Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels

Jul 25, 2018 - Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and ...
2 downloads 0 Views 2MB Size
Subscriber access provided by READING UNIV

Functional Nanostructured Materials (including low-D carbon)

Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications Qinqin Ding, Xinwu Xu, Yiying Yue, Changtong Mei, Chaobo Huang, Shaohua Jiang, Qinglin Wu, and Jingquan Han ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.8b09656 • Publication Date (Web): 25 Jul 2018 Downloaded from http://pubs.acs.org on July 26, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Nanocellulose-mediated

electroconductive

self-

healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications Qinqin Ding,a Xinwu Xu,a Yiying Yue,b Changtong Mei,a Chaobo Huang,c Shaohua Jiang,a Qinglin Wu,d Jingquan Hana,e*

a

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037,

China b

c

College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China

College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

d

School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803,

USA e

Dehua TB New Decoration Material CO., LTD., Zhejiang, 313200,China

KEYWORDS: cellulose nanofibers, polypyrrole, polyvinyl alcohol, hydrogels, conductivity ABSTRACT: Conducting polymer hydrogels (CPHs) emerge as a fascinating class of smart soft matters important for various advanced applications. However, achieving the synergistic

ACS Paragon Plus Environment

1

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 50

characteristics of conductivity, self-healing ability, biocompatibility, viscoelasticity and high mechanical performance still remains a critical challenge. Here we develop for the first time a type of multifunctional hybrid CPHs based on a viscoelastic polyvinyl alcohol-borax (PB) gel matrix and nanostructured CNF-PPy (cellulose nanofibers-polypyrrole) complexes that synergizes the biotemplate role of CNFs and the conductive nature of PPy. The CNF-PPy complexes are synthesized through in situ oxidative polymerization of pyrrole on the surface of CNF templates, which are further well-dispersed into PB matrix to synthesize homogeneous CNF-PPy/PB hybrid hydrogels. The CNF-PPy complexes not only tangle with PVA chains though hydrogen bonds, but also form reversibly crosslinked complexes with borate ions. The multi-complexation between each component leads to the formation of hierarchical 3D network. The CNF-PPy/PB-3 hydrogel prepared by 2.0 wt% of PVA, 0.4 wt% of borax and CNF-PPy complexes with a mass ratio of 3.75/1 exhibits the highest viscoelasticity and mechanical strength. Due to a combined reinforcing and conductive network inside the hydrogel, its maximum storage modulus (~0.1 MPa) and nominal compression stress (~22 MPa) are 60 and 2240 times higher than those of pure CNF/PB hydrogel, respectively. The CNF-PPy/PB-3 electrode with a conductivity of 3.65±0.08 S m-1 has a maximum specific capacitance of 236.9 F g-1, and its specific capacitance degradation is less than 14% after 1500 cycles. The CNF-PPy/PB hybrid hydrogels also demonstrate attractive characteristics, including high water content (~94%), low density (~1.2 g cm-3), excellent biocompatibility, plasticity, pH sensitivity and rapid self-healing ability without additional external stimuli. Taken together, the combination of such unique properties endows the newly developed CPHs with potential applications in flexible bioelectronics and provides a practical platform to design multifunctional smart soft materials.

ACS Paragon Plus Environment

2

Page 3 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

1. INTRODUCTION Nowadays, the rapid development of soft, stretchable and flexible electronic components expands the applications of electronic devices.1 Multifunctional electroconductive components are FHQWUDOO\ LPSRUWDQW LQ GHYHORSLQJ DGYDQFHG ³VPDUW´ GHYLFHV VXFK DV ZHDUDEOH Hlectronics, implantable biomedical devices and portable electronic equipment.2-5 To realize practical soft electronics, the fixed shape and inflexibility of the conductive component is a particular limiting factor. Therefore, the adoption of moldable, flexible and elastic materials would be a promising solution.6 Hydrogels are stretchable, compressible and cross-linked three-dimensional networks of hydrophilic polymer with tunable amounts of water and switchable mechanics, while maintaining their structural integrity during deformation.7-8 Due to their high biocompatibility and hydrophilic property, hydrogels can adapt to complex environments and have been explored for various DSSOLFDWLRQV ZKHUH ³VPDUW´ VRIW PDWHULDOV DUH UHTXLUHG 9 Because the water contained in hydrogels can dissolve ions, hydrogels are also considered as ideal ionic conductors.10 As a special class of intelligent hydrogels, conducting polymer hydrogels (CPHs) synergize the advantageous features of organic conductors and hydrogels, allowing both materials to retain their respective unique properties.11 CPHs with continuous conductive backbones and intrinsic 3D network micro/nano structures can provide an electrically conductive yet mechanically robust framework, thus facilitating the transport and diffusion of electrons, charges, ions and small molecules.12 Due to their excellent conductivity, biocompatibility, mechanical flexibility and tissue-like softness, CPHs are regarded as a powerful material platform and provide a new route to design soft bioelectronics and flexible energy storage/conversion devices,13-14 such as wearable and implantable devices,

flexible supercapacitors,16 biosensors,17 electro-stimulated drug

release devices and electronic skin.18

ACS Paragon Plus Environment

3

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 50

As a class of functional polymers that have a delocalized p-system backbone along the polymeric chains, conducting polymers are emerging as a mechanically soft and electrically conducive platform for cell integration, making the CPHs suitable candidates as flexible bioelectronics for improving both the interface between biological and synthetic systems and the performance of medical devices.19 Among conductive polymers, polypyrrole (PPy), the intrinsically FRQGXFWLYH SRO\PHU ZLWK KLJKO\ Œ-conjugated polymeric chains, has attracted significant attention due to the ability to efficiently switch between the redox states, distinguished in vitro/vivo cytocompatibility, excellent ion-exchange property, controllable electrical conductivity (varying from 10-4 to 102 S cm-1), thermal and environmental stability.20-21 Recently, great efforts have been dedicated to developing functionalized CPHs using PPy. Wallace et al. developed a cytocompatible PPy/PEDOT hydrogel for use in an Mg biobattery. By introducing a two-step crosslinking process, PPy was electrochemically deposited onto PEDOT gel, forming a robust CPH with good electrochemical properties and biocompatibility.22 Takeuchi et al. demonstrated a tunable 3D nanostructured conductive gel electrode based on PPy gel and Fe3O4 nanoparticles. The multifunctional PPy gel framework was adopted as both binder and 3D conductive network, significantly improving the performance of active inorganic nanoparticlebased electrodes in the next-generation high-capacity lithium ion batteries.23 +RZHYHU WKH GHORFDOL]HG Œ-electron system along the backbone of conjugated polymers causes rigid polymeric chains of PPy. When incorporated into hydrogel individually, PPy is generally difficult to disperse and even tend to form separate domains of aggregations, probably due to the inaccessibility, rigidity and dense layers of PPy.24 Not surprisingly, most previously reported CPHs based on PPy suffer from mechanical brittleness and rigidity, thus they cannot bear large deformation, which limits their practical application in soft electronics.6,

14

In addition, the

ACS Paragon Plus Environment

4

Page 5 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

noncontinuous conductive PPy network within gel matrix severely degrades the electrochemical performance of CPHs.20, 25 Therefore, it remains a challenge to fabricate homogeneous CPHs with high conductive, elastic and flexible nature using PPy. Fortunately, direct polymerization of pyrrole monomers on flexible template materials can overcome above-mentioned problems.20 Among various flexible substrates, cellulose nanofibers (CNFs), derived from the most abundant and renewable biomass on earth-cellulose, are particularly promising and desirable because of their appealing properties, such as intrinsic flexibility, high strength (modulus in the range of 134-140 GPa), high aspect ratio and excellent biocompatibility.26-30 These distinguished characteristics of CNFs endow them as ideally suitable templates to enhance the flexibility, toughness and electrochemical properties of the brittle PPy.24 The CNF carriers are expected to serve the dual function of mechanically toughening the fragile PPy and increasing the conductivity through providing a continuous 3D scaffold of high porosity.31 Based on the issues above, it is reasonable to assume that CNFs functionalised with PPy could be applied for reinforcing and supporting 3D conductive network of hydrogel to create stable, tough and flexible CPHs with properties that can be optimised both with respect to their electrochemical property and mechanical integrity.32 In our previous study, we have prepared hybrid hydrogels with enhanced viscoelasticity, strength and toughness by incorporated well-dispersed nanocellulose to the polyvinyl alcohol (PVA)-borax gel matrix via cross-linking between nanocellulose and PVA-borax (PB) system in an aqueous medium.33-34 Inspired by their appealing features, we believe that PB hydrogels with hierarchically 3D framework can serve as an ideal matrix for the introduction of a second conductive network, thus potentially providing continuous pathways for electron transport and forming multifunctional CPHs by introducing CNF-carried PPy.23 To the best of our knowledge,

ACS Paragon Plus Environment

5

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 50

we are unaware of any reports on the multifunctional CPHs based on PB system and CNFtemplated PPy. In the present work, we report a novel type of multifunctional smart CPHs that possess synergistic characteristics, including low density, decent viscoelasticity, inherent plasticity, adequate conductivity, fast self-healing ability, intrinsic biocompatibility and pH sensitivity. Specifically, PPy was firstly in situ polymerized onto the surface of CNF biotemplates to synthesize conductive CNF-PPy complexes, which were further uniformly dispersed into PB gel matrix to form homogeneous CNF-PPy/PB hybrid hydrogels with hierarchical 3D network structure.

Through

microscopic

observation,

mechanical,

dynamic

rheological

and

electrochemical measurements, a successful in situ polymerization of pyrrole monomers onto CNFs was verified, and the regulating effects of CNF-PPy complexes on the viscoelasticity, conductivity, mechanical properties and electrochemical performances of hybrid CPHs were investigated in detail. The multi-complexation of each component within hydrogel, the relationships between hydrogel microstructure and performances, as well as the plausible mechanism for hierarchical 3D network formation of hydrogel were also described. By combining desirable properties of conductive CNF-PPy complexes and PB hydrogel matrix, we demonstrated that this kind of CPHs could be practically used to fabricate flexible, biocompatible and fast self-healable bioelectrodes or strain sensors with excellent electrochemical performances. 2. EXPERIMENTAL SECTION Materials. Bleached wood pulp (BWP, W-50 grade of KC Flock, Tokyo, Japan) was dried for 12h at 60ºC, and sulfuric acid (98 wt%, Nanjing Chemical Reagent Co., Ltd., China) was diluted to a concentration of 48 wt% before use. Pyrrole monomers (C4H5N, Mw=67.09 g mol-1) and Iron (III) chloride (FeCl3, Mw=162.2 g mol-1) were purchased from Aladdin Industrial Co. Polyvinyl

ACS Paragon Plus Environment

6

Page 7 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

alcohol (PVA, Mw=146,000-186,000 g mol-1, 99.0% hydrolyzed) and sodium tetraborate decahydrate (borax, Na2B4O7·10H22 •

0w=381.37 g mol-1) were obtained from Aldrich

Chemical Co. Deionized water was used in the preparation of all solutions. All solvents and reagents used were of analytical grade. Preparation of CNFs and CNF-PPy Complexes. CNFs were extracted from BWP using acid hydrolysis followed by an ultrasonication as previously described in our work (detailed preparation process is given in Supporting information).

CNF-PPy complexes were

synthesized via an in situ oxidative polymerization of pyrrole monomers using CNFs as biotemplate and FeCl3 as oxidant in an acid aqueous PHGLXP. Before use, the pyrrole monomers were distilled under reduced pressure to prevent their oxidization in air. Based on the preliminary experiments, the feeding mass ratio of pyrrole monomers to CNFs were 1.25/1, 2.50/1, 3.75/1, 5.00/1 and 6.25/1 w/w, and the corresponding CNF-PPy complexes were labeled as CNF-PPy-1, CNF-PPy-2, CNF-PPy-3, CNF-PPy-4 and CNF-PPy-5, respectively. Typically, CNF-PPy-1 was synthesized as follows. Pyrrole (2.5 g, 0.036 mol) and virgin HCl (0.050 mol, 1.0 M) were added into the CNF aqueous suspension (200 g, 1.0 wt%). After magnetic stirring in ice-water for 1h, a solution of FeCl3 (2.9 g, 0.018 mol) in 50 mL deionized water, used as oxidant catalyst, was added into the suspension, and the polymerization proceeded in an ice-water bath for 2h. The obtained product was filtered and rinsed with water several times to a neutral pH value. TKH ILQDO &1) 33\ FRQGXFWLYH FRPSOH[HV ZHUH UHGLVSHUVHG LQ ZDWHU WR IRUP D VXVSHQVLRQ ZLWK D WRWDO ZHLJKW RI J ZKLFK ZDV WKHQ XOWUDVRQLFDWHG IRU

PLQ WR GLVSHUVH WKH DJJUHJDWLRQ The solid contents

of the &1) 33\ FRPSOH[ suspension from No.1 to No.5 were measured 4 times, and the average values were 1.3±0.04, 2.1±0.06, 2.9±0.02, 3.5±0.04, 4.2±0.03 wt%, respectively. Neat PPy was

ACS Paragon Plus Environment

7

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 50

prepared via an oxidative synthetic approach without CNFs, and all other processing conditions were in accordance with CNF-PPy complexes. Preparation of CNF-PPy/PB Hybrid Hydrogels. The hybrid hydrogels with 2.0 wt% of PVA, 0.4 wt% of borax and different CNF-PPy complexes were prepared as follows. Firstly, borax powder (0.8 g) was dissolved in CNF-PPy aqueous suspension (195.2 g) with continuous stirring at room temperature for 20 min. Subsequently, PVA powder (4.0 g) was slowly added into the stirred aqueous solutions. After a complete swelling of PVA powder, the solutions were heated to 90°C and stirred for 2h. As the temperature increased, the PVA powder began to dissolve and the mixture gradually became viscous. After the PVA was completely dissolved, homogeneous PVA-borax (PB) solutions with well-dispersed CNF-PPy complexes were formed. As the temperature decreased, the solutions started to present viscoelastic performance. The solutions were further cooled slowly to room temperature to form the final CNF-PPy/PB hydrogels. A series of hybrid hydrogels with different CNF-PPy complexes were designated as CNF-PPy/PB1, CNF-PPy/PB-2, CNF-PPy/PB-3, CNF-PPy/PB-4 and CNF-PPy/PB-5, respectively. As a reference, the hydrogel synthesized in the absence of PPy was marked as CNF/PB. The weight ratio of CNF in all the hydrogels were kept at 1.0 wt%. Characterizations. Fourier transform infrared spectrometry (FTIR) was conducted using a VERTEX 80v spectrophotometer (Thermo Fisher Scientific inc. USA) with the samples mixed with KBr. Transmission electron microscopy (TEM) was performed using a transmission electron microscope (JEM-1400, Japan) with an accelerating voltage of 80 kV. Scanning electron microscopy (SEM) was carried out on JSM-7600F field emission scanning electron microscopy (FE-SEM, JEOL, Japan) at 5.0 kV. The densities (!, g cm-3) of the hydrogels were determined from the dimensions and weights

ACS Paragon Plus Environment

8

Page 9 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

of the samples. Each sample (initial weight=Wi) was dried in a vacuum oven at 50°C until a constant weight (Wd) was reached. The water contents (Wc) of the hydrogels were calculated from eq 1. 9a L

9g F 9b H srr¨ 9g

(1)

Dynamic Oscillation Measurement. The dynamic rheological behaviors, including dynamic strain sweep, dynamic frequency sweep, continuous step strain and dynamic temperature sweep, were investigated with an HAAKE RheoStress 600 (Thermo Fisher Science Inc. USA) using a plate-and-SODWH JHRPHWU\ GLDPHWHU

PP JDS

P

Dynamic Strain Sweep. Before the dynamic viscoelastic measurements, the dynamic strain sweep from 0.01 to 100% at &=1.0 Hz was performed, and the storage modulus was recorded to define the linear viscoelastic region in which the storage modulus was independent to the strain amplitude. A strain ( ) of 1.0% was selected in the subsequent oscillation tests to ensure that the dynamic oscillatory deformation of each sample was within the linear viscoelastic region. Dynamic Frequency Sweep. The viscoelastic parameters (log mode), including shear storage modulus (G') and loss modulus (G'') as functions of angular frequency (&) were measured over the & range of 0.1-100 rad s-1 at = 1% at 25°C. The complex modulus (G*) and complex viscosity ( *) were calculated based on the values of G' and G'' (G*=¾*

* ,

*

=G*/&).

