Natural and Synthetic Chromenes, Fused Chromenes, and Versatility

Oct 10, 2014 - He completed his Ph.D. work while serving as faculty member in the Department of Chemistry S.C. College, Ballia, Uttar Pradesh. ... of ...
4 downloads 25 Views 8MB Size
Review pubs.acs.org/CR

Natural and Synthetic Chromenes, Fused Chromenes, and Versatility of Dihydrobenzo[h]chromenes in Organic Synthesis Ramendra Pratap*,† and Vishnu Ji Ram*,‡,§ †

Department of Chemistry, University of Delhi, North Campus, Delhi-110007, India Department of Chemistry, University of Lucknow, Lucknow-226009, UP, India



10. Synthesis of Pyranochromenes 10.1. Linearly Fused Pyranochromenes (Pyrano[g]chromenes) 10.2. Angularly Fused Pyranochromenes 10.2.1. Pyrano[c]chromenes 10.2.2. Pyrano[f ]coumarins 10.2.3. Pyrano[h]chromenes 11. Synthesis of Benzochromenes 11.1. Synthesis of Benzo[c]chromenes 11.2. Synthesis of Benzo[f ]chromenes 11.3. Synthesis of Benzo[g]chromenes 11.4. Synthesis of Benzo[h]chromenes 12. Synthetic Applications of 5,6-Dihydrobenzo[h] chromenes in Organic Synthesis 12.1. Carbon Nucleophile-Mediated Ring Transformation Reactions 12.1.1. Synthesis of Phenanthrenes and Thiophenanthrenes 12.1.2. Synthesis of Indeno[1,2-c]phenanthrenes 12.1.3. Synthesis of Benzo[c]phenanthrenes and Cycloalkylphenanthrene 12.1.4. Synthesis of Oxabenzo[c]chrysene 12.1.5. Synthesis of Polycyclic Aldehydes 12.1.6. Synthesis of Helicenes 12.1.7. Synthesis of Metallocenes 12.1.8. Synthesis of Oxa-heteroaromatics 12.1.9. Synthesis of Thiaheteroaromatics 12.1.10. Synthesis of Azaheteroaromatics 12.2. Nitrogen Nucleophile Induced Ring Transformation Reactions 12.2.1. Synthesis of Benzo[h]quinolines 12.2.2. Benzo[f ]quinolines 12.2.3. Synthesis of Pyrimido[4,5-d]pyrans 12.2.4. Synthesis of Pyrazolo[4,3-c]thiochromeno[3,4-e]pyrans 12.2.5. Synthesis of Pyrido/Pyrazino[2,1-b]quinazolin-2ylidene)acetonitriles 12.3. Ring-Opening Reactions 13. Photochemical Reactions 14. Miscellaneous Reactions 14.1. Cyclopropylation Reactions 14.2. Naphtho[b]oxepine Fused Lactones 14.3. Ring Transformation of Naphtho[b]oxepine Fused Lactones by Carbanions

CONTENTS 1. Introduction 2. Characteristics of Chromenes and Fused Chromenes 3. Natural Chromenes and Fused-Chromenes 3.1. Chromenes 3.2. Coumarins (2H-Chromen-2-ones) 3.2.1. Simple Coumarins 3.2.2. Coumarins with Substitution in Benzene Ring 3.2.3. Coumarins with Substitution in Benzene and Pyran Rings 4. Fused Chromenes 4.1. Furochromenes 4.1.1. Linearly Fused Furocoumarins 4.1.2. Angularly Fused Furocoumarins 4.2. Pyranochromenes 4.2.1. Linearly Fused Pyranochromenes 4.2.2. Angularly Fused Pyranochromenes 5. Bis- and Trischromenes 6. Natural Benzochromenes 6.1. Benzo[c]chromenes 6.2. Benzo[f ]chromenes 6.3. Benzo[g]chromenes 6.4. Benzo[h]chromenes 6.5. Dibenzochromenes 6.5.1. Dibenzo[c,g]chromenes 6.5.2. Dibenzo[c,h]chromenes 7. Pyranothiochromenes 8. Synthesis of Chromenes and Coumarins 8.1. Synthesis of Chromenes 8.2. Synthesis of Coumarins 9. Synthesis of Fused Furochromenes 9.1. Synthesis of Linearly Fused Furochromenes 9.2. Synthesis of Angularly Fused Furochromenes © 2014 American Chemical Society

10477 10478 10479 10479 10482 10484 10484 10489 10491 10491 10491 10492 10493 10494 10494 10495 10498 10498 10499 10499 10500 10500 10500 10501 10502 10502 10502 10502 10503 10503

10503 10503 10503 10503 10504 10504 10504 10504 10504 10504 10505 10506 10507 10507 10509 10509 10510 10510 10511 10512 10513 10513 10514 10515 10515 10516 10516 10516 10517 10517 10517 10517 10517 10517 10518

Received: February 7, 2014 Published: October 10, 2014

10503 10476

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews 14.4. Ring Transformation of Naphtho[b]oxepine Fused Lactones by Nitrogen Nucleophiles 14.5. Duff Reaction 14.6. Amination Reaction 14.7. Regioselective Reduction 14.8. Conjugate Addition Reactions 15. Conclusions Author Information Corresponding Authors Present Address Notes Biographies Acknowledgments Abbreviations References

Review

10518 10518 10518 10518 10518 10518 10520 10520 10520 10520 10520 10521 10521 10521

Figure 3. 2H-Dibenzo[c,f ]chromene (IX) and 2H-dibenzo[c,h]chromene (X).

strong alkylating agents to give pyrylium salts2 (Scheme 1). In addition, it also undergoes electrophilic substitution reactions Scheme 1. Reaction of Chromen-2-one (III)

1. INTRODUCTION Bicyclic oxygen heterocycles resulting from fusion of benzene ring with 5,6-positions of either 2H- or 4H-pyran ring system are designated as 2H-chromene (2H-1-benzopyran) (I) and 4H-chromene (4H-1-benzopyran) (II) (Figure 1). Out of nine

such as sulfonation and nitration at the C-6 position of the chromene ring.3 However, under forcing conditions, substitution also takes place at the C-3 carbon. Bromination is highly facile at the C-3 of chromene ring through addition of bromine across C3−C4 followed by HBr elimination.4 In the presence of hydroxyl group at C-4, electrophilic substitution preferentially takes place at C-3.5 Reactions of chromene with weaker nucleophiles give substitution products at C-4.6,7 However, strong nucleophile attacks at C-2 carbon with cleavage of pyran ring give dianion of phenolic acid.8 In some cases, nucleophilic attack at C-2 and C-4 has also been observed.9 Most of the physical and chemical properties of benzo- and naphtho-fused chromenes are almost similar except for bulky size and increased hydrophobicity. The photochemistry and photophysics of 2H-benzo[f ]chromene are extensively studied.10−15 Although 2H-benzo[h]chromenes have been used commercially in plastic ophthalmic lenses,16 surprisingly their photochemistry and photophysics are meagerly studied. 2H-Pyran-2-one ring is widely present in the animal and plant kingdom in the form of isolated and fused ring systems. The diverse pharmacological activities of this class of molecules such as anticancer,17−20 anticoagulant,21 antibacterial,22−26 antitrypanosomal,27 antidyslipidemic,28 antianxiety,29 antideprssant,30 anti-AIDS,31 monoamine oxidase (MAO) inhibitors,32 antiviral,33 hypothermal, and vasodilatory21 properties motivated chemists and biologists for intensive research. The synthetic applications of suitably functionalized benzoand naphthochromen-2-ones in organic synthesis are not explored extensively as synthon for the construction of various classes of compounds to generate molecular diversity. This Review is restricted to the natural products of chromene, furochromenes, pyranochromenes, and benzochromene ring systems as well as the synthesis of various aromatized and partially reduced chromenes, benzo-, and naphtho-fused chromenes, thiochromenopyrans, and their applications in synthetic organic chemistry for the construction of numerous diverse compounds. The synthesis and application of suitably functionalized 2-oxobenzochromene-3-carbonitrile (XII), 2oxo-2,5-dihydrothiochromeno[4,3-b]pyran-3-carbonitriles (XIII), 2-oxo-5,6-dihydro-2H-benzo[b]pyrano[2,3-d]oxepine3-carbonitriles (XIV), and 2-oxo-5,6-dihydro-2H-naphtho[b]oxepino[5,4-b]pyran-3-carbonitrile (XV) is not explored

Figure 1. 2H-Chromene (2H-1-benzopyran) (I), 4H-chromene (4H1-benzopyran) (II), 2H-chromen-2-one (III), and 4H-chromen-4-one (IV).

carbons in the ring system, eight are sp2 and one is sp3 hybridized. Depending upon the position of sp3 carbon related to ring oxygen, these are also named as 2H- and 4H-chromenes. The same terminology is followed when sp3 carbon is replaced by carbonyl function, called 2H-chromen-2-one (III) and 4Hchromen-4-one (IV), respectively. Further, fusion of benzene or naphthalene to the different sites of the chromene ring results in numerous benzo- and naphthochromenes, generating diverse molecular structure. There are four possible sites (c, f, g, h) for fusion with benzene or naphthalene ring with 2H-chromene that consequently produce benzo[c]- (V), benzo[f ]- (VI), benzo[g]- (VII), and benzo[h]chromenes (VIII) (Figure 2).

Figure 2. 2H-Benzo[c]chromene (V), 2H-benzo[f ]chromene (VI), 2H-benzo[g]chromene (VII), and 2H-benzo[h]chromene (VIII).

Besides benzochromenes, various dibenzochromenes such as 2H-dibenzo[c,f ]- (IX) and 2H-dibenzo[c,h]chromenes (X) are reported to exhibit antibacterial activities (Figure 3).1 Like 2H-pyran-2-one,1b the 2H-chromen-2-one (III) ring system is not a true aromatic or aliphatic compound as it demonstrates the properties of both. However, balance lies in favor of aliphatic properties. Nevertheless, chromen-2-one (III) shows aromatic character as carbonyl oxygen is alkylated by 10477

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

Figure 4. 5,6-Dihydro-2-oxobenzo[h]chromene-3-carbonitriles (XII), 2-oxo-2,5-dihydrothiochromeno[4,3-b]pyran-3-carbonitriles (XIII), 2-oxo-5,6dihydro-2H-benzo[b]pyrano[2,3-d]oxepine-3-carbonitriles (XIV), and 2-oxo-5,6-dihydro-2H-naphtho[b]oxepino[5,4-b]pyran-3-carbonitriles (XV).

The carbonyl peak in the IR spectrum of 9-methoxy-5nitrobenzo[h]chromen-2-one (XVIIa) and its analogues (XVIIb,c) appears at 1733 cm−1, which is characteristic of lactones (Figure 5). However, the carbonyl peak in case of 4methylthio-2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles (XII) appears at 1700 cm−1 and nitrile peak at 2207 cm−1.

extensively as synthon for the construction of newer entities through base-catalyzed ring transformation, substitution-cyclization and framework rearrangement, and ring contraction and expansion reactions by carbon, nitrogen, and sulfur nucleophiles separately to generate diversity (Figure 4).

