13
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
Phytopathogenic Toxins from Fungi: An Overview H. H . LUKE U.S. Department of Agriculture, Plant Pathology Dept., University of Florida, Gainesville, Fla. 32611 R. H . BIGGS Fruit Crops Department, University of Florida, Gainesville, Fla. 32611 Phytopathogenic toxins that are produced by plant pathogens are classified into two types: nonspecific, those that affect a greater number of plant species than the pathogen that produces them; and specific, those that affect only the same hosts as the pathogen. Evidence indicating that plant pathogens induce disease by toxigenic action has been established by using specific toxins produced in vitro. It is difficult to isolate toxins from infected plants and therefore it is hard to show that toxins produced in vivo incite disease. Most phytopathogenic toxins are produced by species of Alternaria or Bipolaris (formerly Helminthosporium). Similarities in the molecular structure of mycotoxins and some phytopathogenic toxins indicate that the latter may be toxic also to animals. Moreover some phytotoxins occur in higher concentrations in infected plants than mycotoxins.
Phytopathogenic toxins are produced by plant pathogens, induce disease development, and may be considered as pathogenic agents (2). Many fungal metabolites are toxic to plants but do not initiate disease development. Toxins that do not initiate disease or that have a minor influence on disease are referred to as phytotoxins (2). Phytotoxins are usually produced during the later part of the disease syndrome. Some phytotoxins that are produced in vitro have not been found in vivo. The 296 Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
LUXE AND BIGGS
Phytopathogenic
297
Toxins
i d e a t h a t p l a n t pathogens p r o d u c e toxins t h a t c a u s e p l a n t disease o r i g i n a t e d a b o u t a c e n t u r y ago ( I ) . C u r r e n t l y o n l y 10 k n o w n toxins i n i t i a t e disease, a n d t h e i r p r e c i s e m o d e o f a c t i o n is n o t k n o w n . O n e o f t h e m a j o r reasons f o r l i m i t e d progress o n this t o p i c is t h e l a c k o f k n o w l e d g e o f t h e c h e m i c a l s t r u c t u r e o f these toxins. T h e exact s t r u c t u r e o f o n l y a f e w toxins is k n o w n , a n d u n f o r t u n a t e l y m o s t o f those t h a t h a v e b e e n d e s c r i b e d c h e m i c a l l y e i t h e r d o n o t cause disease o r h a v e o n l y a m i n o r i n f l u e n c e o n
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
disease d e v e l o p m e n t .
W e h o p e i n this d i s c o u r s e t o a l e r t chemists t o t h e
n e e d to d e t e r m i n e t h e structures o f p h y t o p a t h o g e n i c toxins. M o s t toxins t h a t i n c i t e diseases o f h i g h e r p l a n t s a r e p r o d u c e d b y species o f Bipolaris
( f o r m e r l y Helminthosporium)
o r Alternaria.
Some
toxins p r o d u c e d b y these t w o g e n e r a a r e specific a n d s o m e a r e n o n specific.
A f e w f u n g i other t h a n species o f Bipolaris
o r Alternaria
also
p r o d u c e toxins. T h e r e f o r e this discourse is s u b d i v i d e d i n t o six c a t e g o r i e s : specific a n d n o n s p e c i f i c Bipolaris
toxins, specific a n d n o n s p e c i f i c
Alter-
naria t o x i n s , a n d o t h e r toxins. I n t h e s i x t h s e c t i o n w e discuss s i m i l a r i t i e s b e t w e e n m y c o t o x i n s a n d p h y t o p a t h o g e n i c toxins.
S e v e r a l toxins f r o m
each category are discussed. Specific Bipolaris Toxins Specific toxins a r e those t h a t affect t h e same hosts as t h e p a t h o g e n t h a t p r o d u c e s t h e m . S p e c i f i c toxins h a v e b e e n t e r m e d p a t h o t o x i n s ( 2 ) a n d host-specific toxins ( 3 ) . T h e s e terms a r e s y n o n y m o u s b e c a u s e t h e y d e n o t e a substance p r o d u c e d b y a p l a n t p a t h o g e n t h a t initiates disease. T h e m o s t c o n c l u s i v e e v i d e n c e t h a t toxins p r o d u c e d b y p l a n t p a t h o g e n i c f u n g i i n c i t e disease has b e e n o b t a i n e d w i t h specific toxins ( 2 , 3 2 ) . W e b e l i e v e t h a t t h e r e a r e m a n y specific toxins t h a t o c c u r o n l y in vivo, b u t i t is difficult t o extract t h e m f r o m t h e i n f e c t e d host.
Therefore t h e most
c o n c l u s i v e e v i d e n c e t h a t toxins i n i t i a t e p l a n t disease has b e e n o b t a i n e d b y u s i n g specific toxins p r o d u c e d i n a r t i f i c i a l m e d i a . Bipolaris victoriae. T h i s f u n g u s ( f o r m e r l y Helminthosporium toriae)
vic-
causes a d e v a s t a t i n g disease o f o a t c u l t i v a r s t h a t h a v e t h e V i c t o r i a
gene f o r c r o w n r u s t resistance (4).
T h e f u n g u s causes necrosis a t t h e
base o f t h e stem a n d s t r i p i n g o r r e d d e n i n g o f leaves. L e a f s t r i p i n g a n d discoloration
progress
upward from
the lower
leaves.
Plants
show
b l i g h t i n g a n d d i s c o l o r a t i o n a t n o d a l areas a n d severe l o d g i n g at t h e base a n d u p p e r nodes.
Because the pathogen could not be isolated from the
d i s c o l o r e d leaves, i t w a s suggested t h a t this s y m p t o m r e s u l t e d f r o m a t o x i n t h a t o r i g i n a t e d at t h e site o f i n f e c t i o n ( 5 ) . T h i s o b s e r v a t i o n w a s c o n f i r m e d a n d e x t e n d e d to s h o w t h a t c u l t u r e
filtrates
c u l t i v a r s t h a t w e r e s u s c e p t i b l e to t h e p a t h o g e n .
O a t c u l t i v a r s resistant
were toxic to
to t h e p a t h o g e n w e r e u n i f o r m l y resistant t o t h e t o x i n ( 6 ) . F u r t h e r s t u d y
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
298
MYCOTOXINS
r e v e a l e d that n o n p a t h o g e n i c cultures of the fungus d i d not p r o d u c e
the
t o x i n . Differences i n d e g r e e of p a t h o g e n i c i t y a m o n g cultures w e r e p o s i t i v e l y c o r r e l a t e d w i t h differences i n t o x i n p r o d u c t i o n , a n d t o x i n p r o d u c t i o n was d i r e c t l y r e l a t e d to t h e g r o w t h r a t e of t h e f u n g u s (7).
T h u s this
t o x i n , g i v e n the t r i v i a l n a m e v i c t o r i n ( 8 ) , w a s e s t a b l i s h e d as a specific t o x i n that is the c a u s a l agent of V i c t o r i a b l i g h t of oats. T h e intact victorin molecule
does n o t r e a c t w i t h n i n h y d r i n ,
but
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
h y d r o l y s i s y i e l d s t w o c o m p o u n d s t h a t d o react w i t h n i n h y d r i n . O n e w a s r e p o r t e d to b e a t r i c y c l i c s e c o n d a r y a m i n e ( v i c t o x i n i n e , e m p i r i c a l f o r m u l a of
C17H29NO), a n d the other w a s
(9).
a p e p t i d e c o m p o s e d of five a m i n o acids
V i c t o x i n i n e w a s s a i d to b e the t o x i c p r i n c i p l e , a n d t h e s m a l l p e p t i d e
supposedly conveyed
specificity to t h e i n t a c t m o l e c u l e
(10).
Another
r e p o r t h o w e v e r stated t h a t v i c t o x i n i n e w a s n o t the t o x i c m o i e t y of v i c t o r i n (3).
I n a later d i s c u s s i o n P r i n g l e a p p e a r e d r e l u c t a n t to c o n c e d e that a
p e p t i d e l i n k a g e occurs i n the i n t a c t t o x i n m o l e c u l e ( I I ) . t h e c h e m i s t r y of t h e i n t a c t t o x i n has n o t b e e n
Unfortunately
studied
successfully.
E m p h a s i s was p l a c e d o n v i c t o x i n i n e w h i c h m a y n o t b e i n v o l v e d i n t h e disease caused b y B. victoriae.
A s a r e s u l t , the c h e m i s t r y of v i c t o x i n i n e
is not presented i n this discourse.
A reliable molecular structure for
v i c t o r i n w o u l d c e r t a i n l y b e u s e f u l to d e t e r m i n e the m o d e of a c t i o n of this t o x i n . A l t h o u g h the precise m o d e of a c t i o n of v i c t o r i n is n o t k n o w n , v a r i o u s forms of c i r c u m s t a n t i a l e v i d e n c e suggest t h a t the t o x i n causes a n i r r e v e r s i b l e p h y s i o l o g i c a l m a l f u n c t i o n of the p l a s m a m e m b r a n e
(12,
13).