Continuous Step Strain. To investigate the self-healing properties of the hydrogels in response to applied shear forces (expressed in terms of strain), a 1h-programmed procedure was XVHG DV IROORZV VWUDLQ V :

V :

DQG GXUDWLRQ LQ SDUHQWKHVHV

V :

V :

V DQd the G' and G'' dependence of time was recorded in

continuous step strain measurements at & = 1.0 Hz and at 25°C. For the test, CNF-PPy/PB-3 was selected as a representative hydrogel.

ACS Paragon Plus Environment

9

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 50

Mechanical Measurements. Compression stress (1)-strain (0) measurements were performed on the cylindrical hydrogel samples (35 mm in diameter and 10 mm in height) using a universal mechanical testing machine (CMT4304, SANS Test Machine Co. Ltd., Shenzhen, China) at a crosshead speed of 10 mm/min. The compression for all samples ended when the normal force reached the maximum loading capacity (30 kN). The energy absorption (Ea) under uniaxial compression was defined as the area below the stress-strain curve. The specific compressive stress (1s) was calculated by dividing densities. The compression results were averaged over three specimens per group. Tensile stress-strain tests were carried out with a universal testing machine (TY-8000B, China) at a pulling rate of 25 mm/min. The samples in a size of 30mm × 15mm × 5mm were nipped to the tensile machine while testing. Then the hydrogels were cut into halves, and the two separate parts were contacted in air and underwater without any external stimulus during the healing process. The tensile tests were repeated to calculate the healing efficiency. Conductivity. In a two-electrode system, the hydrogel samples with a size of 1.0cm × 0.5cm × 0.5cm were sandwiched between two platinum plate electrodes. The measurements were carried out on an electrochemical workstation (CHI760E, China). The resistance was calculated from the current-time curve by eq 2. 4 L 7¤+

(2)

where R ZDV WKH UHVLVWDQFH

U was the open circuit potential of the conductive hydrogel

(viewed in the open circuit voltage-time curve) (V), and I was the current corresponding to the open circuit potential (A). The conductivity was calculated by eq 3. PL

s. 45

(3)

where L, S and R were the hydrogel thickness in cm, the electrode area in cm2, and the hydrogel UHVLVWDQFH LQ

UHVSHFWLYHO\

ACS Paragon Plus Environment

10

Page 11 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Electrochemical Properties. The electrochemical measurements were carried out on a threeelectrode system using an electrochemical workstation (CHI760E, China). The hydrogel sample (12 mg), a Pt wire and a saturated calomel reference electrode were used as the working electrode, counter electrode and reference electrode, respectively. All measurements were performed in a 6.0 M KOH electrolyte. Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), cycling performance and electrochemical impedance spectroscopy (EIS) were conducted to examine electrochemical performance of hybrid hydrogels. CV tests were performed with 20, 50, 80 and 100 mV s-1 scan rates in a potential window of -0.6±0.4 V. The GCD experiment was carried out in the potential range from 0 to 0.4 V with applied current density of 0.5, 1.0 and 2.0 A g-1. The EIS tests were conducted over the frequency range from 0.01 Hz to 100 kHz using a sine wave with alternate signal amplitude of 5 mV. The cell specific capacitance (Cs) was calculated from the slope of the linear region of GCD curves, using the following eq 4. %q L

+ ® ¿P I ® ¿8

(4)

where I, ûW and û9 was charge/discharge current in A, discharge time in s, potential drop during discharge in V, respectively, and m was the mass of active material within electrode in g. In Vitro Cell Culture. L-929 cells (mouse fibroblast cells) were selected as the testing cell model. L-929 cells were routinely cultured in culture flasks with High Glucose-Dulbecco´s 0RGLILHG (DJOH¶V 0HGLXP +*-DMEM), supplemented with 10% fetal bovine serum. The cells were then incubated at 37°C in 5% CO2 and 95% air. Once the cells became nearly confluent, they were washed three times with phosphate buffer saline (PBS). Subsequently, the cells were released by treating with trypsin-EDTA solution for 3 min at 37°C, and then they were resuspended in fresh complete culture media with a final concentration of 1.5×105 cells mL-1. In Vitro Cytotoxicity Assays. The effects of the hybrid hydrogel on cell viability were

ACS Paragon Plus Environment

11

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 50

assessed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assays (detailed assay process is given in Supporting information). The optical density values of the blank group, control group and experimental group were measured at 490 nm using Fullwavelength microplate reader and marked as ODb, ODc, and ODe, respectively. The cell viability was calculated using the eq 5. %AHH RE=>EHEPU >¨? L

1&c F 1&` H srr¨ 1&a F 1&`

(5)

SEM of Cell Adhesion and Morphology. The morphology and cellular state of CNF-PPy/PB hydrogels were examined using SEM (Quanta 200). Before observation, the hydrogels were sterilized by UV irradiation for 30 min, and then the cells were seeded on the hydrogels surface in 24-well tissue-culture plates. After 24h in culture, the hydrogels were rinsed three times using PBS to remove non-adherent cells. The adherent cells were fixed with 2.5% glutaraldehyde for 2d at 4°C, followed by a dehydration in graded ethanol series (50, 70, 80, 90, and 100%). After a vacuum drying, the samples were sputter-coated with a thin Au layer and then observed under SEM. Fluorescent Staining. Cell apoptosis was observed by fluorescence staining with fluorescence microscopy (OLYMPUS IX53). After 1d of culture with extract liquid, a certain amount of Hoechst 33342 live cell staining solution (100X) (Shanghai Beyotime Biotechnology Co., Ltd) was added and adjusted to the final concentration of cell staining solution 1X. Then the sample was incubated for 10 min at 37°C, followed by a removal of the mixed solution. Afterwards, the cell was washed with PBS three times and observed.

ACS Paragon Plus Environment

12

Page 13 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

3. RESULTS AND DISCUSSION 3.1. Synthesis Process and Formation Mechanism of CNF-PPy/PB Hybrid Hydrogels

Figure 1. (a) Schematic illustration of preparation and synthesis process of CNF-PPy/PB hydrogels. (b) CNF-PPy/PB hydrogels molded into various shapes. (c) Formation mechanism of integrated 3D network within CNF-PPy/PB hydrogels. (d) Multi-complexation between PVA, CNF-PPy and borax. The facile two-step synthesis process of CNF-PPy/PB hydrogels is schematically illustrated in Figure 1a. A stable aqueous suspension of CNFs was firstly prepared through acid hydrolysis and ultrasonication. Because of their excellent dispersibility and nanoscale dimension, CNFs were applied as a stable and robust nanocarrier to disperse PPy in water. CNF-PPy complexes were then synthesized via an in situ oxidative chemical polymerization of pyrrole monomers using FeCl3 as oxidant and CNFs as biotemplate in an acid aqueous medium. The water-dispersed

ACS Paragon Plus Environment

13

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 50

CNF-PPy complexes were successfully achieved by the grown of PPy coating on the surface of individual CNF. Subsequently, the well-dispersed CNF-PPy complexes were incorporated into PB matrix to form CNF-PPy/PB hybrid hydrogels. CNFs acted as a biotemplate and guide the growth of PPy into compact CNF-PPy complexes with ideal dispersity, which enabled the formation of a hierarchical 3D conductive network structure in PB gel matrix. Interestingly, the obtained hybrid hydrogels exhibited high water content (~94%) and low density (~1.2 g cm-3). These homogeneous, stable and moldable hydrogels could be readily and repeatedly remolded into various 3D shapes after gelation (Figure 1b). A schematic illustration of hierarchical 3D network formation of CNF-PPy/PB hybrid hydrogels is proposed in Figure 1c. In a dilute solution, borax (Na2B4O7‡

+2O) dissociated into

equal quantities of trigonal planar B(OH)3 and tetrahedral B(OH)4í that quickly interchanged in water, and the authentic concentration of B(OH)4í was nearly twice the initial borax concentration. More importantly, the B(OH)4í ion was shaped like a tetrahedron (four sides, each side an equilateral triangle) with the boron in the center and the four -OH groups at each corner, which could form various complexes with cis-diol sites of PVA chains and/or CNF-PPy hybrids (Figure 1d).27 In this way, borax acted as a cross-linker between the PVA chains and CNF-PPy complexes, resulting in strong interactions between these components and H2O molecules. As a result, the coexistence of multi-complexation, H2O interpenetration, chain entanglement of CNF-PPy hybrids and PVA, as well as inter- and intramolecular hydrogen bonding systems between them led to the formation of an integrated 3D network within the hybrid hydrogels. 3.2. Synthesis Process and Dispersion State of CNF-PPy Complexes in Aqueous Suspensions 7KH )7,5 VSHFWUD RI &1)V 33\ &1) 33\

FRPSOH[HV DQG &1) 33\ 3%

VKRZQ LQ )LJXUH D )RU &1)V WKH FKDUDFWHULVWLF EDQGV DW

DQG

K\GURJHO DUH

FP ZHUH DWWULEXWHG WR

ACS Paragon Plus Environment

14

Page 15 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

WKH 2 + VWUHWFKLQJ DQG & + DV\PPHWULFDOO\ VWUHWFKLQJ UHVSHFWLYHO\

7KH VPDOO EDQGV DURXQG

FP ZHUH GXH WR WKH &+ VWUHWFKLQJ DQG &+ EHQGLQJ DQG WKH DEVRUSWLRQ EDQG DW RULJLQDWHG IURP & 2 VWUHWFKLQJ YLEUDWLRQ

)RU QHDW 33\ WKH SHDNV DW

ZHUH DWWULEXWHG WR 1 + VWUHWFKLQJ YLEUDWLRQ 7KH SHDNV DW

DQG

DQG

UHVSHFWLYHO\

FP

FP

FP FRUUHVSRQGHG WR

& & DQG & 1 V\PPHWULF DQG DV\PPHWULF ULQJ VWUHWFKLQJ UHVSHFWLYHO\ 7KH SHDN DW DQG WKH EDQG DW

FP

FP

ZHUH DVFULEHG WR & + YLEUDWLRQ DQG & + RXW RI SODQH YLEUDWLRQ

$IWHU WKH LQ VLWX SRO\PHUL]DWLRQ WKH VSHFWUXP RI &1) 33\

FRPSOH[HV ZDV

VLPLODU WR WKDW RI SXUH 33\ LQGLFDWLQJ D VXFFHVVIXO SRO\PHUL]DWLRQ RI pyrrole PRQRPHUV RQWR WKH &1) WHPSODWHV 3DUWLFXODUO\ DOO WKH PDMRU SHDNV RI &1) 33\

FRPSOH[HV VKLIWHG WR ORZHU

ZDYHQXPEHUV ZKLFK PLJKW EH FDXVHG E\ WKH IRUPDWLRQ RI K\GURJHQ ERQGLQJ EHWZHHQ 1 + LQ WKH pyrrole ULQJ DQG WKH 2+ JURXSV RI &1)V VXJJHVWLQJ WKH H[LVWHQFH RI 33\ FRDWLQJ OD\HU RQ WKH VXUIDFH RI &1)V $IWHU K\GURJHODWLRQ WKH HQWLUH VSHFWUXP RI &1) 33\ 3% VLPLODU WR WKDW RI &1) 33\ WR D ORZHU ZDYHQXPEHU DW

FRPSOH[HV 6SHFLILFDOO\ WKH SHDN DURXQG FP

K\GURJHO ZDV

FP VOLJKWO\ VKLIWHG

ZKLFK SUREDEO\ LQGLFDWHG WKH IRUPDWLRQ RI LQWHUDFWLRQV

EHWZHHQ 39$ FKDLQV &1) 33\ FRPSOH[HV DQG WKRVH LQYROYHG LQ PROHFXODU ERQGLQJ ,Q DGGLWLRQ WKH SHDNV DW

DQG

FP ZHUH DWWULEXWHG WR WKH DV\PPHWULF VWUHWFKLQJ UHOD[DWLRQ RI % 2 &

DQG % 2 VWUHWFKLQJ IURP UHVLGXDO % 2+

í

VXJJHVWLQJ WKH SUHVHQFH RI ERUD[ DQG ERUDWH 7KHVH

UHVXOWV FRQILUPHG WKH RFFXUUHQFH RI PXOWL FRPSOH[DWLRQ DQG FURVVOLQNLQJ EHWZHHQ 39$ FKDLQV &1) 33\ K\EULGV DQG ERUDWH DV ZHOO DV WKH SUHVHQFH RI % 2+

í

ZLWKLQ WKH K\GURJHOV

ACS Paragon Plus Environment

15

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

)LJXUH

D )7,5 VSHFWUD RI &1)V 33\ &1) 33\

Page 16 of 50

FRPSOH[HV DQG &1) 33\ 3%

E 3KRWRJUDSKV RI SXUH 33\ DQG &1) 33\ DTXHRXV VXVSHQVLRQV DIWHU VWDQGLQJ IRU

K\GURJHO K F 7KH

FKHPLFDO LQWHUDFWLRQ EHWZHHQ 33\ DQG &1)V 7(0 LPDJHV RI G &1)V H SXUH 33\ DQG I &1) 33\

FRPSOH[HV 7KH LQVHUW RI I FRQILUPLQJ WKH VSHFLILF PRUSKRORJ\ RI &1) 33\

FRPSOH[HV $V VKRZQ LQ )LJXUH E WKH QHDW 33\ DQG &1) 33\ FRPSOH[HV ZHUH GLVSHUVHG ZHOO DIWHU D PLQ VWLUULQJ $IWHU

K WKH SXUH 33\ SDUWLFOHV ZHUH DJJUHJDWHG WRJHWKHU LQ DTXHRXV VXVSHQVLRQ

GXH WR WKHLU LQWULQVLF LQWHUPROHFXODU LQWHUDFWLRQV ZKLOH WKH DTXHRXV VXVSHQVLRQ RI &1) 33\ FRPSOH[HV VWLOO UHPDLQHG VWDEOH ZLWKRXW DQ\ SUHFLSLWDWHV LQGLFDWLQJ WKDW &1) WHPSODWHV ZHUH LGHDOO\ VXLWDEOH GLVSHUVDQW IRU 33\ The interaction between PPy and CNFs might ascribe to the hydrogen bonding between N-H in the pyrrole ring and the O-H functional groups of CNFs (Figure 2c). In addition, WKH 89 9LV VSHFWUD RI 33\ DQG &1) 33\

