Multiphase Polymers: Blends and Ionomers - American Chemical

ionomers, upon neutralization, developed an intense peak at 20 ~ 4 . This peak was ... scattered intensity as zero angle is approached[6,8,9]. The ori...
2 downloads 0 Views 2MB Size
Chapter 17

X-Ray Analysis of Ionomers 1

1,4

2

2

Richard A. Register , Y. Samuel Ding , Marianne Foucart , R. Jérôme , Stevan R. Hubbard , Keith O. Hodgson , and Stuart L. Cooper 3,5

3

1

1

Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706 Laboratory of Macromolecular Chemistry and Organic Catalysis, University of Liège, Sart Tilman B6, B-4000 Liège, Belgium Department of Chemistry and Department of Applied Physics, Stanford University, Stanford, CA 94305

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

2

3

X-ray analysis techniques, such as small-angle x-ray scattering (SAXS), have been profitably applied in probing ionomer morphology for many years. We discuss below the application of two newer techniques, ex­ tended x-ray absorption fine structure (EXAFS) spec­ troscopy and anomalous SAXS (ASAXS), in two recent studies of ionomer morphology and structure-property relationships. The combination of SAXS and EXAFS was used to explain the modulus enhancement, due to inter­ locking loops of polymer chain, and high-strain behavior, due to aggregate cohesion, of five carboxy-telechelic polyisoprenes neutralized with divalent cations. ASAXS was used to show that the up­ turn near zero angle commonly observed in the SAXS patterns of ionomers is due to scattering from ca­ tions, possibly reflecting an inhomogeneous distribu­ tion of dissolved ionic groups. The i n c o r p o r a t i o n o f a s m a l l amount o f bound i o n i c f u n c t i o n a l i t y , t y p i c a l l y l e s s t h a n t e n mole p e r c e n t , has a p r o f o u n d e f f e c t on t h e p r o p e r t i e s o f a polymer. These m a t e r i a l s , termed "ionomers", c a n e x h i b i t marked i n c r e a s e s i n such i m p o r t a n t m a t e r i a l p r o p e r t i e s as modulus, a d h e s i v e s t r e n g t h , t e a r and a b r a s i o n r e s i s t a n c e , melt v i s c o s i t y , and impact s t r e n g t h [ 1 - 3 ] . I t i s now g e n e r a l l y accepted t h a t these e f f e c t s r e s u l t from aggregation of t h e ions into m i c r o d o m a i n s [ 4 , 5 ] , which a c t as p h y s i c a l c r o s s l i n k s i n t h e m a t e r i a l . The i o n i c groups may be spaced randomly a l o n g t h e polymer c h a i n , l o c a t e d a t r e g u l a r i n t e r v a l s a l o n g t h e c h a i n (such as i n t h e p o l y urethane ionomers[6]), o r l o c a t e d o n l y a t t h e c h a i n ends ( t h e 4

5

Current address: Baxter Healthcare Corporation, Round Lake, IL 60073 Current address: Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons of Columbia University, New York, N Y 10032 0097-6156/89A)395-0420$06.00/0 ο 1989 American Chemical Society

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

17.

REGISTER ET AL.