2. CHARACTERISTICS OF CHROMENES AND FUSED CHROMENES The UV spectrum of 2H-chromene displays two bands34 of λmax (hexane) 266.5 and 314.0 nm, of which the former is a conjugation band (K) while the latter at 314.0 nm is a B band that arised due to the π−π* transition. The most prevalent absorption of 2H-chromene is their B band, which appears both in parent and its derivatives in the region 260−279 nm with log ξ of 3.15−4.30. When absorption in this region is absent, the B band is found at 280−299 nm with log ξ of 3.68−4.01. The higher wavelength absorption of 2H-chromenes generally appears at either 304−316 nm or 324−340 nm. The presence of functional groups such as hydroxyl and carbonyls on the benzene ring enhances absorption at higher wavelengths. The UV absorptions of benzo fused chromene such as benzo[f ]chromene are reported35 at λmax (hexane) of 218, 261(sh), 290(sh), 303, 316, and 349 nm. However, two absorption bands λmax (hexane) of 264.5−266 and 272.5−276 nm are characteristic of benzo[h]chromenes. A very slight change in absorption appears due to the presence of substitution. In case of 4H-cromene, the CC bond is not in conjugation with a benzene ring like 2H-chromene. Thus, the UV spectrum of 4H-chromene is very similar to that of di- or multisubstituted benzene derivatives. The UV absorption usually appears in the region of 275−285 nm. The short wavelength absorption at 212 nm is due to the presence of mono- and diester groups in the pyran ring of 4H-chromenes.36 The IR spectrum of 2H-chromene (I) is reported37,38 at 3040 (w), 2970 (w), 1644 (m), 1613 (m), 1480, 1495 (s), and 1230 cm−1 (aromatic ether). The diagnostic peaks are CC starching of the pyran ring at 1644 cm−1 and C−O stretch of the aromatic ether of the pyran ring at 1230 cm−1. The position of the two peaks is affected due to the presence of substituents. The CC stretch of the pyran ring falls between 1621 and 1653 cm−1. In the presence of electrondonating substituents at C-4, the peak appears at higher wavenumber. The C−O stretching of the pyran ether linkage ranges between 1220 and 1262 cm−1. However, in case of 4Hbenzochromenes (II), the infrared spectrum shows absorptions at 1665, 1610, 1580, 1490, 1273, 1050, and 755 cm−1. The peak at 1665 cm−1 is attributed to the CC stretch of the pyran ring and is higher as compared to 2H-chromene (I). The pyran ether linkage also appears at 1273 cm−1. In case of benzo[f ] chromenes (XVI), the characteristic peak at 1220 cm−1 has been assigned38 for aromatic ether function.

Figure 5. Structure of benzo[f ]chromenes (XVI) and 9-methoxy-5nitrobenzo[h]chromen-2-one (XVIIa) and its analogues (XVIIb,c).

The 1H NMR spectrum of 6-methoxy-2,2-dimethyl-2Hbenzo[h]chromene39 shows a singlet at δ 1.45 for six protons, δ 3.83 (s, 3H, 6-OCH3), 5.56 (d, 1H, 3-H, J = 10 Hz), 6.34 (d, 1H, 4-H), 6.45 (s, 1H, Ar−H), and δ 7.3−7.2 (m, 4H, Ar−H). Various di- and trisubstituted natural products of benzo[h]chromene ring system (XVII), isolated from the rhizomes of Aristolochia brevipes, are useful in the treatment of arthritis, diarrhea, and curing wounds from snake bites.40 The NMR spectra (1H and 13C) of these natural products are presented in Table 1. The presence of nitro group at C-5 in XVIIa,b affects the chemical shifts of H-4 and H-6 protons, and they resonate downfield as compared to respective protons of XVIIc due to the presence of electron-withdrawing substituents. The H-7 proton in XVIIc appears upfield at δ 7.51 ppm as compared to XVIIa at 7.94 ppm due to the presence of an electron-donating amino group at C-5. The chemical shift in 13C NMR40 is also affected due to the presence of electron-withdrawing nitro substituent at C-5. Thus, the chemical shifts for C-6 in XVIIa at δ 122.92 and in XVIIb at δ 119.27 while in XVIIc are at δ 106.65 (Table 2). The upfield shift in chemical shift for C-6 in the latter compound is due to the change in nature of electronwithdrawing nitro group to electron-donating amino substituent. The presence of methoxy substituent at C-9 gives an upfield chemical shift for C-8 (101.77) and C-10 (93.59) in XVIIb as compared to respective carbons in XVIIa,c. The mass spectrum of 4-(morpholin-4-yl)-2-oxo-2,5dihydrothiochromeno[4,3-b]pyran-3-carbonitrile41 (XVIII) showed a molecular ion peak at m/z 326 (55%), while a base peak appeared at m/z 240 (100%) after loss of morpholinyl radical (Figure 6). The peak at m/z 212 (28%) has been assigned to the loss of carbon monoxide (CO). The other route for the fragmentation is initiated with loss of carbon monoxide 10478

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

Table 1. 1H NMR Data for Compounds XVIIa−c compound proton H-3 H-4 H-6 H-7 H-8 H-10 7-OMe 9-OMe NH2

J (Hz)

XVIIa 6.68 8.74 8.55 7.94 7.42 7.84

(d) (d) (s) (d) (dd) (d)

10.0 10.0

6.67 (d) 8.75 (d) 8.93 (d)

9.0 9.0, 2.5 2.5

6.72 7.40 4.04 4.03

4.05

XVIIc

10.0 10.0 0.5

(d) (dd) (s) (s)

Table 2. 13C NMR Spectral Data for XVIIa,b,c

2.0 2.0, 2.5

6.5 7.93 6.86 7.51 7.18 7.65

(d) (s) (d) (dd) (d)

J (Hz) 10 10 9.0 9.0, 2.5 2.5

3.95 (s) 3.92 (brs)

3.1. Chromenes

Various substituted 2H-chromenes isolated from the leaves of Orthosiphom aristatus have been used as traditional medicine for the treatment of hypertension and diabetese.42 The three 2Hchromenes isolated from a chloroform extract after column chromatography are methylripariochromene A 1, acetovanillochromene 2, and orthochromene A 3 (Figure 7).

chemical shift in ppm for compounds carbon

XVIIa

XVIIb

XVIIc

C-2 C-3 C-4 C-4a C-5 C-6 C-6a C-7 C-8 C-9 C-10 C-10a C-10b 7-OMe 9-OMe

159.03 117.62 139.99 108.63 140.34 122.92 126.76 131.39 123.60 161.92 101.31 127.21 151.20

159.11 117.26 140.09 109.19 139.28 119.27 119.61 157.97 101.77 163.14 93.59 127.79 150.87 56.15 56.22

160.90 114.67 138.66 107.83 137.41 106.65 131.45 127.40 122.32 156.49 100.36 119.05 151.54

56.14

J (Hz)

XVIIb

Figure 7. Methylripariochromene A 1, acetovanillochromene 2, and orthochromene A 3.

Repariochromene A,43 repariochromene B,43 repariochromene C,43 and methyl repariochromene A43 are found in Australian E. riparium Regel, and isolated by percolating the dry plant with hexane. Acetovanillochromene44 is one of many natural 2H-chromenes isolated from plants of the family Rutaceae. This particular product is from a Jamaican weed Eupatorium riparium Regel. Ageratochromene 4 is the 2Hchromene derivative, isolated from Ageratum mexicanum Sims,45−47 Aggeratum conyzoides L.,45 and Ageratum houstonianum Mill.48,49 Alloevodione50 5 is another natural product isolated from a plant of the Rutaceae family by extracting the dry leaves of Evodia elleryana F. Muell. with ether and codistilling the extract with glycerol (Figure 8). Alloevodionol50,51 6 is also present in

55.67

Figure 6. Probable fragmentation pattern for 4-(morpholin-4-yl)-2oxo-2,5-dihydrothiochromeno[4,3-b]pyran-3-carbonitrile41 (XVIII).

Figure 8. Structure of functionalized chromenes.

the plants of the Rutaceae family and is obtained from the leaves of a plant called Medicosma cunninghamii Hook F. as well as Evodio elleryana F. Muell. The steam-distillate of the leaves of the Medicosma cunninghamii gave an oily solid on standing and was crystallized from alcohol: 6-demethoxyagerochromene 7,46,52−54 a natural product related to ageratochromene 4.52 It was purified by column chromatography on highly active basic alumina followed by preparative thin layer chromatography.

first, m/z 298 (32%), and thereafter loss of morpholinyl radical with m/z 212 (28%).

3. NATURAL CHROMENES AND FUSED-CHROMENES 2H-Chromenes and their benzo-fused derivatives are widely distributed in nature and are isolated from various medicinal plants and found useful in the treatment of diverse ailments. 10479

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

Eupatoriochromene43 8 is another highly substituted 2Hchromene derivative, found in a variety of Australian weeds: Helianthella unifrora Torr, Gray, Eupatorium riparium Regel, and Encelia calfornica Nutt. Eupatoriochromene 8 is one of six 2H-chromenes isolated from the extract of these weeds. Evodione55−58 9 is also a 2H-chromene derivative and has been isolated from the volatile oils of a Queensland plant, Evodia elleryana F. Muell. Evodionol43,59,60 10 is related to evodione 9 and found in the bark of New Zealand’s Melicope simplex, Queensland’s Evodia littorales, Eupatorium riparium Regel, and E. vttaflora. Lonchocarpin (11) was first found during a study of leguminoses in the Belgian Congo45 as yellow-orange crystals from the ether extract of the seeds and roots of Lonchocarpus Scericeus (Figure 9). The structure of lonchocarpin was determined by degradation61 and its synthesis.

Figure 12. 6-Acetyl-2,2-dimethylchromene-8-O-β-D-glucoside.

chromene-7-methoxy-6-O-β-D-glucopyranoside 15 was isolated,65 together with 13 known compounds, seven of which were being reported for the first time (Figure 13). The compounds were characterized by MS, IR, 1D, and 2D NMR spectroscopy.

Figure 13. 2,2-Dimethylchromene-7-methoxy-6-O-β-D-glucopyranoside 15.

Figure 9. Lonchocarpin.

