Nanoscale Metal–Organic Framework Hierarchically Combines High

4 days ago - ... increase hydroxyl radical (•OH) generation through water radiolysis but ..... Steady body weights and lack of abnormalities on hist...
0 downloads 0 Views 2MB Size
Subscriber access provided by UNIV AUTONOMA DE COAHUILA UADEC

Communication

Nanoscale Metal-Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-enhancement Guangxu Lan, Kaiyuan Ni, Samuel S. Veroneau, Taokun Luo, Eric You, and Wenbin Lin J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b03029 • Publication Date (Web): 18 Apr 2019 Downloaded from http://pubs.acs.org on April 18, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

ACS Paragon Plus Environment

Journal of the American Chemical Society

a

O

maintenance of the MOF structure after W18 loading. The presence of DBB-Ir in W18@Hf12-DBB-Ir was demonstrated by its characteristic UV-Vis absorption peaks (Figure S10, SI) and by its 1H NMR signals in digested W @Hf -DBB-Ir (Figure S13, SI). 18 12 As shown in Figure 2d, W18@Hf12-DBB-Ir exhibited a smaller Brunauer-Emmett-Teller (BET) surface area of 345.5 m2/g than that of Hf12-DBB-Ir (662.3 m2/g).

a

b

30

W18@Hf12-DBB-Ir in PBS

W18@Hf12-DBB-Ir

OH

Hf12-DBB-Ir W18@Hf12-DBB-Ir

25

Number (%)

nm by atomic force microscopy (AFM; Figure 1d and S6, SI). Dynamic light scattering (DLS) studies gave a number-averaged size of 114.8 ± 5.8 nm (Figure 2b). Powder X-ray diffraction (PXRD) studies showed that Hf12-DBB-Ir had the same hcp topological structure as previously reported Zr12-QPDC (Figure 2a and Figure S4, SI).31 High-resolution TEM (HRTEM) image and its fast Fourier transform (FFT) pattern of Hf12-DBB-Ir displayed a six-fold symmetry and a Hf12-Hf12 SBU distance of 2.7 nm, matching the modeled distance (Figure 1c and S4a, SI). Moreover, the UV-Vis spectrum of Hf12-DBB-Ir (Figure S11, SI) and the 1H NMR spectrum of digested Hf12-DBB-Ir (Figure S7, SI) confirmed the presence of only DBB-Ir ligands in Hf12-DBB-Ir.

Hf12-DBB-Ir

20 15 10 5

W18

N N

Hf4+ +

Ir

Simulated Hf12-QPDC

N

N

5

10

15

0 10

20

100

d

OH

H2DBB-Ir

Hf12-DBB-Ir

b

W18@Hf12-DBB-Ir

c W18@Hf12-DBB-Ir Hf12-DBB-Ir K6W18

2.7 nm 500

1000

1500

2000

2500

-1

3000

Wavenumber (cm )

200 nm

d

10 nm

e

6 4 2 0

N2 sorption (cm3/g STP)

c O

0

100

200

300

500 nm

200 nm

Length (nm)

Figure 1. (a) Schematic showing the synthesis of W18@Hf12-DBBIr. TEM image (b), HRTEM image, where Hf12 SBUs appear as white spots, and its FFT pattern (inset, c), and AFM topography and height profile along the blue line (inset, d) of Hf12-DBB-Ir. (e) TEM image of W18@Hf12-DBB-Ir. W18@Hf12-DBB-Ir was next synthesized by heating a mixture of Hf12-DBB-Ir and TBA6W18 [TBA = (n-Bu)4N+; Figure S8-9, SI] in ethanol at 70 °C. Due to the electrostatic attraction between anionic W18 and cationic Hf12-DBB-Ir, W18 was successfully loaded into W18@Hf12-DBB-Ir, as demonstrated by the presence of characteristic infrared (IR) peaks for both Hf12-DBB-Ir and W18 (Figure 2c). The ratio of W to Hf was determined to be 0.77 ± 0.05 by inductively coupled plasma-mass spectrometry (ICP-MS) and confirmed by thermogravimetric analysis (Figure S12, SI). W18@Hf12-DBB-Ir was thus formulated as [P2W18O62]0.513@Hf12(µ3-O)8(µ3-OH)8(µ2-OH)6(DBB-Ir)9. TEM (Figure 2e and S10, SI) and DLS (Figure 2b) showed that W18@Hf12-DBB-Ir maintained the same hexagonal nanoplate morphology and size (115.5 ± 2.8 nm) as Hf12-DBB-Ir. Upon W18 loading, the W potential of the nMOF decreased from 18.4 ± 1.0 mV to 6.0 ± 1.7 mV (Table S1, SI), consistent with partial neutralization of positive surface charge of Hf12-DBB-Ir by anionic W18. Similar PXRD patterns (Figure 2a) and HRTEM images (Figure S11, SI) between Hf12-DBB-Ir and W18@Hf12-DBB-Ir demonstrated the