FRPSOH[HV IXUWKHU SURYHG

ACS Paragon Plus Environment

16

Page 17 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

WKH JRRG GLVSHUVLELOLW\ RI &1) 33\ )LJXUH 6

'XH WR WKH SRRU GLVSHUVLELOLW\ DQG D ODUJH

DJJUHJDWLRQ WKH DEVRUSWLRQ SHDN RI QHDW 33\ VXVSHQVLRQ ZDV PXFK ZHDNHU WKDQ WKDW RI WKH &1) 33\

FRPSOH[HV which further demonstrated that the incorporation of CNFs significantly

improved the dispersibility of PPy in water. The CNF-PPy-3 complexes had two absorption peaks DW

DQG

QP ZKLFK FRXOG EH H[SODLQHG E\ WKH Œ Œ LQWHUEDQG WUDQVLWLRQ WKH SRODURQ DQG

ELSRODURQ EDQG WUDQVLWLRQ RI 33\ UHVSHFWLYHO\

7KHVH UHVXOWV FRQILUPHG WKH VXFFHVVIXO

SRO\PHUL]DWLRQ RI 33\ RQ &1)V 7KH PRUSKRORJ\ RI &1)V SXUH 33\ DQG &1) 33\

FRPSOH[HV DUH VKRZQ LQ )LJXUH G I

&1)V ZLWK KLJK DVSHFW UDWLR GLVSHUVHG KRPRJHQHRXVO\ LQ ZDWHU DQG IRUPHG D VWDEOH FROORLGDO VXVSHQVLRQ ZLWKRXW YLVLEOH DJJUHJDWLRQ LQVHUW RI )LJXUH G 7KH DYHUDJH OHQJWK DQG GLDPHWHU RI &1)V ZHUH



QP DQG

“ QP UHVSHFWLYHO\ )LJXUH G ZKLOH WKH QHDU VSKHULFDO 33\

SDUWLFOHV V\QWKHVL]HG WKURXJK GLUHFWO\ R[LGDWLYH SRO\PHUL]DWLRQ ZHUH GR]HQV RI QDQRPHWHUV LQ GLDPHWHU DQG GHQVHO\ FRPSDFWHG ZLWK HDFK RWKHU )LJXUH H $V H[SHFWHG WKH SRO\PHUL]DWLRQ RI 33\ RQ &1) WHPSODWHV PDLQWDLQHG WKH LQWHJULW\ RI &1)V 7KH 33\ JUHZ DORQJ WKH WHPSODWHV WR DYRLG WKH DJJUHJDWLRQ DQG WKXV WKH 33\ FDUULHG E\ &1) WHPSODWHV ZHUH XQLIRUPO\ GLVSHUVHG LQ DTXHRXV PHGLXP WR EXLOG DQ LQWHUFRQQHFWHG FRQGXFWLYH QHWZRUN )LJXUH I 7KH PRUSKRORJ\ RI &1) 33\ FRPSOH[HV FDQ EH FOHDUO\ REVHUYHG LQ WKH LQVHUW RI )LJXUH I LQGLFDWLQJ WKH VXFFHVVIXO FRDWLQJ RI 33\ VKHOO RQ &1)V ,W ZDV ZRUWK QRWLQJ WKDW WKH FRQWLQXRXV FRQGXFWLYH 33\ QHWZRUN VXSSRUWHG E\ &1) WHPSODWHV DQG H[FHOOHQW GLVSHUVLW\ RI &1) 33\ FRPSOH[HV ZDV D SUHUHTXLVLWH IRU WKH V\QWKHVLV RI WKH &3+V ZLWK JRRG HOHFWULFDO FRQGXFWLYLW\ DQG HQKDQFHG PHFKDQLFDO SHUIRUPDQFHV

ACS Paragon Plus Environment

17

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 50

3.3. Linear Viscoelastic Region Determined by Dynamic Strain Sweep

Figure 3. Dynamic viscoelasticity performance at 25°C and thermo-reversibility of the hydrogels at =1%: (a) strain dependence of G' (&=1.0 Hz); (b) frequency dependence of G' and G'' (&=1.0100 Hz); (c) frequency dependence of G* and CNF-PPy/PB-3 hydrogel (PRUH WKDQ

*

(&=1.0 Hz); (d) Stretching demonstration of

RI WKH RULJLQDO OHQJWK).

Figure 3a shows the curves for G' as a function of based on the results from dynamic strain sweep tests, demonstrating a typical elastic response of hybrid hydrogels. The strain sweep tests were conducted to confirm the linear viscoelastic region RI hydrogels, where G' and G'' were independent of the applied

(from 0.01 to 100%). The G' value of all samples was relatively

stable within = 1.0%, so = 1.0% was selected in the subsequent oscillation tests to ensure that

ACS Paragon Plus Environment

18

Page 19 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

the following dynamic oscillatory deformation of each hydrogel was within linear viscoelastic region. As expected, the addition of a small amount of &1) 33\ FRPSOH[HV pronouncedly increased the viscoelasticity and toughness of hydrogel. All CNF-PPy/PB hybrid hydrogels exhibited considerably higher * values than CNF/PB hydrogel, indicating a more significant reinforcing effect of CNF-PPy complexes than CNFs. Compared with the other hydrogels, CNFPPy/PB-3 present the highest G'max value (~105 Pa), which was almost 60 times higher than that of CNF/PB hydrogel (G'max § PB hydrogel (G'max §

3D DQG three orders of magnitude greater than that of pure

3D

3.4. Dynamic Viscoelasticity of Hybrid Hydrogels 7KH * HODVWLFLW\ DQG * YLVFRVLW\ RI &1) 33\ 3% DQG &1) 3% K\GURJHOV DV D IXQFWLRQ RI DQJXODU IUHTXHQF\ & = 0.1-100 rad s-1) within linear viscoelastic region DUH VKRZQ LQ )LJXUH E ,W ZDV FOHDUO\ REVHUYHG WKDW WKH * DQG * FXUYHV RI WKHVH K\GURJHOV EDVLFDOO\ IROORZHG D FRPSDUDEOH WUHQG 8QOLNH WKH SHUPDQHQWO\ FURVV OLQNHG JHOV WKDW ZDV IUHTXHQF\ LQGHSHQGHQW 3% EDVHG K\GURJHOV ZLWK G\QDPLFDOO\ FURVV OLQNHG QHWZRUN GHPRQVWUDWHG IUHTXHQF\ GHSHQGHQW PRGXOL $V & SURFHHGHG WKHUH ZDV DQ LQLWLDO UHJLRQDO PRQRWRQLF LQFUHDVH LQ ERWK PRGXOL :LWKLQ WKH ODWWHU SDUW RI WKH FXUYHV * FRQWLQXHG WR LQFUHDVH WR UHDFK D SODWHDX UHJLRQ WKDW ZDV LQGLFDWLYH RI SRO\PHU HQWDQJOHPHQWV ZKHUHDV *Ž UHDFKHG LWV SHDN DQG WKHQ EHJDQ WR GHFUHDVH 2YHU WKH HQWLUH & UDQJH WKH * YDOXHV RI DOO K\GURJHOV ZHUH DOZD\V KLJKHU WKDQ WKHLU FRUUHVSRQGLQJ *Ž YDOXHV ZKLFK LQGLFDWHG WKDW D SHUPDQHQW HODVWLF QHWZRUN ZDV IRUPHG LQ WKH VROLG OLNH K\GURJHO It was generally deemed that the existence of crossover point where G' = G'' was the sign of gelation. We previously found that the pure PB hydrogel held this type of crossover point, and it exhibited quasi-liquid behavior at low frequency (G' < G'') and solid-like behavior (G' > G'') at high frequency.34 Interestingly, it was noticed that the moduli curves of CNF-PPy/PB hydrogels

ACS Paragon Plus Environment

19

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 50

only showed a UXEEHU\-like behavior over the accessible frequency window (& = 0.1-100 rad s1

), revealing that their intersection point located out of & window and the gelation occurred at a

lower &, much earlier than PB and CNF/PB hydrogels. This result demonstrated the IRUPDWLRQ RI WKH HODVWLF ' QHWZRUN ZLWK ERWK HQWDQJOHG FKDLQV DQG UHYHUVLEOH FURVV OLQNV ZDV DFKLHYHG As noted from the graph, the G' values of all CNF-PPy/PB hydrogels gradually increased with the increasing content of PPy. Compared with CNF/PB hydrogel, an increase of almost 100-fold in G'’ (high-frequency plateau of G') was generated for CNF-PPy/PB-3. However, excessive PPy would hinder the formation of 3D network within hydrogel, thus leading to the decline of G' values. 7KHUHIRUH &1) 33\ 3%

SRVVHVVHG WKH PRVW RXWVWDQGLQJ YLVFRHODVWLFLW\ DPRQJ WKHVH

K\GURJHOV The plots of complex modulus (G*) and complex viscosity ( *) as a function of & provided a sharper contrast of these hydrogels (Figure 3c), where CNF-PPy/PB-3 exhibited the highest G* and

*

within the whole & range. As shown in Figure 3d, a block of elastic CNF-

PPy/PB-3 hydrogel could be stretched beyond 600% strain into a thin film without damage, exhibiting its excellent stretchability, efficient energy dissipation behavior and damage-tolerant ability. Its elastomeric nature was probably attributed to the entanglements of PVA chains and flexible CNF-PPy complexes through physical junctions and hydrogen bonds with the presence of borax. In this view, the homogeneously dispersed CNF-PPy complexes in PB matrix could be considered as multifunctional cross-linkers and reinforcing nanofillers. 3.5. Self-healing Behavior of the Hydrogels under Continuous Step Strain %HFDXVH DOO K\GURJHOV ZHUH VHOI KHDODEOH DW URRP WHPSHUDWXUH &1) 33\ 3%

ZDV

UHSUHVHQWDWLYHO\ VHOHFWHG WR GHPRQVWUDWH WKH VHOI KHDOLQJ DELOLW\ RI WKHVH K\GURJHOV ,Q )LJXUH D WKH K\GURJHO GHPRQVWUDWHG WKH DXWRQRPRXV UHFRYHU\ RI LWV YLVFRHODVWLFLW\ DIWHU D ODUJH DPSOLWXGH RVFLOODWRU\ FROODSVH

:KHQ DSSO\LQJ D VPDOO DPSOLWXGH RVFLOODWRU\ IRUFH

WKH K\GURJHO

ACS Paragon Plus Environment

20

Page 21 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

SUHVHQWHG D VROLG QDWXUH ZLWK D * RI DPSOLWXGH RQH a

N3D DQG D * RI

N3D 'XULQJ WKH IROORZLQJ ODUJH

WKH * YDOXHV GHFUHDVHG FRQVLGHUDEO\ WR

N3D WKDW ZDV ORZHU WKDQ *

N3D LQGLFDWLQJ D WUDQVLHQW WUDQVLWLRQ RI K\GURJHO IURP TXDVL VROLG WR TXDVL OLTXLG VWDWH

:KHQ ZDV GHFUHDVHG RQFH DJDLQ WR

WKH * DQG * LQVWDQWO\ UHWXUQHG WR WKHLU RULJLQDO YDOXHV

DQG WKH K\GURJHO UHFRYHUHG WKH RULJLQDO VROLG VWDWH VXJJHVWLQJ WKH WKL[RWURSLF QDWXUH DQG LQWULQVLF VHOI UHFRYHU\ SURSHUW\ RI K\GURJHO

)LJXUH

D * DQG * GHSHQGHQFH RI WLPH LQ FRQWLQXRXV VWHS VWUDLQ PHDVXUHPHQWV IRU &1)

33\ 3%

K\GURJHO E 'HPRQVWUDWLRQ RI PHUJLQJ &1) 33\ 3% DQG &1) 3% K\GURJHOV WRJHWKHU

F 'HPRQVWUDWLRQ RI VHOI KHDOLQJ DELOLW\ IRU &1) 3% G 6FKHPDWLF LOOXVWUDWLRQ RI LQ VLWX VHOI KHDOLQJ DQG G\QDPLF UHYHUVLEOH FURVV OLQNV RI K\GURJHOV 7R HYDOXDWH WKH VHOI KHDOLQJ DELOLW\ RI WKH K\GURJHOV WZR EORFNV RI IUHVKO\ SUHSDUHG &1) 33\ 3% EODFN DQG &1) 3% K\GURJHOV ZKLWH ZHUH SXW WRJHWKHU WKHLU VXUIDFHV FRXOG DGKHUH WR

ACS Paragon Plus Environment

21

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 50

HDFK RWKHU ZLWKRXW DQ\ H[WHUQDO IRUFH DQG HYHQWXDOO\ WKH\ ZHUH DXWRQRPRXVO\ VHOI KHDOHG WR IRUP RQH LQWHJUDO K\GURJHO EORFN ZLWKLQ

V )LJXUH E ,W FDQ EH FOHDUO\ REVHUYHG WKDW WKH LQWHUIDFH

EHWZHHQ &1) 33\ 3% DQG &1) 3% ZDV FRPSOHWHO\ PHUJHG WRJHWKHU ZKLFK FRXOG QRW EH SXOOHG DSDUW XQGHU VWUHWFKLQJ 7R IXUWKHU GHPRQVWUDWH WKH VHOI KHDOLQJ EHKDYLRU WZR IUHVKO\ SUHSDUHG &1) 3% K\GURJHOV ZLWK WZR GLIIHUHQW FRORUV WKH EOXH RQH ZDV VWDLQHG ZLWK PHWK\OHQH EOXH ZHUH EURXJKW LQWR FRQWDFW $IWHU DERXW

V WKH\ FRPSOHWHO\ PHUJHG WRJHWKHU WR IRUP RQH LQWHJUDO

K\GURJHO )LJXUH F ,Q )LJXUH G MXVW DIWHU WKH IUHVK K\GURJHO ZDV FXW LQWR WZR SLHFHV WKH WZR SDUWV RI WKH K\GURJHO ZHUH SXW WRJHWKHU DQG WKHQ FRQWDFWHG LQ VLWX IRU DERXW