2′,2′-Dimethyl chromenodihydrochalcone 12 is very rare in nature as plant secondary metabolites (Figure 10). Recently,

Two new chromenes, myriachromene 16 and 2,2-dimethyl6,7-methylenedioxy-2H-chromene 17, together with various known compounds were isolated66 from the whole plant of Myriactis humilis (Figure 14). The structures of these new

Figure 10. 2′,2′-Dimethyl chromenodihydrochalcone. Figure 14. Myriachromene 16 and 2,2-dimethyl-6,7-methylenedioxy2H-chromene 17.

three such compounds have been reported from the plant Crotalaria Ramosissima. Chromeno dihydrochalcones contain a 2′,2′-dimethylbenzopyran system, which is frequently encountered in many natural products and exhibits a variety of biological activities.62 In the search for new antioxidants, a basidiomycete strain of Stereum hirsutum was discovered as a producer of antioxidative compounds. NMR spectral analyses indicated that the aglycon of 13 was closely related to 6-methoxy-2,2-dimethylchromene, a fungal metabolite from the mushrooms Lactarius fuliginosus and L. picinus. The structure of 13 was determined as a chromene glycoside (Figure 11).63

compounds were confirmed through spectral analyses. Among the isolated compounds, some of them exhibited cytotoxicity (ED50) values C-2. Depending upon the nucleophilicity of the nucleophiles, the substitution reaction also takes place at C-4 followed by ring closure involving a substituent at the C-3 position. Rarely, the ring opening by strong nucleophile has also been observed through attack at C-

Scheme 82. Ring Transformation Reactions of 511 with Amidines

Scheme 83. Duff Reaction of Benzo[h]chromenes

Scheme 84. Amination Reaction of Benzo[h]chromenes

10519

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

Scheme 85. Regioselective Reduction of Benzochromenes

Ramendra Pratap was born in Gorakhpur (U.P.), India, in 1981. He received his master degree from D.D.U. Gorakhpur University, Gorakhpur (U.P.), India. He then moved for doctoral research to Central Drug Research Institute (CDRI), Lucknow, India. He completed his Ph.D. in 2007. During his doctoral research, he was focused on the synthesis of various arenes and heteroarenes through ring transformation strategy from 2-pyranones. After completion of Ph.D., he moved to the U.S. for postdoctoral research and worked on modification of nucleosides. During this period, he performed his research in metal-catalyzed C−C and C−N bond formation reactions, C−H bond activation reactions, etc. After 2 years, he moved to Universität des Saarlandes, Saarbrucken, Germany, and spent 1 year as a Humboldt fellow. After spending several years abroad, he became Assistant Professor at the University of Delhi, Delhi, India. He has published more than 50 research papers in reputed international journals of chemistry with high impact factor. He is continuing his research in ring-transformation reactions, metal-catalyzed C−C and C−N bond formation reactions, etc.

Scheme 86. Addition Reaction to Benzo[f ]chromenes

2 of the pyran ring. The olefinic bond of the pyran ring is prone to reduction with NaBH4 in pyridine. Thus, fused 2-pyranones are very useful synthones for the construction of polycyclic arenes, partially reduced polycyclic arenes, and heteroarenes depending upon the reactant used. Selection of reactant for the construction of desired compounds requires a bit of skill, which leads to the formation of compounds not easily accessible through routine methodologies. Thus, suitably functionalized fused 2-pyranones open a new avenue for efficient, economical, and concise synthesis of a diverse class of organic compounds with immense potential as precursors and diverse applications in drug development, agrochemicals, and organic conductors.

AUTHOR INFORMATION Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. Present Address §

Vishnu J. Ram was born in Ballia (U.P.), India, in 1942. He earned his M.Sc. and Ph.D. degrees from the D.D.U. University, Gorakhpur (U.P.). He completed his Ph.D. work while serving as faculty member in the Department of Chemistry S.C. College, Ballia, Uttar Pradesh. He has been the recipient of three prestigious fellowships such as Alexander von Humboldt (AvH) Fellowship, Germany; N.I.H. Fellowship, U.S.; and JSPS fellowship, Japan. After spending several years abroad, a senior Scientist position was offered by Central Drug Research Institute (CDRI), Lucknow, well-known for its excellence in Drug Development. After serving 17 years in the Medicinal and Process Chemistry Division of CDRI, he was superannuated in 2002 as Deputy Director. He has published more than 250 research papers in reputed national and international journals of chemistry with high impact factor. After superannuation he served CDRI for 5 years as ICMR and CSIR Emeritus Scientist. Thereafter, he moved to the Department of Applied Chemistry at the Institute of Engineering and Technology (IET), Lucknow, as Emeritus professor under All India Council of Technical Education (AICTE) Fellowship. After completion of tenure in IET, he moved to the Department of

B-67, Eldeco Towne, IIM road, PO-Diguria Lucknow-226020, Uttar Pradesh, India. Notes

The authors declare no competing financial interest. Biographies

10520

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

(18) Hsieh, H.-P.; Chang, J.-Y.; Kuo, C.-C.; Chao, Y.-S. PCT Int. Appl. WO 2009152210 A2 20091217, 2009. (19) Dai, J.; Liu, Y.; Jia, H.; Zhou, Y.-D.; Nagle, D. G. J. Nat. Prod. 2007, 70, 1462. (20) Mohr, S. J.; Chirigos, M. A.; Fuhrman, F. S.; Pryor, J. W. Cancer Res. 1975, 35, 3750. (21) Soine, T. O. J. Pharm. Sci. 1991, 53, 231. (22) Okumura, K.; Ashino, K.; Kuda, T. Yakugaku Zasshi 1962, 81, 1482. (23) Gingolani, G. M.; Gaultrieri, F.; Pigini. J. Med. Chem. 1969, 12, 531. (24) Rao, B.; Mouli, C.; Reddy, Y. D. Indian J. Chem. 1983, 2B, 176. (25) Moustafa, M. A. Sci. Pharm. 1991, 59, 213. (26) El-Naggar, A. M.; Ahmed, F. S.; Abd El-Salam, A. M.; Rady, M. A.; Latif, M. S. A. J. Heterocycl. Chem. 1981, 18, 1203. (27) Batista, J. M., Jr.; Lopes, A. A.; Ambrosio, D. L.; Regasini, L. O.; Kato, M. J.; Bolzani Vda, S.; Cicarelli, R. M.; Furian, M. Boil. Pharm. Bull. 2008, 31, 538. (28) Sashidhara, K. V.; Rosaiah, J. N.; Bhatia, G.; Saxena, J. K. Eur. J. Med. Chem. 2008, 43, 2592. (29) Peters, D.; Redrobe, J. P.; Nielsen, A. N. PCT INT. Appl. WO 2010020651 A1 20100225, 2010. (30) Vergel, N. E.; Lopez, J. L.; Orallo, F.; Francisco; Vina, D.; Buitrago, D. M.; del Olmo, E.; Mico, J. A.; Guerrero, M. F. Life Sci. 2010, 86, 819. (31) Wang, Y.; Huang, S.-X.; Xia, P.; Xia, Y.; Yang, Z.-Y.; Kilgore, N.; Morris-Natschke, S. L.; Lee, K.-H. Bioorg. Med. Chem. 2007, 17, 4316. (32) Masand, V. H.; Mahajan, D. T.; Monikrao, A. M.; Mahajan, N.; Khatale, P. N.; Jawarkar, R. D.; Ben Hadda, T. J. Comput. Methods Mol. Des. 2011, 1, 24. (33) Hsieh, H.-P.; Hsu, T.-A.; Yeh, J.-Y.; Horng, J.-T.; Shih, S.-R.; Chang, S.-T.; Chao, Y.-S. U.S. Pat. Appl. US 20090312406 A1 2009127, 2009. (34) Wilhelm, B.; Thomas, A. F.; Gautsche, F. Tetrahedron 1964, 20, 1185. (35) (a) Wagner, A. F.; Wittreich, P. E.; Arison, B.; Trenner, N. R.; Folkers, K. J. Am. Chem. Soc. 1963, 85, 1178. (b) Sandermann, W.; Casten, R. Tetrahedron Lett. 1963, 4, 1267. (36) Dyer, J. R. Application of Absorption Spectroscopy of Organic Compounds; Prentice-Hall: Englewood Cliffs, NJ, 1965; p 12. (37) Parham, W. E.; Huestis, L. D. J. Am. Chem. Soc. 1962, 84, 813. (38) Schweizer, E. E.; Liehr, J.; Monaco, D. J. J. Org. Chem. 1968, 33, 2416. (39) Hlubucek, J. R.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1971, 24, 2347. (40) Achenbach, H.; Waibel, R.; Zwanzger, M. J. Nat. Prod. 1992, 55, 918. (41) Maurya, H. K.; Tandon, V. K.; Kumar, B.; Kumar, A.; Hüch, V.; Ram, V. J. Org. Biomol. Chem. 2012, 10, 605. (b) Pratap, R.; Kumar, A.; Pick, R.; Hüch, V.; Ram, V. J. RSC Adv. 2012, 2, 1557. (42) Shibuya, H.; Bohgaki, T.; Matsubara, T.; Watarai, M.; Ohashi, K.; Kitagawa, I. Chem. Pharm. Bull. 1999, 47, 695. (b) Ohashi, K.; Bohgaki, T.; Matsubara, T.; Shibuya, H. Chem. Pharm. Bull. 2000, 48, 433. (43) Anthonsen, T. Acta Chem. Scand. 1969, 23, 3605. (44) Taylor, D. R.; Wright, J. A. Phytochemistry 1971, 10, 1665. (45) Dean, F. M. Naturally Occuring Oxygen Ring Compounds; Butterworth: London, 1963; Chapter 7, p 16. (46) Hlubucek, J. R.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1971, 24, 2347. (47) Alertsen, A. R. Acta Chem. Scand. 1955, 9, 1725. (48) Alertsen, A. R. Acta Polytech. Scand., Ser. 1961, 10, 13. (49) Huls, R. Bull. Soc. Chim. Belg. 1958, 67, 22. (50) Kirby, K. D.; Sutherland, M. D. Aust. J. Chem. 1956, 9, 411. (51) Sutherland, M. D. Univ. Queensl Pap., Dept. Chem. 1, No. 35, 1949. (52) Rudloff, E.; Sood, V. K. Perfum. Essent. Oil Rec. 1969, 60, 303. (53) Kasturi, T. R.; Manithomas, T. Tetrahedron Lett. 1967, 8, 2573.

Chemistry, Lucknow University, as Emeritus Professor under University Grant Commission (UGC) Fellowship program. After superannuation, he visited the University of Regensberg, Germany, and University of Saarland, Saarbrucken, Germany, as a visiting professor under Alexander von Humboldt Fellowship. His research contributions are in the field of medicinal as well as synthetic organic chemistry by developing the chemistry of 2-pyranone.

ACKNOWLEDGMENTS R.P. and V.J.R. thank UGC for financial support. R.P. thanks CSIR, New Delhi, as well as DST, New Delhi, and University of Delhi for providing research grants. We thank Pratik Yadav, Surjeet Singh, and Satya Narayan Sahu for their help regarding the literature search. ABBREVIATIONS UV ultraviolet NMR nuclear magnetic resonance IR infrared m/z mass by charge ratio ER endoplasmic reticulum COSY correlation spectroscopy HMQC heteronuclear multiple-quantum correlation HMBC heteronuclear multiple bond correlation ROESY rotating-frame nuclear Overhauser effect correlation spectroscopy DEPT distortionless enhancement by polarization transfer HETCOR heteronuclear correlation REFERENCES (1) (a) El-Gaby, M. S. A.; Zahran, M. A.; Ismail, M. M. F.; Ammar, Y. A. Farmaco 2000, 55, 227. (b) Goel, A.; Ram, V. J. Tetrahedron 2009, 65, 7865. (2) (a) Pirkle, W. H.; Dines, M. J. Heterocycl. Chem. 1969, 6, 313. (b) Sibs, S. Tetrahedron 1975, 31, 2229. (c) Griffin, D. A.; Stannton, J. C. S. J. Chem. Soc., Chem. Commun. 1975, 16, 675. (3) Clayton, A. J. Chem. Soc. 1910, 97, 1388. (4) Perkin, W. H. Annalen 1871, 157, 115. (b) Mentzer, C. Comptes Rendus 1946, 223, 1141. (5) Meunier, P.; Mentzer, C.; Vinet, A. Helv. Chim. Acta 1946, 29, 1291. (6) Dodge, F. D. J. Am. Chem. Soc. 1930, 52, 1724. (7) Bredt, J.; Kallen, J. Annalen 1896, 293, 366. (8) Cingolani, E. Gazzetta 1959, 89, 985. (9) Posner, T.; Hess, R. Chem. Ber. 1913, 46, 3816. (10) Tyre, N. W., Jr.; Becker, R. S. J. Am. Chem. Soc. 1970, 92, 1289. (11) Tyre, N. W., Jr.; Becker, R. S. J. Am. Chem. Soc. 1970, 92, 1295. (12) Becker, R. S. Photchroic System Employing Chromene of its Derivations. U.S. Patent 3567605, 1971. (13) Ottavi, G.; Favaro, G.; Malatesa, V. J. Photochem. Photobiol., A 1998, 115, 123. (14) Baillet, G. Mol. Cryst. Liq. Cryst. 1997, 298, 75. (15) Lenoble, C.; Becker, R. S. J. Photochem. 1986, 33, 187. (16) Calderara, I. Process for the manufacture of Crosslinked, Transparent, Hydrophilic and Photochromic Polymeric Material, and Optical and Ophthalmic Articles Obtained. U.S. Patent 6224945. Van Gemert, B. Photochromic Indeno-Fused Naphthopyrans. U.S. Patent 5645767, 1997. (17) (a) Dong, Y.; Nakagawa-Goto, K.; Lai, C.-Y.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K.-H. Bioorg. Med. Chem. 2011, 21, 2341. (b) Dong, Y.; Nakagawa-Goto, K.; Lai, C.-Y.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K.-H. Bioorg. Med. Chem. 2011, 21, 546. (c) Dong, Y.; Nakagawa-Goto, K.; Lai, C.-Y.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K.-H. Bioorg. Med. Chem. Lett. 2010, 20, 4085. 10521