T h i s c o n c l u s i o n is b a s e d o n five different lines of e v i d e n c e : ( a ) S m a l l q u a n t i t i e s of t o x i n c a u s e d electrolyte leakage w i t h i n 5 m i n after treatment, a n d t h e r e was a s t r o n g p o s i t i v e c o r r e l a t i o n b e t w e e n electrolyte leakage a n d t o x i n c o n c e n t r a t i o n (14). ( b ) Electron micrographs showed that victorin caused partial sepa r a t i o n of the p l a s m a m e m b r a n e f r o m t h e c e l l w a l l r e s u l t i n g i n b l i s t e r - l i k e formations. S u c h s e p a r a t i o n d i s r u p t e d the o s m o t i c p r o p e r t i e s of the m e m b r a n e a n d c a u s e d the loss of c e l l u l a r c o m p o n e n t s a n d c e l l t u r g o r (12.15). ( c ) W h e n c e l l w a l l s w e r e r e m o v e d , v i c t o r i n c a u s e d b u r s t i n g of protoplasts f r o m susceptible c u l t i v a r s , b u t protoplasts f r o m resistant c u l t i v a r s seemed to b u r s t at a s l o w e r r a t e (16). ( d ) T r e a t m e n t w i t h t o x i n c a u s e d l e a k a g e of p h o s p h o r y l a t e d h e x oses f r o m susceptible tissue. P h o s p h o r y l a t e d sugars d o not pass t h r o u g h m e m b r a n e s that f u n c t i o n n o r m a l l y , a n d t h e r e f o r e v i c t o r i n appears to d i s r u p t the p h y s i o l o g i c a l f u n c t i o n of t h e p l a s m a m e m b r a n e (13). ( e ) V i c t o r i n i n d u c e d l e a k a g e of R b and C a f r o m susceptible b u t not f r o m resistant root tissue. I f v i c t o r i n a n d c a l c i u m c o m p e t e for n e g a t i v e l y c h a r g e d sites o n t h e p l a s m a m e m b r a n e , t h e r e m o v a l of c a l c i u m f r o m n e g a t i v e l y c h a r g e d sites m a y r e s u l t i n a r e p u l s i o n b e t w e e n n e g a t i v e charges o n t h e m e m b r a n e a n d the c e l l w a l l (17). Repulsion 8 6
4 5
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
L U X E A N D BIGGS
Phytopathogenic
299
Toxins
forces w o u l d r e s u l t i n b l i s t e r - l i k e f o r m a t i o n s o b s e r v e d w i t h t h e electron microscope ( 1 2 ) . T h e exact m a n n e r b y w h i c h v i c t o r i n causes d y s f u n c t i o n o f t h e p l a s m a m e m b r a n e is n o t k n o w n , n o r is i t k n o w n i f t h e a c t i o n o n t h e p l a s m a m e m b r a n e is a p r i m a r y o r s e c o n d a r y one. T h e s p e e d ( 5 m i n ) w i t h w h i c h v i c t o r i n d i s r u p t s t h e f u n c t i o n o f t h e p l a s m a m e m b r a n e suggests t h a t t h e a c t i o n is d i r e c t , b u t a firm c o n c l u s i o n to this effect s h o u l d b e s u p p o r t e d Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
b y direct evidence.
T h e unstable nature of the purified toxin has pre
v e n t e d successful l a b e l i n g experiments that c o u l d s h o w t h e site o f a c t i o n of v i c t o r i n . Bipolaris zeicola. T h i s f u n g u s
(formerly
Helminthosporium
car-
honum) causes a leaf b l o t c h o n c e r t a i n i n b r e d lines o f c o r n (Zea
mays).
I n t h e e a r l y stages of disease, w a t e r s o a k i n g o f leaf tissues is p r o n o u n c e d . L e s i o n s b e c o m e e l o n g a t e d a n d d e v e l o p a y e l l o w i s h - b r o w n color.
The
m a r g i n s are i r r e g u l a r , a n d i n a d v a n c e d stages t h e lesions s h o w a definite z o n a t e p a t t e r n (IS, 19). A l t h o u g h t h e s t r u c t u r a l c o n f i g u r a t i o n o f t h e B. zeicola t o x i n h a s n o t b e e n d e t e r m i n e d , its e m p i r i c a l f o r m u l a is c o n s i d e r e d to b e C32H50N6O10. T h i s f o r m u l a is c o n s i d e r e d a p p r o x i m a t e b e c a u s e of t h e u n s t a b l e n a t u r e of t h e m o l e c u l e .
D a t a from i o n exclusion columns indicated that the
t o x i n has a m o l e c u l a r w e i g h t o f less t h a n 700 ( I I ) . H o w e v e r t h e u n r e l i a b l e n a t u r e o f d a t a o b t a i n e d f r o m i o n e x c l u s i o n c o l u m n s suggests t h a t m o r e s t u d y o f t h e m o l e c u l a r properties o f this t o x i n is n e e d e d .
I R spec
t r o m e t r y r e v e a l e d that t h e B. zeicola t o x i n is a s u b s t i t u t e d p o l y a m i d .
A
c o m p l e t e a c i d h y d r o l y s i s r e s u l t e d i n five different n i n h y d r i n - r e a c t i n g p r o d u c t s , a l l o f w h i c h a p p e a r e d to b e o n a l i p h a t i c carbons.
Because
n o n e o f these c o m p o u n d s r e a c t e d w i t h p - n i t r o b e n z y l c h l o r i d e , n o n e a p p e a r to h a v e m e t h y l a m i n o groups
(11).
T h e intact toxin d i d n o t react w i t h
n i n h y d r i n o r w i t h 2,4-dinitrofluorobenzene. d o u b l e b o n d s , o r b o t h (11).
T h i s t o x i n contains 11 r i n g s ,
T h u s either t h e i n t a c t t o x i n h a s r i n g s t r u c
t u r e , o r t h e t e r m i n a l a m i n o groups are a c y l a t e d . L o w levels o f t h e t o x i n ( 4 5 / * g / m l ) i n h i b i t root e l o n g a t i o n o f other n o n h o s t p l a n t s . I f the t o x i n c o n c e n t r a t i o n is l o w e n o u g h , c u l t i v a r s suscep t i b l e to B. zeicola a r e m o r e sensitive to t h e t o x i n t h a n c u l t i v a r s t h a t a r e resistant to t h e f u n g u s
(20).
Therefore
the toxin m a y b e
considered
specific i f t h e p r o p e r c o n c e n t r a t i o n is u s e d . A l t h o u g h t h e m o d e o f a c t i o n of t h e B. zeicola t o x i n is n o t k n o w n , some i n f o r m a t i o n o n p h y s i o l o g i c a l changes i n d u c e d b y this t o x i n is a v a i l able.
T h e t o x i n s t i m u l a t e s r e s p i r a t i o n , i n d u c e s e l e c t r o l y t e leakage, a n d
increases d a r k fixation o f C 0 . 2
is decreased.
B u t amino acid and uridine incorporation
T h e u p t a k e o f B. zeicola t o x i n seems to r e q u i r e energy ( 2 0 ) .
Bipolaris may dis. T h i s f u n g u s ( f o r m e r l y Helminthosporium
maydis)
causes a severe l e a f b l i g h t o f c o r n c u l t i v a r s that h a v e t h e T e x a s m a l e -
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
300
MYCOTOXINS
sterile c y t o p l a s m a n d a m i n o r leaf s p o t o n c u l t i v a r s that d o not h a v e this c y t o p l a s m . T h e s y m p t o m s of the disease are c h a r a c t e r i z e d b y s m a l l , l i g h t - g r e e n , w a t e r - s o a k e d spots.
A f t e r five to six days the s y m p t o m s on
resistant a n d s u s c e p t i b l e c u l t i v a r s differ d i s t i n c t l y . L e s i o n s o n
leaves
of resistant c u l t i v a r s are s m a l l ( 2 - 5 m m ) a n d h a v e b r o w n - t o - t a n n e c r o t i c centers c i r c u m s c r i b e d b y r e d d i s h b o r d e r s a n d c h l o r o t i c m a r g i n s . B l o t c h e s o n leaves of s u s c e p t i b l e c u l t i v a r s r a n g e f r o m 10 to 4 0 m m a n d h a v e l i g h t Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
t a n n e c r o t i c centers w i t h o u t d e f i n e d p i g m e n t e d b o r d e r s .
A f t e r 10 days
blotches o n s u s c e p t i b l e c u l t i v a r s h a v e d a r k b r o w n b o r d e r s b u t l i t t l e or n o chlorosis ( 18,19
).
B . may dis p r o d u c e s f o u r toxins in vitro r e f e r r e d to as toxins I , I I , I I I , a n d I V . T h r e e of these h a v e b e e n i s o l a t e d f r o m leaf tissue of s u s c e p t i b l e c o r n plants i n f e c t e d w i t h the f u n g u s .
T h e t o x i c i t y a n d specificity of a l l
f o u r are s i m i l a r . T o x i n s I , I I , a n d I I I , w h i c h c a n b e b i o l o g i c a l l y d e r i v e d f r o m m e v a l o n i c a c i d , h a v e b e e n r e p o r t e d to b e t w o terpenoids a n d a terpenoid glycoside (21).
T o x i n s I a n d I I are h i g h l y s a t u r a t e d a n d g i v e
p r o t o n m a g n e t i c resonance s p e c t r a s i m i l a r to spectra e m i t t e d b y t e t r a c y c l i c t r i t e r p e n o i d s . T o x i n I I I m a y b e a g l y c o s i d e of a c o m p o u n d s i m i l a r to toxins I a n d I I , b u t t o x i n I I I contains a l a r g e r n u m b e r of h y d r o x y l g r o u p s . T h e m o l e c u l a r w e i g h t of t o x i n I I I , a b o u t 162, is greater t h a n the w e i g h t s of toxins I a n d I I . T o x i n I I I has properties s i m i l a r to those of a r e d u c i n g hexose sugar, i n d i c a t i n g t h a t t o x i n I I I is a glycoside.
Data
seem to i n d i c a t e t h a t the c o m p l e t e l y s a t u r a t e d c a r b o n skeleton is s i m i l a r to t e t r a c y c l i c t r i t e r p e n o i d s or t h e p e n t a c y c l i c t r i t e r p e n o i d s ( 2 1 ) . T h e p r o d u c t i o n of t o x i n b y B . may dis was first r e p o r t e d b y O r s e n i g o and Sina (22). a n d Q u i m o (23)
T o x i n s r e p o r t e d b y t h e m a n d those r e p o r t e d b y Q u i m o w e r e s l i g h t l y t o x i c a n d nonspecific.
ever s h o w e d t h a t B . maydis
L a t e r reports h o w
p r o d u c e d a specific t o x i n (24, 2 5 ) .
researchers i n d i c a t e d that toxins w e r e p r o d u c e d in vivo a n d in
These vitro.