V $V H[SHFWHG WKH\

DXWRPDWLFDOO\ VHOI KHDOHG LQ WKH VDPH ZD\ ZKLFK LQGLFDWHG WKH H[FHOOHQW VHOI KHDOLQJ SURSHUW\ RI G\QDPLF ERUDWH DVVRFLDWHG QHWZRUN LQVLGH K\GURJHOV 2QH SRVVLEOH H[SODQDWLRQ IRU WKH VHOI KHDOLQJ SURSHUW\ RI &1) 33\ 3% K\GURJHO ZDV DWWULEXWHG WR WKH LQWHU DQG LQWUD PROHFXODU K\GURJHQ ERQGV DQG WKH G\QDPLFDOO\ UHYHUVLEOH ERQGV IRUPHG WKURXJK WKH FRPSOH[DWLRQ RI ERUDWH LRQV DQG K\GUR[\OV ZLWKLQ WKH K\GURJHOV 3DUWLFXODUO\ WKH FRPSOH[DWLRQ RI ERUDWH LRQV DQG K\GUR[\O JURXSV RQ WKH DGMDFHQW SRO\PHU FKDLQV ZDV H[FHHGLQJO\ IDVW DQG WKHVH UHYHUVLEOH FURVV OLQNV LQ K\GURJHOV ZHUH UHDGLO\ EURNHQ DQG UHIRUPHG VR &1) 33\ 3% FRXOG FRPSOHWHO\ VHOI UHFRYHU DIWHU FRQWDFWLQJ RU GHIRUPDWLRQ RQO\ IRU D IHZ VHFRQGV &RQVHTXHQWO\ WKH VXIILFLHQW PRELOLW\ RI SRO\PHU FKDLQV IUHH K\GUR[\O JURXSV DQG G\QDPLF LQWHUDFWLRQV ZLWKLQ WKH QHWZRUN FRXOG LOOXPLQDWH WKH IDVW VHOI KHDOLQJ DELOLW\ RI &1) 33\ 3% K\GURJHO ZLWKRXW DQ\ VWLPXOL RU KHDOLQJ DJHQWV

,QWURGXFLQJ &1) 33\ FRPSOH[HV LQWR WKH 3%

JHO PDWUL[ UHQGHUHG LW HOHFWULF FRQGXFWLYLW\ DQG HQKDQFHG LWV VWLIIQHVV 1HYHUWKHOHVV WKH SUHSDUHG &1) 33\ 3% K\EULG K\GURJHO UHWDLQHG LWV YLVFRHODVWLFLW\ DQG EHFDXVH RI WKH ORZ YLVFRVLW\ RI 3% JHO PDWUL[ WKH &1) 33\ FRPSOH[HV ZHUH PRELOH DQG UHVSRQG WR GHIRUPDWLRQ LQ D WLPH GHSHQGHQW PDQQHU ,Q SDUWLFXODU WKH K\GURJHO IRUPHG PRELOH QHWZRUNV WKDW G\QDPLFDOO\ EURNH DQG UHIRUPHG

ACS Paragon Plus Environment

22

Page 23 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

GXULQJ PHFKDQLFDO GHIRUPDWLRQ RU GDPDJH ZKLFK SUREDEO\ OHG WR WKH GHYHORSPHQW RI D VRIW VHQVLQJ PDWHULDO ,QWHUHVWLQJO\ WKH K\GURJHOV DOVR SUHVHQWHG S+ VHQVLWLYH DELOLW\ GXH WR WKH G\QDPLFDOO\ UHYHUVLEOH ERQGV )LJXUH 6

7KLV S+ VHQVLWLYH VRO JHO WUDQVLWLRQ EHKDYLRU ZDV SUREDEO\

DWWULEXWHG WR WKH FURVV OLQNLQJ UHDFWLRQ EHWZHHQ ERUDWH LRQ DQG K\GUR[\O JURXSV RI 39$ RU &1) 33\ NQRZQ DV UHYHUVLEOH GLGLRO FRPSOH[DWLRQ WKH EDODQFH RI ZKLFK FRXOG EH VKLIWHG WKURXJK FKDQJLQJ S+ YDOXH :KHQ WKH WHWUDKHGUDO ERUDWH IRUP ZDV VWDELOL]HG ZLWK S+ DURXQG

WKH

HIILFLHQW FURVV OLQNLQJ RFFXUUHG DQG WKH IRUPDWLRQ RI K\GURJHO QHWZRUN ZDV WKXV IDFLOLWDWHG ZKLOH WKH DFLG FDXVHG WKH GLVVRFLDWLRQ RI GLGLRO ERUDWH FRPSOH[ 7KHUHIRUH &1) 33\ 3% K\GURJHO ZLWK S+ VHQVLWLYH VRO JHO WUDQVLWLRQ EHKDYLRU FRXOG EH SRWHQWLDOO\ DSSOLHG LQ ELRORJLFDO VHQVRUV DQG VPDUW GUXJ GHOLYHU\ V\VWHPV 3.6. Tensile Stress-strain Behavior and Self-healing Ability in Multiple Environments 0RUH LPSRUWDQWO\ DIWHU HDFK VHOI KHDOLQJ SURFHVV WKH K\GURJHOV FRXOG EDVLFDOO\ PDLQWDLQ WKHLU RULJLQDO FKDUDFWHULVWLFV DQG SHUIRUPDQFHV ZKLFK ZDV EHQHILFLDO WR WKHLU ORQJ WHUP DSSOLFDWLRQV 7R IXUWKHU DVVHVV WKH VHOI KHDOLQJ DELOLW\ WKH WHQVLOH WHVWV ZHUH FDUULHG RXW WR FKDUDFWHUL]H WKH VHOI KHDOLQJ EHKDYLRU ERWK LQ DLU DQG XQGHUZDWHU )LJXUH

)LJXUH D VKRZV WKH WHQVLOH VWUHVV VWUDLQ

FXUYHV RI &1) 3% DQG &1) 33\ 3% K\GURJHOV EHIRUH DQG DIWHU D

V VHOI KHDOLQJ LQ DLU ,W FDQ

EH REVHUYHG WKDW WKH WHQVLOH IUDFWXUH VWUHVV RI K\GURJHOV ZDV VLJQLILFDQWO\ HQKDQFHG ZLWK WKH DGGLWLRQ RI &1) 33\ FRPSOH[HV 7KH PD[LPXP WHQVLOH IUDFWXUH VWUHVV RI &1) 33\ 3% N3D ZDV WZR WLPHV ODUJHU WKDQ WKDW RI &1) 3% a

a

N3D 7KH FRUUHVSRQGLQJ UXSWXUH VWUDLQ RI

K\GURJHOV ZDV GHFUHDVHG ZLWK WKH LQFUHDVLQJ &1) 33\ ORDGLQJ DQG WKH UXSWXUH VWUDLQ RI &1) 33\ 3%

FRXOG UHDFK XS WR

$IWHU EHLQJ FXW LQWR WZR SLHFHV DQG D

V VHOI KHDOLQJ LQ DLU

WKH WHQVLOH VWUHVV VWUDLQ FXUYHV RI WKH VHOI KHDOHG K\GURJHOV ZHUH DOPRVW LGHQWLFDO WR WKH RULJLQDO

ACS Paragon Plus Environment

23

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

FRXQWHUSDUWV )LJXUH 6

Page 24 of 50

)LJXUH E VKRZV WKH VWUHVV KLVWRJUDP RI &1) 3% DQG &1) 33\ 3%

K\GURJHOV EHIRUH DQG DIWHU D

V KHDOLQJ LQ DLU )RU &1) 3% K\GURJHO WKH PD[LPXP IUDFWXUH

VWUHVV RI RULJLQDO VDPSOH ZDV



VDPSOH ZDV

V KHDOLQJ LQ DLU WKH WHQVLOH VWUHVV RI &1) 3% K\GURJHO FRXOG

UHFRYHU WR $IWHU D



N3D $IWHU D

)RU &1) 33\ 3%

K\GURJHO WKH RULJLQDO IUDFWXUH VWUHVV ZDV

V KHDOLQJ LQ DLU DQG WKH IUDFWXUH VWUHVV ZDV

HIILFLHQF\ ZDV DERXW

)LJXUH

N3D DQG WKH PD[LPXP IUDFWXUH VWUHVV RI VHOI KHDOHG





N3D

N3D 7KHUHIRUH LWV VHOI KHDOLQJ

LQGLFDWLQJ DQ H[FHOOHQW VHOI KHDOLQJ DELOLW\

D 7HQVLOH VWUHVV VWUDLQ FXUYHV RI RULJLQDO &1) 3% DQG &1) 33\ 3% K\GURJHOV E

6WUHVV KLVWRJUDP RI &1) 3% DQG &1) 33\ 3% K\GURJHOV EHIRUH DQG DIWHU D

V KHDOLQJ LQ DLU F

ACS Paragon Plus Environment

24

Page 25 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

7HQVLOH VWUHVV VWUDLQ FXUYHV RI &1) 33\ 3% G

EHIRUH DQG DIWHU D

6WUHVV KLVWRJUDP RI &1) 33\ 3%

V KHDOLQJ LQ DLU DQG XQGHUZDWHU

DIWHU YDULRXV VHOI KHDOLQJ WLPH XQGHUZDWHU

H

'HPRQVWUDWLRQ RI WKH XQGHUZDWHU VHOI KHDOLQJ DELOLW\ RI WKH K\GURJHOV DW URRP WHPSHUDWXUH ZLWKRXW H[WHUQDO LQWHUYHQWLRQ ,QWHUHVWLQJO\ WKH K\GURJHOV DOVR H[KLELWHG VHOI KHDOLQJ SURSHUW\ XQGHUZDWHU 7KH UXSWXUH VWUHVV DQG UXSWXUH VWUDLQ RI &1) 33\ 3%

DIWHU D

V VHOI KHDOLQJ XQGHUZDWHU ZHUH ORZHU WKDQ WKRVH

KHDOHG LQ DLU )LJXUH F )LJXUH G VKRZV WKH IUDFWXUH VWUHVV KLVWRJUDP RI &1) 33\ 3% YDULRXV VHOI KHDOLQJ WLPH XQGHUZDWHU $IWHU D RI

V WKH VWUHVV ZDV LQFUHDVHG WR



V KHDOLQJ WKH VWUHVV ZDV

DIWHU



N3D ,Q WKH FDVH

N3D $IWHU D ORQJHU KHDOLQJ WLPH RI

V WKH VWUHVV ZDV

IXUWKHU LQFUHDVHG WR



N3D 7KH XQGHUZDWHU KHDOLQJ HIILFLHQF\ RI WKH K\GURJHO DIWHU D

V

KHDOLQJ ZDV DERXW

LQGLFDWLQJ D JRRG XQGHUZDWHU VHOI KHDOLQJ DELOLW\ RI WKH K\GURJHOV )LJXUH

H LOOXVWUDWHG WKH XQGHUZDWHU VHOI KHDOLQJ DELOLW\ RI WKH K\GURJHOV ,Q SDUWLFXODU WZR SLHFHV RI &1) 33\ 3% K\GURJHO ZHUH FRQWDFWHG IRU

V XQGHUZDWHU DQG WKH KHDOHG LQWHJUDO K\GURJHO FRXOG

EH VWUHWFKHG ZLWKRXW DQ\ GDPDJH DORQJ WKH FRQWDFW LQWHUIDFH 7KH XQGHUZDWHU VHOI KHDOLQJ DELOLW\ RI WKH K\GURJHOV SUREDEO\ UHVXOWHG IURP WKH GLIIXVLRQ RI ERUDWH LQ ZDWHU DQG WKH G\QDPLF FURVV OLQNLQJ ZLWKLQ WKH K\GURJHO QHWZRUN VWLOO PDLQWDLQHG &RQVHTXHQWO\ WKH K\GURJHOV FRXOG VWLOO KHDO HYHQ LQ D ZDWHU HQYLURQPHQW +RZHYHU GXH WR WKH ORZHU ERUDWH FRQFHQWUDWLRQ DQG WKH LQVXIILFLHQW FRQWDFW RI K\GURJHOV WKH VHOI KHDOLQJ SURFHVV XQGHUZDWHU EHFDPH VORZHU WKDQ WKDW LQ DLU 3.7. Uniaxial Compression Stress-strain Behavior and Microstructure of Hydrogels

ACS Paragon Plus Environment

25

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

)LJXUH

Page 26 of 50

7\SLFDO FRPSUHVVLRQ VWUHVV VWUDLQ FXUYHV RI D &1) 33\ 3%

&1) 33\ 3%

G &1) 33\ 3%

H &1) 33\ 3%

E &1) 33\ 3%

F

DQG I &1) 3% K\GURJHOV DV WKH

GHSHQGHQFHV RI QRPLQDO 1QRP DQG WUXH VWUHVVHV 1WUXH RQ WKH GHIRUPDWLRQ UDWLR

3XUSOH FLUFOHV

UHSUHVHQWLQJ WKH SRLQWV RI IDLOXUH LQ WKH K\GURJHO VDPSOHV 7KH FRPSUHVVLRQ SURSHUWLHV RI K\GURJHOV ZHUH HVVHQWLDO WR WKHLU WDUJHW DSSOLFDWLRQV VR WKH K\GURJHOV ZHUH VXEMHFWHG WR XQLD[LDO FRPSUHVVLRQ WHVWV WR DVVHVV WKHLU PHFKDQLFDO SHUIRUPDQFH &RPSUHVVLYH VWUHVV FRQVLVWHG RI QRPLQDO VWUHVV 1QRP DQG WUXH VWUHVV 1WUXH ZKLFK ZHUH WKH IRUFHV DFWLQJ SHU XQLW XQGHIRUPHG DQG GHIRUPHG DUHD RI WKH K\GURJHO VSHFLPHQ UHVSHFWLYHO\ ,W ZDV JLYHQ E\ 1WUXH

1QRP ZKHUH ZDV WKH GHIRUPDWLRQ UDWLR GHIRUPHG OHQJWK LQLWLDO OHQJWK

)LJXUH

VKRZV WKH VWUHVV VWUDLQ FXUYHV RI &1) 33\ 3% DQG &1) 3% K\GURJHOV DV WKH GHSHQGHQFHV RI QRPLQDO 1QRP DQG WUXH VWUHVVHV 1WUXH RQ WKH GHIRUPDWLRQ UDWLR VWUHVV DQG IUDFWXUH VWUDLQ REWDLQHG IURP 1QRP

,W ZDV REVHUYHG WKDW WKH IUDFWXUH

SORWV GLG QRW PDWFK ZLWK WKRVH REWDLQHG IURP 1WUXH

SORWV )RU H[DPSOH WKH IUDFWXUH VWUHVVHV REWDLQHG IURP 1QRP YV &1) 3% ZHUH

03D DQG

N3D DW

VWUDLQV UHVSHFWLYHO\ ZKLOH WKH FRUUHVSRQGLQJ 1WUXH YV

FXUYHV RI &1) 33\ 3% DQG DQG

FXUYHV SDVVHG WKURXJK PD[LPXP

ACS Paragon Plus Environment

26

Page 27 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

YDOXHV EHORZ WKH VWUDLQV ,W ZDV SUREDEO\ GXH WR WKH SRVVLELOLW\ WKDW WKH VDPSOHV FRXOG VWLOO VXSSRUW WKH VWUHVV HYHQ ZLWK PLFURVFRSLF FUDFNV RU WKH QRQLVRWURSLF GHIRUPDWLRQ RI WKH K\GURJHOV XQGHU ODUJH VWUDLQ 7KHUHIRUH WKH IUDFWXUH VWUHVVHV ZHUH