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

(54) Beck, J. R.; Kwok, R.; Booher, R. N.; Brown, A. C.; Patterson, L. E.; Pranc, P.; Rockey, B.; Pohland, A. J. Am. Chem. Soc. 1968, 90, 4706. (55) Schweizer, E. E.; Meeder-Nycz, D. In Chemistry of Heterocyclic Compounds; Ellis, G. P., Ed.; John Wiley & Sons Ltd.: New York, 1977; Vol. 31, Chapter II. (56) Jones, T. G. H.; Wright, S. E. Univ. Queensl. Pap., Dept. Chem. 1, No. 27, 1946. (57) Huls, R.; Brunelle, S. Bull. Soc. Chim. Belg. 1959, 68, 325. (58) Wright, S. E. J. Chem. Soc. 1948, II, 2005. (59) Jain, A. C.; Zutshi, M. K. Tetrahedron Lett. 1971, 12, 3179. (60) Lahey, F. N. Univ. Queensl. Pap., Dept. Chem. 1, No. 20, 2, 1942. (61) (a) Baudrenghien, J.; Jadot, J.; Huls, R. Bull. Cl. Sci., Acad. R. Belg. 1953, 39, 105. (b) Nickl, J. Chem. Ber. 1958, 91, 1372. (62) Narender, T.; Shweta; Gupta, S. Bioorg. Med. Chem. Lett. 2004, 14, 3913. (63) Yun, B.-S.; Cho, Y.; Lee, I.-K.; Cho, S.-M.; Lee, T. H.; Yoo, I.-D. J. Antibiot. 2002, 55, 208. (64) Zhai, H.-l.; Zhao, G.-J.; Yang, G.-J.; Sun, H.; Yi, B.; Sun, L.-N.; Chen, W.-s.; Zheng, S.-Q. Chem. Nat. Compd. 2010, 46, 198. (65) Adebayoa, A. H.; Jia, C.-J.; Zhanga, Y.-M.; Hea, W.-J.; Zenga, G.Z.; Hana, H.-J.; Xua, J.-J.; Akindahunsic, A. A.; Tana, N.-H. Nat. Prod. Commun. 2011, 6, 1263. (66) Chen, J.-J.; Duh, C.-Y.; Chen, I.-S. Planta Med. 2005, 71, 370. (67) Cardillo, G.; Merlini, L.; Mondelli, R. Tetrahedron 1968, 24, 497. (68) Iwasaki, N.; Baba, M.; Aishan, H.; Okada, Y.; Okuyama, T. Heterocycles 2009, 78, 1581. (69) Velozo, L. S. M.; Ferreira, M. J. P.; Santos, M.; Isabel, S.; Moreira, D. L.; Emerenciano, V. P.; Kaplan, M. A. C. Phytochemistry 2006, 67, 492. (70) McGookin, A.; Robertson, A.; Whalley, W. B. J. Chem. Soc. 1940, I, 787. (71) McGookin, A.; Robertson, A.; Tittensor, E. J. Chem. Soc. 1939, II, 1579. (72) McGookin, A.; Percival, A. B.; Robertson, A. J. Chem. Soc. 1938, I, 309. (73) Merlini, L. Chim. Corsi Semin. 1968, 11, 97. (74) Anderson, T. Chem. Zentralbl. 1855, 372. (75) Nozoe, S.; Hirai, K. Tetrahedron Lett. 1969, 10, 3017. (76) Nozoe, S.; Suzuki, K. T.; Okuda, S. Tetrahedron Lett. 1968, 9, 3643. (77) Nozoe, S.; Suzuki, K. T. Tetrahedron Lett. 1969, 10, 2457. (78) Suzuki, K. T.; Nozoe, S. J. Chem. Soc. D 1971, 11, 527. (79) Lago, J. H. G.; Ramos, C. S.; Casanova, D. C. C.; Morandim, A. A.; Bergamo, D. C. B.; Cavalheiro, A. J.; Bolzani, V. S.; Furlan, M.; Guimarães, E. F.; Young, M. C. M.; Kato, M. J. J. Nat. Prod. 2004, 67, 1783. (80) Baldoqui, D. C.; Kato, M. J.; Cavalheiro, A. J.; Bolzani, V. S.; Young, M. C. M.; Furlan, M. Phytochemistry 1999, 51, 899. (81) Batista, J. M., Jr.; Lopes, A. A.; Ambrosio, D. L.; Regasini, L. O.; Kato, M. J.; Bolzani, V. d. S.; Cicarelli, R. M. B.; Furlan, M. Biol. Pharm. Bull. 2008, 31, 538. (82) Yang, P.-S.; Cheng, M.-J.; Chen, J.-J.; Chenb, I.-S. Helv. Chim. Acta 2008, 91, 2130. (83) (a) Parra, J. E.; Delgado, W. A.; Cuca, L. E. Phytochemistry Lett. 2011, 4, 280. (b) Kitomura, R. O. S.; Romoff, P.; Young, M. C. M.; Kato, M. J.; Lago, J. H. G. Phytochemistry 2006, 67, 2398. (84) Ueda, K.; Tsujimori, M.; Kodani, S.; Chiba, A.; Kubo, M.; Masuno, K.; Sekiya, A.; Nagai, K.; Kawagishi, H. Bioorg. Med. Chem. 2008, 16, 99467. (85) Iwata, N.; Kitanaka, S. Chem. Pharm. Bull. 2011, 59, 1409. (86) Lee, H.-S.; Lee, Y.-J.; Lee, J. W.; Shin, H. J.; Lee, J. S.; Kim, K.N.; Yoon, W.-J.; Heo, S.-J.; Kim, H.-K. Heterocycles 2012, 85, 1437. (87) Jung, K. H.; Lee, B. H.; Choi, B. W.; Lee, H.-S.; Shin, J. J. Nat. Prod. 2005, 68, 716. (b) Wang, Y.; Xu, K.; Lin, L.; Pan, Y.; Zheng, X. Phytochemistry 2007, 68, 1300. (88) Tanaka, H.; Atsumi, I.; Shirota, O.; Sekita, S.; Sakai, E.; Sato, M.; Murata, J.; Murata, H.; Damaedi, D.; Chen, I.-S. Chem. Biodiversity 2011, 8, 476.

(89) Magalhaes, A. F.; Tozzi, A. M. G. A.; Magalhaes, E. G.; Moraes, V. R. d. S. Phytochemistry 2002, 57, 77. (90) Tomazela, D. M.; Pupo, M. T.; Passador, E. A. P.; de Silva, M. F. d. G. F.; Vieira, P. C.; Fernandes, J. B.; Fo, E. R.; Oliva, G.; Prani, J. R. Phytochemistry 2000, 55, 643. (91) Menut, C.; Besiere, J. M.; Ntalani, H.; Verin, P.; Henriques, A. T.; Limberger, R. Phytochemistry 2000, 53, 975. (92) Ojala, T. Biological Screening of Plant Coumarins. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2001. (93) (a) Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed.; Intercept Ltd.: Hampshire, UK, 1999; pp 263−277. (b) Tandon, S.; Rastogi, R. P. J. Sci. Ind. Res. 1979, 38, 428. (94) Reppel, L. Pharmazie 1954, 9, 278. (95) (a) Floc’h, F. Perfum. Flavor. 2002, 27, 32. (b) Burfield, T. Cropwatch Newsletter, Feb 03, 2008 (Coumarin: The Real Story (updated Jan 2008)). (96) Asao, T.; Buchi, G.; Abdel-Kader, M. M.; Chang, S. B.; Wick, E. L.; Wogan, G. N. J. Am. Chem. Soc. 1965, 86, 882. (97) Lederer, E. J. Chem. Soc. 1949, III, 2115. (98) (a) Moore, B. P. Nature 1962, 195, 101. (b) Moore, B. P. Aust. J. Chem. 1964, 17, 901. (99) Halim, F. A.; Saad, H. E. A.; Lahloub, M. F.; Ahmed, A. F. Phytochemistry 1995, 40, 927. (100) Demnitz, F. W. J.; Philppini, C.; Raphael, R. A. J. Org. Chem. 1995, 60, 5114. (101) Ohashi, K.; Watanabe, H.; Ohi, K.; Arimoto, H.; Okumura, Y. Chem. Lett. 1995, 24, 881. (102) Yang, X. W.; Hattori, M.; Namba, T. J. Chin. Pharm. Sci. 1996, 5, 68. (103) Chen, I. S.; Lin, Y. C.; Tsai, I. L.; Teng, C. M.; Ko, F. N.; Ishikawa, T.; Ishii, H. Phytochemistry 1995, 39, 1091. (104) Nassar, M. I.; Abu-Mustafa, E. A.; Ahmed, A. A. Pharmazie 1995, 50, 766. (105) Bissoue, A. N.; Muyard, F.; Bevalot, F.; Tillequin, F.; Mercier, M. F.; Armstrong, J. A.; Vaqutte, J.; Waterman, P. G. Phytochemistry 1996, 43, 877. (106) Pachaly, P.; Treitner, A.; Sin, K. S. Pharmazie 1996, 51, 57. (107) Dastan, D.; Salehi, P.; Gohari, A. R.; Zimmermann, S.; Kaiser, M.; Hamburger, M.; Khavasi, H. R.; Ebrahimi, S. N. Phytochemistry 2012, 78, 170. (108) Iranshahi, M.; Arfa, P.; Ramezani, M.; Jaffari, M. R.; Sadeghian, H.; Bassarello, C.; Piacente, S.; Pizza, C. Phytochemistry 2007, 68, 554. (109) Bandyopadhyay, D.; Banerjee, M.; Laskar, S.; Basak, B. Nat. Prod. Commun. 2011, 6, 209. (110) (a) Ahmad, A. A. Phytochemistry 1999, 50, 109. (b) Gunter, R. T. The Greek Herbal of Dioscorides; Hafner: New York; 1959, p 323. (111) Kumar, R.; Saha, A.; Saha, D. Fitoterapia 2012, 83, 230. (112) Liu, H.; Zhao, Y.; Yang, R.; Zheng, M.; Wang, M.; Zhang, X.; Qiu, F.; Wang, H.; Zhao, F. Helv. Chim. Acta 2010, 93, 249. (113) Hiermann, A.; Schantl, D.; Schubert-Zsilavecz, M.; Reiner, J. Phytochemistry 1996, 43, 881. (114) Masuda, T.; Kawai, N. Biosci. Biotechnol. Biochem. 1996, 60, 506. (115) Liu, J. H.; Xu, S. X.; Yao, X. S.; Kobayashi, H. Planta Med. 1995, 61, 482. (116) Liu, J. H.; Xu, S. X.; Yao, X. S.; Kobayashi, H. Phytochemistry 1995, 39, 1099. (117) Srivastava, S. D.; Srivastava, S. K. Fitoterapia 1996, 67, 126. (118) (a) Kinoshita, T.; Wu, J. B.; Ho, F. C. Chem. Pharm. Bull. 1996, 44, 1208. (b) Chen, K.-S.; Wu, C.-C.; Chang, F.-R.; Chia, Y.-C.; Chiang, M.-Y.; Wang, W.-Y.; Wu, Y.-C. Planta Med. 2003, 69, 654. (119) Rajanikant, V.; Gupta, V. K.; Singh, A.; Lal, M.; Verghese, B. Acta Crystallogr., Sect. C 1996, 52, 2272. (120) Mahling, J. A.; Schmidt, R. R. Liebigs Ann. Chem. 1995, 3, 467. (121) Kinoshita, T.; Firman, K. Chem. Pharm. Bull. 1996, 44, 1261. (122) Ishikawa, T.; Kotake, K. I.; Ishii, H. Chem. Pharm. Bull. 1995, 43, 1309. (123) Matsuda, N.; Kikuchi, M. Phytochemistry 1995, 38, 803. 10522