Isolated m i t o c h o n d r i a f r o m resistant c u l t i v a r s w e r e not affected B . maydis
by
t o x i n , b u t m i t o c h o n d r i a f r o m Texas m a l e - s t e r i l e c u l t i v a r s w e r e
severely affected b y i t (26).
A later r e p o r t suggested that the m i t o c h o n
d r i a w e r e not the p r i m a r y site of a c t i o n of the t o x i n (27). c l u s i o n was b a s e d o n t w o observations.
This con
First, toxin treatment i n h i b i t e d
r o o t g r o w t h i n 30 m i n , b u t 2 h r of t o x i n t r e a t m e n t w a s r e q u i r e d t o i n h i b i t r e s p i r a t i o n . S e c o n d , p r o l o n g e d treatments w i t h h i g h t o x i n c o n centrations w e r e r e q u i r e d to decrease c e l l u l a r A T P . H o w e v e r a c u r r e n t r e p o r t i n d i c a t e d t h a t the m i t o c h o n d r i a f r o m s u s c e p t i b l e c u l t i v a r s are p e r h a p s the site of a c t i o n of this t o x i n (28).
T h e s e researchers also r e
p o r t e d that the close a g r e e m e n t b e t w e e n s u s c e p t i b i l i t y to B . maydis
and
t h e s u p p r e s s i o n of r e s p i r a t o r y c o n t r o l of i s o l a t e d m i t o c h o n d r i a i n d i c a t e d that either m e a s u r e m e n t c o u l d b e u s e d to p r e d i c t the other (28). c h o n d r i a i s o l a t e d f r o m c u l t i v a r s resistant to B . maydis
Mito
race Τ are n o t
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
LUKE
affected
Phytopathogenic
A N D BIGGS
b y t o x i n treatment.
T h i s fact raises some q u e s t i o n
m i t o c h o n d r i a affect disease d e v e l o p m e n t m a y n o t react in vitro as t h e y d o in toxin produced
by
on
how
b e c a u s e resistant c u l t i v a r s are
not i m m u n e to the fungus or t h e t o x i n ( 2 9 ) . The
301
Toxins
H o w e v e r , i s o l a t e d organelles
vivo.
B . maydis
causes electrolyte
leakage
of
c u l t i v a r s susceptible to the f u n g u s , b u t resistant c u l t i v a r s also leak e l e c trolytes w h e n h i g h concentrations
of
the t o x i n are u s e d
This
(30).
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
o b s e r v a t i o n is consistent w i t h the r e a c t i o n of t h e fungus a n d the t o x i n . A later s t u d y w i t h t o x i n o n excised roots d i d n o t i n d i c a t e a l a r g e or r a p i d i o n leakage.
T h e w o r k e r s r e p o r t e d that r o o t g r o w t h w a s i n h i b i t e d i n
30 m i n after t o x i n treatment. T h i s w a s the earliest effect of the t o x i n t h a t c o u l d be detected
(31).
R o o t s d o not l e a k electrolytes
as r a p i d l y as
leaves, a n d therefore root tissue is not a d e q u a t e for p e r m e a b i l i t y studies. I n another s t u d y these researchers c o u l d n o t detect a n y d a m a g e to m e m branes of s u s c e p t i b l e c u l t i v a r s t r e a t e d w i t h the t o x i n (31). searchers h o w e v e r suggested
Other re
that toxins m a y cause p h y s i o l o g i c a l
dis
r u p t i o n s of m e m b r a n e s or t h a t the p h y s i c a l d a m a g e is b e l o w the r e s o l u t i o n of the e l e c t r o n m i c r o s c o p e
( 1 2 , 32).
A r n t z e n et a l . (31)
d e t e r m i n e the site of a c t i o n of t h e B. maydis
could
toxin, but they
not
suggested
t h a t n e i t h e r the m i t o c h o n d r i a n o r t h e p l a s m a m e m b r a n e w a s i n v o l v e d . T h e site a n d m o d e of a c t i o n of the B. maydis r e s o l v e f o r t w o reasons.
toxins h a v e b e e n difficult to
F i r s t , one o r m o r e of the f o u r toxins t h a t t h e
f u n g u s p r o d u c e s m a y act as a nonspecific t o x i n . S e c o n d , n u c l e a r genes m o d i f y the c y t o p l a s m i c a l l y - i n h e r i t e d r e a c t i o n to the t o x i n a n d the f u n g u s (29).
This modification
may
e x p l a i n t h e l a c k of
agreement
v a r i o u s scientists w o r k i n g o n the m o d e of a c t i o n of the B . maydis G r a c e n (29)
among toxins.
s p e c u l a t e d that the site of a c t i o n of this t o x i n is a c o m p o n e n t
t h a t is a s t r u c t u r a l u n i t of m e m b r a n e s .
T h i s f u n g u s appears to i n i t i a t e
disease i n a w i d e v a r i e t y of genotypes, a n d the t o x i n amplifies a n a b n o r m a l i t y i n t h e s t r u c t u r e of m e m b r a n e s i n c u l t i v a r s w i t h t h e T e x a s m a l e sterile c y t o p l a s m . Bipolaris
sac chart.
T h i s fungus
(formerly
Helminthosporium
chart ) causes eyespot disease of c e r t a i n clones of sugarcane.
sac-
Early symp
toms o n leaves consist of e l o n g a t e d lesions w i t h r e d centers c i r c u m s c r i b e d b y n a r r o w c h l o r o t i c m a r g i n s . A f e w days after i n f e c t i o n r e d d i s h - b r o w n streaks m a y l e n g t h e n to 8 c m L e e first suggested
(33).
t h a t a t o x i n w a s i n v o l v e d i n the disease
(34).
T h e absolute s t r u c t u r e of the specific t o x i n p r o d u c e d b y B . sacchari
is n o t
k n o w n ; h o w e v e r , m u c h is k n o w n a b o u t the c h e m i s t r y of this t o x i n w h i c h was n a m e d helminthosporoside s i d e ) (35).
(2-hydroxycyclopropyl-a-D-galactopyrano-
T h e l o c a t i o n of the h y d r o x y l g r o u p o n the c y c l o p r o p a n e
ring
i n d i c a t e d t h a t positions 2 a n d 3 w e r e i d e n t i c a l . T h e c o n c l u s i o n t h a t g a l a c tose is the g l y c o n e p o r t i o n of t h e t o x i n w a s b a s e d o n
chromatography
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
302
MYCOTOXINS
after a c i d h y d r o l y s i s a n d the i n c o r p o r a t i o n of g a l a c t o s e - l - C
into the
14
g l y c o n e p o r t i o n of the t o x i n .
N M R spectral data indicated that
a g l y c o n e p o r t i o n of t h e t o x i n is 2 - h y d r o x y c y c l o p r o p a n e .
a h y d r o x y l group on the aglycone was confirmed b y detecting as a n e n d p r o d u c t of a c i d h y d r o l y s i s
the
T h e p r e s e n c e of acrolein
(35).
D e t a i l s of the m o d e of a c t i o n of h e l m i n t h o s p o r o s i d e w e r e e s t a b l i s h e d
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
i n a series of p a p e r s p u b l i s h e d b y S t r o b e l a n d associates. ments i n d i c a t e d t h a t clones s u s c e p t i b l e to B. sacchari
T h e first e x p e r i had a
membrane
p r o t e i n that b i n d s h e l m i n t h o s p o r o s i d e w h e r e a s m e m b r a n e s f r o m resistant clones d i d n o t h a v e b i n d i n g properties.
M o r e o v e r clones that h a d a n
i n t e r m e d i a t e r e a c t i o n to t h e t o x i n also h a d a n i n t e r m e d i a t e capacity.
binding
T h e s e results w e r e c o n f i r m e d in vivo w i t h r a d i o a c t i v e t o x i n .
T h e b i n d i n g protein was isolated, a n d a molecular
weight
of
about
45,000 w a s d e t e r m i n e d . I t consisted of f o u r s u b u n i t s , e a c h w i t h a m o l e c u l a r w e i g h t of about 11,700.
T h e t w o b i n d i n g sites t h a t w e r e
a p p e a r e d to h a v e different b i n d i n g affinities
reported
(36).
L a t e r reports i n d i c a t e d that t h e p r o t e i n f r o m susceptible clones that b i n d s h e l m i n t h o s p o r o s i d e is o n the e x t e r n a l surface of the p l a s m a m e m brane (a)
(37, 3 8 ) .
This conclusion
was b a s e d
o n three k i n d s of
T h e a p p l i c a t i o n of a n t i s e r u m p r e p a r e d to m e m b r a n e s f r o m
data: suscep
t i b l e p l a n t s r e s u l t e d i n the p r o t e c t i o n of leaf tissue susceptible to t h e toxin,
(b)
T h e a p p l i c a t i o n of the a n t i s e r u m to the b i n d i n g p r o t e i n
a g g l u t i n a t e d protoplasts f r o m s u s c e p t i b l e clones,
(c)
p h a t e reacts w i t h the surface of the p l a s m a m e m b r a n e . were 8
treated w i t h p y r i d o x a l phosphate
HNaBH . 4
P y r i d o x a l phos S u g a r c a n e cells
that h a d b e e n r e d u c e d
with
B i n d i n g p r o t e i n w a s i s o l a t e d f r o m t r e a t e d tissue a n d
was
f o u n d to b e l a b e l e d suggesting that the p r o t e i n t h a t b i n d s the t o x i n is o n the surface of the p l a s m a m e m b r a n e
(39).
T h e t o x i n b i n d i n g p r o t e i n b i n d s t h e t o x i n a n d increases activity.
I n c r e a s e d A T P a s e a c t i v i t y causes a net increase i n K
ATPase +
uptake.