X-Ray Analysis of Ionomers

421

" t e l e c h e l i c " ionomers[7,8]). W h i l e t h e placement of i o n i c groups i s expected t o m o d i f y t h e a g g r e g a t i o n p r o c e s s , a l l of t h e s e m a t e r i a l s e x h i b i t m i c r o p h a s e s e p a r a t i o n under c e r t a i n c o n d i t i o n s . Small-angle x-ray s c a t t e r i n g (SAXS) has been used f o r t w e n t y y e a r s t o c h a r a c t e r i z e ionomer morphology, s i n c e t h e p i o n e e r i n g observation by W i l s o n e t a l . [ 4 ] t h a t e t h y l e n e / m e t h a c r y l i c a c i d ionomers, upon n e u t r a l i z a t i o n , developed an i n t e n s e peak a t 20 ~ 4 . T h i s peak was i m m e d i a t e l y t a k e n as e v i d e n c e f o r i o n i c a g g r e g a t i o n , and has s i n c e been found t o be a n e a r l y u n i v e r s a l f e a t u r e of ionomers. A l s o , many r e s e a r c h e r s have noted a s t r o n g u p t u r n i n s c a t t e r e d i n t e n s i t y as z e r o a n g l e i s approached[6,8,9]. The origin of t h i s f e a t u r e has remained unknown u n t i l r e c e n t l y and w i l l be d i s c u s s e d below. The prominence of SAXS i n t h e a n a l y s i s of ionomers a r i s e s f r o m t h e s t r o n g e l e c t r o n d e n s i t y c o n t r a s t between t h e i o n i c aggregates and t h e polymer m a t r i x , g i v i n g a s t r o n g s i g n a l , as well as t h e d i f f i c u l t y i n o b t a i n i n g u s e f u l i n f o r m a t i o n by e l e c t r o n microscopy[10]. The use o f m o r p h o l o g i c a l models, through which a n a l y t i c a l e x p r e s s i o n s may be o b t a i n e d f o r t h e SAXS i n t e n s i t y , a l l o w i n v e s t i g a t o r s t o e s t i m a t e parameters such as t h e a g g r e g a t e s i z e and interaggregate spacing. With t h e r e c e n t a v a i l a b i l i t y of h i g h - i n t e n s i t y , e n e r g y - t u n a b l e x - r a y s from s y n c h r o t r o n s o u r c e s , t h e number of p r a c t i c a l x-ray a n a l y s i s t e c h n i q u e s has increased dramatically. I n t h e a r e a of s c a t t e r i n g , t h e t e c h n i q u e of anomalous s m a l l - a n g l e x - r a y scattering (ASAXS) has emerged r e c e n t l y as a p o w e r f u l t e c h n i q u e f o r i s o l a t i n g t h e s c a t t e r i n g due t o a p a r t i c u l a r element i n a m a t e r i a l . By t u n i n g t h e x - r a y energy near an a b s o r p t i o n edge of t h a t e l e m e n t , i t s s c a t t e r i n g power can be s t r o n g l y a l t e r e d , w h i l e l e a v i n g t h a t of the other elements unchanged. ASAXS i s p a r t i c u l a r l y u s e f u l f o r ionomers, s i n c e t h e elements of g r e a t e s t i n t e r e s t a r e t h e c a t i o n s , many of whose a b s o r p t i o n edges l i e i n an energy range a v a i l a b l e a t current synchrotron sources. Another v a l u a b l e t o o l i s extended x - r a y a b s o r p t i o n f i n e s t r u c t u r e (EXAFS) s p e c t r o s c o p y . T h i s a b s o r p t i o n t e c h n i q u e makes use of t h e m o d u l a t i o n i n a b s o r p t i o n c o e f f i c i e n t above an element a b s o r p t i o n edge, due t o b a c k s c a t t e r i n g of t h e e j e c t e d p h o t o e l e c t r o n by n e i g h b o r i n g atoms. By s u i t a b l e d a t a t r e a t m e n t , i t i s p o s s i b l e t o determine t h e e l e m e n t a l t y p e , number, and d i s t a n c e of t h e atoms coordinated t o the absorbing c a t i o n . Thus, EXAFS probes the a t o m i c - s c a l e s t r u c t u r e i n t h e m a t e r i a l , w h i l e SAXS and ASAXS probe the microdomain-scale s t r u c t u r e . By u s i n g b o t h s c a t t e r i n g and abs o r p t i o n t e c h n i q u e s , a f u l l p i c t u r e of ionomer morphology may be developed. To demonstrate t h e u t i l i t y of t h e x - r a y a n a l y s i s t e c h n i q u e s i n t h e s t u d y of ionomers, two r e c e n t r e s e a r c h p r o j e c t s w i l l be discussed. The f i r s t [ 1 1 ] employs SAXS and EXAFS t o e x p l a i n unexpected features in the mechanical behavior of a series of c a r b o x y - t e l e c h e l i c p o l y i s o p r e n e ionomers n e u t r a l i z e d w i t h d i v a l e n t c a t i o n s . The second p r o j e c t [ 1 2 ] uses ASAXS t o i d e n t i f y t h e origin of t h e z e r o - a n g l e u p t u r n i n s c a t t e r e d i n t e n s i t y commonly o b s e r v e d f o r ionomers.