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

(124) Sarker, S. D.; Watermann, P. G.; Armstrong, J. A. J. Nat. Prod. 1995, 58, 1109. (125) Qin, B.; Chen, Q. P.; Lou, Z. C. J. Chin. Pharm. Sci. 1994, 3, 91. (126) Pistelli, L.; Bertoli, A.; Bilia, A. R.; Morelli, I. Phytochemistry 1996, 41, 1579. (127) Vilegas, W.; Boralle, N.; Cabrera, A.; Bernardi, A. C.; Pozetti, G. L.; Arantes, S. F. Phytochemistry 1995, 38, 1017. (128) Kayser, O.; Kolodziej, H. Phytochemistry 1995, 39, 1181. (129) Debenedetti, S. L.; Palacios, P. S.; Nadinic, E. L.; Coussio, J. D.; de Kimpe, N.; Zinsmeister, H. D. Phytochemistry 1995, 39, 379. (130) Jung, M.; Geiger, H.; Zinmeister, H. D. Phytochemistry 1995, 39, 379. (131) (a) Jung, M.; Zinmeister, H. D.; Geiger, H. Z. Naturforsch. 1994, 49, 697. (b) Sati, S. P.; Chaukiyal, D. C.; Sati, O. P.; Yamada, F.; Ono, M. J. Nat. Prod. 1989, 52, 376. (c) Singh, S.; Paliwal, M. K.; Siddiqui, I. R.; Singh, J. Fitoterapia 1992, 63, 555. (d) Bilia, A. R.; Cecchini, C.; Marsili, A.; Morelli, I.; Mele, S. J. Nat. Prod. 1993, 56, 2142. (132) Debenedetti, S. L.; Nadinic, E. L.; Gomez, M. A.; Coussio, J. D.; de Kimpe, N.; Boeykens, M. Phytochemistry 1996, 42, 563. (133) Sarker, S. D.; Gray, A. I.; Waterman, P. G. J. Nat. Prod. 1994, 57, 1549. (134) Baetas, A. C.; Arruda, M. S.; Müller, A. H.; Arruda, A. C. Pytochemistry 1996, 43, 491. (135) Okuyama, E.; Okamoto, Y.; Yamazaki, M.; Satake, M. Chem. Pharm. Bull. 1996, 44, 333. (136) He, H.; Shen, Y.; He, Y.; Yang, X.; Zuo, G.; Hao, X. Heterocycles 2000, 53, 9. (137) Chakthong, S.; Weaaryee, P.; Puangphet, P.; Mahabusarakam, W.; Plodpai, P.; Voravuthikunchai, S. V.; Kanjana-Opas, A. Phytochemistry 2012, 75, 108. (138) Wang, Y.-S.; Xu, H.-Y.; Wang, D.-X.; Yang, J.-H. Molecules 2009, 14, 771. (139) Laphookhieo, S.; Sripisut, T.; Prawat, U.; Karalai, C. Heterocycles 2009, 78, 2115. (140) Rao, G. V.; Rao, K. S.; Annamalai, T.; Mukhopadhyay, T. Indian J. Chem. 2009, 48B, 1041. (141) Kwon, Y. S.; Shin, S. J.; Kim, M. J.; Kim, C. M. Arch. Pharmacol. Res. 2002, 25, 53. (142) Mai, H. D.; Van-Dufat, H. T.; Michel, S.; Tillequin, F.; Bastien, D.; Sevenet, T. Z. Naturfosch., C 2001, 56, 492. (143) Khan, R.; Shawl, A. S.; Tantray, M.; Alam, M. S. Fitoterapia 2008, 79, 232. (144) Att-Ur-Rahman; Khalid, A.; Sultana, N.; Ghayur, M. N.; Mesaik, M. A.; Khan, M. R.; Gilani, A. H.; Choudhary, M. I. J. Enzyme Inhib. Med. Chem. 2006, 21, 703. (b) Shukla, Y. N.; Srivastava, A.; Kumar, S. Indian Drugs 2001, 38, 487. (145) Liu, Y. Z.; Ding, G.; Ji, C. R.; Wu, Y. J. Chin. Chem. Lett. 1997, 8, 229. (146) Piao, S.-J.; Qiu, F.; Chen, L.-X.; Pan, Y.; Dou, D.-Q. Helv. Chim. Acta 2009, 92, 579. (147) Scher, J. M.; Speakman, J.-B.; Zapp, J.; Becker, H. Phytochemistry 2004, 65, 2583. (148) Iranshahi, M.; Mojarab, M.; Sadeghian, H.; Hanafi-Bojd, M. Y.; Schneider, B. Phytochemistry 2007, 69, 473. (149) Jia, X.; Feng, X.; Zhao, X.; Dong, Y.; Zhao, Y.; Sun, H. Chem. Nat. Compd. 2008, 44, 166. (150) Akak, C. M.; Djama, C. M.; Nkengfack, A. E.; Tu, P.-F.; Lei, L.D. Fitoterapia 2010, 81, 873. (151) (a) Lacy, A.; O’Kennedy, R. Curr. Pharm. Des. 2004, 10, 3797. (b) Chen, H.; Walsh, T. C. Chem. Biol. 2001, 8, 301. (152) Fraga, B. M.; Hernández, M. G.; Santana, J. M.; Terrero, D.; Galvan, M. F. Biochem. Syst. Ecol. 1995, 23, 835. (153) Kappe, T.; Aigner, R.; Roschger, P.; Schnell, B.; Stadlbauer, W. Tetrahedron 1995, 51, 12929. (154) Yadava, R.; Jain, N. Asian J. Chem. 1995, 7, 795. (155) Hossain, C. F.; Okuyama, E.; Yamazaki, M. Chem. Pharm. Bull. 1996, 44, 1535.

(156) Jean-Jacques, H.; Duval, O.; Dartiguelongue, C.; Séraphin, D.; Jean-Michel, O.; Richomme, P. Tetrahedron 2004, 60, 2293. (157) Sandjo, L. P.; Foster, A. J.; Rheinheimer, J.; Anke, H.; Opatz, T.; Thines, E. Tetrahedron Lett. 2012, 53, 2153. (158) Patre, R. E.; Parmeswaran, P. S.; Tilve, S. G. ARKIVOC 2011, IX, 68. (159) Shi, X.-J.; Ye, G.; Tang, W.-J.; Zhao, W.-M. Helv. Chim. Acta 2010, 93, 985. (160) Lee, K.-H.; Chai, H.-B.; Tamez, P. A.; Pezzuto, J. M.; Cordell, G. A.; Win, K. K.; Tin-Wa, M. Phytochemistry 2003, 64, 535. (161) Liu, J.-F.; Xu, K.-P.; Li, F.-S.; Shen, J.; Hu, C.-P.; Zou, H.; Yang, F.; Liu, G.-R.; Xiang, H.-L.; Zhou, Y.-J.; Li, Y.-J.; Tan, G.-S. Chem. Pharm. Bull. 2010, 58, 549. (162) Teles, H. L.; Sordi, R.; Silva, G. H.; Castro-Gamboa, I.; Bolzani, V. S.; Pfenning, L. H.; de Abreu, L. M.; Costa-Neto, C. M.; Young, M. C.; Araujo, A. R. Phytochemistry 2006, 67, 2686. (163) Ee, G. C. L.; Ng, K. N.; Taufiq-Yap, Y. H.; Rahmani, M.; Ali, A. M.; Muse, R. Nat. Prod. Res. 2004, 18, 123. (164) Yousuf, M. H. Al; Bashir, A. K.; Blunden, G.; Yang, M.-H.; Patel, A. V. Phytochemistry 1999, 51, 95. (165) Lemmich, J. Phytochemistry 1995, 38, 427. (166) (a) Harraz, F. M.; Alexandria. J. Pharm. Sci. 1996, 10, 7. (b) Reish, J.; Voerste, A. A. J. Chem. Soc., Perkin Trans. 1 1994, 3251. (c) Srivastava, S. K.; Srivastava, S. D. Fitoterapia 1994, 65, 301. (167) Chakthong, S.; Weaaryee, P.; Puangphet, P.; Mahabusarakam, W.; Plodpai, P.; Voravuthikunchai, S. P.; Kanjana-Opas, A. Phytochemistry 2012, 75, 108. (168) (a) Bergendorff, O.; Dekermendjian, K.; Nielsen, M.; Shan, R.; Witt, R.; Ai, J.; Sterner, O. Phytochemistry 1997, 44, 1121. (b) Okuyama, T.; Takata, M.; Shibata, S. Planta Med. 1989, 55, 64. (c) Matsuda, H.; Mura kami, T.; Nishida, N.; Kageura, T.; Yoshikawa, M. Chem. Pharm. Bull. 2000, 49, 1429. (169) Phuwapraisirisan, P.; Surapinit, S.; Sombund, S.; Siripong, P.; Tip-pyang, S. Tetrahedron Lett. 2006, 47, 3685. (170) Asomaning, W. A.; Otoo, E.; Akoto, O.; Oppong, I. V.; AddaeMensah, I.; Waibel, R.; Achenbach, H. Phytochemistry 1999, 51, 937. (171) Niu, X.-M.; Li, S.-H.; Jiang, B.; Zhao, Q.-S.; Sun, H.-D. J. Asian Nat. Prod. Res. 2002, 4, 33. (172) Mizuno, A.; Kawasaki, C.; Okada, Y.; Okuyama, T. Chin. Pharm. J. 1994, 46, 249. (173) Oliveira, F. M.; Santana, A. E. G.; Conserva, L. M.; Maia, J. G.; Guilhon, G. M. Phytochemistry 1996, 41, 647. (174) Chaturvedula, V. S. P.; Schilling, J. K.; Kingston, D. G. I. J. Nat. Prod. 2002, 65, 965 and references cited therein. (175) Prachyawarakorn, V.; Mahidol, C.; Ruchirawat, S. Chem. Pharm. Bull. 2006, 54, 884. (176) Tan, Y.-X.; Gong, T.; Liu, C.; Chen, R.-Y.; Yu, D.-Q. Chem. Pharm. Bull. 2010, 58, 579. (177) Rudino-Pinera, E.; Juarez-martinez, G.; Panneerselvan, K.; Soriano-Garcia, M. Acta Crystallogr., Sect. C 1995, 51, 2720. (178) Sarker, S. D.; Armstrong, J. A.; Waterman, P. G. Phytochemistry 1995, 39, 801. (179) Ahn, K. S.; Sim, W. S.; Kim, I. H. Planta Med. 1996, 62, 7. (180) Takemura, Y.; Kawaguchi, S.; Maki, S.; Ju-Ichi, M.; Omura, M.; Ito, C.; Furukawa, H. Chem. Pharm. Bull. 1996, 44, 804. (181) Kumar, V.; Niyaz, N. M.; Wickramaratne, D. B. Phytochemistry 1995, 38, 805. (182) Lee, K.-H.; Chai, H.-B.; Tamez, P. A.; Pezzuto, J. M.; Cordell, G. A.; Win, K. K.; Tin-Wa, M. Phytochemistry 2003, 64, 535. (183) Kong, L.-Y.; Yao, N.-H.; Niwa, M. Heterocycles 2000, 53, 2019. (184) Chen, I. S.; Chang, C. T.; Sheen, W. S.; Teng, C. M.; Tsai, I. L.; Duh, C. Y.; Ko, F. N. Phytochemistry 1996, 41, 525. (185) Kong, L. Y.; Li, Y.; Min, Z. D.; Li, X.; Zhu, T. R. Phytochemistry 1996, 41, 1423. (186) Kong, L. Y.; Min, Z. D.; Li, Y.; Li, X.; Pei, Y. H. Phytochemistry 1996, 41, 1689. (187) Gaoxiong, R.; Xingwen, W.; Qixin, L.; Handong, S. Tianran Chanwu Yanjiu Yu Kaifa 1996, 13, 353. 10523

