± 27
6.5
922.5
0.3
955
918
LDPE
[44 t o 46]
1.0
LLDPE-10
LPX-30
C h a r a c t e r i s t i c parameters o f n e a t PE r e s i n s
1.
No. Parameter
Table I I .
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
8120
0
Ti
C^/4.5
7.6 ± 0.2
28 ± I 719 ± 30
0.3
951
LPX-24
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
162
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
averages o f t h e t h r e e t y p e s o f blends a r e l i s t e d i n T a b l e I I I . A n t i o x y d a n t , a m i x t u r e o f I r g a n o x 1010 and Irganox 1029, was used a t a c o n c e n t r a t i o n 0.2 wt %. For d e t e r m i n a t i o n o f t h e s t e a d y s t a t e s h e a r v i s c o s i t y t h e I n s t r o n c a p i l l a r y v i s c o m e t e r model 3211 was used a t 190°C. S i x c a p i l l a r i e s were u s e d , t h r e e each o f d i a m e t e r d • 747 and 1273 um. The l e n g t h t o d i a m e t e r r a t i o i n each s e r i e s v a r i e d from L/d - 0.6 t o 60. The s t a n d a r d Bagley and R a b i n o w i t s c h c o r r e c t i o n s as w e l l a s t h a t f o r the p r e s s u r e e f f e c t s (45) were a p p l i e d . The e x t r u d a t e s w e l l was d e t e r m i n e d on a i r - c o o l e d e x t r u d a t e s , 5 cm i n l e n g t h . Rheometries M e c h a n i c a l Spectrometer, Model 605, RMS, was used i n t h e dynamic mode a t 150°C w i t h t h e p a r a l l e l p l a t e s geometry. To examine t h e t h e r m a l s t a b i l i t y o f the r e s i n s , f i r s t t h e two hours l o n g t i m e sweep a t s t r a i n y • 15% and f r e q u e n c y u> * 10 r a d s / s was c a r r i e d o u t ; t h e t e s t samples were found t o be s t a b l e f o r a t l e a s t 60 min. The f r e q u e n c y sweep a t y - 1 5 % was performed i n two d i r e c t i o n s : f o r two samples from w = 0.1 t o 100 ( r a d s / s ) and f o r two o t h e r s from 1 t o 0.01 ( r a d s / s ) . Two d i a m e t e r s o f p l a t e n s were used: 25 and 50 mm. The r e s u l t s were a c c e p t e d i f t h e maximum d i f f e r e n c e between t h e r e s u l t s o f t h e s e f o u r sweeps i n t h e common range: u » 0.1 t o 1.0 d i d not d i f f e r by more than 5%. A l l t e s t s were done under a b l a n k e t o f dry nitrogen. The measurements were r e c o r d e d u s i n g t h e RMS Columbia t e r m i n a l , Model 964, t h e n t h e d a t a were t r a n s f e r r e d t o a H e w l e t t Packard, HP-85, mini-computer f o r analysis and m a t h e m a t i c a l m a n i p u l a t i o n , v i z . c a l c u l a t i o n o f the z e r o shear v i s c o s i t i e s , n . Rheometrics E x t e n s i o n a l Rheometer, Model 605 (RER) was used a t 150°C i n a c o n s t a n t s t r a i n r a t e (e) mode. To f a c i l i t a t e s t o r a g e and m a n i p u l a t i o n o f d a t a t h e RER was i n t e r f a c e d w i t h a Hewlet-Packard model HP-85 micro-computer. F o r the t e s t , the samples were t r a n s f e r molded under vacuum, a n n e a l e d , and t h e n a f f i x e d w i t h epoxy (24 h o u r s c u r i n g ) t o the aluminum t i e s . Prepared i n t h i s manner, specimens d i d not show any shape change on immersion i n h o t (T * 150°C) s i l i c o n e oil. The specimens were mounted i n t h e i n s t r u m e n t and immersed i n Dow 200 s i l i c o n o i l a t 150°C. The t e s t s t a r t e d a f t e r a 7 t o 10 minute temperature e q u i l i b r a t i o n p e r i o d . D u r i n g t h e measurements t h e maximum temperature d i f f e r e n c e , a s r e a d by t h r e e thermocouples p l a c e d a t d i f f e r e n t h e i g h t s i n t h e sample chamber, d i d n o t exceed 0.5°C. For each sample t h e u n i f o r m i t y o f t h e c y l i n d r i c a l shape was v e r i f i e d a t t h r e e d i f f e r e n t h e i g h t s ; i n a l l cases t h e average d i a m e t e r was found t o be d • 5.55 ± 0.05 mm. The sample l e n g t h used i n t h i s s t u d y was LQ • 22 mm ± 0.1 mm. I t i s c o n v e n i e n t t o d i s c u s s r e s u l t s o f t h i s work under s e p a r a t e s u b - t i t l e s , s t a r t i n g w i t h t h e c a p i l l a r y , t h e n w i t h dynamic and f i n a l l y the e x t e n s i o n a l f l o w behavior. 0
Pressure correction I t was observed t h a t B a g l e y p l o t s o f p r e s s u r e drop P v s . L/d were not always l i n e a r ( 4 5 , 47):
P = I C. ( L / d ) i=0
1
1
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
(9)
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989. 133 114 144 123 151 152 133 112 114 107 66 64 133 141 150 174 199 216
41 33 36 25 25 17 41 36 34 29 19 16 41 39 38 34 30 28
0 0 0 0 0 0 0 0 0 0 0 0 0 10 20 50 80 100
0 10 20 50 80 100 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
100 90 80 50 20 0
100 90 80 50 20 0
11.0 - 1.0 11.10 11.20 11.50 11.80 11.100
I I I . O - 1.0 III.10 I I I . 20 III.50 I I I . 80 III.100
I. 0 I . 10 I . 20 I . 50 I . 80 1.100
0 0 0 0 0 0
w
0 10 20 50 80 100
M
100 90 80 50 20 0
n
LPX-30
M LPX-24
Content (wt%)
( i n kg/mol) o f t h e Three S e r i e s o f LLDPE Blends
LDPE
Polvmer
Composition and M o l e c u l a r Weights
LLDFE-10
Code
Table I I I .
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
z
272 340 401 548 659 719
272 252 254 242 248 225
272 275 357 397 525 593
M
164
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
where C^'s a r e parameters! correction), C - 4 a and x
C
• P
Q
( t h e Bagley
e
entrance
and e x i t
1 2
C
2
* c\ a b / 2 P * 1
where: a j i s t h e temperature d e f i n e d by t h e dependence: I n no
88a
o
(10)
1
and p r e s s u r e
+
a
f
i/(
+
a
sensitivity
parameter
2^
w i t h f b e i n g t h e f r e e volume f r a c t i o n computed from t h e SimhaSomcynsky e q u a t i o n o f s t a t e ( 4 8 ) ; b i s t h e f r e e volume p r e s s u r e c o e f f i c i e n t d e f i n e d by t h e r e l a t i o n : x
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
1/f = b
0
+ bjP/P*;
at
T = T/T*
= const.
(12)
w i t h P* and T* b e i n g t h e c h a r a c t e r i s t i c ( f o r a g i v e n l i q u i d ) p r e s s u r e and temperature r e d u c i n g f a c t o r s , r e s p e c t i v e l y . Note t h a t a c c o r d i n g t o E q u a t i o n 12 b± - b j ( T ^ i s a u n i v e r s a l c o n s t a n t f o r a l l l i q u i d s a t the reduced temperature T, i . e . b o t h b j and P* a r e determined by the thermodynamic p r o p e r t i e s o f a system w i t h o n l y a r e m a i n i n g unknown. F o r HDPE o r LLDPE a t 190°C, E q u a t i o n 10 can be r e a r r a n g e d t o : 1
a
x
* 154 ( C / C i )
(13)
2
w i t h t h e b a r i n d i c a t i n g t h e average v a l u e . The v a l u e s o f a j were computed f o r a s e r i e s o f LLDPE and HDPE samples w i t h a wide range o f m o l e c u l a r w e i g h t s . The d a t a were found t o f o l l o w t h e l i n e a r dependence: a
x
- -0.1065 + 4031
M /M ; w
M /M
n
w
n
< 35
(14)
2
w i t h t h e c o r r e l a t i o n c o e f f i c i e n t squared, r - 0.9945. Computation o f a r e s u l t e d i n t h e v a l u e s p l o t t e d v s . c o m p o s i t i o n i n F i g . 3. A c c o r d i n g t o E q u a t i o n 14, a± depends on p o l y d i s p e r s i t y which f o r a b l e n d can be c a l c u l a t e d from m o l e c u l a r weight averages o f t h e neat polymers assuming t h e i r m i s c i b i l i t y : x
1
Mn "
E»l/M
«w " H
M
/ M
n " I
( w
16
w i
< >
M ^ W i 1^
Mz - 1*1 ^
•'• w
M
(15)
ni
i
/ M
ni>
M
X"i w i
(17)
( 1 8
>
The b r o k e n l i n e i n F i g u r e 3 was computed from E q u a t i o n s 14 and 18 f o r blends o f S e r i e s - I . The agreement between e x p e r i m e n t a l r e s u l t s and the t h e o r e t i c a l p r e d i c t i o n s c o n f i r m s assumed m i s c i b i l i t y . On t h e o t h e r hand, a j v s . LDPE c o n t e n t f o r blends o f S e r i e s I I show
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
UTRACKI
Melt Flow ofPolyethylene Blends
165
EH 3.0
V
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
/
J L_ 50 LDPE
100
F i g u r e 2. E x t r u d a t e s h r i n k a g e ( i n Hencky s t r a i n u n i t s ) v s . composition of polypropylene/low density polyethylene blends. (Adapted from r e f . 38.)
0
0.2 0.4 0.6 0.8 1.0
F i g u r e 3. The temperature and p r e s s u r e s e n s i t i v i t y c o e f f i c i e n t f o r LLDPE 1 blended w i t h e i t h e r LLDPE 2 ( t r i a n g l e s ) o r LDPE (circles). The broken l i n e i s t h e o r e t i c a l , computed from v a r i a t i o n of p o l y d i s p e r s i t y i n (assumed) m i s c i b l e b l e n d s .
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
166
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
b e h a v i o r incongruous w i t h monotonic E q u a t i o n s 14 t o 18 giving evidence of i m m i s c i b i l i t y . The extrema a t 11.20 and 11.80 may i n d i c a t e l i m i t s of m i s c i b i l i t y . However, i t i s d i f f i c u l t to comprehend why c r o s s i n g s p i n o d a l s from t h e h i g h LLDPE s i d e r e s u l t s i n a system w i t h s t r o n g s e n s i t i v i t y o f r h e o l o g i c a l b e h a v i o r t o T and P w h i l e c r o s s i n g i t from t h e h i g h LDPE s i d e g e n e r a t e s b l e n d s w i t h r h e o l o g y i n s e n s i t i v e t o t h e s e independent v a r i a b l e s . Extrudate Swell The e x t r u d a t e s w e l l , B * D/d, (where D and d a r e the e x t r u d a t e and d i e d i a m e t e r r e s p e c t i v e l y ) i s p l o t t e d as B v s . w i n Fig. 4 for blends o f S e r i e s I and I I . In b o t h cases B f o l l o w s a s i m p l e parabolic equation: 2
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
B =
+ B
w
2
2
+ B w w 1 2
x
(19)
2
with B - 0.32 ± 0.06 and 0.91 ± 0.05 f o r S e r i e s I and I I respectively. The l a r g e B v a l u e f o r the l a t t e r b l e n d s s u g g e s t s t h a t here s w e l l i n g i s due t o s t r a i n r e c o v e r y o f f i b r i l l a t e d d r o p s r a t h e r than t o e x t r u d a t e s w e l l i n g as i n homologous polymer m e l t s . Note t h a t f o r system I I t h e B v s . w dependence resembles t h e e x t r u d a t e s h r i n k a g e i n F i g . 2. 1 2
1 2
2
Entrance flow The e n t r a n c e t o c a p i l l a r y f l o w was s t u d i e d by a f l o w v i s u a l i z a t i o n method ( 4 9 ) . The f l o w p a t t e r n f o r S e r i e s I I b l e n d s i s p r e s e n t e d i n F i g . 5 ( s i n c e the f l o w i s a x i s y m m e t r i c o n l y the l e f t hand s i d e p a r t of the e n t r a n c e r e g i o n i s shown). There i s a l a r g e d i f f e r e n c e i n f l o w p a t t e r n between t h a t o f LLDPE ( 0 % ) and of LDPE ( 1 0 0 % ) . In the l a t t e r case t h e c l a s s i c a l w i n e - g l a s s shape w i t h l a r g e v o r t i c e s was observed. Upon a d e c r e a s e o f LDPE c o n t e n t b o t h the g l a s s - s t e m and v o r t i c e s slowly decreased. I t was n o t e d t h a t as l i t t l e as 2% o f LDPE was s u f f i c i e n t t o i n t r o d u c e s i g n i f i c a n t changes i n LLDPE f l o w pattern. The m a t h e m a t i c a l modeling o f the e n t r a n c e f l o w a l l o w s c o r r e l a t i o n between the v o r t e x s i z e and the s t r a i n h a r d e n i n g i n extensional flow. The frequency dependence The dynamic f l o w d a t a can r e a d i l y be e v a l u a t e d i n a t h r e e s t e p process: ( i ) e x a m i n a t i o n o f t h e d a t a f o r presence o f an a p p a r e n t y i e l d s t r e s s , a , and s u b s e q u e n t l y i t s s u b t r a c t i o n , ( i i ) f i t t i n g t h e d a t a t o e i t h e r the g e n e r a l i z e d C a r r e a u model ( 4 2 ) : v
n or
f
- G"(o))/(0 - n
111
0
U+UX!) !]"™
2
(20)
t o the H a v r i l i a k - f l a g a m i dependence ( 5 0 ) : 1
a
n* = G*/u> - Ti [l-Kia>T2> ~ ]'"
B
0
(21)
and ( i i i ) g e n e r a l i z a t i o n o f the r e s u l t s by d e r i v i n g o t h e r l i n e a r v i s c o e l a s t i c dependencies by means o f t h e i n t e r m e d i a t i o n o f t h e Gross* f r e q u e n c y r e l a x a t i o n spectrum:
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
Melt Flow ofPolyethylene Blends
167
F i g u r e 4. E x t r u d a t e s w e l l a t 190°C v e r s u s weight f r a c t i o n of t h e second component i n S e r i e s - I and I I ; curves - E q u a t i o n 19.