03D DQG

N3D DW

WKH EUHDNLQJ SRLQWV FDOFXODWHG IURP WKH PD[LPD LQ 1WUXH SORWV DV LQGLFDWHG E\ WKH SXUSOH FLUFOHV

)LJXUH

D 1RPLQDO VWUHVV VWUDLQ DQG E FRUUHVSRQGLQJ HQHUJ\ DEVRUSWLRQ VWUDLQ FXUYHV RI

K\GURJHOV F &1) 33\ 3% QHWZRUN 6(0 RI &1) 33\ 3%

K\GURJHO ORDGHG ZLWK DW ORZ H î

J ZHLJKW G ,GHDOL]HG ' K\GURJHO

DQG KLJK PDJQLILFDWLRQV I î

DQG J

î

ACS Paragon Plus Environment

27

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 50

7KH W\SLFDO 1QRP 0 FXUYHV DQG WKH FRUUHVSRQGLQJ HQHUJ\ DEVRUSWLRQ VWUDLQ FXUYHV RI K\GURJHOV DUH VKRZQ LQ )LJXUH HQHUJ\ DEVRUSWLRQ DW D

7KH PHFKDQLFDO SURSHUWLHV ZHUH FRPSDUHG E\ WKH QRPLQDO VWUHVV DQG WKH VWUDLQ OHYHO UHVSHFWLYHO\ $V H[SHFWHG WKH DGGLWLRQ RI &1) 33\

FRPSOH[HV SURQRXQFHGO\ LQFUHDVHG WKH FRPSUHVVLYH VWUHQJWK RI FRPSRVLWH K\GURJHO $OO &1) 33\ 3% K\GURJHOV H[KLELWHG D PXFK KLJKHU FRPSUHVVLYH VWUHQJWK WKDQ &1) 3% K\GURJHO )LJXUH D At first, the 1QRP values of CNF-PPy/PB hydrogels gradually increased with the increasing content of CNF-PPy complexes. Compared with CNF/PB hydrogel, an increase of almost two to three orders of magnitude in 1QRP was generated for CNF-PPy/PB-1 to CNF-PPy/PB-3. :LWK D PRGHUDWH FRQWHQW RI 33\ WKH &1) 33\ FRPSOH[HV FRXOG IRUP VXIILFLHQW ERQGV ZLWK 3% PDWUL[ However, DW D KLJKHU FRQWHQW RI 33\ WKH H[FHVVLYH 33\ ZRXOG REVWUXFW WKH UHDFWLRQ RI VXIILFLHQW 2+ JURXSV IURP &1)V ZLWK 3% PDWUL[ DQG GHFUHDVH WKH HIIHFWLYH FURVVOLQNLQJ EHWZHHQ &1) 33\ DQG 3% UHVXOWLQJ LQ D ORZ FURVVOLQNLQJ GHQVLW\ DQG the weakening of mechanical properties for CNF-PPy/PB-4 and CNF-PPy/PB-5. 2EYLRXVO\ &1) 33\ 3%

SRVVHVVHG WKH KLJKHVW

FRPSUHVVLYH VWUHQJWK DPRQJ WKHVH K\GURJHOV ,Q SDUWLFXODU WKH 1QRP RI &1) 33\ 3% ZDV DOPRVW

IROG KLJKHU WKDQ WKDW RI &1) 3% 7DEOH

GHQVLWLHV WKH specific compressive stress (1V a IROG KLJKHU WKDQ WKDW RI &1) 3% a

03D FP J

DW 0

7DNLQJ LQWR FRQVLGHUDWLRQ WKHLU UHDO

03D FP J

RI &1) 33\ 3%

ZDV

7KH LPSURYHG PHFKDQLFDO VWUHQJWK ZDV

PDLQO\ DWWULEXWHG WR WKH QXPHURXV K\GURJHQ ERQGV DQG FKHPLFDO LQWHUDFWLRQV EHWZHHQ 3% PDWUL[ DQG &1) 33\ FRPSOH[HV FDXVLQJ WKH FKDLQ HQWDQJOHPHQW DQG WKH IRUPDWLRQ RI WKH ' QHWZRUNV 6SHFLILFDOO\ WKH PRYHPHQW RI WKH 39$ FKDLQV ZDV LQKLELWHG E\ WKH K\GURJHQ ERQGV EHWZHHQ 39$ DQG &1) 33\ FRPSOH[HV 7KH H[LVWHQFH RI ERUD[ also OHG WR VWURQJ LQWHUDFWLRQV EHWZHHQ &1) 33\ DQG 39$ FKDLQV DV ZHOO DV FKHPLFDOO\ FURVVOLQNHG K\GURJHO QHWZRUN

&1)V FKDLQV FRDWHG

ZLWK 33\ PROHFXOHV ZHUH WKH UHLQIRUFHPHQW ILOOHUV RI WKH K\EULG K\GURJHOV 8QGHU H[WHUQDO IRUFH

ACS Paragon Plus Environment

28

Page 29 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

WKH ZHOO GLVSHUVHG 33\ FDUULHG E\ &1)V ZLWKLQ K\GURJHOV SOD\HG D NH\ UROH LQ WKH HQKDQFHPHQW HIIHFW WKURXJK WUDQVIHUULQJ WKH VWUHVV IURP SRO\PHU FKDLQV WR &1) 33\ FRPSOH[HV 1RW VXUSULVLQJO\ LW ZDV IXUWKHU REVHUYHG WKDW DPRQJ DOO K\GURJHOV &1) 33\ 3%

VKRZHG WKH

KLJKHVW HQHUJ\ DEVRUSWLRQ ((D WKURXJKRXW WKH ZKROH 0 UDQJH HVSHFLDOO\ DW KLJK 0 OHYHOV )LJXUH E 6SHFLILFDOO\ WKH (D YDOXH RI &1) 33\ 3%



WLPHV KLJKHU WKDQ WKDW RI WKH &1) 3% K\GURJHO 7DEOH RI WRXJKQHVV DQG VWUHQJWK 7KH &1) 33\ 3% :F §

N- P DW 0

GHPRQVWUDWLQJ D VLJQLILFDQW HOHYDWLRQ

FDNH ZHLJKW §

J ZLWK D KLJK ZDWHU FRQWHQW

GLG QRW GLVSOD\ DQ\ REYLRXV GHIRUPDWLRQ XQGHU D VWDWLF ORDGLQJ RI

PRUH WKDQ

ZDV DERXW

J VXSSRUWLQJ

WLPHV RI LWV RZQ ZHLJKW )LJXUH F 7KH UHDVRQ RI HQKDQFHG PHFKDQLFDO VWUHQJWK

ZDV WKDW WKH 2+ DQG 1+ RQ WKH &1) 33\ FRPSOH[HV DVVRFLDWHG ZLWK 3% PDWUL[ WR FRQVWUXFW D FKHPLFDO DQG SK\VLFDO FURVV OLQNLQJ QHWZRUN LQVLGH WKH K\EULG K\GURJHO YLD PXOWL FRPSOH[DWLRQ Table 1. Physical and compression properties of hydrogels 1nom at 0=90%

Ea at 0=90%

Water Content

Density !

1s

[MPa]

[kJ m-3]

Wc [%]

[g cm-3]

[MPa·cm3 g-1]

CNF-PPy/PB-1

10.8 ± 0.3

73.5 ± 0.1

95.4 ± 0.1

1.17 ± 0.12

~9.23

CNF-PPy/PB-2

13.4 ± 0.5

116.3 ± 0.3

94.6 ± 0.2

1.19 ± 0.09

~11.26

CNF-PPy/PB-3

22.4 ± 0.2

262.9 ± 0.3

93.9 ± 0.1

1.21 ± 0.05

~18.51

CNF-PPy/PB-4

7.6 ± 0.4

42.1 ± 0.5

93.2 ± 0.2

1.24 ± 0.08

~6.13

CNF-PPy/PB-5

1.1 ± 0.3

11.2 ± 0.6

92.5 ± 0.2

1.27 ± 0.11

~0.87

0.5 ± 0.1

95.8 ± 0.1

1.15 ± 0.07

~0.01

Hydrogels

CNF/PB



,Q FRPSDULVRQ WKH DV V\QWKHVL]HG &1) 33\ 3%

K\GURJHO FRXOG EHDU PRUH FRPSUHVVLYH

VWUHVV WKDQ PRVW &3+V SUHYLRXVO\ UHSRUWHG ,Q SDUWLFXODU WKH FRPSUHVVLRQ VWUHQJWK RI &1) 33\ 3%

1 §

03D DW 0

ZDV DERXW

FKLWRVDQ SRO\DFU\ODPLGH 3$1, K\GURJHO 1 § DFU\OLF DFLG

DQG

03D DW 0

GRXEOH QHWZRUN FRQGXFWLYH K\GURJHO

WLPHV JUHDWHU WKDQ WKDW RI 33\ JUDIWHG FKLWRVDQ SRO\

1 §

N3D DW 0

DQG

ACS Paragon Plus Environment

29

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

>(0,P@>'&$@ 3$036 GRXEOH QHWZRUN FRQGXFWLYH LRQRJHO 1 §

Page 30 of 50

03D DW 0

UHVSHFWLYHO\ &RQVHTXHQWO\ WKH LQWURGXFWLRQ RI &1) 33\ FRPSOH[HV ZLWK KLJK WRXJKQHVV DQG IOH[LELOLW\ VLJQLILFDQWO\ LPSURYHG WKH VWUHQJWK DQG HODVWLFLW\ RI 3% JHO PDWUL[ EXLOGLQJ D FRPELQHG UHLQIRUFLQJ DQG FRQGXFWLYH QHWZRUN LQVLGH WKH K\EULG &1) 33\ 3% K\GURJHO 7KH LGHDOL]HG ' QHWZRUN VWUXFWXUH DQG WKH PLFURVWUXFWXUH RI K\EULG K\GURJHOV REVHUYHG E\ 6(0 DW GLIIHUHQW PDJQLILFDWLRQV DUH SUHVHQWHG LQ )LJXUH G WR J FOHDUO\ LOOXVWUDWLQJ WKH VWDEOH ' LQWHUFRQQHFWHG QHWZRUN IRUPHG E\ &1) 33\ FRPSOH[HV DQG 3% PDWUL[ $OO K\GURJHOV H[KLELWHG D KLJKO\ LQWHUFRQQHFWHG DQG SRURXV VWUXFWXUH ZLWK SRUHV RI VXE PLFURPHWHU WR VHYHUDO PLFURPHWHUV LQ VL]H 7KH FKDLQ HQWDQJOHPHQW RI &1) 33\ FRPSOH[HV DQG 39$ UHVXOWHG LQ WKH IRUPDWLRQ RI WKH SRURXV VWUXFWXUH HQDEOHG E\ PROHFXODU LQWHUDFWLRQV $GGLWLRQDOO\ WKLV DUFKLWHFWXUH FRXOG HIIHFWLYHO\ IDFLOLWDWH WKH GLIIXVLRQ RI HOHFWURQV LRQV DQG PROHFXOHV LQVLGH WKH K\EULG K\GURJHO ,Q WKH FDVH RI &1)V WKH SULPDU\ DGYDQWDJHV ZHUH WKHLU UHQHZDELOLW\ IOH[LELOLW\ PHFKDQLFDO VWUHQJWK DQG ELRFRPSDWLELOLW\ &1)V VHUYHG DV QDQRWHPSODWHV IRU 33\ DQG WKH K\GURJHQ ERQGV EHWZHHQ WKHP DFWHG DV WUDFWLRQ IRUFH WR DVVLVW WKH SRO\PHUL]DWLRQ RI pyrrole PRQRPHUV LQ VLWX WKXV SURPRWLQJ WKH IRUPDWLRQ RI FRQWLQXRXV 33\ FRQGXFWLYH QHWZRUN LQ WKH K\EULG K\GURJHOV 7KH HIILFLHQW 33\ QHWZRUN ZDV EHQHILFLDO WR WKH FRQVWUXFWLRQ RI HOHFWULFDOO\ FRQGXFWLYH SDWKZD\V ZKLFK SUREDEO\ FRQWULEXWHG WR HQKDQFLQJ WKH HOHFWULFDO FRQGXFWLYLW\ GXH WR WKH XQLIRUP GLVSHUVLRQ RI 33\ LQ 3% PDWUL[ ZLWKRXW DQ\ YLVLEOH DJJUHJDWHV ZLWK WKH DVVLVW RI &1)V

&RQVHTXHQWO\ LW ZDV GHPRQVWUDWHG E\ WKLV ZRUN WKDW WKH DUFKLWHFWXUH RI WKH ILOOLQJ SKDVH

LQ WKH JHO PDWUL[ DQG GHVLJQ RI JHO QHWZRUN VWUXFWXUH ZHUH YLWDO IRU DFKLHYLQJ GHVLUHG SHUIRUPDQFH RI K\EULG K\GURJHO 7KLV ' LQWHUFRQQHFWHG SRURXV VWUXFWXUH KDG D SRVLWLYH LQIOXHQFH LQ LPSURYLQJ PHFKDQLFDO DQG FRQGXFWLYH SHUIRUPDQFHV RI WKH K\GURJHOV WKXV HQDEOLQJ WKHLU SRWHQWLDO DSSOLFDWLRQ DV ELRHOHFWURGH LQ IOH[LEOH VXSHUFDSDFLWRU

ACS Paragon Plus Environment

30

Page 31 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

3.8. (OHFWURFKHPLFDO 3HUIRUPDQFHV RI +\GURJHOV

)LJXUH

D &RQGXFWLYLW\ WUDQVLWLRQ RI &1) 33\ 3% K\GURJHOV ZLWK GLIIHUHQW PDVV RI S\UUROH

E 5HODWLYH UHVLVWDQFH YDULDWLRQ û5 5

RI &1) 33\ 3%

YDULDWLRQ RI DQ /(' DV D IXQFWLRQ RI DSSOLHG VWUDLQV

DW GLIIHUHQW VWUDLQV DQG OXPLQDQFH

F &XUUHQW FKDQJH RI &1) 33\ 3%

K\GURJHO GXULQJ F\FOLF FXWWLQJ DQG VHOI KHDOLQJ SURFHVV G /XPLQDQFH YDULDWLRQ RI DQ /(' GXULQJ FXWWLQJ DQG VHOI KHDOLQJ SURFHVVHV 7KH FRQGXFWLYLW\ RI &1) 33\ 3% K\GURJHOV ZLWK GLIIHUHQW PDVV RI pyrrole PRQRPHUV DGGHG IRU SRO\PHUL]DWLRQ DUH VKRZQ LQ )LJXUH D 7KH FRQGXFWLYLW\ RI WKHVH K\GURJHOV UDQJLQJ IURP WR