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

(188) Padha, N.; Goswami, K. N.; Yadava, V. S.; Nethaji, M. Acta Crystallogr., Sect. C 1995, 51, 2710. (189) Sonnenberg, H.; Kaloga, M.; Eisenbach, N.; Froemming, K. Z. Naturforsch. 1995, 50, 729. (190) Mizuno, S.; Okuda, H.; Takagi, K.; Kenji, M. Jpn. Kokai Tokyo Koho JP 07 53, 560. (191) Matsuda, H.; Murakami, T.; Nishida, N.; Kageura, T.; Yoshikawa, M. Chem. Pharm. Bull. 2000, 48, 1429. (192) Ee, G. C. L.; Mah, S. H.; Teh, S. S.; Rahmani, M.; Go, R.; Taufiq-Yap, Y. H. Molecules 2011, 16, 9721. (193) Shao, B. P.; Wang, P.; Qin, G. W.; Xu, R. S. Nat. Prod. Lett. 1996, 8, 127. (194) Rao, M. N.; Krupadanam, G. L. D.; Srimannarayana, G. Phytochemistry 1994, 37, 267. (195) (a) Chen, J. J.; Xu, M.; Luo, S. D.; Wang, H. Y.; Xu, J. C. Yunnan Zhiwu Yanjiu 2001, 23, 521. (b) Ma, C.-H.; Chen, B.; Qi, H.Y.; Li, B.-G.; Zhang, G.-L. J. Nat. Prod. 2004, 67, 1598. (196) Zou, J.; Wu, J.; Liu, S.-Z.; Zhao, W.-M. Helv. Chim. Acta 2010, 93, 1812. (197) (a) He, H.-P.; Chen, S.-T.; Shen, Y.-M.; Chen, C.-X.; Zhao, Y.B.; Hao, X.-J. Chin. Chem. Lett. 2003, 14, 1150. (b) He, H.-P.; Shen, Y.-M.; Chen, S.-T.; He, Y.-N.; Hao, X.-J. Helv. Chim. Acta 2006, 89, 2836. (198) Ju-Ichi, M.; Takemura, Y.; Okano, M.; Fukamiya, N.; Hatano, K.; Asakawa, Y.; Hashimoto, T.; Ito, C.; Furukawa, H. Chem. Pharm. Bull. 1996, 44, 11. (199) Narantuya, S.; Batsuren, D.; Rashkes, Y.; Mil’grom, E. G. Chem. Abstr. 1995, 122, 310690. (200) Paknikar, S. K.; Fondekar, K. P.; Kirtany, J. K.; Natori, S. Phytochemistry 1996, 41, 931. (201) Kawai, K. I.; Shiro, M.; Nozawa, K. J. Chem. Res., Synop. 1995, 2, 92. (202) Li, S. S.; Gao, Z.; Feng, X.; Hecht, S. M. J. Nat. Prod. 2004, 67, 1608. (203) Ulubelen, A.; Terem, B.; Tuzlaci, E. J. Nat. Prod. 1986, 49, 692. (204) Chakrabarti, R.; Das, B.; Banerji, J. Phytochemistry 1986, 25, 557. (205) Simoes, K.; Duc, J.; Pessoni, R. A. B.; Cardoso-Lopes, E. M.; Vivanco, J. M.; Stermitz, F. R.; Braga, M. R. Phytochem. Lett. 2009, 2, 59. (206) Cai, Y. Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Life Sci. 2006, 78, 2872. (207) Riaz, M.; Malik, A. Eur. J. Org. Chem. 2002, 8, 1436. (208) Riaz, M.; Malik, A. Helv. Chim. Acta 2001, 84, 656. (209) Riaz, M.; Malik, A. Heterocycles 2001, 55, 769. (210) Fischer, H.; Romer, A.; Ulbricht, B.; Arens, H. Planta Med. 1988, 54, 398. (211) Narantuyaa, S.; Batsuren, D.; Rashkes, Y. V.; Milgrom, E. G. Khim. Prir. Soedin. 1994, 216. (212) Yang, G. H.; Chen, D. F. Zhongguo Tianran Yaowu 2006, 4, 425. (213) Hiort, J.; Maksimenka, K.; Reichert, M.; Perovic-Ottstadt, S.; Lin, W. H.; Wray, V.; Steube, K.; Schaumann, K.; Weber, O. H.; Proksch, P.; Ebel, R.; Müller, W. E. G.; Bringmann, G. J. Nat. Prod. 2004, 67, 1532. (214) Tsai, I. L.; Fang, S. C.; Ishikawa, T.; Chang, C. T.; Chen, I. S. Phytochemistry 1997, 44, 1383. (215) Panichayupakaranant, P.; Noguchi, H.; Ke-Eknamkul, W. Planta Med. 1998, 64, 774. (216) Reisch, J.; Strobel, H. Pharmazie 1982, 37, 862. (217) Liu, J.; Feng, Z.; Xu, J.; Wang, Y.; Zhang, P. Phytochemistry 2007, 68, 1775. (218) Hsu, H. Y.; Lin, C. C.; Chen, J. Y.; Yang, J. J.; Zhang, R. J. Ethnopharmacol. 1998, 62, 101. (219) Ullah, N.; Ahmad, S.; Malik, A. Phytochemistry 1999, 51, 99. (220) Liang, S.; Shen, Y. H.; Tian, J. M.; Wu, Z. J.; Jin, H. Z.; Zhang, W. D.; Yan, S. K. Helv. Chim. Acta 2009, 92, 133. (221) Riaz, M.; Malik, A. Magn. Reson. Chem. 2001, 39, 641.

(222) Riaz, M.; Malik, A.; Sardozai, S. K.; Hussain, M.; Ullah, N. Nat. Prod. Lett. 2001, 15, 433. (223) Zhan, Q. F.; Xia, Z. H.; Wang, J. L.; Lao, A. N. J. Asian Nat. Prod. Res. 2003, 5, 303. (224) Xu, Z. H.; Qin, G. W.; Xu, R. S. J. Asian Nat. Prod. Res. 2003, 3, 335. (225) Arisawa, M.; Kinghorn, A. D.; Cordel, G. A.; Farnsworth, N. R. J. Nat. Prod. 1984, 47, 106. (226) Miyazaki, T.; Mihashi, S. Chem. Pharm. Bull. 1964, 12, 1232. (227) Su, B. N.; Park, E. J.; Mbwambo, Z. H.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2002, 65, 1278. (228) Spencer, R. R.; Witt, S. C.; Lundin, R. E.; Bickoff, E. M. J. Agric. Food Chem. 1967, 5, 536. (229) Khulbe, K.; Sat, S. C. Afr. J. Biotechnol. 2009, 8, 6346. (230) Basa, S. C.; Das, D. P.; Tripathy, R. N.; Elango, V.; Shamma, M. Heterocycles 1984, 22, 333. (231) Zhou, H. Y.; Hong, J. L.; Shu, P.; Ni, Y. J.; Qin, M. J. Fitoterapia 2009, 80, 283. (232) Dutta, P. K.; Banerjee, D.; Dutta, N. L. Tetrahedron Lett. 1972, 7, 601. (233) Huang, J.; Yang, J.; Xue, Q.; Yu, L.; Zhang, D. Zhongguo Zhongyao Zazhi 2009, 34, 1114. (234) Dutta, P. K.; Banerjee, D.; Dutta, N. L. Indian J. Chem. 1975, 11, 831. (235) Xiao, Y. Q.; Liu, X. H.; Taniguchi, M.; Baba, K. Phytochemistry 1997, 45, 1275. (236) Takemura, Y.; Isono, Y.; Arima, Y.; Ju-Ichi, M.; Omura, M.; Ito, C.; Furukawa, H. Heterocycles 1997, 45, 1169. (237) Zhang, Q.; Jiang, J. Q. Zhongguo Tianran Yaowu 2007, 5, 251. (238) Xiao, Y.; Dino, Y.; Li, J. B.; Lu, Y.; Nohara, T. Chem. Pharm. Bull. 2004, 52, 1362. (239) Erosa-Rjon, G. J.; Yam-Puc, A.; Chan-Bacab, M. J.; GimenezTurbax, A.; Salamanca, E.; Pena-Rodriguez, L. M.; Sterner, O. Phytochemistry Lett. 2010, 3, 9. (240) Caroll, A. R.; Bowden, B. F.; Coll, J. C. Aust. J. Chem. 1993, 46, 1079. (241) Simon-Levert, A.; Arrault, A.; Bontemps-Subielos, N.; Canal, C.; Banaigs, B. J. Nat. Prod. 2005, 68, 1412. (242) Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M. M. J. Nat. Prod. 2008, 71, 1427. (243) Altemöller, M.; Gehring, T.; Cudaj, J.; Podlech, J.; Goesmann, H.; Feldmann, C.; Rothenberger, A. Eur. J. Org. Chem. 2009, 13, 2130. (244) Altemöller, M.; Podlech, J. Eur. J. Org. Chem. 2009, 14, 2275. (245) Matumoto, T.; Hosoya, T.; Shigemori, H. Heterocycles 2010, 81, 1231. (246) Zhang, M.; Deng, Y.; Zhang, H.-B.; Su, X.-L.; Chen, H.-L.; Yu, T.; Guo, P. Chem. Pharm. Bull. 2008, 56, 192. (247) Bukuru, J. F.; Van Naguyen, T.; Van Puyvelde, L.; Mathenge, S. G.; Mudida, F. P.; De Kimpe, N. J. Nat. Prod. 2002, 65, 783. (248) (a) Li, C. J.; Li, Y. L. U.S. Patent Appl. Publ. US 2005222246 AI 20051006, 2005. (b) Ough, M.; Lewis, A.; Bey, E. A.; Gao, J.; Ritchie, J. M.; Bornmann, W.; Boothman, D. A.; Oberley, L. W.; Cullen, J. J. Cancer Biol. Ther. 2005, 4, 95. (249) Moon, D. O.; Choi, Y. H.; Kim, N. D.; Park, Y. M.; Kim, G. Y. Int. Immunopharmacol. 2007, 7, 506. (250) Elisa, P. S.; Ana, E. B.; Ravelo, A. G.; Yapu, D. J.; Turba, A. G. Chem. Biodiversity 2005, 2, 264. (251) Shestopalov, A. M.; Emelianova, Y. M.; Nesterov, V. N. Russ. Chem. Bull. 2003, 52, 1164. (252) (a) Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem., Int. Ed. 2008, 47, 3046. (b) Brown, P. M.; Krishnamoorthy, V.; Mathieson, J. W.; Thomson, R. H. J. Chem. Soc. C 1970, 10, 9. (c) Armstrong, J. J.; Turner, W. B. J. Chem. Soc. 1965, IV, 5927. (253) Soria-Mercado, I. E.; Prieto-Davo, A.; Jensen, P. R.; Fenical, W. J. Nat. Prod. 2005, 68, 904. (254) Teixeira, J. S. R.; Moreira, L. d. M.; Guedes, M. L. d. S.; Cruz, F. G. J. Braz. Chem. Soc. 2006, 17, 812. 10524