1000

Size (d. nm)

2

Height (nm)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 6

Hf12-DBB-Ir adsorption Hf12-DBB-Ir desorption W18@Hf12-DBB-Ir adsorption W18@Hf12-DBB-Ir desorption

800

600

400

200

0

3500

0.0

0.2

0.4

0.6

0.8

1.0

Relative pressure (p/p0)

Figure 2. (a) PXRD patterns of freshly prepared Hf12-DBB-Ir and W18@Hf12-DBB-Ir and after incubation in 0.6 mM PBS for 5 days, in comparison to that simulated from the structure of Zr12-QPDC.31 (b) Number-averaged diameters of Hf12-DBB-Ir and W18@Hf12DBB-Ir in water. (c) IR spectra of W18@Hf12-DBB-Ir, Hf12-DBBIr, and K6W18. The characteristic IR peaks of W18 in 500-1200 cm-1 are highlighted by green circles. (d) Nitrogen sorption isotherms of Hf12-DBB-Ir and W18@Hf12-DBB-Ir at 77 K. The radio-enhancement effect of W18@Hf12-DBB-Ir was next investigated by measuring •OH generation from water radiolysis and detecting DNA double-strand breaks (DSBs) caused by •OH upon X-ray irradiation (Section S3.1, SI). Aminophenyl fluorescein (APF) assay, in which the probe fluorescence is turned on when reacting with •OH, showed that W18@Hf12-DBB-Ir and Hf12-DBBIr generated significantly more •OH than water upon X-ray irradiation, affording relative enhancements of 55.1% and 48.7%, respectively (Figure 3b and S14, SI). Confocal microscopy (Figure 3c and S15, SI) and flow cytometry (Figure S16, SI) with a X-H2AX assay kit, which detects the phosphorylation of the histone protein H2AX for DNA DSB repair via fluorescence turn-on, showed significant DNA DSBs in MC38 cells treated with W18@Hf12DBB-Ir and Hf12-DBB-Ir. In contrast, negligible enhancement of •OH generation and minimal DNA DSBs were observed in both H2DBB-Ir and W18 groups, indicating the importance of hierarchically assembling high-Z components in the nMOF for radio-enhancement effects. To test this hypothesis, a physical mixture of W18 and Hf12-DBB-Ir was also examined, which showed no enhancement in •OH generation over Hf12-DBB-Ir and much lower •OH generation than W18@Hf12-DBB-Ir (Figure 3b).

ACS Paragon Plus Environment

2

Page 3 of 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

ACS Paragon Plus Environment

Journal of the American Chemical Society W18@Hf12-DBB-Ir (i.v.), Hf12-DBB-Ir, and W18 treatments, respectively, on MC38-tumor bearing mice (Figure 4f). TGI indices were 99.7%, 96.7%, and 55.5% on CT26-tumor bearing mice for W18@Hf12-DBB-Ir, Hf12-DBB-Ir and W18 treatments, respectively (Figure 4h). These TGI results were confirmed by the weights of excised tumors on day 22 (Figure S25-29, SI). Steady body weights and lack of abnormalities on histological images of frozen major organ slices demonstrated no systemic toxicity for W18@Hf12-DBB-Ir (Figure S24 and S30, SI).

a 600

Survival fraction (%)

ng Hf or W / 105 cells

b

W in W18 Hf in Hf12-DBB-Ir Hf in W18@Hf12-DBB-Ir W in W18@Hf12-DBB-Ir

800

400

200

1

2h

4h

0

2

4

6

8

10

PBS

The Supporting Information is available free of charge on the ACS Publications website. Synthesis and characterization of W18@Hf12-DBB-Ir, ROS generation, and anti-cancer efficacy (PDF)

Author Contributions 12

14

16

Irradiation dose (Gy)

c

Supporting Information

[email protected]

Hf12-DBB-Ir

0.01

8h

ASSOCIATED CONTENT

Corresponding Author

PBS W18

0

1h

advantages of MOFs to realize complex functions for biomedical applications.

AUTHOR INFORMATION

0.1

W18@Hf12-DBB-Ir

Hf12-DBB-Ir

W18

‡These authors contributed equally.

W18@Hf12-DBB-Ir

Notes The authors declare the following competing financial interest(s): W.L. is founder of RiMO Therapeutics which licensed the radiotherapy-radiodynamic therapy technology.

Calcein AM PI

d

PBS

Hf12-DBB-Ir

W18

W18@Hf12-DBB-Ir

Annexin-V PI

f

80

W18 Hf12-DBB-Ir W18@Hf12-DBB-Ir

60 40 20

Tumor volume (cm3)

Cell viability (%)

e 100

PBS PBS (i.v.) W18 Hf12-DBB-Ir W18@Hf12-DBB-Ir W18@Hf12-DBB-Ir (i.v.)