6P

H[KLELWHG D QRQOLQHDU LQFUHDVH ZLWK WKH LQFUHDVH RI S\UUROH FRQWHQW 7KH PD[LPXP

ACS Paragon Plus Environment

31

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

FRQGXFWLYLW\ RI &1) 33\ 3% ZDV GHWHUPLQHG WR EH WKDW RI 3HFWLQ 3$1, DHURJHOV XS WR JUDSKHQH K\GURJHOV XS WR

6P

SXUH 33\ K\GURJHOV XS WR

6P

6P



6P

Page 32 of 50

ZKLFK ZDV PXFK KLJKHU WKDQ

E\ D VXSHUFULWLFDO &2 GU\LQJ

VHOI DVVHPEOHG

YLD D FRQYHQLHQW RQH VWHS K\GURWKHUPDO PHWKRG

DQG HYHQ

,W ZDV UHSRUWHG WKDW &1)V FRXOG SURYLGH SDWKZD\V IRU LRQ

DQG HOHFWURQ WUDQVSRUW ZKHQ DSSOLHG LQ HOHFWURFKHPLFDO PDWHULDOV

&RPSDUHG WR WKH EXON\ 33\

&1)V ZLWK ILQH VWUXFWXUH IDFLOLWDWHG WKH HIILFLHQW GLVSHUVLRQ RI 33\ DQG VLJQLILFDQWO\ HQKDQFHG WKH VXUIDFH DUHD E\ IRUPLQJ D FRQWLQXRXV SRURXV FRQGXFWLYH QHWZRUN

7KHUHIRUH WKH ZHOO GLVSHUVHG

&1) WHPSODWHG 33\ FUHDWHG HIILFLHQW FRQGXFWLYH SDWKV LQ WKH 3% PDWUL[ HQGRZLQJ WKH K\EULG K\GURJHOV ZLWK KLJK FRQGXFWLYLW\ The multi-complexation of CNF-PPy, borax and PB system also gave rise to additional conductive paths through the hydrogel which could facilitate the charge transport.32 7KH KLJK VWDELOLW\ HODVWLFLW\ DQG FRQGXFWLYLW\ RI &1) 33\ 3% K\GURJHOV PDGH WKHP VXLWDEOH IRU IDEULFDWLQJ VHQVLQJ PDWHULDOV 7R DVVHVV WKHLU VWUDLQ VHQVLQJ SURSHUW\ WKH PHDVXUHPHQWV RI UHODWLYH UHVLVWDQFH FKDQJHV û5 5

5 5 5 ZKHUH 5 DQG 5 ZHUH WKH UHVLVWDQFH ZLWKRXW DQG

ZLWK VWUHWFK UHVSHFWLYHO\ YHUVXV VWUDLQV ZHUH FDUULHG RXW 'XULQJ WKH VWUHWFKLQJ SURFHVV WKH LQFUHDVHG GLVWDQFH EHWZHHQ 33\ QHWZRUN OHG WR WKH HORQJDWLQJ WXQQHOLQJ RI FKDUJHV WUDQVIHUUHG EHWZHHQ DGMDFHQW 33\ FKDLQV

7KHUHIRUH û5 5 YDOXH UDLVHG ZLWK WKH LQFUHDVLQJ VWUHWFKLQJ VWUDLQ

)LJXUH E 7KH LQVHUWV RI )LJXUH E GHPRQVWUDWHG WKH OXPLQDQFH WUDQVLWLRQ RI WKH /(' XQGHU GLIIHUHQW VWUDLQV ,W FDQ EH FOHDUO\ VHHQ WKDW WKH K\GURJHO ZDV VWLOO FRQGXFWLYH DIWHU EHLQJ VWUHWFKHG WR

VWUDLQ LQGLFDWLQJ WKDW WKH FRQGXFWLYH QHWZRUN RI K\GURJHOV ZDV HVVHQWLDOO\ VWDEOH DQG

KLJKO\ VWUHWFKDEOH ,Q DGGLWLRQ WKH VHOI KHDOLQJ DELOLW\ RI &1) 33\ 3%

K\GURJHO ZDV IXUWKHU GHPRQVWUDWHG E\ D

FXUUHQW WHVW )LJXUH F $IWHU WKH ILUVW FXWWLQJ WKH FXUUHQW ZDV DOPRVW GLVDSSHDUHG DQG WKH FLUFXLW

ACS Paragon Plus Environment

32

Page 33 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

EHFDPH RSHQ :KHQ WKH WZR IUDFWXUHG VXUIDFHV ZHUH SK\VLFDOO\ FRQQHFWHG WR HDFK RWKHU IRU DERXW V WKH FLUFXLW FXUUHQW LPPHGLDWHO\ UHFRYHUHG WR LWV LQLWLDO YDOXH GHPRQVWUDWLQJ D FRPSOHWH UHFRQVWUXFWLRQ RI DQ LQWHJUDWHG ' FRQGXFWLYH QHWZRUN IRU WKH VHOI KHDOHG K\GURJHO $V VKRZQ LQ )LJXUH G WKH K\GURJHO FRXOG FDXVH LOOXPLQH D /(' EXOE LQ D FORVHG ORRS :KHQ WKH K\GURJHO ZDV FXW LQWR WZR SDUWV WKH FLUFXLW EHFDPH RSHQ DQG WKH EXOE ZDV H[WLQJXLVKHG $IWHU D

V VHOI

KHDOLQJ WKH FLUFXLW ZDV UH HVWDEOLVKHG DQG WKH EXOE ZDV OLJKWHG DJDLQ ZLWKRXW DQ\ UHGXFWLRQ LQ FRQGXFWLYLW\ LQGLFDWLQJ WKH VHOI UHFRYHU\ RI HOHFWULFDO SHUIRUPDQFH RI WKH K\EULG K\GURJHOV 0RUH LPSRUWDQWO\ WKH K\GURJHO FRXOG UHSHDWHGO\ VHOI UHFRYHU LWV QRUPDO FRQGXFWLYLW\ HDFK WLPH DIWHU GDPDJH :LWK WKH VPDUW VHOI KHDOLQJ DELOLW\ WKDW JDYH SULRULW\ WR UHSDLU GDPDJHV WKH &1) 33\ 3% FRXOG PDLQWDLQ LWV RULJLQDO VKDSH FRQGXFWLYLW\ VWUHQJWK DQG RWKHU IXQFWLRQV DIWHU HYHU\ VHOI KHDOLQJ SURFHVV %HFDXVH RI G\QDPLF DVVRFLDWLRQ RU GLVVRFLDWLRQ RI YDULRXV ERUD[ EDVHG FRPSOH[HV LQ K\GURJHOV WKHLU VPDUW HIILFLHQW DQG UHSHDWDEOH VHOI KHDOLQJ EHKDYLRU FRXOG EH DFKLHYHG DW URRP WHPSHUDWXUH ZLWKRXW DQ\ H[WHUQDO VWLPXOL 7KH K\EULG K\GURJHOV EDVHG RQ D KLJKO\ FRQGXFWLYH &1) 33\ QHWZRUN DQG D VHOI KHDODEOH 3% QHWZRUN H[KLELWHG KLJK PHFKDQLFDO VWUHQJWK DQG HODVWLFLW\ GXH WR WKHLU XQLTXH UHYHUVLEO\ FRPSOH[HG QHWZRUN VWUXFWXUH SURYLGLQJ WKH SRVVLELOLW\ IRU WKH IDEULFDWLRQ RI KLJKO\ VHOI KHDODEOH DQG IOH[LEOH ELRHOHFWULF GHYLFHV 7R HYDOXDWH WKH HOHFWURFKHPLFDO SHUIRUPDQFH RI K\GURJHOV &9 *&' DQG (,6 PHDVXUHPHQWV ZHUH SHUIRUPHG LQ D FRQYHQWLRQDO WKUHH HOHFWURGH V\VWHP )LJXUH D LOOXVWUDWHG WKH W\SLFDO UDWH GHSHQGHQW &9 FXUYHV RI WKH K\GURJHO EDVHG HOHFWURGH LQ WKH YROWDJH UDQJH IURP DQG

WR

9 DW

P9 V VFDQ UDWHV 7KH FXUUHQW GHQVLWLHV LQFUHDVHG DORQJ ZLWK LQFUHDVLQJ VFDQ

UDWHV H[KLELWLQJ D JRRG UDWH FDSDELOLW\

$V WKH VFDQ UDWH LQFUHDVHG WKH FDWKRGLF SHDNV ULJKW

VKLIWHG KLJK YROWDJHV DQG WKH DQRGLF SHDNV VKLIWHG WR WKH ORZ YDOXHV ZKLFK ZDV FDXVHG E\ WKH LQKHUHQW UHVLVWDQFH RI WKH HOHFWURGH PDWHULDOV

0RUHRYHU WKH K\GURJHO EDVHG HOHFWURGH VKRZHG

ACS Paragon Plus Environment

33

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 34 of 50

D KLJK GHJUHH RI HOHFWURDFWLYLW\ ZLWK WUDQVLWLRQV IURP UHGXFHG WR R[LGL]HG IRUPV GHPRQVWUDWLQJ WKH LQWULQVLF UHGR[ IHDWXUH RI FRQGXFWLQJ SRO\PHUV

7KH W\SLFDO R[LGDWLRQ DQG UHGXFWLRQ SHDNV

SRLQWHG RXW WKH LGHDO SVHXGRFDSDFLWLYH IHDWXUH RI K\GURJHO HOHFWURGH

)LJXUH

(OHFWURFKHPLFDO SHUIRUPDQFH RI &1) 33\ 3%

FXUYHV DW YDULRXV VFDQ UDWHV RI RI

$J

P9 V

K\GURJHO EDVHG HOHFWURGH

D &9

E UHSUHVHQWDWLYH *&' SURILOHV DW FXUUHQW GHQVLWLHV

F (,6 FXUYHV DQG HQODUJHG UHJLRQ RI KLJK IUHTXHQF\ G FDSDFLWDQFH UHWHQWLRQ

YHUVXV F\FOH QXPEHU DW KLJK FXUUHQW UDWH RI

$ J DQG WKH ILUVW

F\FOHV RI *&' FXUYHV

)LJXUH E VKRZV WKH *&' SURILOHV DW YDULHG FXUUHQW GHQVLWLHV RI

DQG

$J

)RU WKH

FKDUJH GLVFKDUJH SURFHGXUH WKH WLPH QHHGHG JUDGXDOO\ GHFUHDVHG ZLWK WKH LQFUHDVH RI FXUUHQW GHQVLW\ ZKLFK ZDV VLPLODU WR WKH VXSHUFDSDFLWRUV SUHYLRXVO\ UHSRUWHG

,W ZDV QRWLFHG WKDW WKH

ACS Paragon Plus Environment

34

Page 35 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

*&' FXUYHV ZHUH QRW V\PPHWULFDO WULDQJOHV DQG GLG QRW IROORZ D OLQHDU UHODWLRQVKLS ZKLFK PLJKW EH DWWULEXWHG WR WKH SUHVHQFH RI SVHXGR FDSDFLWDQFH FDXVHG E\ WKH VXUIDFH FRQILQHG )DUDGDLF UHDFWLRQ RI 33\

7KH VSHFLILF FDSDFLWDQFH &V RI WKH K\GURJHO EDVHG HOHFWURGH FDOFXODWHG IURP

*&' FXUYHV ZHUH DV KLJK DV $J

DQG

) J DW WKH FXUUHQW GHQVLW\ RI

DQG

UHVSHFWLYHO\ ZKLFK ZHUH FRPSDUDEOH WR WKDW RI YDULRXV HOHFWURGHV LQ SUHYLRXV UHSRUWV VXFK

DV SHFWLQ 3$1, DHURJHOV a K\GURJHOV a

) J DW

) J DW $J

$J

SXUH 33\ a

) J DW

9V

DQG JUDSKHQH

7KH FDSDFLWDQFHV GHFUHDVHG DORQJ ZLWK WKH LQFUHDVH RI

VFDQ UDWHV ZKLFK IXUWKHU SURYHG WKH LRQ GLIIXVLRQ HIIHFW LQ WKH K\GURJHO HOHFWURGH 7KH H[FHSWLRQDO HOHFWURFKHPLFDO SHUIRUPDQFH RI &1) 33\ 3% HOHFWURGH ZDV DWWULEXWHG WR WKH DSSURSULDWH FRPELQDWLRQ RI &1)V DQG 33\ WKDW FRXOG JUHDWO\ HQKDQFH WKH HOHFWURFKHPLFDO SURSHUWLHV RI 33\ LWVHOI

)LUVWO\ WKH UHQHZDEOH DQG VXVWDLQDEOH &1)V ZLWK D ODUJH VSHFLILF VXUIDFH DUHD DQG DQ

H[WUHPHO\ ORZ GHQVLW\ ZHUH VXLWDEOH WHPSODWHV IRU 33\ 7KH\ FRXOG FRQVWUXFW D IOH[LEOH UHLQIRUFLQJ VFDIIROG WKDW VXSSRUWHG WKH FRQWLQXRXV 33\ FRQGXFWLYH QHWZRUN ZLWKLQ WKH 3% JHO PDWUL[ DQG WKH 33\ FDUULHG E\ &1)V FRXOG EH ZHOO GLVSHUVHG LQ WKH JHO V\VWHP SURYLGLQJ WKH K\GURJHO HOHFWURGH ZLWK D PRUH VWDEOH DQG KLJKHU FRQGXFWLYLW\ IRU HOHFWULFDO VLJQDO WUDQVPLVVLRQ 6HFRQGO\ WKH EHQHILFLDO SRO\PHUL]DWLRQ RI pyrrole PRQRPHUV RQ WKH &1) ELRWHPSODWHV IRUPHG D SRURXV QDQRVWUXFWXUH RI &1) 33\ FRPSOH[HV ZLWKLQ WKH K\GURJHO HOHFWURGH WKDW IDFLOLWDWHG HOHFWURQ WUDQVSRUW 7KLUGO\ WKH XQLIRUP GLVSHUVLRQ RI &1) 33\ FRPSOH[HV ZLWKLQ 3% PDWUL[ FRXOG KHOS WR SURYLGH D ODUJHU VSHFLILF VXUIDFH DUHD RI HOHFWURGH HOHFWURO\WH LQWHUIDFH WR LPSURYH XWLOL]DWLRQ RI 33\ IRU UHGR[ UHDFWLRQV 7KH 1\TXLVW SORWV REWDLQHG IURP (,6 DUH VXPPDUL]HG LQ )LJXUH F 7KH LQVHW SORW LV DQ HQODUJHPHQW RI (,6 LQ WKH DUHD RI KLJK IUHTXHQFLHV 7KH VHPLFLUFOH DW KLJKHU IUHTXHQFLHV FRUUHVSRQGHG WR WKH HOHFWURQ WUDQVIHU UHDFWLRQ DW WKH HOHFWURO\WH HOHFWURGH LQWHUIDFH 7KH OLQHDU

ACS Paragon Plus Environment

35

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 36 of 50

SDUW LQ WKH ORZ IUHTXHQF\ UHJLRQ UHSUHVHQWHG WKH :DUEXUJ LPSHGDQFH DVVRFLDWHG ZLWK WKH FKDUJH GLIIXVLRQ SURFHVV LQ WKH HOHFWURGH PDWHULDOV LQGLFDWLQJ DQ LGHDO FDSDFLWLYH EHKDYLRU ,W VKRXOG EH QRWHG WKH VPDOOHU RI WKH FKDUJH WUDQVIHU UHVLVWDQFH 5FW WKDW ZDV FDOFXODWHG E\ WKH GLDPHWHU RI VHPLFLUFOH WKH ORZHU WKH FKDUJH WUDQVIHU UHVLVWDQFH DQG WKH EHWWHU WKH FRQGXFWLYLW\ RI WKH HOHFWURGH 7KH LQWHUFHSW RI WKH VHPLFLUFOH DW WKH UHDO D[LV UHSUHVHQWHG WKH LQWHUQDO UHVLVWDQFH 5V GHULYLQJ IURP WKH DFWLYH PDWHULDOV DQG WKH HOHFWURO\WLF UHVLVWDQFH HOHFWURGH ZHUH