D i s r u p t i o n s of e n z y m e s i n t h e p l a s m a m e m b r a n e m a y cause i o n efflux to b e greater t h a n i o n i n f l u x ; thus t h e o s m o l a r i t y of the p l a s m a
membrane
is p a r t i a l l y lost. I n c r e a s e d o s m o t i c pressure or g e n e r a l loss of
membrane
i n t e g r i t y m a y cause cells to b u r s t . T h e s e suppositions n e e d t o b e s u p ported b y direct evidence showing
that membranes
from w h i c h
the
b i n d i n g protein was extracted were indeed pure plasma m e m b r a n e p r e p a rations.
Evidence showing how
the b i n d i n g of t h e t o x i n to b i n d i n g
p r o t e i n activates the p o t a s s i u m - m a g n e s i u m - A T P a s e system is also n e e d e d . A l t h o u g h w e d o n o t k n o w the precise m o d e of a c t i o n of this t o x i n , i t appears t h a t the site of a c t i o n of h e l m i n t h o s p o r o s i d e is o n the p l a s m a m e m b r a n e . T h i s a s s u m p t i o n is consistent w i t h a n e a r l i e r r e p o r t i n d i c a t i n g t h a t the site of a c t i o n of v i c t o r i n is the p l a s m a m e m b r a n e
(12).
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
There-
13.
LUKE
Phytopathogenic
A N D BIGGS
303
Toxins
f o r e the p l a s m a m e m b r a n e m a y b e the site of a c t i o n of m a n y
specific
toxins t h a t i n c i t e a b r u p t e l e c t r o l y t e leakage. Bipolaris
Nonspecific
Toxms
N o n s p e c i f i c toxins are toxins p r o d u c e d b y p l a n t pathogens t h a t d o not affect the same hosts as the pathogens t h a t p r o d u c e t h e m . E m p h a s i s Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
o n specific toxins has left the i m p r e s s i o n t h a t nonspecific toxins h a v e l i t t l e i m p o r t a n c e i n disease d e v e l o p m e n t .
A l t h o u g h some
nonspecific
toxins h a v e b e e n s h o w n to b e u n r e l a t e d to disease d e v e l o p m e n t , b e l i e v e that some are d i s e a s e - i n d u c i n g agents.
Sometimes,
toxins are v i t a l to the entry of the host b y t h e p a t h o g e n . toxins p r o d u c e d in vitro
we
nonspecific
M o r e o v e r some
m a y n o t s h o w specificity o r a d e q u a t e t o x i c i t y
b e c a u s e c o m p o u n d s t h a t r e g u l a t e e n t r y of the t o x i n i n t o p l a n t cells a r e not p r o d u c e d in vitro.
A l s o s o m e toxins m a y not s h o w s p e c i f i c i t y b e c a u s e
a d m i n i s t e r i n g the correct c o n c e n t r a t i o n of the t o x i n to the host is difficult. Bipolaris
T h i s f u n g u s ( f o r m e r l y Helminthosporium
oryzae.
oryzae)
causes a s e e d l i n g b l i g h t a n d l e a f b l o t c h of r i c e . S m a l l e l l i p t i c a l l e a f spots enlarge a n d h a v e r e d d i s h - b r o w n m a r g i n s w i t h g r a y centers.
During
severe e p i d e m i c s i n f e c t e d leaves d r y o u t b e f o r e plants m a t u r e .
Brown
n e c r o t i c areas result i n s h r i v e l e d kernels a n d b r o k e n p a n i c l e s . W h e n t h e disease is severe, s m a l l b r o w n lesions o c c u r o n bracts a n d seeds c a u s i n g d i s c o l o r a t i o n of the g r a i n ( 3 3 ) . T h e first t o x i n i s o l a t e d f r o m B. oryzae
was called cochiobolin
A n o t h e r g r o u p n a m e d the t o x i n o p h i o b o l i n
p o s e d t h e t r i v i a l names o p h i o b o l i n A , B , C , a n d D . sesquiterpenoid molecule
with
a n e m p i r i c a l f o r m u l a of
(41).
A later report pro
(42).
O p h i o b o h n A is a The
C25H36O4 (43).
appears to h a v e t w o d o u b l e b o n d s a n d f o u r r i n g s , a n d its
m o l c e u l a r structure has b e e n p r o p o s e d .
O p h i o b o l i n w a s t h e first of the
n e w f a m i l y of C25 terpenes to b e d i s c o v e r e d , a n d its biosynthesis is b e i n g d e t e r m i n e d . N o c o r r e l a t i o n w a s possible b e t w e e n o p h i o b o l i n s a n d other n a t u r a l l y - o c c u r r i n g c o m p o u n d s because of t h e i r p e c u l i a r structures.
The
structures of o p h i o b o l i n s A , B , C , a n d D a r e s i m i l a r . E x c e l l e n t r e v i e w s o n the s t r u c t u r e a n d biosynthesis of this u n i q u e g r o u p of c o m p o u n d s n o w a v a i l a b l e (44,
are
45).
I n 1939 i t was first r e p o r t e d t h a t B. oryzae m a y i n i t i a t e disease (46).
produces
a toxin that
A t the onset of i n f e c t i o n t h e p a t h o g e n
duces t w o or m o r e toxins t h a t are s t r u c t u r a l l y s i m i l a r to o p h i o b o l i n .
pro These
toxins k i l l host cells i n a d v a n c e of h y p h a l d e v e l o p m e n t s u g g e s t i n g t h a t analogs of o p h i o b o l i n are r e s p o n s i b l e f o r t h e p e n e t r a t i o n of t h e host b y the p a t h o g e n .
A f t e r i n v a s i o n the p a t h o g e n p r o d u c e s o p h i o b o l i n w h i c h
causes a m a l f u n c t i o n of the p o l y p h e n o l m e t a b o l i s m of t h e h o s t
(47).
A n o t h e r a s s u m p t i o n a b o u t t h e m o d e of a c t i o n of o p h i o b o l i n is t h a t the
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
304
MYCOTOXINS
t o x i n depresses r e g u l a t o r y
factors
synthesis i n h e a l t h y p l a n t s (48).
that m a i n t a i n the n o r m a l
b o l i n i r r e v e r s i b l y damages c y t o p l a s m i c m e m b r a n e s Bipolaris sativum)
sorokinianum.
T h i s fungus
(41).
(formerly
Helminthosporium
causes a s e e d l i n g b l i g h t a n d spot b l o t c h of b a r l e y a n d attacks
other g r a m i n e o u s species. a n d progress
inward.
D a r k b r o w n lesions o c c u r o n the
S e e d l i n g leaves
is r e t a r d e d , a n d t i l l e r i n g b e c o m e s excessive. tissue rots at or b e l o w the s o i l surface
coleoptile
b e c o m e d a r k green w i t h
lesions near the s o i l t h a t e x t e n d i n t o the leaf b l a d e . S e e d l i n g Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
enzyme
A n o t h e r w o r k e r suggested that o p h i o
dark
development
I n the later stages of disease,
(33).
A l t h o u g h t h e role of the t o x i n h e l m i n t h o s p o r a l i n p l a n t disease is d u b i o u s , m u c h is k n o w n a b o u t the c h e m i s t r y of toxins p r o d u c e d b y sorokinianum.
B.
F i r s t attempts to i d e n t i f y h e l m i n t h o s p o r a l i n d i c a t e d that
i t is a s e s q u i t e r p e n o i d w i t h a n e m p i r i c a l f o r m u l a of
C15H22O2
(49).
Its
s t r u c t u r e has b e e n d e s c r i b e d ( 4 4 ) , a n d its biosynthesis appears to i n v o l v e m e v a l o n i c a c i d (50).
Another toxin, helminthosporol, w i t h
m o t i n g p r o p e r t i e s has b e e n i s o l a t e d f r o m B. sorokinianum.
growth-pro
T h e structure
of h e l m i n t h o s p o r o l is s i m i l a r to that of h e l m i n t h o s p o r a l , b u t strains of the f u n g u s that p r o d u c e h e l m i n t h o s p o r o l do not p r o d u c e h e l m i n t h o s p o r a l (51). H e l m i n t h o s p o r o l i n h i b i t s r e s p i r a t i o n , a n d the site of a c t i o n
appears
to b e b e t w e e n f l a v o p r o t e i n d e h y d r o g e n a s e ( s ) a n d c y t o c h r o m e C . t o x i n also d i s r u p t s o x i d a t i v e p h o s p h o r y l a t i o n (52).
as a g r o w t h - p r o m o t i n g substance s i m i l a r to t h e c y t o k i n i n s Specific
Alternaria
This
H e l m i n t h o s p o r o l acts (53).
Toxins
T o x i n s p r o d u c e d b y Alternaria
citri, A. kikuchiana,
a n d A . malt h a v e
b e e n r e p o r t e d to h a v e the same host r a n g e as the pathogens t h a t p r o d u c e t h e m . L i t t l e is k n o w n a b o u t t h e toxins p r o d u c e d b y A . citri a n d A . malt, b u t toxins p r o d u c e d b y A. kikuchiana Alternaria
citri.
h a v e b e e n s t u d i e d m o r e extensively.
T h i s fungus causes a d i s t i n c t i v e d a r k b r o w n spot
w i t h a l i g h t t a n center o n y o u n g leaves a n d fruits of E m p e r o r m a n d a r i n , c a l a m o n d i n , a n d Citrus
reticulata
cv. S o v e r e i g n .
L e a v e s of
susceptible
c u l t i v a r s b e c o m e m o r e resistant as t h e y a p p r o a c h m a t u r i t y . M a n y c u l t i vars of c i t r u s are resistant t o A. citri.