F i g u r e 5. Flow p a t t e r n a t the e n t r a n c e t o c a p i l l a r y f o r l i n e a r low d e n s i t y / l o w d e n s i t y p o l y e t h l e n e b l e n d (LLDPE/LDPE) a t 190°C and y - 125 ( s " ) . From the l e f t hand s i d e : 0, 20, 50 and 100% of LDPE. (Reproduced from r e f . 49.) 1
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
168
MULTIPHASE POLYMERS: BLENDS AND IONOMERS ±i7r
H (a)) - ± (l/a>ir)ImG(a)e ) « (2/aiir) ReG"(u>e
±l7r/2
G
)
(22)
1
f
In E q u a t i o n s 20 t o 22: n , n* a r e dynamic and complex v i s c o s i t y ; G , G", G* a r e t h e s t o r a g e , l o s s and complex s h e a r modulus; a) i s t h e frequency; the primary r e l a x a t i o n time; n i j , m , a, 3 a r e parameters: i - / - l ; and Im, Re i n d i c a t e t h e i m a g i n a r y and r e a l p a r t s o f t h e complex f u n c t i o n , r e s p e c t i v e l y . The c o n v e n i e n t way o f d a t a e x a m i n a t i o n f o r presence o f t h e apparent y i e l d s t r e s s i s by means o f t h e m o d i f i e d Casson p l o t ( 5 1 ) : 2
F* = F
* + a F * — m
(23)
where F, F and F are r h e o l o g i c a l f u n c t i o n s of the blend, the m a t r i x phase and i t s y i e l d v a l u e , r e s p e c t i v e l y ; a, i s a parameter r e p r e s e n t i n g t h e square r o o t o f t h e r e l a t i v e F - f u n c t i o n . Note t h a t E q u a t i o n 23 l o o s e s i t s sense i n systems where i d e n t i f i c a t i o n o f t h e d i s p e r s e d and m a t r i x l i q u i d i s becoming ambiguous. For F any r h e o l o g i c a l f u n c t i o n s , e.g. o , G , G", can be used. The y i e l d phenomenon o r i g i n a t e s i n a s t a b l e t h r e e - d i m e n s i o n a l s t r u c t u r e . when t h e s t r e s s exceeds i t s y i e l d v a l u e , a > a , the structure i s d e s t r o y e d and t h e m a t e r i a l b e h a v i o r changes from s o l i d - l i k e t o liquid-like. In t h i s c l a s s i c a l d e s c r i p t i o n the rate i s not considered. I n b l e n d s a t h i g h c o n c e n t r a t i o n o f d i s p e r s e d phase the d r o p l e t s e i t h e r form i n t e r a c t i v e c l u s t e r s o r t h e y c o a l e s c e i n t o a c o - c o n t i n u o u s network. The r e l a x a t i o n time o f t h e s e i n t e r a c t i v e e n t i t i e s , T , i s rather long. When an experiment i s c a r r i e d out s l o w l y enough, a l l o w i n g t h e c l u s t e r t o r e f o r m , F + 0 can be found. On t h e o t h e r hand, when t h e experiment i s conducted on a time s c a l e comparable t o T , t h e n t h e network response i s analogous t o t h a t i n t h e c l a s s i c a l concept and F * 0 i s observed. F o r m a l l y one may e x p r e s s t h i s i d e a i n t h e form o f t h e f o l l o w i n g r e l a t i o n : m
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
y
y
f
1 2
1 2
y
v
y
v
y
F
y
=F~
[1-exp { - } ]
U
(24)
V
where x i s t h e r e l a x a t i o n time o f i n t e r a c t i v e c l u s t e r and u * 0.2 t o 1.0 i s an exponent. At a g i v e n frequency u> and when x > 0 and » t h e apparent y i e l d s t r e s s F • 0 and F • F , respectively. Similarly f o r x - c o n s t , ( s p e c i f i c polymer blend) Fy reaches t h e s e l i m i t s f o r u> 0 and o> «. Experimental v e r i f i c a t i o n of dependencies 23 and 24 was r e c e n t l y p u b l i s h e d ( 5 2 , 5 3 ) . A f t e r t h e apparent y i e l d s t r e s s i s c a l c u l a t e d , t h e e x p e r i m e n t a l v a l u e s , F , s h o u l d be c o r r e c t e d by s u b t r a c t i n g F : y
y
00
y
y
y
a
y
F(o)) - F (u>) - F (u>) a y
(25)
Once t h e v a l u e s o f F(u>) a r e known e i t h e r E q u a t i o n 20 o r 2 1 c a n be used. The advantage o f E q u a t i o n 20 i s t h a t o n l y F • G needs t o be c o r r e c t e d f o r t h e apparent y i e l d s t r e s s . I f E q u a t i o n 21 i s t o be used b o t h G and G must be c o r r e c t e d i n d e p e n d e n t l y and then: |4
a
a
a
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
a
7.
Melt Flow ofPolyethylene Blends
UTRACKI
2
169
2
G* = (G» + G " ) *
(26)
calculated. (Note: s i n c e Gy * Gy a n attempt t o u s e F - G* u s u a l l y leads t o nonsensical r e s u l t s ) . F i g . 6 shows t h e c u r v e - f i t o f n v s . to dependence f o r S e r i e s I and I I blends by means o f E q u a t i o n 20. The f i t t i n g procedure generated t h e n u m e r i c a l v a l u e s o f t h e f o u r parameters o f t h e e q u a t i o n : TIQ, T, m and m . I t was found t h a t t h e z e r o shear v i s c o s i t y o f homopolymers and b l e n d s f o l l o w e d t h e r e l a t i o n : 1
1
2
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
n
« M
0
a
(27)
where a * 3.5. The m o l e c u l a r weight M^, f o r polymers w i t h l o g - n o r m a l d i s t r i b u t i o n o f m o l e c u l a r w e i g h t s , c a n be e x p r e s s e d a s (45): M
0
- M (M /M ) -
n
2
W
2
(28)
n
The dependence i s shown i n F i g . 7. From E q u a t i o n 20 a t u> » 1 the power law exponent n • 1 - m m i . e . 0 £ m m ^ 1 a r e p r e d i c t e d and e x p e r i m e n t a l l y v e r i f i e d . The l a s t parameter o f E q u a t i o n 19, t h e p r i n c i p a l r e l a x a t i o n t i m e T j , i s a complex f u n c t i o n dependent o n sample p o l y d i s p e r s i t y which can not be r e a d i l y c o r r e l a t e d w i t h a s i n g l e m o l e c u l a r o r T h e o l o g i c a l f u n c t i o n ( 4 5 ) . However, the c o r r e l a t i o n can be o b t a i n e d through HQ as intermediary. U s i n g p r i n c i p l e s o f complex a l g e b r a HQ c a n be e x p r e s s e d i n terms o f e i t h e r E q u a t i o n 20 o r E q u a t i o n 21 parameters: 1
1
2
2
H U)
- (2
G
n o
/Tr)r "
i n 2
1
sin m 8 2
1
- (n /7r)r 0
e
sin
2
38
2
(29)
where: r
m
x
= [ l + 2 ( a ) T ) l cos (mnx/2) +
6! = a r c s i n {(o)T) r 6
((AT )
1
1
{[l-CaiTa) "
mi
0
X
"M*
1
r^" sin
= a r c t a n {[ (WT ) " cos ( i r a / 2 ) ] / [ l - ( a ) T ) ]
2
"
a )
2
1
+ (a)T )
2 ( 1
s
2
s i n (ira/2)]
2
2
a
2
cos
2
1 - 0 1
s i n (ira/2)}
(ia/2)}*
F u r t h e r m o r e , from E q u a t i o n 21 t h e r e a l and i m a g i n a r y p a r t s o f n* c a n be e x p r e s s e d as: n
f
- (n /r
0
) cos 8 6
2
(30a)
« (n /r ) sin 36
2
(30b)
o
0
2
2
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
170
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
UTRACKI
Melt Flow ofPolyethylene Blends
171
Comparing E q u a t i o n s 29 and 30 i t i s e v i d e n t t h a t f o r systems whose n* v s . a) dependence can be d e s c r i b e d by E q u a t i o n 21 t h e r e i s a s i m p l e e q u i v a l e n c e : n"(u>) • TTHQ(U)). The m o l e c u l a r weight dependence e n t e r s E q u a t i o n 29 t h r o u g h nQ• For t h i s r e a s o n i t i s c o n v e n i e n t t o d e f i n e t h e reduced frequency r e l a x a t i o n spectrum as: H (o>) = H ( u ) ) / n G
An example integral:
of this
G
(31)
0
f u n c t i o n i s presented
i n F i g . 8.
Since t h e
J ^ H ^ s ) dins = 1
(32)
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
—CO
H
the coordinates of H (u)) maximum (^max* G max^ should c o r r e l a t e w i t h t h e m o l e c u l a r parameters o f the m e l t . indeed, i t can be shown t h a t i n s i n g l e phase systems ( % depends o n n * H o n sample p o l y d i s p e r s i t y (11, 14, 54). These dependencies a r e p r e s e n t e d i n F i g . 9. I t i s evident that f o r S e r i e s I blends t h e r e i s a l i n e a r c o r r e l a t i o n between l o g o ) and l o g np ell a s between l o g HQ and \ / % b u t f o r LLDPE/LDPE, S e r i e s I I , t h e l i n e a r i t y i s n o t observed. The l i n e a r i t y o f dependencies i n F i g . 9 c a n be p r e d i c t e d assuming m i s c i b i l i t y i n a b l e n d composed o f polymers w i t h s i m i l a r molecular weights. For s u c h systems t h e g e n e r a l , t h i r d o r d e r m i x i n g r u l e f o r r e l a x a t i o n spectrum (55, 56): G
a n (
a x
G
m
a
0
x
a
s
w
m a x
m
a
x
H ( T
c a n be reduced
t o simple
>-j
k
W
(
T
/
V>
(
3
3
)
additivity: H(T)
« JW^CT)
(34)
I n E q u a t i o n 33 P ^ ^ i s t h e t h i r d o r d e r i n t e n s i t y f u n c t i o n ( r e p l a c e d i n E q u a t i o n 33 by t h e weight f r a c t i o n w^) and A j j k i s t h e t h i r d o r d e r i n t e r a c t i v e r e l a x a t i o n time f a c t o r , w h i c h o r i g i n a t e s i n t h e intermolecular interactions between d i s s i m i l a r molecules. In homologous polymer b l e n d s where the m o l e c u l a r weight o f one polymer i s l o w e r than t h e entanglement m o l e c u l a r w e i g h t , and t h a t o f t h e second i s h i g h e r than Mg, E q u a t i o n 34 must be extended t o accommodate a second o r d e r term (57). The proposed method o f d a t a t r e a t m e n t has two advantages: ( i ) i t a l l o w s assessment o f t h e s t a t u s o f b l e n d m i s c i b i l i t y i n the m e l t , and ( i i ) i t p e r m i t s c o m p u t a t i o n o f any l i n e a r v i s c o e l a s t i c f u n c t i o n from a s i n g l e f r e q u e n c y scan. Once t h e n u m e r i c a l v a l u e s o f E q u a t i o n 20 o r E q u a t i o n 21 parameters a r e e s t a b l i s h e d t h e r e l a x a t i o n spectrum a s w e l l a s a l l l i n e a r v i s c o e l a s t i c f u n c t i o n s o f the m a t e r i a l a r e known. Since t h e r e i s a d i r e c t r e l a t i o n between t h e r e l a x a t i o n and t h e r e t a r d a t i o n time s p e c t r a , one c a n compute from HQ(U>) t h e s t r e s s g r o w t h f u n c t i o n , c r e e p c o m p l i a n c e , complex dynamic c o m p l i a n c e s , e t c .