DQG

7KH 5FW DQG 5V RI WKH K\GURJHO EDVHG

UHVSHFWLYHO\ LQGLFDWLQJ D KLJK FRQGXFWLYLW\ RI WKH K\GURJHO

HOHFWURGH 7KH F\FOLF VWDELOLW\ RI WKH K\GURJHO EDVHG HOHFWURGH ZDV WHVWHG WKURXJK *&' FXUYHV DW D FXUUHQW GHQVLW\ RI

$J

DQG LWV FHOO VSHFLILF FDSDFLWDQFH GHJUDGDWLRQV ZHUH OHVV WKDQ

DIWHU

F\FOHV )LJXUH G &DOFXODWHG IURP WKH FDSDFLWDQFH UHWHQWLRQ FXUYHV FROXPELF HIILFLHQF\ GLVFKDUJH FDSDFLW\ FKDUJH FDSDFLW\ î HOHFWURGH GXULQJ

F\FOHV ZDV DERXW

WKH DYHUDJH FROXPELF HIILFLHQF\ RI K\GURJHO EDVHG 7KLV LGHDO HOHFWURFKHPLFDO VWDELOLW\ RI WKH HOHFWURGH

FRXOG EH DVVLJQHG WR WKH VWURQJ LQWHUDFWLRQV EHWZHHQ &1)V DQG 33\ DV ZHOO DV WKH VWDEOH ' QHWZRUN VWUXFWXUH ZLWKLQ K\GURJHOV ZKLFK FRXOG UHVWULFW WKH VWUXFWXUDO FKDQJH RI 33\ DQG VWDEOL]H WKH HOHFWURFKHPLFDO VLWHV RI 33\ GXULQJ WKH HOHFWURFKHPLFDO F\FOHV 7KH FDSDFLWDQFH GHFUHDVHV GXULQJ FKDUJH GLVFKDUJH F\FOLQJ ZDV SUREDEO\ DWWULEXWHG WR WKH GHVWUXFWLRQ RI 33\ ZKLFK ZDV FDXVHG E\ WKH VKULQNDJH DQG H[SDQVLRQ RI 33\ GXULQJ GRSLQJ DQG GHGRSLQJ DORQJ WKH F\FOLQJ ,Q DGGLWLRQ WKH VWUXFWXUDO FKDQJH DQG LQVWDELOLW\ RI WKH HOHFWURFKHPLFDO VLWHV RI 33\ GXULQJ WKH HOHFWURFKHPLFDO F\FOHV DOVR FDXVHG WKH LPSHUIHFW F\FOLQJ SURSHUWLHV )LJXUH 6 VKRZV WKH IOH[LEOH K\GURJHO EDVHG V\PPHWULF VXSHUFDSDFLWRU 7KH VXSHUFDSDFLWRU ZDV SUHSDUHG E\ D &1) 3% JHO HOHFWURO\WH VDQGZLFKHG EHWZHHQ WZR &1) 33\ 3% HOHFWURGHV LQVHUW RI )LJXUH 6

7KH

DVVHPEOHG V\PPHWULF VXSHUFDSDFLWRU H[KLELWHG JRRG F\FOLQJ VWDELOLW\ DQG PHFKDQLFDO HQGXUDQFH

ACS Paragon Plus Environment

36

Page 37 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

ZKHQ VXIIHULQJ IURP PHFKDQLFDO GHIRUPDWLRQV VXFK DV EHQGLQJ IROGLQJ DQG WZLVWLQJ 'XH WR WKH IDVW VHOI KHDOLQJ DELOLW\ WKH KHDOLQJ HIILFLHQF\ RI WKH VXSHUFDSDFLWRU FDOFXODWHG E\ WKH UDWLR RI FDSDFLWDQFH UHWHQWLRQ ZDV DERXW

DIWHU

FXWWLQJ KHDOLQJ F\FOHV )LJXUH 6

%HFDXVH RI

WKHLU H[FHOOHQW HOHFWURFKHPLFDO SHUIRUPDQFH DQG RWKHU DSSHDOLQJ IXQFWLRQV PHQWLRQHG DERYH WKHVH &1) 33\ 3% K\GURJHOV WKXV VKRZHG JUHDW SRWHQWLDO DV PXOWLIXQFWLRQDO HOHFWURGH PDWHULDOV IRU VPDUW IOH[LEOH VXSHUFDSDFLWRUV 3.10. In Vitro %LRFRPSDWLELOLW\ DQG &HOO $WWDFKPHQW RI +\GURJHOV

Figure 10. (a) Cell viability assays of the CNF-PPy/PB-3 hydrogel using L-929 cells by MTT colorimetric assays. (b) Fluorescent staining images of L-929 cell incubated for 24h with 100%

ACS Paragon Plus Environment

37

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 38 of 50

hydrogel extract liquid. SEM of the cell adhered to the CNF-PPy/PB-3 hydrogel after 24h in the culture at low (c) and high (d) magnifications. 'XH WR WKH excellent biocompatibility of CNF, PVA and PPy, the biocompatibility of CNFPPy/PB hydrogels were highly expected. Therefore, the cytotoxicity of representative CNFPPy/PB-3 hydrogel was HYDOXDWHG XVLQJ / VKRZQ LQ )LJXUH

FHOOV E\ 077 FRORULPHWULF DVVD\V )LJXUH

D WKH UHPDLQLQJ FHOO YLDELOLW\ ZDV ODUJHU WKDQ

RI K\GURJHO H[WUDFWV LQFXEDWHG IRU

$V

IRU GLIIHUHQW FRQFHQWUDWLRQV

K 7KH LQFUHDVH RI WKH FRQFHQWUDWLRQ RI H[WUDFWV QHDUO\ KDG

QR HIIHFW RQ FHOO YLDELOLW\ ZKLFK VWLOO PDLQWDLQHG D KLJK OHYHO ,W ZDV WKXV SURYHG WKDW WKHVH K\GURJHOV ZHUH ELRFRPSDWLEOH $V VKRZQ LQ WKH OLYH GHDG IOXRUHVFHQFH VWDLQLQJ LQ )LJXUH FHOOV ZHUH ZHOO VSUHDG DQG UHDFKHG KLJK FRQIOXHQFH DW

E /

K DIWHU VHHGLQJ DQG WKHVH FHOOV

PDLQWDLQHG D KLJK YLDELOLW\ ZLWK WKH ODUJH PDMRULW\ RI OLYLQJ FHOOV DQG IHZ GHDG FHOOV LQGLFDWLQJ D QRQWR[LF QDWXUH RI K\GURJHOV 7KH FHOO DWWDFKPHQW RQ K\GURJHOV ZDV LQYHVWLJDWHG E\ 6(0 )LJXUH F DQG

G VKRZ WKH LPDJHV RI WKH FHOO DGKHVLRQ WR WKH &1) 33\ 3%

K\GURJHO DIWHU

K LQ

FXOWXUH DW ORZ DQG KLJK PDJQLILFDWLRQV 7KH FHOOV DSSHDUHG WR EH H[WHQVLYHO\ GLVSHUVHG DQG VXFFHVVIXOO\ DWWDFKHG RQ WKH K\GURJHO VXUIDFH $GGLWLRQDOO\ FHOOV VHHGHG RQ &1) 33\ 3% K\GURJHO ZHUH VSUHDG DQG DSSHDUHG FRQIOXHQW 7KLV UHVXOW VXJJHVWHG WKDW WKH K\GURSKLOLF VXUIDFH RI &1) 33\ 3% K\GURJHOV SURYLGHG D PRUH FRPSDWLEOH HQYLURQPHQW IRU FHOO DWWDFKPHQW DQG SUROLIHUDWLRQ

7KHVH UHVXOWV GHPRQVWUDWHG WKDW WKLV FODVV RI &1) 33\ 3% K\GURJHO SURYLGHG D

FRPSDWLEOH VXEVWUDWH IRU /

FHOOV 7DNHQ WRJHWKHU WKH H[FHOOHQW ELRFRPSDWLELOLW\ DQG FHOO

DWWDFKPHQW DELOLW\ PDGH &1) 33\ 3% K\GURJHOV LGHDO FDQGLGDWHV WR EXLOG D ELR GHYLFH LQWHUIDFH WR FUHDWH LPSODQWDEOH ELRHOHFWURQLFV

ACS Paragon Plus Environment

38

Page 39 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

4. CONCLUSIONS In summary, we demonstrated a novel strategy to design and develop a type of PXOWLIXQFWLRQDO CPHs based on a viscoelastic PB gel matrix and nanostructured CNF-PPy complexes that synergized the biotemplate role of CNFs and conductive nature of PPy. CNFs VHUYHG DV D ELRWHPSODWH DQG JXLGHG WKH JURZWK RI 33\ LQWR FRPSDFW CNF-PPy complexes ZLWK LGHDO GLVSHUVLW\ ZKLOH ERUD[ DFWHG DV D G\QDPLF FURVV OLQNHU EHWZHHQ WKH 39$ FKDLQV DQG &1) 33\ FRPSOH[HV Following the two-step design strategy, the CNF-PPy complexes, which not only imparted high conductivity to the CNF-PPy/PB hydrogel but also reinforced the hydrogel network, were homogeneously incorporated into the hydrogel to establish a combined reinforcing and conductive network. 7KH FRH[LVWHQFH RI multi-complexation, + 2 interpenetration FKDLQ HQWDQJOHPHQW RI &1) 33\ FRPSOH[HV DQG 39$ DV ZHOO DV LQWHU DQG LQWUDPROHFXODU K\GURJHQ ERQGLQJ V\VWHPV DPRQJ WKHP OHG WR WKH IRUPDWLRQ RI DQ LQWHJUDWHG ' QHWZRUN ZLWKLQ WKH CNFPPy/PB K\EULG K\GURJHOV The final homogeneous, stable and moldable hydrogels with high water content (~94%) and a low density (~1.2 g cm-3) exhibited high strength (1s XS WR FP J

03D

1QRP up to 22 MPa at 0=90%), decent viscoelasticity (G'max up to 0.1 MPa) and excellent

conductivity (up to VXSSRUW PRUH WKDQ

S m-1). They could be UHSHDWHGO\ remolded into various 3D shapes DQG WLPHV RI LWV RZQ ZHLJKW %HFDXVH RI G\QDPLFDOO\ UHYHUVLEOH QHWZRUN IRUPHG

YLD YDULRXV ERUD[ EDVHG FRPSOH[HV WKH K\GURJHOV GHPRQVWUDWHG pH-sensitive sol-gel transition behavior DV ZHOO DV IDVW ZLWKLQ

V

HIILFLHQW DQG UHSHDWDEOH VHOI KHDOLQJ DELOLW\ DW URRP

WHPSHUDWXUH ZLWKRXW DQ\ H[WHUQDO VWLPXOL &1) 33\ 3% K\GURJHOV DOVR H[KLELWHG H[FHOOHQW ELRFRPSDWLELOLW\ DQG FHOO DWWDFKPHQW DELOLW\ PDNLQJ WKHP LGHDO FDQGLGDWHV WR EXLOG D ELR±GHYLFH LQWHUIDFH 7KH &1) 33\ 3%

K\GURJHO EDVHG HOHFWURGHV VKRZHG D KLJK VSHFLILF FDSDFLWDQFH RI

) J DW D FXUUHQW GHQVLW\ RI

$ J DQG excellent cyclic stability with a capacitance

ACS Paragon Plus Environment

39

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

retention of 86% DIWHU

Page 40 of 50

F\FOHV In conclusion, this study LOOXVWUDWHG D QHZ SDWKZD\ for the

fabrication of CPHs with multifunctionality, opening up a number of future research directions and applications, SDUWLFXODUO\ LQ intelligent bioelectronics devices, such as bioelectrodes ELRVHQVRUV DQG LPSODQWDEOH GHYLFHV ASSOCIATED CONTENT Supporting Information. The preparation of CNFs and characterization of in vitro cytotoxicity assays, UV-Vis of neat PPy and CNF-PPy-3 complex suspensions, pH-responsive ability of hydrogels, tensile stress-strain curves of the original and healed hydrogels, and the specific capacitance variation of the hydrogel supercapacitors were supplied as Supporting Information. AUTHOR INFORMATION Corresponding Author *Prof. H. J. Quan; E-mail: [email protected] (J.H.). Author Contributions Q.D. and X.X. contributed equally to this work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ACKNOWLEDGMENTS 7KLV ZRUN ZDV VXSSRUWHG E\ 1DWLRQDO 1DWXUDO 6FLHQFH )RXQGDWLRQ RI &KLQD 1LQWK &KLQD 6SHFLDO 3RVWGRFWRUDO 6FLHQFH )RXQGDWLRQ 6FLHQFH 5HVHDUFK 3URMHFW RI -LDQJVX 3URYLQFH 1R 3URYLQFH

.-%

3URMHFW RI -LDQJVX 3URYLQFH

7

1DWXUDO

4LQJ /DQ 3URMHFW RI -LDQJVX Key Research and Development

Program of Zhejiang Province (2017C01117), 3ULRULW\ $FDGHPLF 3URJUDP 'HYHORSPHQW RI -LDQJVX 3$3' DQG $QDO\VLV DQG 7HVW &HQWHU RI 1DQMLQJ )RUHVWU\ 8QLYHUVLW\

ACS Paragon Plus Environment

40

Page 41 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

REFERENCES (1) Ding, H.; Zhong, M.; Kim, Y. J.; Pholpabu, P.; Balasubramanian, A.; Hui, C. M; He, H.; Yang, H.; Matyjaszewski, K.; Bettinger, C. J. Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks. ACS Nano 2014, 8 (5), 4348-4357. (2) Li, L.; Wu, Z.; Yuan, S.; Zhang, X.-B. Advances and Challenges for Flexible Energy Storage and Conversion Devices and Systems. Energy Environ. Sci. 2014, 7 (7), 2101-2122. (3) Cao, L.; Yang, M.; Wu, D.; Lyu, F.; Sun, Z.; Zhong, X.; Pan, H.; Liu, H.; Lu, Z. Biopolymer-Chitosan Based Supramolecular Hydrogels as Solid State Electrolytes for Electrochemical Energy Storage. Chem. Commun. 2017, 53 (10), 1615-1618. (4) Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.-H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28 (22), 4203-4218. (5) Jiang, S.; Reich, S.; Uch, B.; Hu, P.; Agarwal, S.; Greiner, A. Exploration of the Electrical Conductivity

of

Double-Network

Silver

Nanowires/Polyimide

Porous

Low-Density

Compressible Sponges. ACS Appl. Mater. Interfaces 2017, 9 (39), 34286-34293. (6) Shi, Y.; Yu, G. Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversions. Chem. Mater. 2016, 28 (8), 2466-2477. (7) Huang, Y.; Zhong, M.; Shi, F.; Liu, X.; Tang, Z.; Wang, Y.; Huang, Y.; Hou, H.; Xie, X.; Zhi, C. An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. Angew. Chem., Int. Ed. 2017, 56 (31), 9141-9145. (8) Zhao, Z.; Liu, Y.; Zhang, K.; Zhuo, S.; Fang, R.; Zhang, J.; Jiang, L.; Liu, M. Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity. Angew. Chem., Int. Ed. 2017, 56 (43), 13464-13469.