W h e n the disease is severe, y o u n g
f r u i t s d r o p f r o m t h e tree w i t h i n t h r e e days after i n f e c t i o n H i s t o l o g i c a l studies s h o w e d
(54).
that A . citn d i d n o t penetrate
young
f r u i t s a n d leaves of s u s c e p t i b l e c u l t i v a r s . N e v e r t h e l e s s i n o c u l a t i o n w i t h the pathogen
resulted i n typical b r o w n
i n i t i a t e d disease.
spots i n d i c a t i n g t h a t a t o x i n
C u l t u r e filtrates f r o m p a t h o g e n i c isolates d i l u t e d 100-
f o l d c a u s e d t y p i c a l b r o w n spot s y m p t o m s . nonpathogenic
O t h e r results s h o w e d
that
strains of A. citri d i d n o t p r o d u c e t h e t o x i n . T h u s three
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
LUXE
Phytopathogenic
A N D BIGGS
lines of e v i d e n c e suggest t h a t A. citri
305
Toxins causes disease t h r o u g h
toxigenic
a c t i o n . T h e last r e p o r t a v a i l a b l e to us w a s p u b l i s h e d i n 1966 (54), recent
and
correspondence indicated that additional w o r k w i t h this toxin
has not b e e n i n i t i a t e d ( 5 5 ) . r i e d o u t w i t h this system.
H o p e f u l l y additional research w i l l be
car
W e k n o w that the t o x i n p r o d u c e d b y A .
citri
causes disease t h r o u g h t o x i g e n i c a c t i o n a n d that o l d tissue is resistant to the t o x i n . T h e r e f o r e
genetic v a r i a b i l i t y i n the h o s t w o u l d n o t b e
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
p r o b l e m as i t is i n other toxin-host Alternaria
a
combinations.
T h i s fungus p r o d u c e s a s m a l l , b l a c k n e c r o t i c
kikuchiana.
s p o t s u r r o u n d e d b y a y e l l o w h a l o o n fruits a n d leaves of c e r t a i n c u l t i v a r s of Japanese pears ( 5 6 ) .
I t is h i g h l y p a t h o g e n i c
o n N i j i s s e i k i pears
does not cause disease o n E u r o p e a n a n d N o r t h A m e r i c a n pears
but
(57).
T h r e e different toxins, p h y t o a l t e r n a r i a n A , B , a n d C w e r e i s o l a t e d b y H i r o e a n d A o e (58)
f r o m the c u l t u r e filtrates of this fungus.
p h y t o a l t e r n a r i a n A affects t h e same hosts as A . kikuchiana,
Although
l i t t l e is k n o w n
a b o u t the c h e m i s t r y of these toxins. T h e p h y t o a l t e r n a r i a n s g i v e a n e g a t i v e F e h l i n g r e a c t i o n b u t express a p o s i t i v e n i n h y d r i n r e a c t i o n , i n d i c a t i n g that t h e y h a v e p e p t i d e linkages
(59).
T h e r e is l i t t l e i n f o r m a t i o n c o n c e r n i n g the m o d e of a c t i o n of these toxins. I n f o r m a t i o n r e c e n t l y r e c e i v e d i n d i c a t e d that a r b u t i n a n d c h l o r o g e n i c a c i d m a y be responsible for the b r o w n spot s y m p t o m t h a t is c h a r acteristic of the disease (60).
Another report indicated that the toxin
i n h i b i t e d β-glucosidase i n susceptible c u l t i v a r s b u t n o t i n resistant c u l t i v a r s ; thus β-glucosidase a c t i v i t y is responsible for resistance (61). of other aspects of the p h y t o a l t e r n a r i a n s w e r e r e v i e w e d b y
Details
Templeton
(62). A l t e n i n is another t o x i n that has b e e n isolated f r o m A .
kikuchiana.
L i t t l e has b e e n r e p o r t e d o n its t o x i c i t y a n d specificity. I t has b e e n i d e n t i fied as e t h y l h y d r o x y - 5 - ( l - h y d r o x y e t h y l ) - 4 - o x o t e t r a h y d r o f u r o n a t e e m p i r i c a l f o r m u l a of C H i 0 4
9
6
(63).
with an
T h i s structure w a s also s y n t h e s i z e d ,
a n d the active p o r t i o n of a l t e n i n was r e p o r t e d to b e i n the e n d i o l c a r b o x y l grouping
(64).
Alternaria
malt.
T h i s fungus causes b r o w n n e c r o t i c spots o n I n d o
a n d R a l l s a p p l e varieties, b u t the p a t h o g e n a n d toxic c u l t u r e
filtrate
do
n o t affect J o n a t h a n or M c i n t o s h varieties. A t o x i n p r o d u c e d b y t h e f u n g u s k i l l e d cells of y o u n g a p p l e leaves i n a d v a n c e of the i n v a d i n g p a t h o g e n . Moreover culture
filtrates
f r o m h i g h l y v i r u l e n t strains of A . mali
m o r e t o x i c t h a n those f r o m m o d e r a t e l y v i r u l e n t strains. C u l t u r e f r o m n o n v i r u l e n t strains w e r e n o n t o x i c .
T h e s e t w o observations
suggest t h a t A . mali causes disease b y t o x i g e n i c a c t i o n . i n d i c a t e d t h a t A . mali
also p r o d u c e d
strongly
Other evidence
a nonspecific t o x i n w h i c h
w i l t i n g a n d v e i n - b a n d i n g necrosis i n several plants
were filtrates
caused
(65).
R e c e n t papers i n d i c a t e d t h a t the specific t o x i n a l t e r n a r i o l i d e p r o -
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
306
MYCOTOXINS
d u c e d b y A. mali has a n e m p i r i c a l f o r m u l a of C23H31N3O6. T h e s t r u c t u r e t h a t has b e e n p r o p o s e d f o r a l t e r n a r i o l i d e i n d i c a t e d t h a t this t o x i n is a c y c l i c t r i p e p t i d e lactone.
T h e three a m i n o acids w e r e r e p o r t e d to
be
2 - h y d r o x y i s o v a l e r i c a c i d , a l a n i n e , a n d one d e s i g n a t e d as a l t e r n a m i c a c i d (66).
N o w that some c h e m i s t r y is k n o w n a b o u t this
phytopathogenic
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
t o x i n , studies o n its m o d e of a c t i o n s h o u l d y i e l d c o n c l u s i v e results. Nonspecific
Toxins
Alternaria
A r e c e n t r e p o r t lists 19 t o x i c c o m p o u n d s p r o d u c e d b y v a r i o u s species of Alternaria A. tenuis,
H o w e v e r o n l y a f e w toxins p r o d u c e d b y A .
(62).
a n d A . zinniae
w i l l b e discussed.
p r o d u c e d b y these species of Alternaria
solani,
T h e phytotoxic compounds
vary chemically—a carboxylic
a c i d , a c y c l i c p e n t a p e p t i d e , a n d a p e n t a - s u b s t i t u t e d benzene. Alternaria
T h i s fungus causes a d e v a s t a t i n g b l i g h t of
solani.
t o m a t o a n d potato.
S y m p t o m s first a p p e a r o n leaves as s m a l l ( 1 - 4
d a r k b r o w n spots.
L a t e r a c h l o r o t i c r i n g appears a r o u n d t h e
necrotic
spot. S o m e t i m e s leaflets next to the n e c r o t i c spot b e c o m e c h l o r o t i c . t h e disease is severe, leaflets w i t h e r a n d d r o p off
the
mm), When
(67).
A l t h o u g h this t o x i n m a y p l a y o n l y a m i n o r r o l e i n disease, its c h e m i s t r y has b e e n C2iH
3 0
O . 8
studied.
A l t e r n a r i c a c i d has a n e m p i r i c a l f o r m u l a
Its s t r u c t u r e w a s r e p o r t e d to b e
of
12-(5,6-dihydro-4-hydroxy-6-
methyl-2-oxopyran-3-yl)-4,6-dehydroxy-3-methyl-9-methylene-12-oxododec-6-ene-5-carboxylic
a c i d (68,
69).
A l t e r n a r i c a c i d has a l o w l e v e l of
t o x i c i t y , a n d i t is t o x i c to m a n y plants n o t p a r a s i t i z e d b y A . solani.
No
d e t a i l e d d a t a o n its m o d e of a c t i o n h a v e b e e n r e p o r t e d . Alternaria
tenuis.
T h i s f u n g u s causes a v a r i e g a t e d s e e d l i n g chlorosis
o n c o t t o n , c i t r u s , a n d m a n y other p l a n t s . S y m p t o m s are c h a r a c t e r i z e d b y c h l o r o t i c spots s h a r p l y d e l i n e a t e d f r o m n o r m a l green areas. C h l o r o s i s is i r r e v e r s i b l e , a n d s e e d l i n g g r o w t h is r e t a r d e d .
C o t t o n seedlings
with
m o r e t h a n 3 5 % chlorosis u s u a l l y d i e . T h e fungus appears to p r o d u c e a t o x i n w h i l e g r o w i n g o n the seed coat or s o i l refuse. i n t o the c o t y l e d o n s
T h e t o x i n diffuses
either t h r o u g h i n j u r y d u r i n g g e r m i n a t i o n or
the s e e d c o a t r u p t u r e s
when
(70).
T h e t o x i n p r o d u c e d b y A . tenuis, t e n t o x i n , has a m o l e c u l a r w e i g h t of 414.5 a n d a n e m p i r i c a l f o r m u l a of C22H30N4O4. described
Its structure has
been
as c y c l o - N - m e t h y l d e h y d r o p h e n y l a l a n y l - L - l e u c y l g l y c y l - L - 2 V -
m e t h y l a l a n y l (62).
B e c a u s e the s t r u c t u r e is c y c l i c , the i n t a c t t o x i n gives a
n e g a t i v e r e a c t i o n to n i n h y d r i n . N M R d a t a h a v e i n d i c a t e d the a m i n o a c i d s e q u e n c e . T h e o p t i c a l r o t a r y d i s p e r s i o n s p e c t r u m shows o p t i c a l a c t i v i t y . A l t h o u g h the precise m o d e o f a c t i o n of this t o x i n is not k n o w n , i t a p p e a r s t h a t t e n t o x i n i n h i b i t s c h l o r o p h y l l f o r m a t i o n i n specific tissues o f c e r t a i n p l a n t species.