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
172
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
1000 (kPa.s) 100
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
10
1 100
KA
1000
Figure 7. M o l e c u l a r weight dependence o f t h e z e r o - s h e a r viscosity f o r Series-I and I I . The l i n e represents the dependence f o r neat LLDPE r e s i n s . (Reproduced w i t h p e r m i s s i o n from r e f . 45. C o p y r i g h t 1987 SPE.)
'ogHgfGO)
Series-II.
logo)
F i g u r e 8. Reduced Gross f r e q u e n c y r e l a x a t i o n spectrum f o r S e r i e s - I and I I . The arrows i n d i c a t e computed c o o r d i n a t e s of t h e maximum ( H maxj^max)G
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
UTRACKI
Melt Flow ofPolyethylene Blends
173
F i g u r e 9. (a) C o r r e l a t i o n between the a b s c i s s a s o f r e l a x a t i o n spectrum maximum and t h e z e r o - s h e a r v i s c o s i t y f o r S e r i e s - I and I I ; (b) C o r r e l a t i o n between the o r d i n a t e o f r e l a x a t i o n spectrum maximum and the p o l y d i s p e r s i t y f a c t o r M /M . n
w
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
174
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
(58). However, one must keep i n mind t h a t v a l i d i t y o f the computed f u n c t i o n s i s o n l y a s s u r e d w i t h i n t h e range o f independent v a r i a b l e s (u>,T,P,t,...) used i n d e t e r m i n i n g HQ. F o r example: +00
G (u>) - J {s calc -» f
2
H (s)/[l+(s/u>) ]} dins
(35a)
G"(aO - J {» H ( s ) / [ l + ( a ) / s ) ] } d i n s calc -»
(35b)
G
2
G
+00 +
n ( t ) - J H (s)[l-exp{st}] dins calc -°°
(36)
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
G
+
where n i s the s t r e s s growth shear v i s c o s i t y . In F i g . 10 t h e e x p e r i m e n t a l v a l u e s o f G' f o r blends S e r i e s I and I I ( p o i n t s ) a r e compared w i t h G j , i ( l i n e s ) computed from HQ w h i c h i n t u r n was determined u s i n g the n'-data. The agreement i s q u i t e s a t i s f a c t o r y with residuals |G - G | < 5% f o r b o t h s e r i e s . The concluded immiscibility f o r LLDPE/LDPE blends of S e r i e s I I make this observation p a r t i c u l a r l y interesting. a
c
f
c a l c
Cole-Cole plot The n" v s . n dependence i s o f t e n used w h i l e d i s c u s s i n g the dynamic d a t a o f polymer b l e n d s . Since f o r s i m p l e l i q u i d s the p l o t has t h e form of a s e m i - c i r c u l a r a r c , d e v i a t i o n from a s e m i - c i r c l e i s sometimes i d e n t i f i e d w i t h i m m i s c i b i l i t y . However, as f r e q u e n t l y demonstrated f o r homopolymers (16) and homologous polymer b l e n d s (59) the form o f the n" v s . n' p l o t i s determined by t h e shape o f t h e r e l a x a t i o n spectrum; t h e m o l e c u l a r p o l y d i s p e r s i t y can modify the C o l e - C o l e p l o t as much as t h e presence o f t h e i n t e r p h a s e . As a r u l e , t h e presence o f ( u n s u b t r a c t e d ) y i e l d s t r e s s appears i n the p l o t as a sudden d e p a r t u r e from a s e m i - c i r c u l a r p a t t e r n a t h i g h e r n* l e v e l . From E q u a t i o n s 29 and 30 i t i s e v i d e n t t h a t b o t h H (aO and the C o l e - C o l e p l o t c o n t a i n the same i n f o r m a t i o n ; i n p r i n c i p l e t h e s e d a t a treatments are equivalent. The advantage of HQ is the straight-forward interpretation and access to other linear v i s c o e l a s t i c f u n c t i o n s . The advantage o f the C o l e - C o l e p l o t i s i t s simplicity i t can be constructed simply by plotting one experimental f u n c t i o n versus another. In accordance w i t h E q u a t i o n 30 n and n" can be n o r m a l i z e d by d i v i d i n g by , i.e. n V ^ and TI"/T^. Such a n o r m a l i z e d C o l e - C o l e p l o t has f r e q u e n t l y been used f o r polymer blends (60, 6 1 ) . In F i g . 11 the n o r m a l i z e d C o l e - C o l e p l o t i s shown f o r b l e n d s o f S e r i e s I and II. The d a t a used f o r c o n s t r u c t i n g the F i g u r e a r e the same as those used f o r c o m p u t a t i o n o f HQ i n F i g . 8. f
G
1
Cross-point coordinates The c o o r d i n a t e s d e f i n e d as G = G * G" a t o> • u>x were r e p o r t e d ( 6 2 , 63) t o be r e l a t e d t o the m o l e c u l a r parameters of melts: Gx « (M^/M^ and « w i t h a and 0 negative. From E q u a t i o n s 34 and 35 i t f o l l o w s t h a t G = G" a t ui » s 1/x, i . e . when f
x
01
1
a
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
UTRACKI
Melt Flow ofPolyethylene Blends
175
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
Figure 10, Storage modulus v s . f r e q u e n c y f o r Series I LLDPE/LLDPE ( t o p ) and f o r S e r i e s I I LLDPE/LDPE b l e n d s (bottom) a t 190°C. P o i n t s - e x p e r i m e n t a l , s o l i d l i n e s computed from HQ( w), broken l i n e s connect the c o n s t a n t - u> d a t a p o i n t s . C o n c e n t r a t i o n of the second component i s g i v e n i n wt%. The r e s u l t s f o r each b l e n d i s d i s p l a c e d h o r i z o n t a l l y by one decade.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
176
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
the t e s t frequency e q u a l s t h e I n v e r s e d r e l a x a t i o n time system. S u b s t i t u t i n g t h i s c o n d i t i o n i n t o t h e r e l a t i o n :
of the
G'(u)) - A n a > T / U + ( a ) T ) ] 2
0
(37)
2
d e r i v e d f o r s i m p l e l i q u i d s w i t h a s i n g l e r e l a x a t i o n time (A«l) and by Rouse ( A - 6/TT ), one g e t s :
by Maxwell
2
n
- 2G /Ao>
0 M
x
(38)
x
f
o
r
L
D
P
E
In F i g . 12 n , c a l c u l a t e d w i t h A - 1, i s p l o t t e d v s . n and LLDPE r e s i n s and f o r t h e i r b l e n d s . F o r n ^ 60 kPas t h e t o t a l l y unexpected agreement noM no obtained. Above t h i s l i m i t t h e v a l u e s d i v e r g e d i n t o no - o M HQ > kPas, where E q u a t i o n 38 r e q u i r e s t h a t A * 1/7. From t h e g e n e r a l Rouse t h e o r y ( 6 4 ) A d e c r e a s e s w i t h an i n c r e a s e o f p o l y d i s p e r s i t y o f t h e r e l a x a t i o n t i m e s but t h e i n f l u e n c e i s n o t l a r g e enough t o a l l o w such a low A - v a l u e . As w i l l be shown i n p a r t 4 t h e dependence p r e s e n t e d i n F i g . 12 was d u p l i c a t e d by t h e r e s u l t s o f LLDPE/PP blends i n d i c a t i n g a broad a p p l i c a b i l i t y o f E q u a t i o n 38 ( 4 1 , 65). For LLDPE blends t h e r e l a t i o n s r e p o r t e d by Z e i c h n e r e t a l . ( 6 2 , 63) were n o t obeyed. F o r example t h e p l o t o f G v s . w showed an o p p o s i t e t r e n d from t h e p r e d i c t e d n e g a t i v e d e v i a t i o n from t h e additivity rule. For these systems t h e a c t i v a t i o n energy o f f l o w E = R ( 3 l n n/3 1/T) . - E^/n « 30 ± 2 kJ/mol was found ( 4 5 ) . 0 M
0
0
w
38
7n
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
a
F
s
O
R
x
2
a
a
c
o
n
s
t
The uniaxial extensional flow The b e h a v i o r o f LLDPE blends a t c o n s t a n t r a t e o f s t r e t c h i n g , e, was examined a t 150°C. Hie r e s u l t s a r e shown i n F i g . 13 f o r S e r i e s I and I I a s w e l l as i n F i g . 14 f o r S e r i e s I I I . The s o l i d l i n e s i n F i g . 13 r e p r e s e n t 3 n i v a l u e s computed from t h e frequency r e l a x a t i o n spectrum by means o f E q u a t i o n ( 3 6 ) , w h i l e t r i a n g l e s i n d i c a t e t h e measured i n s t e a d y s t a t e 3 n v a l u e s a t y • 1 0 " ( s ) , i . e . the s o l i d l i n e s and t h e p o i n t s r e p r e s e n t t h e p r e d i c t e d and measured l i n e a r v i s c o e l a s t i c behavior r e s p e c t i v e l y . The agreement i s s a t i s f a c t o r y . The b r o k e n l i n e s i n F i g . 13 r e p r e s e n t the e x p e r i m e n t a l v a l u e s o f t h e s t r e s s growth f u n c t i o n i n u n i a x i a l e x t e n s i o n , nE * ^ h distance between t h e s o l i d and broken l i n e s i s a measure o f n o n l i n e a r i t y o f the system caused by s t r a i n h a r d e n i n g , SH. +
c a
c
+
2
- 1
+
e
The SH p l a y s a p o s i t i v e r o l e i n f i l m b l o w i n g ( 1 5 , 4 4 ) o r i n w i r e coating (66). LPX-30 does n o t show t h i s effect and i t s p r o c e s s a b i l i t y i n d e x i s low. On the o t h e r hand, SH o f LDPE i s q u i t e h i g h and so i s t h e p r o c e s s a b i l i t y i n d e x . The a c c e p t e d mechanism f o r improvement o f f i l m bubble s t a b i l i t y i s s e l f h e a l i n g o f a p o t e n t i a l l y weak spot by a l o c a l i n c r e a s e o f e x t e n s i o n a l v i s c o s i t y caused by SH. I t i s i m p o r t a n t t o note t h a t adding t o LPX-30 e i t h e r 10 wt% LDPE, 20% LLDPE-10 o r 10% LPX-24 was s u f f i c i e n t f o r g e n e r a t i o n o f SH. The subsequent t r i a l on a p r o d u c t i o n l i n e c o n f i r m e d these results; i n c r e a s e d bubble s t a b i l i t y a l l o w e d f o r h i g h e r p r o d u c t i o n r a t e s o f t h e blends.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
177
Melt Flow of Polyethylene Blends
UTRACKI
n'Vri
S e r i e s II.
S e r i e s I. LLDPE-10 LLDPE- 30 o 80% LLDPE -30 A 50% LLDPE -30 • 20% LLDPE-30
• o A •
LDPE LLDPE-30 90% LLDPE-30 80% LLDPE-30 50% LLDPE-30 20% LLDPE-30
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
0.2
0.2
S e r i e s II. (Immiscible) i
0.2
I
I
I
0.4
,,
0.6
TIM
4
10
n
0 M
(
k P a s
0.8
1.0
0
F i g u r e 11. C o l e - C o l e p l o t f o r m i s c i b l e ( S e r i e s - I I ) polyethylene blends.