422

MULTIPHASE POLYMERS: BLENDS AND IONOMERS

Structure-Property Relationships in Telechelic Polvisoprenes S y n t h e s i s and C h a r a c t e r i z a t i o n . The s y n t h e s i s o f c a r b o x y - t e l e c h e l i c polyisoprenes was c a r r i e d o u t a s d e s c r i b e d p r e v i o u s l y [ 7 ] , i n t e t r a h y d r o f u r a n a t -78 C u s i n g sodium n a p h t h a l i d e a s i n i t i a t o r . A p p r o x i m a t e l y 2-3 u n i t s o f α-methylstyrene per l i v i n g end were added a f t e r c o m p l e t i o n o f t h e i s o p r e n e p o l y m e r i z a t i o n t o reduce t h e r e a c ­ t i v i t y o f t h e c h a i n ends, which were t h e n t e r m i n a t e d b y t h e a d d i t i o n of gaseous C 0 The f u n c t i o n a l i t y o f t h e s e polymers i s 1.90, as d e t e r m i n e d b y p o t e n t i o m e t r i c t i t r a t i o n , and t h e m o l e c u l a r w e i g h t was 8000 a s d e t e r m i n e d by g e l p e r m e a t i o n chromatography. The m a t e r i a l s were n e u t r a l i z e d w i t h 95% o f t h e s t o i c h i o m e t r i c m e t a l methoxide ( C a , S r ) o r a c e t a t e ( N i , Zn, Cd) i n t o l u e n e s o l u t i o n , and t h e methanol o r a c e t i c a c i d b y p r o d u c t was removed b y a z e o t r o p i c distillation. F i n a l l y , a p p r o x i m a t e l y 1% b y w e i g h t o f t h e a n t i o x i d a n t I r g a n o x 1010 was added t o p r e v e n t chemical c r o j s l i n k i n g of the polyisoprene u n i t s . The m a t e r i a l s were f o u n d b y H FTNMR t o c o n t a i n t h e p o s s i b l e 3,4/1,2/1,4 r e p e a t u n i t s i n t h e r a t i o 59/41/0, and g l a s s transition t e m p e r a t u r e s measured b y d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y were found t o l i e i n t h e range 15-19°C r e g a r d l e s s o f c a t i o n . Specimens f o r t e s t i n g were compression-molded f o r f i v e m i n u t e s a t 70 C i n t o s h e e t s a p p r o x i m a t e l y 0.5 mm t h i c k , o r d i s k s a p p r o x i m a t e l y 2 mm thick. A l l samples were s t o r e d i n a d e s i c c a t o r over CaSO, u n t i l 4 use. Instrumental Conditions. Dogbone samples f o r t e n s i l e t e s t i n g were stamped o u t w i t h a s t a n d a r d ASTM D1708 d i e . Measurements were p e r ­ formed i n a i r , a t 30 C, on an I n s t r o n TM a t a c r o s s h e a d speed o f 0.5 i n . / m i n . A l l r e p o r t e d d a t a a r e t h e average o f t h r e e t e s t s . The small-angle x - r a y s c a t t e r i n g (SAXS) e x p e r i m e n t s were p e r ­ formed w i t h an E l l i o t GX-21 r o t a t i n g anode x - r a y g e n e r a t o r operated w i t h a copper t a r g e t a t 40 kV a c c e l e r a t i n g p o t e n t i a l and 15 mA emis­ s i o n c u r r e n t . Cu Κα x - r a y s were s e l e c t e d b y f i l t e r i n g w i t h nickel foil and b y p u l s e - h e i g h t a n a l y s i s a t t h e d e t e c t o r . An Anton-Paar compact K r a t k y camera was used t o c o l l i m a t e t h e x - r a y s i n t o a l i n e m e a s u r i n g 0.75 cm b y 100 /im. The s c a t t e r e d x - r a y s were d e t e c t e d w i t h a TEC 211 l i n e a r p o s i t i o n s e n s i t i v e d e t e c t o r , p o s i t i o n e d a t a sample-to-dejector d i s t a n c e o f 60 cm f o r a q range ^=4π8ΐη0/λ) o f 0.15-5.4 nm The d a t a were c o r r e c t e d f o r d e t e c t o r sensitivity, empty beam s c a t t e r i n g , and sample a b s o r p t i o n . A moderate amount o f c u b i c s p l i n e smoothing was a p p l i e d t o t h e d a t a , which were t h e n desmeared by the iterative method o f L a k e [ 1 9 ] u s i n g an e x p e r i m e n t a l l y - d e t e r m i n e d w e i g h t i n g f u n c t i o n . The d a t a was p l a c e d on an a b s o l u t e i n t e n s i t y s c a l e b y comparison w i t h a c a l i b r a t e d L u polen polyethylene standard[13]. To e l i m i n a t e s c a t t e r i n g from t h e r m a l f l u c t u a t i o n s , t h e d a t a i n t h e range 3.0-5.0 nm were f i t t o Porod's Law[20] p l u s a c o n s t a n t background term. T h i s background was t h e n s u b t r a c t e d from t h e c u r v e s . The t r a n s m i s s i o n extended x - r a y absorption f i n e structure (EXAFS) s p e c t r a were c o l l e c t e d on t h e A-2, C - l , and C-2 s t a t i o n s o f t h e C o r n e l l H i g h Energy S y n c h r o t r o n Source (CHESS). Data r e d u c t i o n f o l l o w e d a s t a n d a r d p r o c e d u r e o f pre-edge and post-edge background r e m o v a l , e x t r a c t i o n o f t h e EXAFS o s c i l l a t i o n s x ( k ) , t a k i n g t h e F o u r i e r - t r a n s f o r m o f x ( k ) , and f i n a l l y a p p l y i n g an i n v e r s e t r a n s f o r m