2.4 2.0 1.6 1.2 0.8 0.4

0

0.0

0

20

40

60

80

100

0

2

g

h

W18 Hf12-DBB-Ir W18@Hf12-DBB-Ir

20 0

Tumor volume (cm3)

80

40

6

8

10 12 14 16 18 20 22

PBS W18 Hf12-DBB-Ir W18@Hf12-DBB-Ir

3.6

100

60

4

Day post tumor inoculation

Concentration ( M)

Cell viability (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 6

3.0 2.4 1.8 1.2 0.6 0.0

0

20

40

60

Concentration ( M)

80

100

0

2

4

6

8

10 12 14 16 18 20 22

Day post tumor inoculation

Figure 4. Cellular uptake by (a), clonogenic assay of (b), live and dead cell assay of (c), and Annexin-V assay showing apoptotic cell death for (d) MC38 cells. Calcein AM (green), PI (red), and Annexin-V present live, dead, and apoptotic cells, respectively. Scale bar = 50 nm. MTS assay on MC38 (e) and CT26 (g) cells. Tumor growth inhibition/regression curves for MC38 (f) and CT26 (h) tumor-bearing mice. N=6. The doses and irradiation schedules are described in Section S4.5, SI. In summary, we synthesized a novel nMOF-based radioenhancer with superb anti-cancer efficacy. We demonstrated that the composition tunability, structural regularity, and porosity of nMOFs allow for hierarchical assembly of three high-Z components (Hf12, DBB-Ir, and W18) in W18@Hf12-DBB-Ir to harvest X-ray energy and facilitate synergistic interactions between the high-Z components to generate three distinct ROSs. Our work provides a novel strategy to exploit the unique structural

ACKNOWLEDGMENT We thank Dr. Nining Guo for help with Xenogen IVIS 200 imaging studies and Mr. Xuanyu Feng for EPR experiments. We acknowledge the National Cancer Institute (U01-CA198989 and 1R01CA216436) and the University of Chicago Medicine Comprehensive Cancer Center (NIH CCSG: P30 CA014599) for funding support. REFERENCES 1. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444. 2. He, C.; Liu, D.; Lin, W., Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115 (19), 11079-11108. 3. Rabone, J.; Yue, Y. F.; Chong, S. Y.; Stylianou, K. C.; Bacsa, J.; Bradshaw, D.; Darling, G. R.; Berry, N. G.; Khimyak, Y. Z.; Ganin, A. Y.; Wiper, P.; Claridge, J. B.; Rosseinsky, M. J., An Adaptable PeptideBased Porous Material. Science 2010, 329 (5995), 1053. 4. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A., Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136 (20), 7261-7264. 5. Levine, D. J.; * _ /) T.; Kapelewski, M. T.; Keitz, B. K.; Oktawiec, J.; Reed, D. A.; Mason, J. A.; Jiang, H. Z. H.; Colwell, K. A.; Legendre, C. M.; FitzGerald, S. A.; Long, J. R., Olsalazine-Based Metal–Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. J. Am. Chem. Soc. 2016, 138 (32), 10143-10150. 6. Wu, P.; Wang, J.; He, C.; Zhang, X.; Wang, Y.; Liu, T.; Duan, C., Luminescent Metal-Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells. Adv. Funct. Mater. 2012, 22 (8), 1698-1703. 7. Park, J.; Xu, M.; Li, F.; Zhou, H.-C., 3D Long-Range Triplet Migration in a Water-Stable Metal–Organic Framework for Upconversion-Based Ultralow-Power in Vivo Imaging. J. Am. Chem. Soc. 2018, 140 (16), 5493-5499. 8. Zeng, J.-Y.; Zou, M.-Z.; Zhang, M.; Wang, X.-S.; Zeng, X.; Cong, H.; Zhang, X.-Z., `5 % Benzoporphyrin-Based Metal–Organic Framework for Inhibition of Tumor Metastasis. ACS Nano 2018, 12 (5), 4630-4640. 9. McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C., BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angew. Chem. Int. Ed. 2010, 49 (36), 6260-6266.