10
L
( S e r i e s - I ) and i m m i s c i b l e
)
3
•
LLDPE's
A
Series -1, o Series - II. 10
2
LPX-30
ffi
LDPE
10' 10°
1
10
10
2
10
3
10
4
rj (kPa.s) 0
Figure 12. Maxwellian zero-shear viscosity computed from c r o s s - p o i n t c o o r d i n a t e s v e r s u s n f o r S e r i e s - I and I I as w e l l a s f o r neat LLDPE r e s i n s . 0
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1
F i g u r e 13. S t r e s s growth f u n c t i o n f o r b l e n d s o f l i n e a r low d e n s i t y p o l y e t h y l e n e , LLDPE, w i t h ( l e f t ) a n o t h e r type o f LLDPE ( m i s c i b l e , S e r i e s - I ) and ( r i g h t ) w i t h low d e n s i t y p o l y e t h y l e n e ( i m m i s c i b l e , S e r i e s I I ) . Broken l i n e s : experimental data i n e l o n g a t i o n ; t r i a n g l e s : experimental data i n steady s t a t e shearing a t y - 0.01s" . S o l i d l i n e s were computed from t h e f r e q u e n c y r e l a x a t i o n spectrum. (Adapted from r e f . 14.)
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
i
° O § 2
7.
UTRACKI
Melt Flow ofPolyethylene Blends
179
F i g s . 13 and 14 a l s o p r o v i d e i n f o r m a t i o n o n sample p o l y dispersity. The i n i t i a l s l o p e o f the s t r e s s growth f u n c t i o n can b e e x p r e s s e d as: S-dlnr£/dlnt|
(39)
l o w t
1
F o r a s e r i e s o f LLDPE s t h e r e l a t i o n p r e s e n t e d i n F i g . 15 was found. An e x p l a n a t i o n f o r t h i s e m p i r i c a l c o r r e l a t i o n c a n be found i n G l e i s s l e ' s m i r r o r image p r i n c i p l e ( 6 7 ) : n(Y)
- n (t); +
t oc 1/}
(40)
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
Accordingly, S i s equivalent to: S * d i n n / d l n y\.. - n-1 1 high y 1
u
where n i s t h e power l a w i n d e x . Both (n-1) and S a r e r e l a t e d t o p o l y d i s p e r s i t y (68) Since f o r m i s c i b l e b l e n d s the p o l y d i s p e r s i t y c a n be c a l c u l a t e d from E q u a t i o n s 15 t o 18, t h e dependence i n F i g . 15 p r o v i d e s a means f o r d e t e c t i n g m i s c i b i l i t y i n samples under u n i a x i a l e x t e n s i o n a l f l o w . The d a t a i n F i g . 16 show the e x p e r i m e n t a l S v s . w dependence ( p o i n t s ) a s w e l l a s t h a t p r e d i c t e d from v a r i a t i o n o f t h e p o l y d i s p e r s i t y w i t h c o m p o s i t i o n (broken l i n e s ) f o r blends o f S e r i e s I and I I . The d a t a i n F i g . 16 c o n f i r m the p r e v i o u s r e s u l t s s u g g e s t i n g t h a t w h i l e LLDPE/LLDPE S e r i e s I b l e n d s a r e m i s c i b l e , those o f LLDPE w i t h LDPE, S e r i e s I I b l e n d s , a r e n o t . The S v s . w dependence f o r S e r i e s I I I shown i n F i g . 17 i s particularly interesting. A p p a r e n t l y , upon a d d i t i o n o f a s m a l l q u a n t i t y o f LPX-24, w ^ 20%, t h e p o l y d i s p e r s i t y i n c r e a s e s , a s i t s h o u l d i n a m i s c i b l e system. However, f o r w > 20% t h e p o l y d i s p e r s i t y seems t o d e c r e a s e . Phase s e p a r a t i o n i n the v i c i n i t y o f 20 wt% o f LPX-24 c o u l d p r o v i d e a mechanism f o r such b e h a v i o r . Curve No. 1 i n F i g . 1 shows t h e TIE " HE^c • 0.1 s " ) dependence o n w f o r S e r i e s I I I b l e n d s . The p o i n t s a r e e x p e r i m e n t a l , the curve i s a t h i r d o r d e r p o l y n o m i a l . S i m i l a r i t y o f the shape o f t h i s dependence and t h a t shown i n F i g . 17 a l l o w s p o s t u l a t i n g t h a t b o t h a r e caused by the phase b e h a v i o r . I t i s worth p o i n t i n g out t h a t the extrema o n the ng v s . w p l o t r e p r e s e n t c o m p o s i t i o n s w h i c h may be o f p a r t i c u l a r i n t e r e s t f o r p r o c e s s o r s : a t the maximum the e f f e c t of LPX-24 o n t h e s t r e s s h a r d e n i n g i s most pronounced and t h e c o m p o s i t i o n i s most s u i t a b l e f o r f i l m b l o w i n g . At the minimum the Tig, p a r a l l e l w i t h i t the shear v i s c o s i t y , i s the l o w e s t . The e x t r u d a b i l i t y o f LPX-24 w i t h about 10 t o 20 wt% LPX-30 i s most e f f i c i e n t and s t a b l e . The u s e f u l n e s s o f b l e n d s w i t h c o m p o s i t i o n s c o r r e s p o n d i n g t o extrema i n the p r o p e r t y - c o n c e n t r a t i o n dependence was r e c o g n i z e d by P l o c h o c k i , who l a b e l e d t h e s e a s t h e " r h e o l o g i c a l l y p a r t i c u l a r c o m p o s i t i o n s " , o r RPC (8)* A c c o r d i n g t o t h a t a u t h o r the shape o f a r h e o l o g i c a l f u n c t i o n v s . c o m p o s i t i o n dependence i s paralleled by a s i m i l a r relation between t h e d e n s i t y and concentration. J u d g i n g by i n f o r m a t i o n i n F i g . 17 i t i s the phase s e p a r a t i o n w h i c h p r o v i d e s t h e mechanism r e s p o n s i b l e f o r v a r i a t i o n o f d e n s i t y of Series I I I blends. 2
2
2
2
1
2
2
a
n
d
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
180
F i g u r e 15. I n i t i a l s l o p e s of t h e s t r e s s growth f u n c t i o n s o f LLDPE*s ( c o n t a i n i n g butene, hexene o r octene comonomer) as f u n c t i o n of r e s i n p o l y d i s p e r s i t y .
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
181
Melt Flow ofPolyethylene Blends
F i g u r e 16. C o m p o s i t i o n a l dependence o f the i n i t i a l s l o p e o f the e l o n g a t i o n a l s t r e s s growth f u n c t i o n f o r LPX-30/LLDPE 10 ( t o p ) and LPX-30/LDPE ( b o t t o m ) . The broken l i n e s were computed assuming miscibility.
F i g u r e 17. I n i t i a l s l o p e o f t h e s t r e s s LPX-30/LPX-24 b l e n d s v s . c o m p o s i t i o n .
growth
function for
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
182
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
From the dependence: • ( e , t ) i n F i g . 13 t h e v a l u e s o f t h e e q u i l i b r i u m e x t e n s i o n a l v i s c o s i t y , n g , were determined and p l o t t e d i n F i g . 18. O p e r a t i o n a l l y , ng was t a k e n as t h e maximum v a l u e o f rig a t a g i v e n e. F o r specimens w i t h maximum s t r a i n a t b r e a k l a r g e r than t h e rheometer l i m i t , - 3.2, t h e arrow on a s i d e o f the d a t a p o i n t was p l a c e d . The TIE * e dependences f o r S e r i e s I a r e s i m p l e , r e s e m b l i n g the c l a s s i c a l shear f l o w c u r v e s , n v s . y. The few arrows i n d i c a t e t h a t f o r most o f these blends ^ 3.2. By c o n t r a s t , t h e p l o t f o r S e r i e s I I i s q u i t e complex. Note t h a t f o r s e v e r a l blends rig a s w e l l as eg > 3.2 a r e l a r g e r than those f o r neat polymers. The complex shape o f TIE * s dependence f o r 11.50 b l e n d i s p a r t i c u l a r l y n o t i c e a b l e . A p p a r e n t l y the c o - c o n t i n u o u s b l e n d morphology, expected a t t h i s concentration, resulted i n selfr e i n f o r c i n g b e h a v i o r , more s e n s i t i v e t o the r a t e o f d e f o r m a t i o n than t h a t observed f o r 11.10 (LPX-30 w i t h 10% LDPE) where t h e d i s p e r s e d LDPE d r o p s were t r a n s f o r m e d by u n i a x i a l s t r e s s i n t o r e i n f o r c i n g s h o r t fibers. In F i g . 19 t h e steady s t a t e u n i a x i a l e l o n g a t i o n a l v i s c o s i t y , ng/3, i s compared w i t h t h e steady s t a t e shear, n, a s w e l l as dynamic, n , and complex, r\* v i s c o s i t i e s . I t i s e v i d e n t t h a t some s t r a i n h a r d e n i n g , e v i d e n t i n 1.100 (LLDPE-10) i s s y s t e m a t i c a l l y d i l u t e d by t h e i n c r e a s i n g amount o f LPX-30. Thus, S e r i e s I behaves as a t r u l y m i s c i b l e system. By c o n t r a s t , a d d i t i o n o f LDPE (11.100) to LPX-30 (1.0) i s g e n e r a t i n g more a complex v a r i a t i o n o f properties. The s t r a i n h a r d e n i n g , a l r e a d y v i s i b l e a t 10% o f LDPE, reaches i t s maximum not a t 100% LDPE b u t r a t h e r a t 50:50 c o m p o s i t i o n . Note t h a t a t e £ 0.1 ( s " ) t h e maximum s t r a i n a t b r e a k f o r 11.50 i s e > e * 3.2. The blends behave as i m m i s c i b l e . The s t r a i n h a r d e n i n g , SH, causes t h e polymer t o show a d u a l n a t u r e ; a t l o w s t r a i n s i t behaves a s a l i n e a r v i s c o e l a s t i c l i q u i d , whereas a t h i g h ones t h e n o n - l i n e a r i t y suggests a n e t w o r k - l i k e behavior. F o r t h i s reason t h e TIE 2 dependence may be m i s l e a d i n g - i t i s n o t known where t h e l i n e a r b e h a v i o r ends and SH begins. T h i s i s why i n F i g . 20 o n l y t h e l i n e a r v i s c o e l a s t i c p a r t o f TIE i s shown, t h e p a r t computed from HQ by means o f E q u a t i o n 36. A s i g n i f i c a n t d i f f e r e n c e i n b e h a v i o r between S e r i e s I and S e r i e s I I i s again v i s i b l e a t a l l deformation r a t e s . For S e r i e s I t h e values of 3ncalc s i m p l e a d d i t i v i t y , whereas f o r S e r i e s I I , t h e r e i s a p o s i t i v e d e v i a t i o n from t h e l o g - a d d i t i v i t y r u l e , PDB. While t h e PDB b e h a v i o r per s e i s i n s u f f i c i e n t t o c a l l i m m i s c i b i l i t y , it i s c o n s i s t e n t w i t h t h e expected behavior of emulsion-like i m m i s c i b l e polymer b l e n d s . v s
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
v s
f
9
1
b
L
V
s
h
o
8
#
w
w
Conclusions ( i ) Blends o f LLDPE w i t h o t h e r LLDPE• s o r LDPE may show w i d e l y v a r y i n g b e h a v i o r , dependent on s m a l l changes i n m o l e c u l a r s t r u c t u r e engendered by e.g. d i f f e r e n t c a t a l y s t , p o l y m e r i z a t i o n method o r c o m p o s i t i o n . The LLDPE/LLDPE m i x t u r e may be m i s c i b l e , as a l l r h e o l o g i c a l t e s t s i n d i c a t e d f o r S e r i e s I , o r p a r t i a l l y miscible as f o r Series I I I blends. LLDPE w i t h LDPE i s immiscible ( v i z . Series I I ) . ( i i ) B l e n d i n g two d i f f e r e n t t y p e s o f LLDPE r e s u l t e d i n improved s t r a i n h a r d e n i n g a t about 20 wt% o f l o a d i n g . However, i t was more e f f i c i e n t t o b l e n d LLDPE w i t h l o w m o l e c u l a r w e i g h t , MW,
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
UTRACKI
Melt Flow ofPolyethylene Blends
183
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
F i g u r e 18. The e l o n g a t i o n a l v i s c o s i t y i n s t e a d y s t a t e f l o w a t T = 150°C v s . s t r a i n r a t e f o r S e r i e s - I LPX-30/LLDPE-10 b l e n d s ( t o p ) and S e r i e s - I I , LLDPE/LDPE b l e n d s ( b o t t o m ) . The d a t a p o i n t s marked w i t h arrow on a s i d e i n d i c a t e t h a t e q u i l i b r i u m v a l u e has not been reached.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
184
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
10-
2
10-
10"
10 "
2
1
1
1
10°
10
1
10
2
1
£(s- );0)(rad/sec); y(s~ ) F i g u r e 19. Comparison of r a t e of d e f o r m a t i o n dependence o f t h e s t e a d y s t a t e ( c a p i l l a r y ) v i s c o s i t y , n, ( p o i n t s ) w i t h the complex, rf*, ( s o l i d l i n e ) dynamic, n , ( b r o k e n l i n e ) and e x t e n s i o n a l v i s c o s i t y , ng/3 (open c i r c l e s ) . The d a t a a r e reduced t o common temperature 150°C. L e f t , S e r i e s - I , LLDPE/LLDPE, r i g h t , S e r i e s - I I LLDPE/LDPE b l e n d s . F o r c l a r i t y , t h e d a t a o f each b l e n d i s v e r t i c a l l y d i s p l a c e d by one decade. f