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

2 >

17.

REGISTER ET AL.

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

to i s o l a t e the space[14-16].

423

X-Ray Analysis of Ionomers EXAFS

c o n t r i b u t i o n from a s e l e c t e d r e g i o n i n r e a l

T e n s i l e T e s t i n g R e s u l t s . S t r e s s - s t r a i n c u r v e s a r e shown i n F i g u r e 1 f o r a l l f i v e m a t e r i a l s , where d i f f e r e n c e s between t h e m a t e r i a l s neu­ t r a l i z e d w i t h d i f f e r e n t c a t i o n s can be c l e a r l y seen. Note t h a t a l l t h e c a t i o n s used h e r e a r e d i v a l e n t , so t h a t t h e c a t i o n charge i s not a variable. F i g u r e l a shows t h e m a t e r i a l s n e u t r a l i z e d w i t h t h e a l k a l i n e e a r t h c a t i o n s Ca and S r , w h i l e t h o s e n e u t r a l i z e d w i t h the t r a n s i t i o n m e t a l c a t i o n s N i , Zn, and Cd a r e shown i n F i g u r e l b . Note t h a t t h e Cd ionomer a c t u a l l y extended t o a p p r o x i m a t e l y 1600%, and e x h i b i t e d e s s e n t i a l l y no r e c o v e r y upon b r e a k i n g . The Ca and N i m a t e r i a l s , by c o n t r a s t , snapped back t o w i t h i n 40% of t h e i r un­ s t r e s s e d l e n g t h a f t e r b r e a k i n g . The Zn and Sr t e l e c h e l i c s e x h i b i t e d intermediate behavior. The z e r o - s t r a i n Young's m o d u l i a r e l i s t e d i n Table I. Table I. Cation

Ε

Ca Sr Ni Zn Cd

T e l e c h e l i c T e n s i l e T e s t i n g and SAXS M o d e l l i n g R e s u l t s (MPa)

4.4 5.6 3.7 3.2 3.2

(nm)

1.06 1.04 0.95 0.92 0.90

R

2

(nm)

2.01 1.95 2.02 2.10 2.06

ν

(nm

262 250 205 194 197

)