O n l y t h e cotyledons a n d p r i m a r y leaves of sensitive
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
LUKE
Phytopathogenic
A N D BIGGS
307
Toxins
species b e c o m e c h l o r o t i c w h e n seeds or v e r y y o u n g p l a n t s are t r e a t e d w i t h the t o x i n . E x c e p t i n t o m a t o a n d the c r u c i f e r s , o l d p r i m a r y leaves a r e n o t affected b y the t o x i n . M o s t d i c o t y l e d o n o u s plants are sensitive to t h e t o x i n , b u t s o r g h u m a n d crabgrass are the o n l y m o n o c o t s t h a t h a v e b e e n f o u n d to b e sensitive. T e n t o x i n does n o t i n t e r f e r e w i t h the c o n v e r s i o n of p r o t o c h l o r o p h y l l to c h l o r o p h y l l . M o r e o v e r i t appears t h a t t h i s t o x i n causes a r e d u c t i o n i n c h l o r o p h y l l synthesis w i t h i n e a c h c h l o r o p l a s t Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
r a t h e r t h a n a n o n u n i f o r m expression of t o x i c i t y a m o n g p l a s t i d s Alternaria
T h i s f u n g u s causes
zinniae.
b l i g h t of z i n n i a , sunflower, a n d m a r i g o l d s (72, o c c u r o n cotyledons, leaves, stems, a n d
(71).
a leaf spot a n d s e e d l i n g 73).
flowers.
S m a l l b r o w n spots
Initial symptoms
are
c h a r a c t e r i z e d b y a n e c r o t i c fleck s u r r o u n d e d b y a c h l o r o t i c h a l o . L a t e r spots enlarge a n d b e c o m e i r r e g u l a r a n d r e d d i s h b r o w n . P l a n t s t h a t h a v e severe stem lesions w i l t r a p i d l y e v e n t h o u g h the l e s i o n does n o t g i r d l e the stem.
T h i s r e a c t i o n seems to suggest t h a t a t o x i n is i n v o l v e d i n t h e
disease s y n d r o m e
(74).
T h e t o x i n p r o d u c e d b y A. zinniae,
z i n n i o l , is a p e n t a - s u b s t i t u t e d
b e n z e n e w i t h a n e m p i r i c a l f o r m u l a of C H i 0 . 9
has b e e n suggested
(73).
2
4
A s t r u c t u r e of z i n n i o l
Moreover two isomeric phthalides obtained
f r o m z i n n i o l h a v e b e e n u s e d to resynthesize a n d c o n f i r m its structure. T h e m o d e of a c t i o n of z i n n i o l is n o t k n o w n . I t does n o t a p p e a r to i n c i t e disease d e v e l o p m e n t , b u t i t m a y b e i n v o l v e d i n s o m e of the sec o n d a r y s y m p t o m s b e c a u s e 5 0 0 - 1 0 0 0 p p m of the t o x i n are r e q u i r e d to cause severe s y m p t o m s ; also i t is n o t specific. Other
Toxins
N u m e r o u s toxins h a v e b e e n r e p o r t e d ; therefore i t w o u l d b e u n r e a l i s t i c to i n c l u d e the r e m a i n d e r of the p h y t o p a t h o g e n i c toxins i n this section. O n l y a f e w that are k n o w n to i n i t i a t e disease a n d those t h a t h a v e b e e n r e c e n t l y d i s c o v e r e d are i n c l u d e d .
M o r e o v e r the presence of a t o x i n i n
this section does n o t i m p l y t h a t i t is r e l a t i v e l y u n i m p o r t a n t . T h e toxins d i s c u s s e d i n this section are p r o d u c e d b y Periconia, metta, a n d Periconia
Phyllosticta,
Didy-
Fusicoccum. T h i s f u n g u s is a s o i l i n h a b i t a n t t h a t i n v a d e s
circinata.
the s u b t e r r a n e a n parts of m i l o - t y p e sorghums ( 7 5 ) .
T h e f o l i a g e of d i s
eased p l a n t s turns y e l l o w , w i l t s , a n d shows t y p i c a l b l i g h t s y m p t o m s .
If
t h e i n f e c t i o n is severe, the p l a n t s c o m m o n l y b l o o m e a r l y , g r o w s t u n t e d , a n d d i e p r e m a t u r e l y (76). (77).
C u l m s a p p e a r r e d n e a r the base of the p l a n t
L e u k e l ( 7 7 ) first r e p o r t e d t h a t a t o x i n p r o d u c e d the same s y m p
toms as the p a t h o g e n
a n d t h a t t h e y h a d the same host range.
observations w e r e c o n f i r m e d i n 1961
The
(78).
A l t h o u g h t w o toxins w e r e i s o l a t e d f r o m c u l t u r e filtrate of P .
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
circinata,
308
MYCOTOXINS
o n l y one of these has b e e n s t u d i e d , a n d l i t t l e i n f o r m a t i o n o n its n a t u r e has b e e n r e p o r t e d . I t has a m o l e c u l a r w e i g h t of less t h a n 2000 a n d reacts p o s i t i v e l y to n i n h y d r i n .
T h e first r e p o r t i n d i c a t e d t h a t a c i d h y d r o l y s i s
y i e l d e d five a m i n o acids ( a s p a r t i c , g l u t a m i c , a l a n i n e , serine, a n d one of the leucines)
(3).
A l a t e r p a p e r r e p o r t e d f o u r a m i n o acids ( a s p a r t i c ,
g l u t a m i c , a l a n i n e , a n d s e r i n e ) (11).
A s s u m i n g t h a t l e u c i n e does n o t o c c u r
i n the m o l e c u l e , i t appears t h a t t h e t o x i n m a y b e a s m a l l p e p t i d e t h a t Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
y i e l d s 6 moles a l a n i n e , 4 moles aspartic, a n d 2 moles e a c h of g l u t a m i c a c i d a n d serine
(11).
L i m i t e d studies of the m o d e of a c t i o n of the t o x i n p r o d u c e d b y P . r e v e a l e d that the t o x i n a n d t h e fungus cause i n c r e a s e d r e s p i r a
circinata
t i o n , electrolyte leakage, a n d decreased a b i l i t y to i n c o r p o r a t e a m i n o acids a n d u r i d i n e (79).
T h e t o x i n d i d not affect the activities of m i t o c h o n d r i a
i n cell-free p r e p a r a t i o n s . T h e p h y s i o l o g i c a l d i s r u p t i o n s c a u s e d b y t o x i n p r o d u c e d b y P . circinata
the
are s i m i l a r to those c a u s e d b y v i c t o r i n t h u s
s u g g e s t i n g t h a t the site o f a c t i o n is the p l a s m a m e m b r a n e (79).
These
conclusions w e r e n o t a d e q u a t e l y s u b s t a n t i a t e d ; therefore the site of a c t i o n a n d a n e x p l a n a t i o n for host-specificity n e e d to b e d e t e r m i n e d b e f o r e the m o d e of a c t i o n c a n b e a s c e r t a i n e d . Phyllosticta
T h i s f u n g u s p r o d u c e s a y e l l o w leaf b l i g h t of
maydis.
c o r n w h i c h first appears as y e l l o w blotches o n the l o w e r leaves. expand r a p i d l y resulting i n general yellowing.
Necrotic,
Blotches
buff-colored
lesions are e l l i p t i c a l ( 7 - 1 0 X 1 5 - 2 5 m m ) r u n n i n g p a r a l l e l w i t h , b u t n o t e n t i r e l y d e l i n e a t e d b y , the veins. S e v e r e l y diseased leaves d i e a n d t u r n b r o w n ; e v e n t u a l l y a l l b u t t h e t o p m o s t leaves b e c o m e severely b l i g h t e d . L e s i o n s o n the u p p e r leaves are l o n g a n d n a r r o w a n d are u s u a l l y c o n c e n t r a t e d n e a r t h e m i d v e i n . T h e n e c r o t i c lesions of y e l l o w l e a f b l i g h t are s i m i l a r to those of s o u t h e r n leaf b l i g h t ( 8 0 ) , a n d the presence of T e x a s m a l e - s t e r i l e c y t o p l a s m g r e a t l y increases s u s c e p t i b i l i t y to P .
maydis.
N o t h i n g is k n o w n a b o u t the c h e m i s t r y of the t o x i n ( s ) p r o d u c e d b y P . maydis,
b u t electrolyte l e a k a g e , d i s r u p t i o n of m i t o c h o n d r i a l f u n c t i o n ,
a n d root i n h i b i t i o n c a u s e d b y the P . maydis c a l m a l f u n c t i o n s i n c i t e d b y Bipolaris Didymella
applanata.
t o x i n are s i m i l a r to p h y s i o l o g i
maydis
race Τ toxin (81, 82).
T h i s fungus causes a stem a n d b u d disease
of the r a s p b e r r y c h a r a c t e r i z e d b y d e f e c t i v e b u d d i n g i n t h e axils of the l e a f stalks. T h e fungus enters the stem t h r o u g h insect w o u n d s a n d causes d a r k d i s c o l o r a t i o n near t h e b u d s . D i s c o l o r e d spots b e c o m e l i g h t e r i n the s u m m e r . D a m a g e to stems k i l l s b u d s a n d severely d a m a g e s f r u i t s ( 8 3 ) . T h e t o x i n p r o d u c e d b y D. applanata
is a m o n o s a c c h a r i d e d e r i v a t i v e
o l i g o s a c c h a r i d e w i t h a m o l e c u l a r w e i g h t of 1682 db 150, a n d n o or v e r y little r e d u c i n g p o w e r .
O n e of the m o n o s a c c h a r i d e s is glucose.
Mono
saccharides w e r e f o u n d after t r i m e t h y l s i y l a t i o n . G r o u p s other t h a n m o n o -
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
LUKE
saccharides nucleus
Phytopathogenic
A N D BIGGS
are
a t t r a c t e d to
some
309
Toxins members
of
the
monosaccharide
(S3).
A l t h o u g h the t o x i n appears
to
cause
symptoms
s i m i l a r to
those
c a u s e d b y the p a t h o g e n , one e x p e r i m e n t f a i l e d to y i e l d i n f o r m a t i o n o n its phytotoxicity (83).