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
185
Melt Flow ofPolyethylene Blends
0
I 0.5 w
120 1.0
2
F i g u r e 20. C o m p o s i t i o n a l dependence o f 3 ^ 3 ; ^ = 10 and 100(s) f o r S e r i e s - I ( t o p ) and S e r i e s - I I
= r% n (bottom). n
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
at t
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
186
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
LDPE. High MW LLDPE and low MW LDPE have s i m i l a r v a l u e s o f TIE w h i c h g u a r a n t e e s f i n e d r o p l e t d i s p e r s i o n . A d d i t i o n o f 10% LDPE was s u f f i c i e n t f o r e n g e n d e r i n g SH i n LLDPE and i n c r e a s i n g i t s maximum s t r a i n a t b r e a k . ( i i i ) There i s a d i r e c t correspondence between SH and p r o c e s s a b i l i t y on a f i l m b l o w i n g l i n e . The SH c a n be g e n e r a t e d by l o n g c h a i n b r a n c h i n g , b l e n d i n g , i n c r e a s e i n MW o r MW d i s t r i b u t i o n . ( i v ) The T h e o l o g i c a l s t u d i e s o f LLDPE and i t s b l e n d s l e d t o development o f s e v e r a l new T h e o l o g i c a l dependencies, v i z . E q u a t i o n 10 w h i c h a l l o w s c a l c u l a t i o n o f t h e p r e s s u r e c o r r e c t i o n i n s h e a r v i s c o s i t y ; E q u a t i o n 24 e x p r e s s i n g t h e r a t e dependence o f t h e a p p a r e n t y i e l d s t r e s s ; E q u a t i o n 28 a new e x p r e s s i o n f o r m e l t - v i s c o s i t y average m o l e c u l a r w e i g h t ; E q u a t i o n 29 a l l o w i n g c o m p u t a t i o n o f t h e f r e q u e n c y r e l a x a t i o n spectrum from w h i c h a l l o t h e r l i n e a r v i s c o e l a s t i c f u n c t i o n s c a n be d e r i v e d ; E q u a t i o n 38 a l l o w i n g e s t i m a t i o n o f no from t h e c r o s s - p o i n t coordinates; E q u a t i o n 39 d e f i n i n g t h e i n i t i a l s l o p e o f t h e s t r e s s g r o w t h f u n c t i o n , w h i c h depends m a i n l y on MW d i s t r i b u t i o n . PART I I I , LLDPE BLENDS WITH PP Commercial PP and LLDPE r e s i n s were used. Their properties are l i s t e d i n Table I V . For t h e f i r s t s t a g e o f t h e program PP/LLDPE = 50:50 b l e n d s were examined w i t h o r w i t h o u t 10 w t % o f c o m p a t i b i l i z i n g e t h y l e n e - p r o p y l e n e b l o c k copolymer EP-1 o r EP-2 (3»9). S u r p r i s i n g l y , even a t -40°C, t h e m e c h a n i c a l p r o p e r t i e s o f t h e two-component b l e n d s were found t o be e i t h e r a d d i t i v e o r s y n e r g i s t i c . A d d i t i o n o f EP d i d n o t s i g n i f i c a n t l y a f f e c t them. F o r t h i s reason, i n t h e more e x t e n s i v e s t u d i e s w h i c h f o l l o w e d o n l y two component LLDPE/PP b l e n d s were i n v e s t i g a t e d ( 4 0 , 4 1 , 6 9 ) . The m i x t u r e s were p r e p a r e d i n a Werner and P f l e i d e r e r c o r o t a t i n g t w i n - s c r e e w e x t r u d e r , ZSK-30, a t 350 RPM and T - 170°C i n t h e f e e d zone i n c r e a s i n g l i n e a r l y t o 240°C a t t h e d i e . To p r e v e n t o x i d a t i o n 0.1 wt% o f I r g a n o x 1010/1024 b l e n d was added. The e x t r u d e r screws were o p t i m i z e d f o r maximum m i x i n g e f f i c i e n c y a t l o w o u t p u t r a t e , Q = 4 kg/hr. The g r a n u l a t e d and d r i e d e x t r u d a t e s were c o m p r e s s i o n o r t r a n s f e r molded i n t o specimens f o r T h e o l o g i c a l t e s t i n g . The T h e o l o g i c a l t e s t i n g was c a r r i e d o u t i n RMS and ICR a t 190°C and i n RER a t 150°C. The i n s t r u m e n t s and p r o c e d u r e s were d e s c r i b e d i n the preceeding p a r t . Preliminary tests B o t h t h e t h e o r e t i c a l and e x p e r i m e n t a l studies indicated that the h i g h e s t degree o f d i s p e r s i o n c a n be o b t a i n e d b l e n d i n g two l i q u i d s w i t h s i m i l a r v i s c o s i t i e s a t t h e same s t r e s s l e v e l as t h a t e x p e c t e d during mixing: x
opt = ni/n
38 2
0.3 t o 1.0
where s u b s c r i p t 1 i n d i c a t e s t h e d i s p e r s e d polymer and 2 i n d i c a t e s t h e m a t r i x ( 1 1 , 4 2 , 4 3 ) . F o r t h i s r e a s o n PP-1 and LLDPE-A were chosen as the most s u i t a b l e p a i r ( 3 9 ) . The samples c o n t a i n i n g 0, 50 and 100
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Note:
1.32
108
36
25
917
5.2/6.3
-
5/0.5
901/897
—
Hercules
EP-l/EP-2
w i t h 11 and 14% o f e t h y l e n e , r e s p e c t i v e l y
8120
13
13
8.5
( a ) E t h y l e n e - p r o p y l e n e - e t h y l e n e copolymers
0
Zero shear v i s c o s i t y , 190°C, n (k Pas)
6.
216
261
28.4
97.5
106 392
0.3
1.0
250
Molecular weights: M n (kg/mol) M w
5.
951
Dowlex 2517
LPX-24
918
Dow Chem.
LLDPE-C
resins
Exxon
LLDPE-B
325
0.8
4.0
M e l t i n d e x (g/10 min)
4.
900
D e n s i t y (kg/m )
3.
6701
6704
LLDPE-1
Esso
Hercules
Hercules
PF-1
LLDPE-A
o f PP/PE neat
PP-2
C h a r a c t e r i s t i c parameters
904
Designation
2.
3
Manufacturer
Parameter
1.
No.
Table IV.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
( a )
188
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
wt% LLDPE-A were studied. The 50:50 blends containing 0 or 10% EP-1 or EP-2 were labeled: BL, BL-1 and BL-2, respectively. The capillary flow. The interlayer slip, apparent in uncompatibilized blend, BL, disappeared upon addition of EP-1 or EP-2. As shown i n F i g . 21 the s l i p affected the entrance-exit pressure drop, P , ("Bagley correction") more than v i s c o s i t y . The second interesting observation based on ICR and RMS r e s u l t s i s related to the need for pressure correction i n c a p i l l a r y flow. Already i n F i g . 19 an agreement between the dynamic v i s c o s i t y , n , and corrected for pressure e f f e c t c a p i l l a r y shear v i s c o s i t y , n, was shown. In F i g . 22 f i v e d i f f e r e n t measures of v i s c o s i t y are shown for LLDPE-A (four for the other samples): steady state elongational v i s c o s i t y , TIE/3, complex and dynamic v i s c o s i t y , n* and n , as well as the steady state c a p i l l a r y v i s c o s i t y corrected and uncorrected for the pressure e f f e c t s , n and n(ICR), r e s p e c t i v e l y . There i s a double equivalence of data points: n o r r " ' n( ) - n*» The latter equivalence has a form of an apparent Cox-Mertz r u l e . Evidently the true steady state v i s c o s i t y for LLDPE with the narrow molecular weight d i s t r i b u t i o n requires the pressure correction. When the data are properly corrected the equivalence between the steady state shear v i s c o s i t y and the loss-part of complex v i s c o s i t y is found. On the other hand, neglecting the pressure corrections results i n coincidental equivalence between n(ICR) and n*» In agreement with the polydispersity data i n Table IV for PP the pressure correction was s i g n i f i c a n t l y smaller than that determined for LLDPE-A. For the blends the correction was reduced even f u r t h e r , suggesting that molecular weight d i s t r i b u t i o n i n the phase adjacent to the c a p i l l a r y wall i s broader than that of either polymeric component, i n d i c a t i n g that LLDPE-A and PP may be p a r t i a l l y miscible. e
1
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
f
c o r r
n
a
n
d
I C R
C
The Dynamic flow. The flow curves, n vs. u> i n F i g . 22, were not corrected for the apparent y i e l d s t r e s s . For PP and LLDPE-A the curves nearly reached the Newtonian plateau and the Cole-Cole plots were found to be semi-circular i n d i c a t i n g that a * 0. However, for blends the s i t u a t i o n i s less c l e a r . Judging by the flow curves for BL, BL-1 and BL-2 at low deformation r a t e s , the Newtonian plateau seems to be far away. This may indicate the i n c i p i e n t y i e l d s t r e s s . To c l a r i f y this point n" vs. n* was plotted i n F i g . 23. An onset of the second relaxation mechanism i s v i s i b l e . The long relaxation times i n BL may only originate i n the interphase i n t e r a c t i o n s . These usually lead to the presence of the apparent y i e l d s t r e s s . The high frequency cross point coordinates ( G , u> ) were used for c a l c u l a t i o n of the Maxwellian zero-shear v i s c o s i t y , n oM> from Equation 38. For the neat polymers n M was i n agreement with no calculated from the shear and extensional responses. For BL, BL-1 and especially BL-2 TIQM ^ 0* presence of an apparent y i e l d s t r e s s i s the most l i k e l y explanation for the discrepancy. 1
y
x
x
0
n
T
n
e
The extensional flow* The stress growth functions i n shear (n > l a b e l l e d RMS) and extension, TIE* are shown i n F i g . 24. The dependencies for a l l five materials are s i m i l a r . There i s an excellent agreement between ng and 3TI . Note the absence of s t r a i n hardening, SH, c l e a r l y v i s i b l e (see F i g s . 13 and 14) i n blends of +
+
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
Melt Flow ofPolyethylene Blends
189
F i g u r e 21· Bagley p r e s s u r e c o r r e c t i o n term, Pe, v e r s u s shear s t r e s s , σ , f o r BL, BL-1, and BL-2. Data f o r BL-1 and BL-2 have been d i s p l a c e d h o r i z o n t a l l y by a f a c t o r o f 5 and 10 r e s p e c t i v e l y . 1 2
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
190
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
n(Pa.s)
F i g u r e 22. Elongational, T £ , complex, Tf*, dynamic, η , and s h e a r , η, v i s c o s i t i e s v e r s u s s t r a i n r a t e , έ, f r e q u e n c y , ω, o r shear r a t e , γ, f o r (from the t o p ) : LLDPE, BL, BL-1, BL-2 and PP a t 190°C. The d a t a c o r r e c t e d f o r p r e s s u r e e f f e c t s a r e shown as f u l l squares. F o r c l a r i t y the t r a c e s a r e d i s p l a c e d v e r t i c a l l y each by one decade. 1
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
191
Melt Flow ofPolyethylene Blends
F i g u r e 23. Imaginary p a r t , η", v e r s u s r e a l complex v i s c o s i t y f o r BL, BL-1, and BL-2.
part,
1
η , of
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
the
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
192
+
+
F i g u r e 24. Comparison of s h e a r , 3 η , and e l o n g a t i o n a l , T £ time dependent v i s c o s i t i e s f o r (from t o p ) PP, BL-2, BL-1, and LLDPE a t 190°C.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
UTRACKI
MeU Flow ofPolyethylene Blends
193
LLDPE s i m i l a r t o LLDPE-A polymer, the LPX-30. For PP a s t r a i n t h i n n i n g e f f e c t may be s u s p e c t e d . I n F i g . 22 the s t e a d y s t a t e v i s c o s i t i e s f o r PP and BL n g d ) « 3η(ω) were r e p o r t e d . F o r t h e o t h e r samples Tig * o b s e r v e d , but the d e p a r t u r e from e q u a l i t y was s m a l l . The i n i t i a l s l o p e S o f t h e r e l a t i o n shown i n F i g . 24 was c a l c u l a t e d a c c o r d i n g t o E q u a t i o n 39. For t h e two homopolymers S i n c r e a s e d w i t h M^Mn i n a c c o r d w i t h d a t a p r e s e n t e d i n F i g . 15. F o r b l e n d s , S was above average i n d i c a t i n g p a r t i a l m i s c i b i l i t y .