PI"PQ

(

163 139 208 169 185

NM

)

N

34 33 27 25 26

The two a l k a l i n e e a r t h m a t e r i a l s have an average modulus n e a r l y 50% h i g h e r t h a n t h e average of t h e t h r e e t r a n s i t i o n m e t a l m a t e r i a l s , d e s p i t e h a v i n g i d e n t i c a l i o n c o n t e n t s and m o l e c u l a r w e i g h t s . Moreo­ v e r , t h e s e modulus v a l u e s a r e h i g h e r t h a n t h e v a l u e s p r e d i c t e d by rubber e l a s t i c i t y t h e o r y , i f we c o n s i d e r t h e e f f e c t i v e network e l e ­ ments t o be t h o s e p o l y i s o p r e n e c h a i n s t e r m i n a t e d a t b o t h ends w i t h m e t a l c a r b o x y l a t e groups. In t h i s case, the z e r o - s t r a i n t e n s i l e modulus Ε i s g i v e n b y [ 1 7 ] : Ε = 3[(g-2)/g]i/RT

(1)

where g i s t h e c r o s s l i n k f u n c t i o n a l i t y , u i s t h e d e n s i t y o f e l a s t i c a l l y e f f e c t i v e c h a i n s , R i s t h e gas c o n s t a n t , and Τ i s the a b s o l u t e t e m p e r a t u r e . The b r a c k e t e d q u a n t i t y r e f l e c t s t h e m o b i l i t y of t h e c r o s s l i n k s w i t h i n t h e m a t r i x . Assuming t h a t a l l c h a i n s with m e t a l c a r b o x y l a t e groups a t b o t h ends a r e e l a s t i c a l l y e f f e c t i v e , and t h a t t h e 5% of a l l c h a i n ends which a r e not c a r b o x y l a t e groups are randomly d i s t r i b u t e d among a l l t h e c h a i n |nds, t h e u v a l u e f o r t h e s e t e l e c h e l i c s i s a p p r o x i m a t e l y 107 /imole/cm . I f we f u r t h e r assume t h a t t h e f u n c t i o n a l i t y of an i o n i c c r o s s l i n k i s l a r g e , such t h a t t h e b r a c k e t e d q u a n t i t y i n E q u a t i o n 1 approaches u n i t y , we c a l c u l a t e an upper bound on Ε e q u a l t o 0.81 MPa. The o b s e r v e d v a l u e s l i e i n t h e range 3.2-5.6 MPa, so some f a c t o r must be a c t i n g t o enhance t h e mod­ ulus. Because of t h e r e l a t i v e l y low c o n c e n t r a t i o n o f i o n i c g r o u p s , t h e i o n i c a g g r e g a t e s do not occupy a s i g n i f i c a n t f r a c t i o n of the materials volumes, so t h e f i l l e r e f f e c t i s s m a l l , as w i l l be shown 1