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

Meier, R.; Hruby, H.; Valkov, V.; Verdin, E.; Sippl, W.; Jung, M. J. Med. Chem. 2008, 57, 1203. (293) Singh, O. M.; Devi, N. S.; Ronibala, L.; Lim, K. B.; Yoon, Y. J.; Lee, S.-G. Bull. Korean Chem. Soc. 2011, 32, 175. (294) Hekmatshoar, R.; Beheshtiha, Y. S.; Kheirkhah, M.; Faridbod, F. Monatsh. Chem. 2002, 133, 669. (295) Tisseh, Z. N.; Dabiri, M.; Bazgir, A. Helv. Chim. Acta 2012, 95, 1600. (296) Uchiyama, S.; Takehira, K.; Yoshihara, T.; Tobita, S.; Ohwada, T. Org. Lett. 2006, 8, 5869. (297) Shaabani, A.; Ghadari, R.; Ghasemi, S.; Pedarpour, M.; Rezayan, A. H.; Sarvary, A.; Ng, S. W. J. Comb. Chem. 2009, 11, 956. (298) Shaabani, A.; Ghadari, R.; Sarvary, A.; Rezayan, A. H. J. Org. Chem. 2009, 74, 4372. (299) Kumar, B. S.; Srinivasulu, N.; Udupi, R. H.; Rajitha, B.; Reddy, Y. T.; Reddy, P. N.; Kumar, P. S. Russ. J. Org. Chem. 2006, 42, 1813. (300) Arnall-Cuulliford, J. C.; Teral, Y.; Sagarabotto, P.; Campredon, M.; Giusti, G. J. Photochem. Photobiol., A 2003, 159, 7. (301) (a) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 2755. (b) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 4715. (c) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 4379. (302) (a) Pratap, R.; Kumar, A.; Pick, R.; Hüch, V.; Ram, V. J. RSC Adv. 2012, 2, 1557. (b) Maurya, H. K.; Tandon, V. K.; Kumar, B.; Kumar, A.; Hüch, V.; Ram, V. J. Org. Biomol. Chem. 2012, 10, 605. (303) Pratap, R.; Ram, V. J. J. Org. Chem. 2007, 72, 7402. (304) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 6318. (305) Brook, A. G. J. Am. Chem. Soc. 1958, 80, 1886. (306) Brook, A. G. Acc. Chem. Res. 1974, 7, 77. (307) Goel, A.; Verma, D. Tetrahedron Lett. 2009, 50, 2086. (308) Yadav, P.; Singh, S.; Sahu, S. N.; Hussain, F.; Pratap, R. Org. Biomol. Chem. 2014, 12, 2228. (309) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2009, 50, 4239. (310) Gupta, V. P.; Khartad, P.; Mishra, S.; Pratap, R.; Ram, V. J. Spectrochim. Acta, Part A 2009, 72, 82. (311) Pratap, R.; Raghunandan, R.; Maulik, P. R.; Ram, V. J. Tetrahedron 2010, 66, 1458. (312) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 1715. (313) (a) Wynberg, H. Acc. Chem. Res. 1971, 4, 65. (b) Martin, R. H. Angew. Chem., Int. Ed. Engl. 1974, 13, 649. (c) Laarhoven, W. H.; Prinsen, W. J. C. Top. Curr. Chem. 1984, 125, 63. (d) Dumitrascu, F.; Dumitrascu, D. G.; Aron, I. ARKIVOC 2010, 1, 1. (e) Jorgensen, K. B. Molecules 2010, 15, 4334. (f) Hoffmann, N. Chem. Rev. 2008, 108, 1052. (g) Chen, J.-D.; Lu, H.-Y.; Che, C.-F. Chem.Eur. J. 2010, 16, 11843. (314) (a) Han, S. D.; Anderson, D. R.; Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem. Int. Ed. 2002, 41, 3227. (b) Han, S. D.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem., Int. Ed. 2002, 41, 3223. (c) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. Chem.Eur. J. 2004, 10, 6531. (d) Chen, J. D.; Lu, H. Y.; Chen, C. F. Chem.Eur. J. 2010, 16, 11843. (e) Reetz, M. T.; Beuttenmüller, E. W.; Goddard, R. Tetrahedron Lett. 1997, 38, 3211. (f) Larsen, J.; Bechgaard, K. J. Org. Chem. 1996, 61, 1151. (g) Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi, K.; Hirano, M. J. Am. Chem. Soc. 2007, 129, 12078. (315) (a) Phillips, K. E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.; Turro, N. J. J. Am. Chem. Soc. 2001, 123, 11899. (b) Shcherbina, M. A.; Zeng, X. B.; Tadjiev, T.; Ungar, G.; Eichhorn, S. H.; Phillips, K. E. S.; Katz, T. J. Angew. Chem., Int. Ed. 2009, 121, 7837. (c) Norel, L.; Rudolph, M.; Vanthuyne, N.; Williams, J. A. G.; Lescop, C.; Roussel, C.; Autschbach, J.; Crassous, J.; Reau, R. Angew. Chem., Int. Ed. 2010, 49, 99. (316) (a) Xu, Y.; Zhang, Y. X.; Sugiyama, H.; Umano, T.; Osuga, H.; Tanaka, K. J. Am. Chem. Soc. 2004, 126, 6566. (b) Shinohara, K.; Sannohe, Y.; Kaieda, S.; Tanaka, K.; Osuga, H.; Tahara, H.; Xu, Y.; Kawase, T.; Bando, T.; Sugiyama, H. J. Am. Chem. Soc. 2010, 132, 3778. (317) (a) Sato, I.; Yamashima, R.; Kadowaki, K.; Yamamoto, J.; Shibata, T.; Soai, K. Angew. Chem., Int. Ed. 2001, 40, 1096. (b) Dreher,

(255) Fujiwara, A.; Mori, T.; Iida, A.; Ueda, S.; Hano, Y.; Nomura, T.; Tokuda, H.; Nishino, H. J. Nat. Prod. 1998, 61, 629. (256) Costa, S. M. O.; Lemos, T. L. G.; Pessoa, O. D. L.; Pessoa, C.; Montenegro, R.; Braz-Filho, R. J. Nat. Prod. 2001, 64, 792. (257) Lee, Y. R.; Kim, Y. M. Helv. Chim. Acta 2007, 90, 2401. (258) Burnett, A. R.; Thomson, R. H. J. Chem. Soc. C 1968, II, 850. (259) Itokawa, H.; Mihar, T.; Takeya, K. Chem. Pharm. Bull. 1983, 31, 2353. (260) Itokawa, H.; Ibraheim, Z. Z.; Quao, Y. F.; Takeya, K. Chem. Pharm. Bull. 1993, 41, 1869. (261) Qiao, Y. F.; Takeya, K.; Itokawa, H. Chem. Pharm. Bull. 1990, 38, 2896. (262) Sun, C.-M.; Chin, T.-M.; Lin, Y.-L.; Chen, W.-C.; Wu, T.-S.; Don, M.-J. Heterocycles 2006, 68, 247. (263) Bedir, E.; Pereira, A. M. S.; Khan, S. I.; Chittiboyina, A.; Moraes, R. M.; Khan, I. A. J. Braz. Chem. Soc. 2009, 20, 383. (264) Lin, H.; Zhang, Y.-W.; Zheng, L.-H.; Meng, X.-Y.; Bao, Y.-L.; Wu, Y.; Yu, C.-L.; Huang, Y.-X.; Li, Y.-X. Helv. Chim. Acta 2011, 94, 1488. (265) (a) Ikushima, H.; Okamoto, M.; Tanaka, H.; Ohe, O.; Kohsaka, M.; Aoki, H.; Imanaka, H. Jpn. J. Antibiot. 1980, 33, 1107. (b) Qabaja, G.; Perchellet, E. M.; Perchellet, J.-P.; Jones, G. B. Tetrahedron Lett. 2000, 41, 3007. (266) Ishii, H.; Ishikawa, T.; Haginiwa, J. Yakugaku Zasshi 1977, 97, 890. (267) (a) Houben, H. Chem. Ber. 1904, 37, 489. (b) Decker, H.; Fellenberg, T. Liebigs Ann. Chem. 1907, 356, 281. (268) O’Donnell, R. W. H.; Reed, F. P.; Robertson, A. J. Chem. Soc. 1936, I, 419. (269) Robertson, A.; Rusby, G. I. J. Chem. Soc. 1936, I, 212. (270) Profft, E.; Stuehmer, K. Arch Pharm. (Weinheim) 1967, 300, 1. (271) (a) Schweizer, E. E.; Shaffer, E. T.; Hughes, C. T.; Berninger, C. J. J. Org. Chem. 1966, 31, 2907. (b) Schweizer, E. E.; Minami, T.; Crouse, D. M. J. Org. Chem. 1971, 36, 4028. (272) Gurunathan, S.; Kulandhai, F.; Paramasivan, T. P. Synlett 2009, 13, 2079. (273) Johnson, J. R. Org. React. 1942, 1, 210. (274) Sethna, S.; Phadke, R. Org. React. 1957, 7, 1. (275) Dann, O.; Illing, G. Annalen 1957, 605, 158. (276) Shah, V. R.; Bose, J. L.; Shah, R. C. J. Org. Chem. 1960, 25, 677. (277) Van, T. N.; Debenedetti, S.; De Kimpe, N. Tetrahedron Lett. 2003, 44, 4199. (278) Horning, E. C.; Reisner, D. E. J. Am. Chem. Soc. 1948, 70, 3619. (279) Schönberg, A.; Badran, N.; Starkowsky, N. A. J. Am. Chem. Soc. 1955, 77, 5438. (280) (a) Seshadri, T. R.; Sood, M. S. Indian J. Chem. 1963, 1, 291. (b) Chattergee, D. K.; Sen, K. J. Indian J. Chem. 1971, 9, 31. (281) Bhanu, S.; Saroja, T.; Seshadri, T. R.; Mukerjee, S. K. J. Indian Chem. Soc. 1971, 48, 387. (282) Dean, F. M.; Goodchild, J.; Johnstone, R.A. W.; Millard, B. J. J. Chem. Soc. C 1967, II, 2232. (283) Lecharier, J. P.; Demerseman, P.; Cheutin, A.; Royer, R. Bull. Soc. Chim. Fr. 1966, II, 1716. (284) Kaufman, K. D.; Keana, J. F. W.; Kelly, R. C.; McBride, D. W.; Slomp, G. J. Org. Chem. 1962, 27, 2567. (285) Khan, A. T.; Lal, M.; Basha, R. S. Synthesis 2013, 45, 406. (286) Tan, F.; Shen, L.-l.; Kwak, Y.-S. Heterocycles 2010, 81, 2593. (287) Payell, J.; Usgaonkar, R. N. J. Indian Chem. Soc. 1966, 43, 536. (288) Mujumdar, A. S.; Usgaonkar, R. N. Indian J. Chem. 1971, 9, 294. (289) Mehta, R. H. Indian J. Chem. 1965, 3, 186. (290) Abe, H.; Fukumoto, T.; Horino, Y.; Harayama, T.; Takeuchi, Y. Heterocycles 2010, 82, 851. (291) Vishnumurthy, K.; Makriyannis, A. J. Comb. Chem. 2010, 12, 664. (292) (a) Wang, X.; Chen, Y.; Lee, Y. R. Bull. Korean Chem. Soc. 2011, 32, 153. (b) Posakony, J.; Hirao, M.; Stevens, S.; Simon, J. A.; Bedalov, A. J. Med. Chem. 2004, 47, 2635. (c) Lu, X. Y.; Lin, S. H. J. Org. Chem. 2005, 70, 9651. (d) Neugebauer, R. C.; Uchiechowska, U.; 10525