N e v e r t h e l e s s these w o r k e r s i n d i c a t e d t h a t u n p u b
l i s h e d results of K e r l i n g a n d S c h i p p e r e s t a b l i s h e d that D. applanata
pro
duces a p h y t o t o x i n i n c u l t u r e t h a t causes s m a l l i n t e r v e i n a l n e c r o t i c spots Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
o n the leaves a n d sprout w i l t i n g . Fusicoccum
T h i s fungus causes a leaf b l i g h t a n d w i l t of
amygdalt.
a l m o n d a n d p e a c h trees. T h e f u n g u s enters t h r o u g h a b u d or leaf scar a n d causes, some distance f r o m t h e p o i n t of i n f e c t i o n , w i l t w i t h i n a f e w days.
E i g h t to 10 days after i n v a s i o n , g u m m a t e r i a l s o c c u r i n the b a r k
a n d x y l e m tissue next to the l e s i o n site. W h e n g u m m o s i s occurs,
the
p a t h o g e n behaves as a l o c a l p a r a s i t e a n d b e c o m e s l i m i t e d to the tissue that was first i n v a d e d . T h e n c o r k y layers that f o r m e d a r o u n d the l e s i o n cause c a n k e r f o r m a t i o n
(84).
T h e t o x i n f u s i c o c c i n p r o d u c e d b y F. amygdali, w i t h a n e m p i r i c a l f o r m u l a of C Labeled
mevalonalactone
3 6
is a s m a l l d i t e r p e n o i d
H 6 0 i 2 a n d a m o l e c u l a r w e i g h t of 680. 5
incorporated
into fusicoccin
f u s i c o c c i n a g l y c o n e has a d i t e r p e n i c t r i c y c l i c skeleton. is a g l u c o s i d e
of a c a r b o t r i c y c l i c t e r p e n e
(85).
indicated that Thus fusicoccin
F u s i c o c c i n has
s y n t h e s i z e d , a n d its absolute structure has b e e n d e t e r m i n e d .
been
Moreover
16 different d e r i v a t i v e s of f u s i c o c c i n h a v e b e e n p r e p a r e d . P e r h a p s m o r e is k n o w n a b o u t the c h e m i s t r y of the p h y t o p a t h o g e n i c t o x i n t h a n a b o u t a n y of the others that h a v e b e e n s t u d i e d (44,
85).
F u s i c o c c i n is n o t specific a n d is h i g h l y t o x i c to m a n y p l a n t species at 2 j u g / m l , b u t i t appears to cause w i l t i n g at some distance f r o m the p o i n t of i n v a s i o n . T h e r e f o r e i f the w a t e r - t r a n s p o r t system is n o t p h y s i c a l l y b l o c k e d , f u s i c o c c i n w o u l d a p p e a r to b e a n e x c e p t i o n a l non-specific t o x i n that is i m p o r t a n t i n disease. V a r i o u s d e r i v a t i v e s w e r e p r e p a r e d to s t u d y the p o r t i o n of the m o l e c u l e responsible for the t o x i c i t y of f u s i c o c c i n (86).
R e m o v a l of the text-
p e n t e n y l or the g l u c o s i d i c m o i e t y d r a s t i c a l l y r e d u c e d t o x i c i t y . F u s i c o c c i n increases w a t e r u p t a k e of p e a seedlings, a n d d e r i v a t i v e s f r o m w h i c h t h e f e r f - p e n t e n y l g r o u p has b e e n r e m o v e d also s t i m u l a t e w a t e r u p t a k e of p e a seedlings.
T h i s u p t a k e is significant because the
terf-pentenyl
g r o u p is
n e e d e d for t o x i c i t y . T h e r e f o r e f u s i c o c c i n appears to b e a c t i v e i n b o t h the w a t e r - u p t a k e a n d w a t e r - t r a n s p o r t systems. M o r e e v i d e n c e i n d i c a t e d t h a t f u s i c o c c i n causes i r r e v e r s i b l e extension of the c e l l w a l l
(87).
A l s o f u s i c o c c i n causes a b n o r m a l o p e n i n g of t h e stomata. T h i s obser v a t i o n l e d to the c o n c l u s i o n that u n u s u a l s t o m a t a l o p e n i n g r e s u l t e d i n excessive w a t e r loss ( 8 8 ) .
I t has also b e e n suggested
that fusicoccin
causes p e r m e a b i l i t y changes i n the p l a s m a m e m b r a n e of p l a n t cells
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
(89).
310
MYCOTOXINS
Others observed
that stomata treated w i t h fusicoccin c o u l d be
closed
w i t h a b s c i s i n , b u t t o m a t o cuttings after t h i s t r e a t m e n t w i l t e d .
It was
t h e r e f o r e c o n c l u d e d t h a t t h e t o x i n decreases the resistance of t h e p l a s m a m e m b r a n e to w a t e r passage a n d t h a t s t o m a t a l o p e n i n g is a effect ( 9 0 ) .
secondary
I t appears t h a t d i s r u p t i o n of the f u n c t i o n of t h e p l a s m a
m e m b r a n e of s u b e p i d e r m a l cells w o u l d r e s u l t i n loss of c e l l t u r g o r .
Loss
of c e l l t u r g o r of these cells w o u l d r e s u l t i n a loss of pressure o n g u a r d
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
cells, a loss t h a t c o u l d c u l m i n a t e i n s t o m a t a l o p e n i n g .
Fusicoccin could
cause w i l t i n g i n this m a n n e r .
Ftisarial Phytotoxic Mycotoxins species p r o d u c e n u m e r o u s toxins, b u t a f e w species p r o d u c e
Fusarium both
mycotoxins
a n d phytotoxins.
A l t h o u g h some toxins affect
both
p l a n t s a n d a n i m a l s , n o n e of the m y c o t o x i n s that affect p l a n t s i n i t i a t e p l a n t disease. M a n y of the m y c o t o x i n s ( trichothecenes ) p r o d u c e d b y
Fusarium
species h a v e a m o l e c u l a r s t r u c t u r e s i m i l a r to t h a t of the s e s q u i t e r p e n o i d s . M o r e o v e r s o m e p h y t o p a t h o g e n i c toxins p r o d u c e d b y different f u n g i are d i t e r p e n o i d s or s e s q u i t e r p e n o i d s .
U n f o r t n u a t e l y l i t t l e is k n o w n
about
t h e a n i m a l t o x i c i t y of t h e p h y t o p a t h o g e n i c t e r p e n o i d s t h a t are i m p o r t a n t i n p l a n t disease. T h e o b j e c t i v e of this s e c t i o n is to discuss the r e l a t i o n s h i p between mycotoxins a n d phytotoxins. T h e p h y t o t o x i c m a t e r i a l s p r o d u c e d b y f u n g i are r e f e r r e d to as p h y t o toxins (2).
P h y t o p a t h o g e n i c toxins differ f r o m p h y t o t o x i n s i n i n i t i a t i n g
p l a n t disease.
P h y t o t o x i n s d o n o t i n i t i a t e disease, b u t t h e y are i n v o l v e d
i n a m i n o r w a y d u r i n g t h e l a t e r p a r t of the disease s y n d r o m e .
I n this
d i s c o u r s e a m y c o t o x i n is c o n s i d e r e d a t o x i n p r o d u c e d b y a f u n g u s t h a t is t o x i c to a n i m a l s . B r i a n et a l . ( 9 1 )
first
observed
that compounds
(trichothecenes)
p r o d u c e d b y p l a n t p a t h o g e n s are t o x i c to p l a n t s a n d a n i m a l s . T h e same trichothecenes that caused skin irritation, nerve damage, a n d hemorrhage i n a n i m a l s also cause w i l t i n g a n d necrosis i n p e a seedlings
The
(92).
t r i c h o t h e c e n e s also i n h i b i t p l a n t g r o w t h b y i n t e r f e r i n g w i t h the a c t i o n o f i n d o l e a c t i c a c i d (91).
T h e interaction between the trichothecenes a n d
g r o w t h h o r m o n e s has n o t b e e n r e p o r t e d i n a n i m a l s . M o r e o v e r the t r i c h o t h e c e n e s a r e v e r y t o x i c t o b o t h p l a n t s a n d a n i m a l s . C o n c e n t r a t i o n s as l o w as 0.1 f t g / m l i n h i b i t g r o w t h of c e r t a i n p l a n t species formin
is a t o x i n r e c e n t l y i s o l a t e d f r o m
(Fusarium
moniliforme)
(91).
a plant pathogenic
that is t o x i c to p l a n t s a n d a n i m a l s
Monilifungus
(93).
S o m e p h y t o t o x i n s cause p h y s i o l o g i c a l d i s t u r b a n c e s i n p l a n t s s i m i l a r t o those t h a t m y c o t o x i n s cause i n a n i m a l s . F o r e x a m p l e f u s i c o c c i n diterpenoid)
causes p e r m e a b i l i t y changes
(a
a n d necrosis i n m a n y p l a n t
species w h e r e a s c e r t a i n s e s q u i t e r p e n o i d s cause i n c r e a s e d v a s c u l a r p e r -
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
13.
LUKE
A N D BIGGS
m e a b i l i t y i n rats (94).