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

424

MULTIPHASE POLYMERS: BLENDS AND IONOMERS

i n t h e f o l l o w i n g s e c t i o n . Moreover, t h e volume f r a c t i o n o f i o n i c a g g r e g a t e s s h o u l d be n e a r l y t h e same f o r a l l f i v e m a t e r i a l s . S t r a i n - h a r d e n i n g b e h a v i o r can a l s o be observed i n F i g u r e 1 f o r t h e Ca t e l e c h e l i c b e g i n n i n g near 50% e l o n g a t i o n , and t o a l e s s e r e x t e n t f o r t h e N i ionomer near 100% e l o n g a t i o n . T h i s f e a t u r e i s absent i n t h e other t h r e e m a t e r i a l s . As t h e s e t e l e c h e l i c s a r e copolymers o f t h e two t y p e s o f v i n y l a d d i t i o n , s t r e s s - i n d u c e d c r y s t a l l i z a t i o n cannot be t h e s o u r c e o f t h e s t r a i n - h a r d e n i n g , nor i s i t due t o the f i n i t e e x t e n s i b i l i t y of the primary c h a i n s , of molecular weight 8000, which s h o u l d o c c u r above 300% e x t e n s i o n . Trapped entanglements o f t e n c o n t r i b u t e a p p r e c i a b l y t o t h e modu l i o f networks formed by c h e m i c a l l y c r o s s l i n k i n g i n b u l k [ 1 8 ] . The s i t u a t i o n f o r t h e t e l e c h e l i c ionomers i s somewhat d i f f e r e n t , s i n c e t h e p r i m a r y c h a i n s a r e o f low m o l e c u l a r weight and would n o t be e x p e c t e d t o be h i g h l y e n t a n g l e d . However, entanglements c a n s t i l l form when t h e i o n i c groups a g g r e g a t e , and a l a r g e f r a c t i o n o f t h e s e a r e l i k e l y t o be i n t e r l o c k i n g " l o o p s " . I n a d d i t i o n , t r a p p e d e n tanglements between two l i n e a r c h a i n s which c r o s s a r e p o s s i b l e (as i n c h e m i c a l l y - c r o s s l i n k e d networks) o r , between a s i n g l e l o o p and a l i n e a r c h a i n , nonw o f which would be p r e s e n t i n t h e n o n i o n i c p o l y isoprene precursor. I t has l o n g been r e c o g n i z e d [ 5 ] t h a t a l a r g e f r a c t i o n o f t h e i o n i c s i t e s would, upon i o n i c a g g r e g a t i o n , c o a l e s c e i n t o t h e same a g g r e g a t e as t h e i r t o p o l o g i c a l n e i g h b o r . F o r a l i n e a r t e l e c h e l i c ionomer, t h i s c o r r e s p o n d s t o b o t h ends r e s i d i n g i n t h e same a g g r e g a t e , c r e a t i n g a " l o o p " o f polymer c h a i n . I n b u l k , t h i s l o o p w i l l be e n t a n g l e d w i t h o t h e r l o o p s , and as l o n g as t h e i o n i c a g g r e g a t e s a r e n o t d i s r u p t e d under s t r e s s , t h e s e i n t e r l o c k i n g l o o p s a r e e l a s t i c a l l y - e f f e c t i v e entanglements. These l o o p s will p u l l t a u t a t a much lower e x t e n s i o n t h a n would be r e q u i r e d t o f u l l y e x t e n d t h e e n t i r e polymer c h a i n . When t h e s e i n t e r l o c k i n g l o o p s p u l l t a u t , one o f two e f f e c t s may result. I f t h e i o n i c a g g r e g a t e s a r e h i g h l y c o h e s i v e and do n o t r u p t u r e , t h e n t h e polymer c h a i n s must b r e a k , and t h e m a t e r i a l w i l l snap back t o a p p r o x i m a t e l y i t s u n s t r e s s e d l e n g t h . I f t h e a g g r e g a t e s a r e weakly cohesive, the stressed entanglements can r e l a x by " i o n - h o p p i n g " , o r p u l l i n g t h e i o n i c groups o u t o f t h e a g g r e g a t e s . Two q u e s t i o n s r e m a i n , however: why i s t h e modulus enhancement, a t t r i b u t e d p r i m a r i l y t o t h e s e i n t e r l o c k i n g l o o p s , g r e a t e r f o r t h e Ca and S r ionomers t h a n f o r t h e N i , Zn, and Cd t e l e c h e l i c s , and why i s t h e s t r e s s - h a r d e n i n g b e h a v i o r e x h i b i t e d o n l y by t h e t e l e c h e l i c s neut r a l i z e d w i t h Ca and N i ? S m a l l - a n g l e x - r a y s c a t t e r i n g (SAXS) and e x tended x - r a y a b s o r p t i o n f i n e s t r u c t u r e (EXAFS) s p e c t r o s c o p y were employed t o a d d r e s s t h e s e q u e s t i o n s . SAXS R e s u l t s . The SAXS p a t t e r n s f o r t h e t e l e c h e l i c s a r e shown i n F i g u r e 2; t h e c u r v e s have each been o f f s e t by 1200 i n t e n s i t y units for c l a r i t y . Due t o t h e low c o n c e n t r a t i o n o f i o n s i n t h e s e m a t e r i a l s , t h e y a r e poor s c a t t e r e r s compared w i t h many ionomers, b u t t h e s e c u r y e s do show two t y p i c a l f e a t u r e s : a peak, seen h e r e from 1.2-1.5 nm , and a s t e e p u p t u r n a t v e r y low a n g l e . To q u a n t i f y t h e morp h o l o g i c a l d i f f e r e n c e s between t h e m a t e r i a l s , t h e SAXS p a t t e r n s were f i t t o t h e Y a r u s s o l i q u i d - l i k e m o d e l [ 9 ] , which a t t r i b u t e s t h e peak to i n t e r p a r t i c l e scattering. A schematic diagram o f t h e Y a r u s s o model i s shown i n F i g u r e 3. The i o n i c aggregates have a c o r e r a d i u s R , b u t a r e c o a t e d w i t h an i m p e n e t r a b l e sheath o f polymer due t o t h e