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
w
a
s
Sumary. The f o l l o w i n g o b s e r v a t i o n s a r e w o r t h n o t i n g : ( i ) The b l e n d s were p r e p a r e d from r e l a t i v e l y low m o l e c u l a r w e i g h t , n e a r l y i s o v i s c o u s polymers. They were i m m i s c i b l e , a l t h o u g h t h e T h e o l o g i c a l d a t a i n d i c a t e d b r o a d e n i n g o f the r e l a x a t i o n time spectrum, c o n s i s t e n t w i t h p a r t i a l m i s c i b i l i t y o f the l o w e s t m o l e c u l a r weight f r a c t i o n s . ( i i ) The p a r t i a l m i s c i b i l i t y was not s u f f i c i e n t t o p r e v e n t the i n t e r l a y e r s l i p i n c a p i l l a r y f l o w ; f o r t h i s purpose a c o m p a t i b i l i z i n g b l o c k copolymer had t o be added. ( i i i ) The c a p i l l a r y f l o w d a t a f o r polymers w i t h narrow molecular weight distribution s h o u l d be c o r r e c t e d f o r the p r e s s u r e e f f e c t s ; a f t e r c o r r e c t i o n the e q u i v a l e n c e η * η' was found, ( i v ) For t h e d e f o r m a t i o n r a t e s ω, γ > 10"" sec t h e apparent y i e l d s t r e s s was u n i m p o r t a n t . (v) The s t r a i n h a r d e n i n g i n e x t e n s i o n was absent f o r PP-1, LLDPE-A and t h e i r b l e n d s . 2
Detailed Studies o f LLDPE/PP Blend Flow (40, 41, 69) P o l y p r o p y l e n e PP-2 was blended e i t h e r w i t h LLDPE-B (System-1) o r LLDPE-C (System-2). The homopolymer c h a r a c t e r i s t i c s a r e g i v e n i n T a b l e IV. I n each system seven blends c o n t a i n i n g 0, 5, 25, 50, 75, 95 and 100 wt% PP was p r e p a r e d . Neat polymers and t h e i r blends were s t u d i e d i n dynamic shear f i e l d ( u s i n g RMS) and i n c o n s t a n t s h e a r s t r e s s f i e l d u s i n g Rheometric S t r e s s Rheometer, RSR. The m o l e c u l a r parameters o f polymers and b l e n d s were determined by S i z e E x c l u s i o n Chromatography i n t r i c h l o r o b e n z e n e a t 140°C. The morphology o f f r e e z e - f r a c t u r e d specimens was c h a r a c t e r i z e d i n Scanning E l e c t r o n M i c r o s c o p e , SEM, J e o l JSM-35CF. Molecular weights* The number, weight and average m o l e c u l a r w e i g h t s , M, M and M , r e s p e c t i v e l y a r e shown i n F i g . 25. The broken l i n e s r e p r e s e n t t h e dependencies p r e d i c t e d by E q u a t i o n s 15 t o 17. There i s good agreement between the experiment and p r e d i c t i o n s f o r samples c o n t i n u i n g l e s s t h a n 75% PP; f o r P P - r i c h samples t h e e x p e r i m e n t a l data i n d i c a t e d e g r a d a t i o n . I t i s worth p o i n t i n g o u t t h a t w i t h i n the e x p e r i m e n t a l e r r o r ( i n d i c a t e d by a b a r i n F i g . 25) the m o l e c u l a r w e i g h t s o f neat PP b e f o r e and a f t e r compounding/ e x t r u s i o n were t h e same. Thus PP degraded o n l y i n the presence o f LLDPE. The e x t e n t o f t h i s e f f e c t was l a r g e r f o r h i g h e r m o l e c u l a r weight LLDPE-B t h a n LLDPE-C. I t primarily affected the highest m o l e c u l a r weight f r a c t i o n s , r e d u c i n g M^^ and M but leaving M virtually intact. The r e s p o n s i b l e mechanism seems t o be s h e a r d e g r a d a t i o n o f PP c a t a l y z e d by LLDPE o r r a t h e r by same i t s impurities. n
w
z
z
n
Morphology. The SEM o f f r e e z e - f r a c t u r e d System-1 specimens i n d i c a t e s d i s p e r s e d d r o p l e t morphology i n blends c o n t a i n i n g 5, 75 and 95% PP
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
F i g u r e 25. C o m p o s i t i o n a l v a r i a t i o n of average m o l e c u l a r weights f o r System 2 ( l e f t ) and \ · P o i n t s - e x p e r i m e n t a l , broken l i n e s c a l c u l a t e d from E q u a t i o n s 15 t o 17.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
UTRACKI
Melt Flow ofPolyethylene Blends
195
and c o - c o n t i n u o u s s t r u c t u r e f o r t h e r e m a i n i n g blends c o n t a i n i n g 2 5 and 50% PP. I n System-2 c o - c o n t i n u o u s morphology f o r 50% PP b l e n d s was observed. The apparent y i e l d stress» The complex v i s c o s i t y η* v s . ω f o r PP b l e n d s w i t h LLDPE-B and LLDPE-C i s shown i n F i g . 2 6 . The p l o t c l e a r l y i n d i c a t e s p o s s i b l e y i e l d s t r e s s behavior e s p e c i a l l y f o r b l e n d s c o n t a i n i n g 5 0 % PP. The apparent y i e l d s t r e s s i n dynamic f l o w d a t a was c a l c u l a t e d u s i n g E q u a t i o n 2 3 , w i t h F - G* o r F * G". The y i e l d s t r e s s v a l u e s a s w e l l a s t h e assumed m a t r i x m a t e r i a l f o r c a l c u l a t i n g F a r e l i s t e d i n T a b l e V. F o r b o t h systems t h e maximum v a l u e o f t h e apparent y i e l d s t r e s s o c c u r r e d a t 5 0 % PP. I n f a c t , t h e r e i s a d i r e c t c o r r e l a t i o n - i n a g i v e n system t h e y i e l d i n g i s p r i m a r i l y observed i n b l e n d s h a v i n g a c o - c o n t i n u o u s s t r u c t u r e . As b e f o r e ( 5 3 0 Gy > ( Ç I n t h e l a s t column o f T a b l e V t h e d i r e c t l y measured shear s t r e s s values a t y i e l d are l i s t e d . These measurements were c a r r i e d o u t i n RSR, s e t t i n g t h e d e s i r e d l e v e l o f s t r e s s and r e c o r d i n g t h e s t r a i n a f t e r 2 0 0 s. The r e s u l t s a r e shown i n F i g . 2 7 . There i s good agreement between Gy and σ f o r System-1 b u t n o t f o r s y s t e m - 2 . The two s e t s o f e x p e r i m e n t s a r e c a r r i e d o u t on a d i f f e r e n t time scale. S i n c e , a c c o r d i n g t o E q u a t i o n 2 4 , t h e apparent y i e l d s t r e s s i n b l e n d s depends o n time one s h o u l d n o t expect t h e same r e s u l t s from the dynamic and c r e e p measurements. F u r t h e r m o r e , t h e differences i n l e s s viscous System-2 a r e expected t o be l a r g e r than those f o r System-1.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
m
ν
The frequency dependence o f d a t a [ c o r r e c t e d f o r t h e y i e l d s t r e s s by means o f E q u a t i o n 2 5 ] was found t o f o l l o w E q u a t i o n 1 9 . Having e s t a b l i s h e d v a l u e s o f t h e f o u r parameters: i j , mj and m t h e r e l a x a t i o n s p e c t r a were computed from E q u a t i o n 2 9 . These a r e shown in Fig. 28. F o r v e r i f i c a t i o n o f t h e procedure G'calc^) computed from E q u a t i o n 3 5 . I n F i g . 2 9 i t s v a l u e s a r e compared w i t h experimental G (ω) data uncorrected f o r the y i e l d stress. Furthermore, knowing η , t h e l o s s modulus, G^ ^ , a s w e l l as t h e y i e l d v a l u e s f o r G and G" i t was p o s s i b l e t o compute η* = η*(ω) dependence. These v a l u e s a r e shown a s l i n e s i n t e r s e c t i n g t h e experimental data p o i n t s i n F i g . 2 6 . 2
w
a
s
1
1
a
c
1
The concentration dependence o f η computed from E q u a t i o n 2 0 i s shown i n F i g . 3 0 , where t h e s o l i d p o i n t s r e p r e s e n t t h e e x p e r i m e n t a l d a t a and t h e open p o i n t s t h e i r v a l u e s c o r r e c t e d f o r t h e e f f e c t s o f PP degradation. F o r System-1 t h e r e i s s t r o n g n e g a t i v e d e v i a t i o n (NDB) from t h e l o g a d d i t i v i t y r u l e , v i z . E q u a t i o n 1 , but f o r System-2 NDB i s v i s i b l e a t low PP c o n t e n t , c o n v e r t i n g t o p o s i t i v e d e v i a t i o n (PDB) at high. I t i s worth r e c a l l i n g t h a t η was computed from c o r r e c t e d f o r t h e y i e l d s t r e s s v a l u e s o f η'. The NDB b e h a v i o r , i n d i c a t i v e o f i n t e r l a y e r s l i p , r e f l e c t s poor m i s c i b i l i t y i n System-1 and t h a t a t low c o n c e n t r a t i o n o f PP i n S y s t e m - 2 . The e m u l s i o n - l i k e b e h a v i o r o f System-2 a t h i g h PP c o n t e n t r e f l e c t s a b e t t e r i n t e r p h a s e i n t e r a c t i o n . 0
0
The Cole-Cole plot f o r System-2 i s p r e s e n t e d i n Fig. 31. A "classical" semi-circular dependence was o b t a i n e d f o r blends c o n t a i n i n g 0 , 5 , 2 5 , 9 5 and 1 0 0 % PP. F o r t h e r e m a i n i n g two b l e n d s
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
196
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
F i g u r e 26. Complex v i s c o s i t y v s . f r e q u e n c y , τ|* v s . ω, f o r System 1 ( t o p ) and 2. P o i n t s a r e e x p e r i m e n t a l , l i n e s computed from t h e f r e q u e n c y r e l a x a t i o n spectrum.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
UTRACKI
197
Met Flow ofPolyethylene Blends
Table V. Apparent y i e l d s t r e s s f o r PP blended LLDPE-B o r LLDPE-C
G» (Pa)
5
PE
0
0
2.
25
PE
40
0
3.
50
PP
58
1.0
4.
75
PP
0.8
0
5.
95
PP
0
0
5
PE
0
0
7.
25
PE
0.5
0.2
8.
50
PP
5
0
9.
75
PP
2
1.4
10.
95
PP
0
0
1.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
G" (Pa) y
Material
No. B l e n d
PP ( w t % )
System-1
6.
System-2
y
with
o (Pa) y
36
52
-
0.1 Ύ 0.05
0
100 a (Pa)
200
12
F i g u r e 27. Shear s t r a i n , γ, as a f u n c t i o n o f shear s t r e s s , σχ2> f o r b l e n d s c o n t a i n i n g 50% o f each polymer. Curve 1: PP/LLDPE-1, c u r v e 2: PP/LLDPE-2
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
198
F i g u r e 28. Reduced f r e q u e n c y r e l a x a t i o n System 1 ( t o p ) and System 2.
spectrum f o r LLDPE/PP
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
UTRACKI
Melt Flow ofPolyethylene Blends
199
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
7.