ACS Paragon Plus Environment

4

Page 5 of 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society 10. Hajagos, T. J.; Liu, C.; Cherepy, N. J.; Pei, Q., High-Z Sensitized Plastic Scintillators: A Review. Adv. Mater. 2018, 30 (27), 1706956. 11. Wang, Y.; Yin, X.; Liu, W.; Xie, J.; Chen, J.; Silver, M. A.; Sheng, D.; Chen, L.; Diwu, J.; Liu, N.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S., Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators. Angew. Chem. Int. Ed. 2018, 57 (26), 7883-7887. 12. Ni, K.; Lan, G.; Chan, C.; Quigley, B.; Lu, K.; Aung, T.; Guo, N.; La Riviere, P.; Weichselbaum, R. R.; Lin, W., Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 2018, 9 (1), 2351. 13. Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Lan, G.; Tang, H.; Pelizzari, C.; Fu, Y.-X.; Spiotto, M. T.; Weichselbaum, R. R.; Lin, W., Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2 (8), 600-610. 14. Cui, Y.; Yue, Y.; Qian, G.; Chen, B., Luminescent Functional Metal– Organic Frameworks. Chem. Rev. 2012, 112 (2), 1126-1162. 15. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W.; Wang, L. V.; Zheng, G., Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324. 16. Zhang, Y.; Jeon, M.; Rich, L. J.; Hong, H.; Geng, J.; Zhang, Y.; Shi, S.; Barnhart, T. E.; Alexandridis, P.; Huizinga, J. D.; Seshadri, M.; Cai, W.; Kim, C.; Lovell, J. F., Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol. 2014, 9, 631. 17. Zheng, X.; Wang, L.; Pei, Q.; He, S.; Liu, S.; Xie, Z., Metal–Organic Framework@Porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chem. Mater. 2017, 29 (5), 2374-2381. 18. Lan, G.; Ni, K.; Xu, Z.; Veroneau, S. S.; Song, Y.; Lin, W., Nanoscale Metal–Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy. J. Am. Chem. Soc. 2018, 140 (17), 5670-5673. 19. Lan, G.; Ni, K.; Veroneau, S. S.; Feng, X.; Nash, G. T.; Luo, T.; Xu, Z.; Lin, W., Titanium-Based Nanoscale Metal–Organic Framework for Type I Photodynamic Therapy. J. Am. Chem. Soc. 2019, 141 (10), 4204-4208. 20. Wang, C.; Volotskova, O.; Lu, K.; Ahmad, M.; Sun, C.; Xing, L.; Lin, W., Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metal–Organic Frameworks for Highly Efficient X-ray Scintillation. J. Am. Chem. Soc. 2014, 136 (17), 61716174. 21. Skliarenko, J.; Warde, P., Practical and clinical applications of radiation therapy. Medicine (Baltimore) 2016, 44 (1), 15-19. 22. Kuncic, Z.; Lacombe, S., Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys. Med. Biol. 2018, 63 (2), 02TR01. 23. Schaue, D.; McBride, W. H., Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015, 12, 527. 24. Thariat, J.; Hannoun-Levi, J.-M.; Sun Myint, A.; Vuong, T.; Gérard, J.P., Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 2012, 10, 52. 25. Bonvalot, S.; Le Pechoux, C.; De Baere, T.; Kantor, G.; Buy, X.; Stoeckle, E.; Terrier, P.; Sargos, P.; Coindre, J. M.; Lassau, N.; Ait Sarkouh, R.; Dimitriu, M.; Borghi, E.; Levy, L.; Deutsch, E.; Soria, J.C., First-in-Human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas. Clin. Cancer Res. 2017, 23 (4), 908. 26. Hainfeld, J. F.; Slatkin, D. N.; Smilowitz, H. M., The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 2004, 49 (18), N309-N315. 27. Yong, Y.; Zhang, C.; Gu, Z.; Du, J.; Guo, Z.; Dong, X.; Xie, J.; Zhang, G.; Liu, X.; Zhao, Y., Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano 2017, 11 (7), 71647176. 28. Chen, H.; Wang, G. D.; Chuang, Y.-J.; Zhen, Z.; Chen, X.; Biddinger, P.; Hao, Z.; Liu, F.; Shen, B.; Pan, Z.; Xie, J., NanoscintillatorMediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment. Nano Lett. 2015, 15 (4), 2249-2256. 29. Lee, H.-Y.; Li, Z.; Chen, K.; Hsu, A. R.; Xu, C.; Xie, J.; Sun, S.; Chen, X., PET/MRI dual-modality tumor imaging using arginine-glycineaspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 2008, 49 (8), 1371-1379.

30. Kim, J.-K.; Seo, S.-J.; Kim, H.-T.; Kim, K.-H.; Chung, M.-H.; Kim, K.R.; Ye, S.-J., Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys. Med. Biol. 2012, 57 (24), 8309-8323. 31. Dai, R.; Peng, F.; Ji, P.; Lu, K.; Wang, C.; Sun, J.; Lin, W., Electron Crystallography Reveals Atomic Structures of Metal–Organic Nanoplates with M126[3-O)86[3-OH)86[2-OH)6 (M = Zr, Hf) Secondary Building Units. Inorg. Chem. 2017, 56 (14), 8128-8134.

ACS Paragon Plus Environment

5

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Paragon Plus Environment

Page 6 of 6