Phytopathogenic
311
Toxins
T h i s o b s e r v a t i o n m a y e x p l a i n the e d e m a a n d
h e m o r r h a g i n g i n a n i m a l s w h i c h is c h a r a c t e r i s t i c of the t r i c h o t h e c e n e - t y p e toxins. M o r e o v e r the trichothecenes are c h e m i c a l l y s i m i l a r to f u s i c o c c i n . T h e specific m e c h a n i s m b y w h i c h the t r i c h o t h e c e n e toxins affect m e m b r a n e systems i n a n i m a l s is n o t k n o w n . T h e s i m i l a r i t i e s i n m o l e c u l a r s t r u c t u r e a n d p h y s i o l o g i c a l response b e t w e e n c e r t a i n p h y t o p a t h o g e n i c toxins a n d s o m e m y c o t o x i n s i n d i c a t e Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
t h a t some p h y t o p a t h o g e n i c toxins m a y also b e t o x i c to a n i m a l s . S o m e of t h e p h y t o p a t h o g e n i c toxins h a v e n o t b e e n i s o l a t e d f r o m diseased p l a n t s b e c a u s e of t h e i r l a b i l e n a t u r e or because of l o w c o n c e n t r a t i o n s ; therefore these types of toxins w o u l d n o t i n j u r e a n i m a l s i n n a t u r e . S o m e toxins t h a t cause p l a n t disease ( f u s i c o c c i n , h e l m i n t h o s p o r o s i d e ) h a v e b e e n i s o l a t e d f r o m i n f e c t e d p l a n t s . M o r e o v e r some of these h a v e c h e m i c a l s t r u c tures s i m i l a r to those of v a r i o u s m y c o t o x i n s , a n d the p h y t o p a t h o g e n i c toxins o c c u r r e d i n r e l a t i v e l y l a r g e q u a n t i t i e s . O n the other h a n d c e r t a i n mycotoxins (trichothecenes)
h a v e not b e e n i s o l a t e d f r o m n a t u r a l l y i n
f e c t e d p l a n t s o r s t o r e d g r a i n . B e c a u s e i t has n o t b e e n e s t a b l i s h e d t h a t a g i v e n t r i c h o t h e c e n e w a s r e s p o n s i b l e for m y c o t o x i c o s i s i n t h e field, i t has b e e n suggested t h a t n a t u r a l l y o c c u r r i n g mycotoxicosis m a y r e s u l t f r o m different substances p r o d u c e d b y s e v e r a l f u n g i (95).
This assumption
a d d s significance w h e n i t is r e a l i z e d that some of t h e p h y t o t o x i n s a n d p h y t o p a t h o g e n i c toxins o c c u r i n h i g h e r concentrations i n n a t u r a l l y i n f e c t e d p l a n t s t h a n d o the m y c o t o x i n s . T h e r e f o r e some of these p h y t o t o x i c compounds complex.
m a y b e i n v o l v e d i n the n a t u r a l l y o c c u r r i n g m y c o t o x i c o s i s
T h i s i n v o l v e m e n t w o u l d suggest t h a t the a n i m a l t o x i c i t y of
phytotoxic compounds isolated f r o m infected plants should be studied. L i t t l e a t t e n t i o n has b e e n g i v e n to this subject.
Discussion A l t h o u g h toxins h a v e b e e n i m p l i c a t e d i n p l a n t disease for a l m o s t a c e n t u r y , o n l y 10 are c o n s i d e r e d to i n d u c e disease. E v i d e n c e t h a t these 10 i n c i t e disease hinges o n t w o forms of c i r c u m s t a n t i a l e v i d e n c e :
the
t o x i n has t h e same host r a n g e as the p a t h o g e n , a n d a p o s i t i v e c o r r e l a t i o n exists b e t w e e n t o x i n p r o d u c t i o n a n d p a t h o g e n i c i t y . A l t h o u g h i n d i r e c t e v i d e n c e suggests t h a t a f e w toxins i n d u c e p l a n t disease, t h e i r p r e c i s e m o d e of a c t i o n is u n k n o w n . P l a n t scientists h a v e h a d l i t t l e success i n this area. T h e e x p l a n a t i o n , m a i n l y conjecture, rests o n three m a j o r p o i n t s . T h e first concerns concentrations a n d s t a b i l i t y of t h e t o x i n . M a n y toxins are p r o d u c e d i n s m a l l q u a n t i t i e s m vivo, a n d s o m e of m a j o r i m p o r t a n c e a r e n o t stable w h e n p u r i f i e d .
Sometimes, t w o or
m o r e toxins of s i m i l a r c o n s t i t u t i o n are p r o d u c e d , a n d thus i t is d i f f i c u l t to a s c e r t a i n w h i c h t o x i n i n c i t e s disease d e v e l o p m e n t .
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
312
MYCOTOXINS
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
A
Β
Figure 1. Chemical structure of thosporol A and helminthosporol
helmin Β
T h e s e c o n d p o i n t i n v o l v e s interactions b e t w e e n toxin(s).
the host a n d
S o m e t i m e s t h e host p r o d u c e s toxins t h a t cause necrosis.
the Such
toxins are p r o d u c e d i n response to i n f e c t i o n or i n j u r y . W h e n toxins p r o d u c e d b y the host a n d the p a t h o g e n are p r o d u c e d o n l y in vivo, i t is diffi c u l t to d e t e r m i n e the o r i g i n of a g i v e n t o x i n or one t h a t triggers disease. O c c a s i o n a l l y b o t h resistant a n d susceptible c u l t i v a r s i n a c t i v a t e toxins at different rates.
M a n y c o m p o u n d s are n o t r e a d i l y t r a n s p o r t e d i n p l a n t s ,
a n d i t is difficult to detect c e l l u l a r d a m a g e s o m e w h a t r e m o v e d f r o m the p o i n t of i n f e c t i o n . S u c h d e t e c t i o n ( 5 - 1 0 m m ) f r o m the i n v a d i n g p a t h o g e n s h o u l d be u s e d as a p r i m a r y c r i t e r i o n t o i m p l i c a t e a t o x i n as a diseasei n d u c i n g agent. produced
T h i s c r i t e r i o n w o u l d b e m o s t u s e f u l w h e n t h e t o x i n is
o n l y in vivo.
W e believe that m a n y disease-inducing
toxins
are c o m m o n l y p r o d u c e d o n l y in vivo a n d t h a t scientists w h o are i n t e r e s t e d i n the t o x i g e n i c n a t u r e of p h y t o p a t h o g e n s toxins p r o d u c e d in
s h o u l d t u r n t h e i r a t t e n t i o n to
vivo.
T h e t h i r d a n d p e r h a p s the f o r e m o s t reason for t h e s l o w w i t h phytopathogenic
toxins is t h e l a c k of k n o w l e d g e
structures of these c o m p o u n d s .
progress
of t h e c h e m i c a l
U n t i l recently v e r y little was k n o w n about
t h e structures of p h y t o p a t h o g e n i c toxins. M o s t of the toxins t h a t a t t r a c t e d the a t t e n t i o n of chemists w e r e n o t the c a u s a l agents of p l a n t disease. M u c h c r e d i t to e l u c i d a t e t h e m o d e s of a c t i o n of a n t i b i o t i c s a n d m y c o t o x i n s m u s t b e g i v e n to chemists w h o d e t e r m i n e d the structures a n d f u n c t i o n a l groups of these c o m p o u n d s .
O n c e these a r e k n o w n , the site of
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
action
13.
LUKE
A N D BIGGS
Phytopathogenic
313
Toxins
is m o r e easily ascertained. K n o w l e d g e of this k i n d w o u l d b e h e l p f u l to biologists w h o w i s h to d e t e r m i n e t h e m o d e of a c t i o n of t o x i g e n i c c o m p o u n d s . H o p e f u l l y this s y m p o s i u m w i l l s t i m u l a t e the interest of chemists i n p h y t o p a t h o g e n i c toxins. T h e i r expertise is s o r e l y n e e d e d . S i n c e this s y m p o s i u m e m p h a s i z e s m y c o t o x i n s or toxins t h a t a n i m a l s , i t is i n t e r e s t i n g to note s i m i l a r i t i e s b e t w e e n
affect
mycotoxins
toxins t h a t affect p l a n t s . S o m e of t h e i m p o r t a n t m y c o t o x i n s
and
(trichothe
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
c e n e s ) are k n o w n to b e the p r i m a r y agents t h a t i n c i t e p l a n t disease. T h a t is, some m y c o t o x i n s development
are of o n l y m i n o r i m p o r t a n c e to
symptom
i n p l a n t s , or t h e i r t o x i c i t y to p l a n t s m a y b e c o i n c i d e n t a l .
T h i s p o i n t of v i e w m a y b e i n error because some m y c o t o x i n s cause severe reactions a n d d e a t h i n c e r t a i n p l a n t s at v e r y l o w concentrations.
Several
p h y t o t o x i n s a n d m y c o t o x i n s h a v e c h e m i c a l structures t h a t are t e r p e n i c i n origin.
S t r u c t u r a l r e l a t i o n s h i p s a n d p a t h w a y s of synthesis a l l o w classifi
c a t i o n as s e s q u i t e r p e n o i d , d i t e r p e n o i d , a n d sesterterpenoid. S e v e r a l w e l l k n o w n sesquiterpenoids s p o r a l , h e l m i n t h o s p o r o l (see
are f o m a n n o s i n ,
helmintho
F i g u r e 1), and diacetoxyscirpenol.
c o m p o u n d s t h a t h a v e the 12,13-epoxytrichothecene
Some
nucleus have similar
c h e m i c a l structures a n d b i o l o g i c a l p r o p e r t i e s of t o x i c i t y to p l a n t a n d a n i m a l cells (44).
I n a recent r e v i e w , 22 n a t u r a l l y o c c u r r i n g
12,13-epoxy-
trichothecenes w e r e fisted, a n d t h e i r c h e m i c a l structures w e r e (95).
Experiments w i t h labeled compounds
compared
s h o w e d t h a t the n u c l e i of
these substances are d e r i v e d f r o m m e v a l o n i c a c i d (96, 9 7 ) . A w e l l - k n o w n , d i t e r p e n o i d , p h y t o p a t h o g e n i c t o x i n is f u s i c o c c i n . s t r u c t u r e is k n o w n a n d is w e l l d o c u m e n t e d i n a recent r e v i e w (44).
Its The
absolute s t r u c t u r e f o r f u s i c o c c i n is s h o w n i n F i g u r e 2. I n c o r p o r a t i o n of
HO
^CHpCH
Figure 2.
3
Chemical structure of
fusicoccin
Rodricks; Mycotoxins and Other Fungal Related Food Problems Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
314
MYCOTOXINS
OH
ν
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0149.ch013
0=