F i g u r e 29. Storage shear modulus v s . f r e q u e n c y f o r System 1. The p o i n t s are e x p e r i m e n t a l , u n c o r r e c t e d f o r the apparent y i e l d s t r e s s , the l i n e s computed from the r e l a x a t i o n spectrum.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
200
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
F i g u r e 30. Zero shear v i s c o s i t y , η , v s . PP c o n t e n t i n Systems 1 and 2; open p o i n t s - d a t a c o r r e c t e d f o r P P - d e g r a d a t i o n . 0
η F i g u r e 31. 190°C.
Cole-Cole p l o t ,
1
3
(X10" Pa.s) n" v s . η', f o r LLDPE/PP System 2 a t
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
UTRACKI
Mdt Flow ofPolyethylene Blends
201
w i t h 50 t o 7 5 % PP t h e r e i s a n i n d i c a t i o n o f a bimodal r e l a x a t i o n spectrum. F o r t h i s system t h e b i m o d a l i t y cannot be g e n e r a t e d a p p l y i n g a m i x i n g r u l e t o t h e homopolymer s p e c t r a . C l e a r l y an i n f l u e n c e o f the i n t e r p h a s e i s r e s p o n s i b l e f o r the a p p a r e n t y i e l d stress. The dependence f o r System-1 shows a d e p a r t u r e from s e m i - c i r c u l a r b e h a v i o r f o r b l e n d s c o n t a i n i n g 5, 25 and 5 0 % PP b u t none f o r those w i t h 0, 75, 95 and 100% PP. I f the appearance o f b i m o d a l i t y o f the r e l a x a t i o n s i n C o l e - C o l e p l o t i s equated w i t h f o r m a t i o n o f co-continuous s t r u c t u r e , t h e n i n System-1 t h e s e o c c u r a t 5 t o 40 wt% PP whereas i n System-2 a t 50 and 75 wt% PP. P a u l and Barlow proposed the f o l l o w i n g dependence ( 7 0 ) ; Φ /(1-Φ ) - n i / n
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
ί
1
42
< >
2
where i s the volume f r a c t i o n o f the d i s p e r s e d phase i n v e r t i n g i n t o the c o n t i n u o u s and η , η a r e v i s c o s i t i e s o f the d i s p e r s e d and c o n t i n u o u s phases. Assuming t h a t the s h e a r s t r e s s i n t h e compounding e x t r u d e r was about 10 kPa, t h e n E q u a t i o n 42 p r e d i c t s i n v e r s i o n a t 8 t o 79% o f PP i n System-1 and -2, r e s p e c t i v e l y . The d i r e c t SEM o b s e r v a t i o n s i n d i c a t e d i s p e r s e d s t r u c t u r e s a t 5% but co-continuous ones a t 25 and 50% PP i n System-1 a s w e l l a s a t 50 and 75% PP i n System-2. I t i s a p p a r e n t t h a t phase i n v e r s i o n , t a k e s p l a c e v i a c o - c o n t i n u o u s s t r u c t u r e . E q u a t i o n 42 seems t o p r e d i c t t h e i n v e r s i o n concentration f a i r l y well. However, the c o - c o n t i n u o u s s t r u c t u r e i s observed not o n l y near the p r e d i c t e d but a l s o a t 50:50 l o a d i n g where the volume f r a c t i o n s o f t h e two polymers a r e n e a r l y e q u a l . The b r o a d e n i n g o f the i n v e r s i o n r e g i o n from a s i n g l e t o a wide range o f c o m p o s i t i o n ( i n c l u d i n g e q u i - v o l u m e t r i c ) most l i k e l y i s due t o a n o n - e q u i l i b r i u m n a t u r e o f morphology. 1
2
The cross-point coordinates G = G' G" a t ω * ωχ were d e t e r m i n e d f o r a l l c o m p o s i t i o n s t h e n the M a x w e l l i a n v i s c o s i t y η ^ was c a l c u l a t e d from E q u a t i o n 38. The r e s u l t s a r e shown i n F i g . 32 a s 0M · ο· !n agreement w i t h the p r e v i o u s l y d i s c u s s e d d a t a f o r LLDPE blends (see F i g . 12) i n i t i a l l y η « η ; only f o r higher v a l u e s : η > 1 0 0 k P a s , t h e r e i s a d e v i a t i o n from e q u a l i t y . x
n
ν δ
η
0
0 Μ
0
In summary, the PP/LLDPE b l e n d s a r e i m m i s c i b l e and the degree o f i n c o m p a t i b i l i t y i n c r e a s e s w i t h m o l e c u l a r w e i g h t o f the homopolymers. An i n c r e a s e o f m o l e c u l a r weight a l s o s h i f t s t h e appearance o f t h e apparent y i e l d s t r e s s t o higher frequencies a c c e s s i b l e i n standard t e s t equipment. The y i e l d s t r e s s seems t o be a s s o c i a t e d w i t h f l o w and deformability o f co-continuous blend structure. The c o - c o n t i n u o u s morphology extended from the c o n c e n t r a t i o n p r e d i c t e d by P a u l and Barlow's e m p i r i c a l e q u a t i o n up t o equi-volume polymer content. The f l o w c u r v e s , c o r r e c t e d f o r the y i e l d s t r e s s , c o u l d be d e s c r i b e d by the f o u r - p a r a m e t e r e q u a t i o n , w h i c h i n t u r n l e a d t o the spectrum o f r e l a x a t i o n times and d e r i v a t i o n o f o t h e r linear v i s c o e l a s t i c f u n c t i o n s i n good agreement w i t h d i r e c t l y measured values. There a r e s e v e r a l o t h e r observations important f o r those i n t e r e s t e d i n PP/LLDPE r h e o l o g y , but t h e i r g e n e r a l i t y i s u n c e r t a i n .
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
202
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Tlo(k Pa.s) F i g u r e 32. Maxwellian v i s c o s i t y v s . zero-shear v i s c o s i t y f o r LLDPE/PP Systems 1 and 2. L a r g e r symbols i n d i c a t e homopolymer values.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Interlayer
Presence o f apparent yield stress, σ
5.
6.
Concentration dependence o f n
Cole-Cole p l o t
8.
9.
0
Frequency dependence
yes
no
yes
yes
large
yes
depends on LLDPE-Y t y p e
depending on t y p e o f LLDPE-Y: a d d i t i v e o r sigmoidal
s e m i c i r c u l a r f o r low MW; t h e n bimodal bimodal
( C o n t i n u e d on n e x t page.)
s i g m o i d a l o r goes through a minimum
miscible
goes t h r o u g h a maximum
a f t e r c o r r e c t i n g f o r σ i t c a n be d e s c r i b e d by a f o u r parameter e q u a t i o n , t h e n f r e q u e n c y r e l a x a t i o n s p e c t r u m and l i n e a r v i s c o e l a s t i c f u n c t i o n s can be c a l c u l a t e d
no
no
γ
very large
depends on LLDPE-Y t y p e
Extrudate swell
4.
slip
yes
yes
n ( c a p i l l a r y ) » η'
3.
partially
PP
depends on p o l y d i s p e r s i t y
yes
Need f o r p r e s s u r e correction i n capil l a r y flow
2.
immiscible
depends on LLDPE-Y t y p e
M i s c i b i l i t y with LLDPE-X i n t h e m e l t
1.
LDPE
PROPERTY
LLDPE-Y
Summary o f T h e o l o g i c a l b e a v i o r o f LLDPE-X b l e n d s w i t h LLDPE-Y, LDPE and PP
No.
Table V I .
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
δ
ι
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
I n i t i a l s l o p e o f ng, S
Maximum s t r a i n a t break, ε
The r a t i o η,,(ε)/3η(ω)
12.
13.
14.
Shear d e g r a d a t i o n
The a c t i v a t i o n energy o f f l o w η (kJ/mole) at constant s t r e s s
15.
16.
Ci
S t r a i n hardening i n extensional flow
11.
at ε * ω
Cross-point coordinates
PROPERTY
^ 3.2
30 ± 2
yes
>1
n
0 " 0j4
present
n
LLDPE-Y
f
r
n
0
strong
*00 kPas; above t h i s l i m i t η
1
42 ± 2
»
>3.2
0
Μ
absent
ης
PP
45 ± 3
yes o f PP
* 1
$ 3 . 2 depending o n I and c o n c e n t r a t i o n
t h e v a l u e depends on p o l y d i s p e r s i t y
o
LDPE
Summary o f T h e o l o g i c a l b e a v i o r o f LLDPE-X b l e n d s w i t h LLDPE-Y, LDPE and PP ( c o n t . )
10.
No.
Table V I .
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
ι
Ο
Ο
i
7.
UTRACKI
205
Melt Flow ofPolyethylene Blends
An example o f t h e s e i s t h e s t r a i n s o f t e n i n g f o r PP o r LLDPE-induced d e g r a d a t i o n o f PP. The b e h a v i o r i s complex but s e l f - e v i d e n t .
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
PART IV.
GENERAL CONCLUSIONS
The s i m i l a r i t i e s and d i f f e r e n c e s between LLDPE blends w i t h LLDPE, LDPE and PP a r e summarized i n Table V I . The LLDPE was found t o b e : i m m i s c i b l e w i t h LDPE (even o f low MW), m i s c i b l e o r not w i t h a n o t h e r LLDPE r e s i n (miscibility seems t o be l i m i t e d t o t h e same p o l y m e r i z a t i o n p r o d u c t s ) and c o m p a t i b l e w i t h PP. Miscibility broadens MWD what a f f e c t s t h e r h e o l o g i c a l b e h a v i o r i n a p r e d i c t a b l e way. On the o t h e r hand the i m m i s c i b i l i t y e s p e c i a l l y a t l o w e r l o a d i n g l e a d s t o d i s p e r s e d morphology; upon imposed s t r a i n t h i s may t u r n i n t o a co-continuous s t r u c t u r e . I n most blends t h e l o g - a d d i t i v i t y r u l e i s d i s o b e y e d ; when t h e i n t e r f a c i a l interactions are attractive a p o s i t i v e d e v i a t i o n from the r u l e i s o b s e r v e d , when they a r e r e p u l s i v e an i n t e r l a y e r s l i p l e a d s t o n e g a t i v e d e v i a t i o n . Immiscibility i s a l s o r e s p o n s i b l e f o r t h e apparent y i e l d s t r e s s and u s u a l l y l a r g e extrudate length reduction. There i s little difference i n e x t e n s i o n a l b e h a v i o r between m i s c i b l e and i m m i s c i b l e blends a l t h o u g h t h e l a t t e r system show r e d u c t i o n o f t h e maximum s t r a i n a t b r e a k and a s l o w e r i n c r e a s e o f t h e t r a n s i e n t v i s c o s i t y , TIE> w i t h s t r a i n i n g time (MWD e f f e c t ) . Working f o r y e a r s w i t h t h e s e " s i m p l e " polymers one i s c o n t i n u o u s l y s u r p r i s e d how d i v e r s e t h e i r b e h a v i o r can be. NOTATION » c o e f f i c i e n t i n E q u a t i o n 23
V i
• c o e f f i c i e n t s i n E q u a t i o n s 11 and 12
Β
• extrudate swell
b
β
polynomial c o e f f i c i e n t s i n Equation 9
β
η-paraffins
C,
d
• capillary
D
» extrudate diameter
ΕPR,
EPDM
diameter
• b i n a r y and t e r n a r y copolymers propylene
o f ethylene and
Ε , Ε.