ACS Paragon Plus Environment

41

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 42 of 50

(9) Gao, F.; Zhang, Y.; Li, Y.; Xu, B.; Cao, Z.; Liu, W. Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability. ACS Appl. Mater. Interfaces 2016, 8 (14), 8956-8966. (10) Kim, C.-C.; Lee, H.-H.; Oh, K. H.; Sun, J.-Y. Highly Stretchable, Transparent Ionic Touch Panel. Science 2016, 353 (6300), 682-687. (11) Zhao, Y.; Liu, B.; Pan, L.; Yu, G. 3D Nanostructured Conductive Polymer Hydrogels for High-Performance Electrochemical Devices. Energy Environ. Sci. 2013, 6 (10), 2856-2870. (12) Pan, L.; Yu, G.; Zhai, D.; Lee, H. R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B. C. K.; Shi, Y.; Cui, Y.; Bao, Z. Hierarchical Nanostructured Conducting Polymer Hydrogel with High Electrochemical Activity. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (24), 9287-9292. (13) Shi, Y.; Peng, L.; Yu, G. Nanostructured Conducting Polymer Hydrogels for Energy Storage Applications. Nanoscale 2015, 7 (30), 12796-12806. (14) Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. MusselInspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance. Adv. Funct. Mater. 2018, 28 (3), 1704195. (15) Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 2015, 27 (15), 2433-2439. (16) Das, S.; Chakraborty, P.; Mondal, S.; Shit, A.; Nandi, A. K. Enhancement of Energy Storage and Photoresponse Properties of Folic-Acid Polyaniline Hybrid Hydrogel by in Situ Growth of Ag Nanoparticles. Appl. Mater. Interfaces 2016, 8 (41), 28055-28067.

ACS Paragon Plus Environment

42

Page 43 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(17) Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano 2015, 9 (6), 6252-6261. (18) Han, L.; Lu, X.; Wang, M.; Gan, D.; Deng, W.; Wang, K.; Fang, L.; Liu, K.; Chan, C.; Tang, Y.; Weng, L.-T.; Yuan, H. A Mussel-Inspired Conductive, Self-Adhesive, and SelfHealable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small 2017, 13 (2), 1601916. (19) Sun, K.-H.; Liu, Z.; Liu, C.; Yu, T.; Shang, T.; Huang, C.; Zhou, M.; Liu, C.; Ran, F.; Li, Y.; Shi, Y.; Pan, L. Evaluation of In Vitro and In Vivo Biocompatibility of a Myo-inositol Hexakisphosphate Gelated Polyaniline Hydrogel in a Rat Model. Sci. Rep. 2016, 6, 23931. (20) Chen, J.; Xu, J.; Wang, K.; Qian, X.; Sun, R. Highly Thermostable, Flexible, and Conductive Films Prepared from Cellulose, Graphite, and Polypyrrole Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7 (28), 15641-15648. (21) Gao, F.; Zhang, N.; Fang, X.; Ma, M. Bio-Inspired Design of Strong, Tough and Highly Conductive Polyol-Polypyrrole Composites for Flexible Electronics. ACS Appl. Mater. Interfaces 2017, 9 (7), 5692-5698. (22) Yu, C.; Wang, C.; Liu, X.; Jia, X.; Naficy, S.; Shu, K.; Forsyth, M.; Wallace, G. G. A Cytocompatible Robust Hybrid Conducting Polymer Hydrogel for Use in a Magnesium Battery. Adv. Mater. 2016, 28 (42), 9349-9355. (23) Shi, Y.; Zhang, J.; Bruck, A. M.; Zhang, Y.; Li, J.; Stach, E. A.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S.; Yu, G. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries. Adv. Mater. 2017, 29 (22), 1603922.

ACS Paragon Plus Environment

43

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 44 of 50

(24) Zhang, L.; Liu, Z.; Cui, G.; Chen, L. Biomass-Derived Materials for Electrochemical Energy Storages. Prog. Polym. Sci. 2015, 43, 136-164. (25) Shi, Y.; Ma, C.; Peng, L.; Yu, G. Conductive "Smart" Hybrid Hydrogels with PNIPAM and Nanostructured Conductive Polymers. Adv. Funct. Mater. 2015, 25 (8), 1219-1225. (26) Wang, Z.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Stromme, M. Surface

Modified

Nanocellulose

Fibers

Yield

Conducting

Polymer-Based

Flexible

Supercapacitors with Enhanced Capacitances. ACS Nano 2015, 9 (7), 7563-7571. (27) Han, J.; Yue, Y.; Wu, Q.; Huang, C.; Pan, H.; Zhan, X.; Mei, C.; Xu, X. Effects of Nanocellulose on the Structure and Properties of Poly(vinyl alcohol)-Borax Hybrid Foams. Cellulose 2017, 24 (10), 4433-4448. (28) Yang, X.; Shi, K.; Zhitomirsky, I.; Cranston, E. D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Adv. Mater. 2015, 27 (40), 6104-6109. (29) Zhao, D.; Zhang, Q.; Chen, W.; Yi, X.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Li, X.; Yu, H. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes. ACS Appl. Mater. Interfaces 2017, 9 (15), 13213-13222. (30) Lee, D.; Cho, Y.-G.; Song, H.-K.; Chun, S.-J.; Park, S.-B.; Choi, D.-H.; Lee, S.-Y.; Yoo, J.; Lee, S.-Y. Coffee-Driven Green Activation of Cellulose and Its Use for All-Paper Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9 (27), 22568-22577. (31) Shi, Z.; Phillips, G. O.; Yang, G. Nanocellulose Electroconductive Composites. Nanoscale 2013, 5 (8), 3194-3201.

ACS Paragon Plus Environment

44

Page 45 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(32) Wang, Z.; Tammela, P.; Zhang, P.; Huo, J.; Ericson, F.; Stromme, M.; Nyholm, L. Freestanding Nanocellulose-Composite Fibre Reinforced 3D Polypyrrole Electrodes for Energy Storage Applications. Nanoscale 2014, 6 (21), 13068-13075. (33) Han, J.; Lei, T.; Wu, Q. Facile Preparation of Mouldable Polyvinyl Alcohol-Borax Hydrogels Reinforced by Well-Dispersed Cellulose Nanoparticles: Physical, Viscoelastic and Mechanical Properties. Cellulose 2013, 20 (6), 2947-2958. (34) Han, J.; Lei, T.; Wu, Q. High-Water-Content Mouldable Polyvinyl Alcohol-Borax Hydrogels Reinforced by Well-Dispersed Cellulose Nanoparticles: Dynamic Rheological Properties and Hydrogel Formation Mechanism. Carbohydr. Polym. 2014, 102, 306-316. (35) Han, J.; Zhou, C.; Wu, Y.; Liu, F.; Wu, Q. Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules 2013, 14 (5), 1529-1540. (36) Han, J.; Zhou, C.; French, A. D.; Han, G.; Wu, Q. Characterization of Cellulose II Nanoparticles Regenerated from 1-butyl-3-methylimidazolium Chloride. Carbohydr. Polym. 2013, 94 (2), 773-781. (37) Wu, X.; Chabot, V. L.; Kim, B. K.; Yu, A. P.; Berry, R. M.; Tam, K. C. Cost-Effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-Performance Supercapacitors. Electrochim. Acta 2014, 138, 139-147. (38) Zhang, X.; Wu, X.; Lu, C.; Zhou, Z. Dialysis-Free and in Situ Doping Synthesis of Polypyrrole@Cellulose

Nanowhiskers

Nanohybrid

for

Preparation

of

Conductive

Nanocomposites with Enhanced Properties. ACS Sustainable Chem. Eng 2015, 3 (4), 675-682.

ACS Paragon Plus Environment

45

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 46 of 50

(39) Yu, H.; Chen, P.; Chen, W.; Liu, Y. Effect of Cellulose Nanofibers on Induced Polymerization of Aniline and Formation of Nanostructured Conducting Composite. Cellulose 2014, 21 (3), 1757-1767. (40) Feng, J.; Li, J.; Lv, W.; Xu, H.; Yang, H.; Yan, W. Synthesis of Polypyrrole Nano-fibers with Hierarchical Structure and Its Adsorption Property of Acid Red G from Aqueous Solution. Synth. Met. 2014, 191, 66-73. (41) Spoljaric, S.; Salminen, A.; Luong, N. D.; Seppala, J. Stable, Self-Healing Hydrogels from Nanofibrillated Cellulose, Poly(vinyl alcohol) and Borax via Reversible Crosslinking. Eur. Polym. J. 2014, 56, 105-117. (42) Joulazadeh, M.; Navarchian, A. H. Polypyrrole Nanotubes Versus Nanofibers: A Proposed Mechanism for Predicting the Final Morphology. Synth. Met. 2015, 199, 37-44. (43) Deng, C. C.; Brooks, W. L. A.; Abboud, K. A.; Sumerlin, B. S. Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic pH. ACS Macro Lett. 2015, 4 (2), 220224. (44) Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. High-Water-Content Mouldable Hydrogels by Mixing Clay and a Dendritic Molecular Binder. Nature 2010, 463 (7279), 339-343. (45) Niu, Q.; Guo, Y.; Gao, K.; Shao, Z. Polypyrrole/Cellulose Nanofiber Aerogel as a Supercapacitor Electrode Material. RSC Adv. 2016, 6 (110), 109143-109149. (46) Chen, W.; Hao, D.; Hao, W.; Guo, X.; Jiang, L. Hydrogel with Ultrafast Self-Healing Property Both in Air and Underwater. ACS Appl. Mater. Interfaces 2018, 10 (1), 1258-1265. (47) Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Mobius, M. E.; Young, R. J.; Coleman, J. N. Sensitive Electromechanical

ACS Paragon Plus Environment

46

Page 47 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

Sensors Using Viscoelastic Graphene-Polymer Nanocomposites. Science 2016, 354 (6317), 1257-1260. (48) Argun, A.; Can, V.; Altun, U.; Okay, O. Nonionic Double and Triple Network Hydrogels of High Mechanical Strength. Macromolecules 2014, 47 (18), 6430-6440. (49) Duan, J.; Liang, X.; Guo, J.; Zhu, K.; Zhang, L. Ultra-Stretchable and Force-Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Adv. Mater. 2016, 28 (36), 8037-8044. (50) Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive SelfHealing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv. Mater. 2017, 29 (31), 1700533. (51) Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of HighPerformance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity. Adv. Mater. 2017, 29 (47), 1704253. (52) Huang, H.-D.; Liu, C.-Y.; Zhou, D.; Jiang, X.; Zhong, G.-J.; Yan, D.-X.; Li, Z.-M. Cellulose Composite Aerogel for Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. A 2015, 3 (9), 4983-4991. (53) Zhao, H.-B.; Yuan, L.; Fu, Z.-B.; Wang, C.-Y.; Yang, X.; Zhu, J.; Qu, J.; Chen, H.-B.; Schiraldi, D. A. Biomass-Based Mechanically Strong and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8 (15), 9917-9924. (54) Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4 (7), 4324-4330.

ACS Paragon Plus Environment

47

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 48 of 50

(55) Wei, D.; Lin, X.; Li, L.; Shang, S.; Yuen, C.-W. M.; Yan, G.; Yu, X. Controlled Growth of Polypyrrole Hydrogels. Soft Matter 2013, 9 (10), 2832-2836. (56) Gui, Z.; Zhu, H.; Gillette, E.; Han, X.; Rubloff, G. W.; Hu, L.; Sang, B. L. Natural Cellulose Fiber as Substrate for Supercapacitor. ACS Nano 2013, 7 (7), 6037-6046. (57) Wu, X.; Chabot, V. L.; Kim, B. K.; Yu, A.; Berry, R. M.; Tam, K. C. Cost-Effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-Performance Supercapacitors. Electrochim. Acta 2014, 138 (25), 139-147. (58) Rong, Q.; Lei, W.; Chen, L.; Yin, Y.; Zhou, J.; Liu, M. Anti-Freezing, Conductive SelfHealing Organohydrogels with Stable Strain-Sensitivity at Subzero Temperatures. Angew. Chem., Int. Ed. 2017, 56 (45), 14159-14163. (59) Shi, Y.; Yu, G. Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversions. Chem. Mater. 2016, 28 (8), 2466-2477. (60) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured Conductive Polypyrrole Hydrogels as High-Performance, Flexible Supercapacitor Electrodes. J. Mater. Chem. A 2014, 2 (17), 6086-6091. (61) Huang, H.; Zeng, X.; Li, W.; Wang, H.; Wang, Q.; Yang, Y. Reinforced Conducting Hydrogels Prepared from the In Situ Polymerization of Aniline in an Aqueous Solution of Sodium Alginate. J. Mater. Chem. A A 2014, 2 (39), 16516-16522. (62) Wang, H.; Zhu, E.; Yang, J.; Zhou, P.; Sun, D.; Tang, W. Bacterial Cellulose NanofiberSupported Polyaniline Nanocomposites with Flake-Shaped Morphology as Supercapacitor Electrodes. J. Phys. Chem. C 2012, 116 (24), 13013-13019. (63) Zhu, J.; He, J. Facile Synthesis of Graphene-Wrapped Honeycomb MnO2 Nanospheres and Their Application in Supercapacitors. ACS Appl. Mater. Interfaces 2012, 4 (3), 1770-1776.

ACS Paragon Plus Environment

48

Page 49 of 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

(64) Xu, J.; Zhu, L.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Conductive PolypyrroleBacterial Cellulose Nanocomposite Membranes as Flexible Supercapacitor Electrode. Org. Electron. 2013, 14 (12), 3331-3338. (65) Peng, S.; Fan, L.; Rao, W.; Bai, Z.; Xu, W.; Xu, J. Bacterial Cellulose Membranes Coated by Polypyrrole/Copper Oxide as Flexible Supercapacitor Electrodes. J. Mater. Sci. 2017, 52 (4), 1930-1942. (66) Heydari, H.; Gholivand, M. B. An All-Solid-State Asymmetric Device Based on a Polyaniline Hydrogel for a High Energy Flexible Supercapacitor. New J. Chem. 2017, 41 (1), 237-244. (67) Liu, H.; Cheng, J.; Chen, F.; Hou, F.; Bai, D.; Xi, P.; Zeng, Z. Biomimetic and CellMediated Mineralization of Hydroxyapatite by Carrageenan Functionalized Graphene Oxide. ACS Appl. Mater. Interfaces 2014, 6 (5), 3132-3140.

ACS Paragon Plus Environment

49

ACS Applied Materials & Interfaces 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 50 of 50

Table of contents

ACS Paragon Plus Environment

50