X-Ray Analysis of Ionomers

425

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

REGISTER ET A L

Figure 2. Desmeared, background-subtracted SAXS patterns for carboxy-telechelic polyisoprenes. Curves are offset 1200 intensity units for clarity.

426

MULTIPHASE POLYMERS: BLENDS AND IONOMERS

c h a i n u n i t s near t h e i o n i c groups. As a r e s u l t , t h e r a d i u s c l o s e s t a p p r o a c h , R , i s g r e a t e r t h a n R . The i o n i c a g g r e g a t e s assumed t o have a u n i f o r m e l e c t r o n d e n s i t y p^, w h i l e t h e m a t r i x an e l e c t r o n d e n s i t y p . The e q u a t i o n f o r t h e s c a t t e r e d i n t e n s i t y g i v e n by: Q

2

I/I V = (l/v )(4^/3) (p -p )^(qR )S(q,R ,v ) e

1

p

0

1

2

p

of are has is

(2)

where ν i s t h e t o t a l volume o f m a t e r i a l per i o n i c a g g r e g a t e ( r e ­ c i p r o c a l ^ a g g r e g a t e number d e n s i t y ) , Φ(χ) = 3 ( s i n x - x c o s x ) / x , and S ( q , R , v ) i s t h e i n t e r f e r e n c e f u n c t i o n . The P e r c u s - Y e v i c k [ 2 1 ] t o ­ t a l c o r r e l a t i o n f u n c t i o n was employed f o r S, as suggested by K i n n i n g and Thomas[22]. The Y a r u s s o model produces good f i t s of t h e ionomer peak when a p p l i e d t o s u l f o n a t e d p o l y s t y r e n e [ 9 ] and p o l y u r e t h a n e [ 6 ] ionomers, w i t h p h y s i c a l l y s a t i s f y i n g parameters. However, i t does n o t p r e d i c t t h e o b s e r v e d i n t e n s i t y u p t u r n a t v e r y low a n g l e , so o n l y d a t a above 0.65 nm was c o n s i d e r e d i n t h e f i t s . The b e s t - f i t parameters of t h e Y a r u s s o model t o t h e SAXS d a t a a r e g i v e n i n T a b l e I. Note t h a t t h e s e v a l u e s a r e s l i g h t l y d i f f e r e n t from t h o s e r e p o r t e d p r e v i o u s l y [ 1 1 ] ; t h i s i s due t o c o r r e c t i o n s t o our desmearing p r o c e d u r e and a b s o l u t e i n t e n s i t y c a l i b r a t i o n . However, s i n c e t h e d i s c u s s i o n was o r i g i n a l l y based on t r e n d s r a t h e r t h a n a b s o l u t e v a l u e s , t h e d i s c u s s i o n h e r e w i l l p a r a l l e l t h e oçiginal[ll]. The volume f r a c t i o n o f i o n i c a g g r e g a t e s , e q u a l t o (4TTR /3v ), i s l e s s t h a n 2.0% i n a l l cases. Therefore, the f i l l e r e f f e c t f l ? ] i n these m a t e r i a l s l e a d s t o l e s s t h a n 5% modulus enhancement, and t h u s cannot be t h e s o u r c e o f t h e 300-600% enhancement observed h e r e . The R^ v a l u e s f o r t h e Ca and Sr ionomers a r e l a r g e r t h a n t h o s e f o r t h e N i , Zn, and Cd ionomers, s u g g e s t i n g t h a t t h e a g g r e g a t e s i n t h e former two m a t e r i a l s c o n t a i n more i o n i c groups. However, t h e s i z e o f t h e i o n i c a g g r e g a t e s i s a l s o i n f l u e n c e d by t h e s i z e o f t h e n e u t r a l i z i n g c a t i o n , any hydrocarbon i n c o r p o r a t e d i n t o t h e a g g r e g a t e s , and any water absorbed from t h e atmosphere. These t e l e c h e l i c ionomers s h o u l d be h i g h l y p h a s e - s e p a r a t e d [ 8 ] , due t o t h e r e g u l a r i t y of t h e c h a i n a r c h i t e c t u r e . Assuming t h a t a l l t h e i o n s r e s i d e i n agg r e g a t e s , a more r e l i a b l e i n d i c a t o r of t h e number o f c a t i o n s per i o n i c aggregate i s ν . Based on t h e m o l e c u l a r w e i g h t , f u n c ­ t i o n a l i t y , and n e u t r a l i z a t i o n l e v e l o f t h e s e t e l e c h e l i c s , t h e r e i s an average o f 0.13 ions/nm . M u l t i p l y i n g t h i s f a c t o r by t h e ν v a l u e y i e l d s t h e number of i o n s per a g g r e g a t e , n, l i s t e d i n T a b l e I ? There i s a c l e a r d i v i s i o n i n η between t h e Ca and Sr m a t e r i a l s (n=33-34) and t h e N i , Zn, and Cd m a t e r i a l s (n=25-27). L a r g e r v a l u e s of ν and η i n d i c a t e t h a t t h e a g g r e g a t i o n p r o c e s s has proceeded 1