• a c t i v a t i o n energy o f f l o w e i t h e r a t c o n s t a n t s t r e s s o r constant r a t e of shear
F, F , F , F a* y* m
m
r h e o l o g i c a l f u n c t i o n , i t s a p p a r e n t , y i e l d and i n the m a t r i x v a l u e ; E q u a t i o n s 23 and 24
β
h i g h frequency y i e l d s t r e s s i n E q u a t i o n 24
β
s t o r a g e , l o s s and complex shear modulus (Pa)
F
00 y
G», G", G*
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
206
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
G = G» » G" χ
• c r o s s - p o i n t shear modulus (Pa) - h i g h d e n s i t y PE
HDPE
β
V
H
G
and Η^/η ; 0
• maximum v a l u e o f
G, max i
» /-I
Im
• i m a g i n a r y p a r t o f a complex f u n c t i o n
J
• steady s t a t e e
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
f r e q u e n c y r e l a x a t i o n spectrum E q u a t i o n 29
compliance
* c a p i l l a r y length
L * long chain branching LCB • low d e n s i t y p o l y e t h y l e n e LDPE « l i n e a r LDPE LLDPE ^0 »
L
* specimen l e n g t h a t t
oo
= parameters M , M , M , M η w ζ n
β
s
0 and t • »
of E q u a t i o n 2 0
number, w e i g h t , z- and η-average
= molecular
MW
weight
MW • m o l e c u l a r weight
distribution
MWD - power-law exponent η Ni
• f i r s t normal s t r e s s d i f f e r e n c e
NDB
- negative d e v i a t i n g blends
Ρ
β
t o t a l p r e s s u r e l o s s i n c a p i l l a r y f l o w (Pa)
PDB, PNDB
β
p o s i t i v e , p o s i t i v e - n e g a t i v e d e v i a t i n g blends
P*
β
pressure
Ρ
• c a p i l l a r y e n d - e f f e c t s p r e s s u r e l o s s (Pa) e
PE PP Q
β
a
reducing
factor
in
Equation
polyethylene polypropylene
• e x t r u d e r output • correlation coefficient
squared
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10
7.
UTRACKI
Melt Flow ofPolyethylene Blends
i\
= f u n c t i o n d e f i n e d i n E q u a t i o n 29 s
Re R
R
T> T 0
r e a l p a r t o f a complex f u n c t i o n
~ Trouton
ratio
deformation,
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
207
at f i n i t e
and z e r o
respectively
s
- v a r i a b l e i n E q u a t i o n 32
S
= i n i t i a l s l o p e d e f i n e d i n E q u a t i o n 39
SCB
- short chain branching
SEC
= s i z e e x c l u s i o n chromatography
SH
- strain
t
= time
Τ
- temperature (°C)
T*
= temperature
u
« exponent i n E q u a t i o n 24
ULDPE
= u l t r a low d e n s i t y PE
VLDPE
= v e r y low d e n s i t y PE
w^
= weight
a,0
= parameters =
01, 0 i 2 γ
s l i
P
rate of
hardening
reducing f a c t o r (K)
f r a c t i o n of polymer i n E q u a t i o n 21
coefficient
and i t s i n t r i n s i c v a l u e
= shear s t r a i n i n dynamic
tests
•
γ / ε,
= shear r a t e ( 1 / s ) = Hencky s t r a i n , s t r a i n at break
ε
= s t r a i n rate i n extension (1/s)
η
= steady s t a t e shear v i s c o s i t y
η'
= dynamic shear
no, noM
ΤΪ+
Λ 1 Λ
=
zero-shear liquid = compted
viscosity
viscosity
from
(Pa»s)
Η
and no f o r M a x e w e l l i a n
stress
growth
function i n
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
208 n
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
E> ^ , 0
* u n i a x i a l extensional v i s c o s i t y zero deformation rate ( P a « s )
Tig ^ '
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
finite
* l i n e a r v i s c o e l a s t i c component of the growth function i n uniaxial extension
n^, n
- stress growth function i n uniaxial and i n shear
+
η*
- complex v i s c o s i t y
λ
« viscosity ratio
0
at
and
stress
extension
» functions defined i n Equation 29
i
• volume f r a c t i o n 3
Ρ
- density
o*k
« extensional stress at break (Pa)
an
- extensional
σ
- shear stress (Pa)
τ
1 2
γ
ω ω
(kg/m )
stress (Pa)
• primary relaxation time
(s)
* relaxation
network;
time
• angular frequency • cross-point
χ
ω
of
a
Equation 24
(rad/s)
frequency
• frequency for maximum of Η
LITERATURE CITED 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Anon., Chem. Market Reporter 1987, pg 3, 23. Ruof, M.; Fritz, H.-G.; Geiger, K. Kunststoffe, 1987, 77, 480. Romanini, D. Polym.-Plast. Technol. Eng. 1982, 19, 201. Nowlin, T.E. Prog. Polym. Sci. 1985, 11, 29. Keii, T.; Soga, Κ., Eds. Catalytic Polymerization of Olefins, Kodansha, Tokyo, 1986. "Modern Plastics Encyclopaedia - 1988", McGraw-Hill, New York, 1987. Plochocki, A.P. Trans. Soc. Rheology 1976, 20, 287. Plochocki, A.P. In Polymer Blends; Paul, D.R; Newman, S., Eds.; Academic Press, New York, 1978. Plochocki, A.P. Polym. Eng. Sci. 1982, 22, 1153. Utracki, L.A. Adv. Plast. Technol. 1985, 5, 41: J. Elastom. Plast. 1986, 18, 177.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. UTRACKI Melt Flow of Polyethylene Blends 11. 12. 13. 14. 15. 16. 17. 18.
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.
209
Utracki, L.A. Polymer Alloys and Blends; Hanser V . , München, 1989. Dobrescu, V. In Rheology; Astarita, G.; Marrucci, G. and Nicolais, L . , Plenum Press, New York, 1980. Chuang, H.-K.; Han, C.D. J . Appl. Polym. S c i . 1984, 29, 2205. Utracki, L . A . ; Schlund, B. Polym. Eng. S c i . 1987, 27, 1512. Schlund, B.; Utracki, L.A. Polym. Eng. S c i . 1987, 27, 1523. Dumoulin, M.M.; Utracki, L . A . ; Lara, J . Polym. Eng. Sci 1984, 24, 117. Vadhar, P.; Kyu, T. Polym. Eng. Sci. 1987, 27, 202. Stehling, F.C.; Wignall, G.D. A.C.S. Polym. Prepr. 1983, 24, 211. Bates, F.S.; Wignall, G.D. Macromolecules 1986, 19, 932, 1938. Ree, M.; Kyu, T.; Stein, R.S. J . Polym. Sci., B. Polym. Phys. 1987, 25, 105. Kammer, H.W.; Socher, M. Acta Polym. 1982, 33, 658. Curto, D.; La Mantia, F.P.; Acierno, D. Rheol. Acta. 1983, 22, 197. La Mantia, F.P.; Curto, D.; Acierno, D. Acta. Polym. 1984, 35, 71. Santamaria, Α.; White,J.L. J . Appl. Polym. S c i . 1986, 31, 209. Speed, C.S. Plast. Eng. 1982, 38, 39. Nancekivell, J . Canad. Plast. 1985, 43(1), 28; 1985, 43(9), 27. Acierno, D.; Curto, D.; La Mantia, F . P . ; Valenza, A. Polym. Eng. S c i . 1986, 26, 28. La Mantia, F . P . ; Valenza, Α.; Acierno, D. Polym. Bull., 1986, 15, 381. Ghijsels, Α.; Ente, J.J.S.M; Raadsen, J . Rolduc Meeting 2, 1987. Deanin, R.D; D'Isidoro, G.E. A.C.S. Org. Coat. Plast. Div. Preprints 1980, 43, 19. Bartlett, D.W.; Barlow, J.W; Paul, D.R. J . Appl. Polym. S c i . 1982, 27, 2351. Alle, Ν.; Lyngaae-Jørgensen, J . Rheol. Acta. 1980, 19, 94, 104. Alle, Ν.; Andersen, F.Ε; Lyngaae-Jørgensen, J. Rheol. Acta. 1981, 20, 222. Lin, C.-C. Polym. J. 1979, 11, 185. Valenza, Α.; La Mantia, F . P . ; Acierno, D. Eur. Polym. J . 1984, 20, 727. Kubicka, H; Woźniak, T. Prace Inst. Włókiennictwa (Łódź) 1977, 27, 57. Plochocki, A.P. Adv. Polym. Technol. 1983, 3, 405. Santamaria, Α.; Munoz, M.E.; Pena, J.J.; Remiro, P. Angew. Makromol. Chem. 1985, 134, 63. Dumoulin, M.M.; Farha, C.; Utracki, L.A. Polym. Eng. S c i . 1984, 24, 1319. Dumoulin, M.M. PhD thesis, Ecole Polytechnique, Montreal, Canada, 1988. Dumoulin, M.M.; Utracki, L.A. CRG/MSD Symposium, Hamilton Ont., June, 1984. Utracki, L.A. In Current Topics in Polymer Science; Ottenbrite, R.M.; Utracki, L . A . ; Inoue, S., Eds., Hanser V., München, 1987. Utracki, L.A. In Rheological Measurements; Collyer, Α.Α.; Clegg, D.W., Eds.; Elsevier Appl. Sci. Publ., London, 1988.
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
210
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Downloaded by MONASH UNIV on March 2, 2016 | http://pubs.acs.org Publication Date: July 21, 1989 | doi: 10.1021/bk-1989-0395.ch007
44. 45. 46. 47.
Schlund, B; Utracki, L.A. Polym. Eng. S c i . 1987, 27 359, 380. Utracki, L . A . ; Schlund, B. Polym. Eng. S c i . 1987, 27 367. Utracki, L.A.; Sammut, P. unpublished. Utracki, L.A. Effect of Polydispersity on the Pressure Gradient of Shear Viscosity, 36th Canadian Chem. Eng. Conf., Sarnia, Ont., Canada Oct. 5-8, 1986. 48. Simha, R.; Somcynsky, T. Macromolecules 1969, 2, 342. 49. Tremblay, Β.; Utracki, L.A. 4th Annual Polymer Processing Society meeting, Orlando FA, May 8-11, 1988. 50. Havriliak, S.; Nagami, S. Polymer 1967, 8, 161. 51. Utracki, L.A. Proceed. IUPAC 28th Macromol. Symp., Amherst MA, July 12-16, 1982. 52. Utracki, L.A. S.P.E. ANTEC Tech. Papers 1988, 34, 1192; Polym. Eng. S c i . 1988, 28, 1401. 53. Utracki, L.A.; Sammut, P. NRCC/IMRI Symposium "Polyblends-'88", Boucherville, Que. Canada, Apr. 5 and 6, 1988; Polym. Eng. Sci., 1988, 28, 1405. 54. Utracki, L.A. Proceeding CSChE 37th Conference, Mantreal, Que. Canada, 18-22 May 1987. 55. Watanabe, H.; Sakamoto, T.; Kotaka, T. Macromolecules 1985, 18, 1008. 56. Watanabe, H.; Kotaka, T. Macromolecules 1987, 20, 530, 535. 57. Rubinstein, M.; Helfand, E . ; Pearson, D. S. Macromolecules 1987, 20,822. 58. Ferry, J.D. Viscoelastic Properties of Polymers, third edition, J. Wiley & Sons, New York, 1980. 59. Marin, G. PhD Thesis, Université de Pau, France, 1977. 60. Diogo, A . C . ; Marin, G.; Monge, Ph. J . Non-Newtonian Fluid Mech. 1987, 23, 435. 61. A j j i , Α.; Choplin, L.; Prud'homme, R.E. NRCC/IMRI Symposium "Polyblends - '88", Boucherville, Que. Canada, Apr. 5 and 6, 1988: J . Polym. Sci., Polym. Phys. Ed., 1988, 26, 2279. 62. Zeichner, G. R.; Patel, P.D. 2nd World Congress Chem. Eng. Montreal, Canada, Oct. 1981; Proceed. 1981, 6, 333. 63. Zeichner, G. R.; Macosko, C.W. Proceed. IUPAC Macromolecular Symposium, Oxford, UK, 1982, P. 861; SPE ANTEC Tech. Papers 1982, 28, 79. 64. Rouse, P.E. J r . J . Chem. Phys. 1953, 21, 1272. 65. Dumoulin, M.M.; Utracki, L.Α.; Carreau, P.J. 36-th Canadian Chem. Eng. Conference, Sarnia, Ont. Canada, Oct. 1986. 66. Utracki, L . A . ; Kamal, M.R.; Al-Bastaki, N.M. SPE ANTEC Tech. Papers 1984, 30, 417. 67. Gleissle, W. In Rheology, G. Astarita, Marruci, G.; Nicolais, L . , Eds.; Plenum Press, New York, 2, 457, 1980. 68. Graessley, W.W. Adv. Polym. S c i . 1974, 16, 1. 69. Dumoulin, M.M; Utracki L.A. and Carreau, P.J. Rheol. Acta Suppl. 1988, 26, 215; In "Two Phase Polymeric Systems", L.A. Utracki, Ed., Hanser V . , München, 1989. 70. Paul, D. R. and Barlow J.W. J . Macromol. Sci., Rev. 1980, C18, 109.
RECEIVED April 27,
1989
In Multiphase Polymers: Blends and Ionomers; Utracki, L. A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.