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526

Chemical Reviews

Review

S. D.; Katz, T. J.; Lam, K.-C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815. (c) Reetz, M. T.; Sostmann, S. J. Organomet. Chem. 2000, 603, 105. (318) Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 9708. (319) Goel, A.; Verma, D.; Pratap, R.; Taneja, G.; Hemberger, Y.; Knauer, M.; Raghunandan, R.; Maulik, P. R.; Ram, V. J.; Bringmann, G. Eur. J. Org. Chem. 2011, 16, 2940. (320) Maurya, H. K.; Pratap, R.; Kumar, A.; Kumar, B.; Hüch, V.; Tandon, V. K.; Ram, V. J. RSC Adv. 2012, 2, 9091. (321) Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1304. (322) Beer, P. D.; Dickson, C. A. P.; Fletcher, N.; Goulden, A. J.; Grieve, A.; Hodacora, J.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, II, 828. (323) Miller, J. S.; Epstein, A. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 385. (324) Biot, C.; Glorian, G.; Maciejewski, L. A.; Brocard, J. S. J. Med. Chem. 1997, 40, 3715. (325) Itoh, T.; Shirakami, S.; Ishida, N.; Yamashita, Y.; Yoshida, T.; Kim, H.-S.; Wataya, Y. Bioorg. Med. Chem. Lett. 2000, 10, 1657. (326) (a) Köpf-Maier, P.; Köpf, H. Drugs Future 1986, 11, 297. (b) Köpf-Maier, P.; Köpf, H.; Neuse, E. Angew. Chem., Int. Ed. Engl. 1984, 23, 456. (327) (a) Fruhauf, H.-H. Chem. Rev. 1977, 97, 523. (b) Lautens, M.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Dell, C. P. Curr. Med. Chem. 1998, 5, 179. (328) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2008, 49, 396. (329) Cooney, J. D.; Gehrs, C. W. Aquat. Toxicol. 1984, 5, 197. (330) Bleeker, E. A. J.; Wiegman, S.; Voogt, P. de; Kraak, M.; Leslie, H. A.; Hass, H. De; Admiraal, W. Rev. Environ. Contam. Toxicol. 2002, 173, 39. (331) Denissenko, M. F.; Pao, A.; Tang, M.; Pfeifer, G. P. Science 1996, 274, 430. Pfeifer, G. P.; Denissenko, M. F. Environ. Mol. Carcin. 1998, 31, 197. Denissenko, M. F.; Cheng, J. X.; Tang, M.; Pfeifer, G. P. Proc. Natl. Acad. Sci. U.S.A. 1977, 94, 3893. Amin, S.; Desai, D.; Hecht, S. S. Carcinogenesis 1993, 14, 2033. (332) Pratap, R.; Raghunandan, R.; Kumar, A.; Ram, V. J. RSC Adv. 2012, 2, 2688. (333) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2009, 50, 2805. (334) (a) Kumar, S.; Reubeu, P.; Kumar, A. Polycyclic Aromat. Compd. 2004, 24, 289. (b) Iwao, A.; Lee, M. L.; Castle, R. N. J. Heterocycl. Chem. 1980, 17, 1259. (335) (a) Nishioka, M.; Lee, M. L.; Castle, R. N. Fuel 1986, 65, 390. (b) Willey, C.; Iwao, M.; Castle, R. N.; Lee, M. L. Anal. Chem. 1981, 53, 400. (336) (a) Kumar, S. J. Org. Chem. 2002, 67, 8842. (b) Kumar, S.; Kim, T.-Y. J. Org. Chem. 2000, 65, 3883. (c) Croisy, A.; Mispelter, J.; Lhposte, J. M.; Zajdela, F.; Jacqignon, P. J. Heterocycl. Chem. 1984, 21, 353. (d) Warashawsky, D. Environ. Carcinog. Ecotoxicol. Rev. 1992, C10, 1. (e) Badger, D. M. Br. J. Cancer 1948, 2, 309. (337) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 4715. (338) Mishra, P.; Maurya, H. K.; Kumar, B.; Ram, V. J. Tetrahedron Lett. 2012, 53, 1056. (339) Bentley, K. Nat. Prod. Rep. 2000, 17, 247. (340) (a) Whaley, W. M.; Meadow, M. J. Org. Chem. 1954, 19, 661. (b) Galliazzo, G.; Bortolus, P.; Masetti, F. J. Chem. Soc., Perkin Trans. 2 1975, II, 1712. (341) Wu, Y.-C.; Liou, J. Y.; Duh, C.-Y.; Lee, S. -S; Lu, S. T. J. Pharmacol. 1997, 49, 706. (342) Sil, D.; Sharon, A.; Maulik, P. R.; Ram, V. J. Tetrahedron Lett. 2004, 45, 6619. (343) Pratap, R.; Raghunandan, R.; Maulik, P. R.; Ram, V. J. RSC Adv. 2012, 2, 1299. (344) Michael, J. P. Nat. Prod. Rep. 1997, 14, 605. (345) Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, New York, 1996, Vol. 5, p 245. (346) Mahata, P. K.; Venkatesh, C.; Syam Kumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3966.

(347) Maurya, H. K.; Gautam, S. K.; Pratap, R.; Tandon, V. K.; Kumar, A.; Bajpai, V.; Kumar, B.; Ram, V. J. Org. Biomol. Chem. 2012, 10, 4977. (348) Kamnaing, P.; Free, S. N. Y. F.; Fomun, Z. T.; Martin, M.-T.; Bodo, B. Phytochem. 1994, 36, 1561. (349) (a) Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Ballabeni, V.; Barocelli, E. Bioorg. Med. Chem. 2004, 12, 553. (b) Bruno, O.; Brullo, C.; Schenone, S.; Bondavalli, F.; Ranise, A.; Tognolini, M.; Impicciatore, M.; Ballabeni, V.; Barocelli, E. Bioorg. Med. Chem. 2006, 14, 121. (c) Bruno, O.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.; Bertoni, S.; Tognolini, M.; Impicciatore, M. Bioorg. Med. Chem. 2001, 9, 629. (d) Bruno, O.; Brullo, C.; Schenone, S.; Ranise, A.; Bondavalli, F.; Barocelli, E.; Tognolini, M.; Magnanini, F.; Ballabeni, V. II Farmaco 2002, 57, 753. (e) Bruno, O.; Schenone, S.; Ranise, A.; Bondavalli, F.; Filippelli, W.; Falcone, G.; Motola, G.; Mazzeo, F. II Farmaco 1999, 54, 95. (350) Maurya, H. K.; Gautam, S. K.; Pratap, R.; Tandon, V. K.; Kumar, A.; Kumar, B.; Ram, V. J. Eur. J. Med. Chem. 2014, 81, 367. (351) Pratap, R.; Ram, V. J. Tetrahedron Lett. 2007, 48, 5039. (352) (a) Kumar, A.; Hüch, V.; Ram, V. J. Cryst. Eng. Commun. 2013, 15, 7019. (b) Gabbutt, C. D.; Heron, B. M.; Thomas, D. A.; Light, M. E.; Hursthouse, M. B. Tetrahedron Lett. 2004, 45, 6151. (353) (a) Cagniant, P.; Charaux, C. Bull. Soc. Chim. Fr. 1961, III, 3249. (b) Jonas, J.; Forrest, T. P. J. Org. Chem. 1970, 35, 836. (c) Kotha, S.; Mandal, K.; Tiwari, A.; Mobin, S. M. Chem.Eur. J. 2006, 12, 8024. (d) Ramachary, D. B.; Narayana, V. V.; Ramkumar, K. Eur. J. Org. Chem. 2008, 23, 3907. (354) Gautam, S. K.; Maurya, H. K.; Pratap, R.; Kumar, B.; Tandon, V. K.; Ram, V. J. J. Heterocyl. Chem. 2014, DOI 10.1002/jhet.2342. (355) Sashidhara, K. V.; Rosaiah, J. N.; Narender, T. Tetrahedron Lett. 2007, 48, 1699. (356) (a) Wamhoff, H.; Korte, F. Chem. Ber. 1968, 101, 772. (b) Posakony, J.; Hirao, M.; Stevens, S.; Simon, J. A.; Bedalov, A. J. Med. Chem. 2004, 47, 2635. (357) Hutchins, R. O.; Rotstein, D.; Natale, N.; Fanelli, J. J. Org. Chem. 1976, 41, 3328.

10526

dx.doi.org/10.1021/cr500075s | Chem. Rev. 2014, 114, 10476−10526