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

2

furtRer

for

This w i l l , concluded t h e Ca and l o o p s as a

the

Ca

and

Sr

t e l e c h e l i c s , forming larger

aggregates.

i n t u r n , l e a d t o more t r a p p e d entanglements. I t can be t h a t t h e h i g h e r s m a l l - s t r a i n t e n s i l e m o d u l i observed f o r Sr m a t e r i a l s i s due t o a g r e a t e r d e n s i t y of interlocking r e s u l t o f t h e l a r g e r aggregates i n t h e s e m a t e r i a l s .

EXAFS R e s u l t s . I n o r d e r t o e s t i m a t e t h e c o h e s i v e n e s s of t h e i o n i c a g g r e g a t e s , we a p p l i e d EXAFS s p e c t r o s c o p y t o examine t h e c o o r d i n a ­ t i o n s t r u c t u r e about t h e c a t i o n . The EXAFS s i g n a l i s a m o d u l a t i o n of t h e x - r a y a b s o r p t i o n c o e f f i c i e n t on t h e h i g h - e n e r g y s i d e o f an e l e m e n t a l a b s o r p t i o n edge. The p h o t o e l e c t r o n s t h a t a r e e j e c t e d by t h e absorbed x - r a y s can be b a c k s c a t t e r e d by atoms c o o r d i n a t e d t o t h e

Multiphase Polymers: Blends and Ionomers Downloaded from pubs.acs.org by UNIV LAVAL on 04/24/16. For personal use only.

17.

REGISTER ET AL.

427

X-Ray Analysis of Ionomers

absorbing atom; s u p e r p o s i t i o n of t h e o u t g o i n g and b a c k s c a t t e r e d e l e c t r o n waves g i v e s r i s e t o an interference pattern. The EXAFS s i g n a l x(k), where k i s t h e p h o t o e l e c t r o n w a v e v e c t o r , c o n t a i n s i n ­ f o r m a t i o n on t h e number Ν. and t y p e of atoms i n c o o r d i n a t i o n shell j, t h e d i s t a n c e R. t o ^ t h i s s h e l l , and t h e s t a t i c and v i b r a t i o n a l d i s o r d e r of t h e shelî, measured as t h e Debye-Waller f a c t o r