New Data on the Mechanism of the Perkow-Arbuzov Reaction

We have now carried out crossover experiments in which the reaction of trimethyl phosphite with a mix ture of differently substituted chloro- and brom...
0 downloads 0 Views 845KB Size
105 New Data on the Mechanism of the PerkowArbuzov Reaction L Á S Z L ÓΤŐΚΕ, IMRE PETNEHÁZY, and GYŐNGYI S Z A K Á L — Department of Organic Chemical Technology, Technical University Budapest, 1521 Budapest, Műegyetem, Hungary

Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105

HARRY R. HUDSON and LUBA POWROZNYK — Department of Chemistry, The Polytechnic of North London, Holloway Road, London, N7 8DB, England CHRISTOPHER J. COOKSEY — Department of Chemistry, University College London, 20 Gordon Street, London WC1H ΟAJ, England

In spite of many previous studies on the mecha­ nisms by which trialkyl phosphites interact with αhalogenocarbonyl compounds, the reactive intermediates which lead to ketophosphonate (Arbuzov reaction) and to v i n y l phosphate (Perkow reaction) have i n no cases been clearly i d e n t i f i e d . It i s generally believed (1), however, that the Arbuzov product 4 results from initial attack by phosphorus at the α-carbon atom, whereas the Perkow product 7 i s formed by initial attack at the carbonyl carbon atom, followed by migra­ tion of phosphorus from carbon to oxygen (Scheme 1). Scheme 1

Recent kinetic studies, however, provide strong evidence for the involvement of a common f i r s t i n t e r ­ mediate (2). We have now carried out crossover experiments i n which the reaction of trimethyl phosphite with a mix­ ture of differently substituted chloro- and bromoacetophenones (e.g. C6H5COCH2Cl and p-MeC6H4COCH2Br) af­ fords a mixture of products whose composition shows that halogen exchange has occurred. In other words, the ratio of Perkow to Arbuzov products i s that which would be expected if C H COCH Br and p-MeC^H^OCH^l were also present in tne reaction mixture ^5 mol% i n benzene, 8 mol% in chlorobenzene, 23 mol% in acetonitrile). 0097-615 6/81/0171-0513$05.00/0 © 1981 American Chemical Society 6

5

2

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

514

PHOSPHORUS

CHEMISTRY

As d i r e c t h a l o g e n e x c h a n g e b e t w e e n t h e k e t o n e s was e x c l u d e d b y s e p a r a t e e x p e r i m e n t s t h e r e s u l t s a r e b e s t e x p l a i n e d by a s s u m i n g t h a t an i o n i c exchange r e ­ a c t i o n o c c u r s , i n v o l v i n g h a l i d e i o n from a q u a s i p h o s p h o n i u m i n t e r m e d i a t e (Scheme 2 ) . Scheme C.H C0CH Br c

Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105

Ό

Ο

o

Ζ

+ Cl~

2

C H C0CH Cl + Br" χ

r

c

D

b

o

Ζ

C o n f i r m a t i o n o f t h i s e f f e c t was o b t a i n e d b y c a r ­ r y i n g out experiments i n the presence o f added n u c l e o ­ p h i l e s ( i n the form o f t r i e t h y l b e n z y l a m m o n i u m c h l o r i d e , o r t e t r ab u t y 1 ammonium b r o m i d e ) w h i c h m o d i f i e d b o t h t h e product r a t i o and the o v e r a l l r e a c t i o n r a t e . To o b t a i n more i n f o r m a t i o n on t h e n a t u r e o f t h e quasiphosphonium intermediates i n v o l v e d i n these s y s ­ t e m s we h a v e s t u d i e d t h e r e a c t i o n s o f s t e r i c a l l y h i n ­ d e r e d n e o p e n t y l e s t e r s b y means o f Ρ nmr s p e c t r o s c o p y . T r i n e o p e n t y l p h o s p h i t e and α - b r o m o a c e t o p h e n o n e gave r i s e t o a p e a k a t +41 ppm due t o t h e k e t o p h o s p h o n i u m i n t e r m e d i a t e 3 (R = M e ~ C C H ; R' = P h ; X = B r ) w i t h i n h a l f an.hour o f mixing the r e a c t a n t s i n acetone-d at 27 C ( Ρ nmr s h i f t s a r e r e l a t i v e t o 85% H - P O , d ô w n f i e l d p o s i t i v e ) . P e a k s due t o t h e k e t o p h o s p n o n a t e 4 +19 ppm a n d t h e v i n y l p h o s p h a t e 7 ( - 7 ppm) w e r e a l s o observed (compound 4 and 7 have s a t i s f a c t o r y e l e m e n t a l a n a l y s i s a n d s p e c t r o s c o p i c d a t a ). T h e c o n c e n t r a t i o n o f t h e i n t e r m e d i a t e r e a c h e d a maximum a f t e r a b o u t t w o h o u r s when i t was p r e c i p i t a t e d f r o m a c e t o n e s o l u t i o n by t h e a d d i t i o n o f a n h y d r o u s e t h e r t o g i v e w h i t e c r y s ­ t a l s o f t r i n e o p e n t y l o x y (phenacy1)phosphonium b r o m i d e , i d e n t i f i e d b y e l e m e n t a l a n a l y s i s a n d nmr s p e c t r o s c o p y ( Ρ 6+41, i n C D C 1 ~ ) . When r e d i s s o l v e d i n a c e t o n e - d ^ , deuterochloroform, acetic acid, or acetic acid-acetone m i x t u r e s , the i n t e r m e d i a t e decomposed t o y i e l d k e t o p h o s p h o n a t e 4 b u t none o f t h e v i n y l p h o s p h a t e 6 ( P e r k o w p r o d u c t ) . N o r was t h e c o u r s e o f r e a c t i o n a f ­ f e c t e d by the a d d i t i o n o f c h l o r i d e i o n o r o f α - c h l o r o acetophenone i n a c e t o n i t r i l e . A p r o p o s a l ( _3 ) t h a t v i n y l p h o s p h a t e m i g h t b e f o r ­ med f r o m t h e k e t o p h o s p h o n i u m i n t e r m e d i a t e , a f t e r r e ­ arrangement v i a a four-membered c y c l i c phosphorane 8 i s t h e r e f o r e e x c l u d e d by o u r r e s u l t s under t h e s e r e ­ action conditions. 2

f i

(RO ) Ρ — Ç H ι

?

I,

ο — (i)—R' c

8

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

105.

TÔKE E T A L .

Mechanism

of

the

Perkow-Arbuzov

515

Reaction

We a l s o f o u n d t h a t t h e v i n y l p h o s p h a t e w a s t h e major r e a c t i o n product i n t h e i n i t i a l stages o ft h e r e a c t i o n o f t r i n e o p e n t y l p h o s p h i t e w i t h α-bromoacetophenone i n acetone-d , b u t t h a t t h e product ratio changed i n favour o f t h e ketophosphonate as t h e reac­ t i o n p r o c e e d e d . The r e s u l t s a r e c o n s i s t e n t w i t h ar e ­ a c t i o n scheme i n w h i c h t h e k e t o p h o s p h o n i u m a n d v i n y l oxyphosphonium intermediates a r e formed by p a r a l l e l pathways, e i t h e r d i r e c t l y from t h e r e a c t a n t s , o f from a common f i r s t i n t e r m e d i a t e X a n d i n t h e l i g h t o f o u r p r e v i o u s k i n e t i c s t u d i e s (2) the latter i sindicated (Scheme 3 ) .

Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105

f i

Scheme 1

+ 2

>

3 3

r

4

6

* 7

X

It i sclear also that the vinyloxyphosphonium i n t e r ­ m e d i a t e 6 i s much l e s s s t a b l e t h a n t h e k e t o p h o s p h o n i u m i n t e r m e d i a t e 3, a l t h o u g h t h i s d i f f e r e n c e m a y o n l y b e a p p a r e n t when t h e a l k o x y g r o u p (R ) i s s t e r i c a l l y hindered as i n t h e case o f neopentyl. Intermediates d e r i v e d from dineopentyl phenylphosphonite and from neopentyl diphenylphosphinite were f o u n d t o be c o n s i d e r a b l y more s t a b l e . R e a c t i o n w i t h α-bromoacetophenone gave t h e c o r r e s p o n d i n g A r b u z o v i n t e r m e d i a t e s 9, 1 0 a s c r y s t a l l i n e s o l i d s , t h e d i p h e n y l p h o s p h i n i t e d e r i v a t i v e 10 b e i n g sufficiently Phè ( O R ) C H C O P h 2

B r "

2

P h ^(0R)CH C0Ph B r "

9

10

P h P ( 0 R ) 0 C (:CH ) P h C l " 2

2

2

(R=Me CCH ) 3

2

11 s t a b l e f o r X-ray c r y s t a l s t r u c t u r e determination t o be c a r r i e d o u t . I n d e u t e r o c h l o r o f o r m a t 100 C ( s e a l e d t u b e ), t h e i n t e r m e d i a t e s w e r e a g a i n s h o w n t o d e c o m p o s e to yield..the corresponding Arbuzov products e x c l u s i v e ­ ly, the Ρ n m r s i g n a l s f o r 9 (ô +6 7.1) a n d f o r 1 0 (6+68.3) b e i n g r e p l a c e d b y s i n g l e p e a k s a t +32.1 a n d +28.2 ppm, r e s p e c t i v e l y . T h e p r e s e n c e o f p h o s p h o r u s jbonded C H groups i n t h e p r o d u c t s was c o n f i r m e d b y H nmr s p e c t r o s c o p y ( J f o r P-CLL 1 5 - 2 0 H z ) ; s i g n a l s d u e to v i n y l protons were n o t d e t e c t a b l e . From neopentyl d i p h e n y l p h o s p h i n i t e we w e r e a l s o a b l e t o o b t a i n t h e f i r s t example o f a c r y s t a l l i n e Perkow i n t e r m e d i a t e 11 ( £ +55.9) b y r e a c t i o n w i t h α - c h l o r o a c e t o p h e n o n e i n c h l o r o f o r m . Although r a t h e r u n s t a b l e , i t c o u l d be s t o r e d a t 0°C a n d w a s shown t o decompose t o t h e c o r r e ­ sponding v i n y l e s t e r (6+29.7) when d i s s o l v e d i n deute2

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

516

PHOSPHORUS CHEMISTRY

terochloform (t, c a . 40 m i n u t e s , a t r o o m temperature ) The p r e s e n c e o f v i n y l p r o t o n s i n t h e i n t e r m e d i a t e a n d i n i t s d e c o m p o s i t i o n p r o d u c t was i n d i c a t e d b y c o m p l e x m u l t i p l e t s i n t h e H n m r s p e c t r u m c e n t r e d a t 5.45 a n d 5.1 p p m , r e s p e c t i v e l y . By c a r r y i n g o u t t h e r e a c t i o n o f t r i n e o p e n t y l phosphite w i t h α-bromoacetophenone i n the presence o f a c e t i c a c i d (10% i n a c e t o n e - d ) we h a v e a l s o o b t a i n e d evidence f o r the t r a n s i e n t existence o f the v i n y l o x y p h o s p h o n i u m s p e c i e s . U n d e r t h e s e c o n d i t i o n s , we o b s e r ­ v e d the., r a p i d a p p e a r a n c e o f t h r e e t r a n s i e n t i n t e r m e d i ­ ates ( Ρ α+92, +40, a n d -7.3 p p m ) , a l t h o u g h v i n y l p h o s p h a t e was t h e a l m o s t e x c l u s i v e f i n a l p r o d u c t . T h e p e a k a t - 7 . 3 ppm d i s a p p e a r e d m o s t r a p i d l y , w i t h t h e s i m u l t a n e o u s development o f a c o r r e s p o n d i n g peak a t -7.2 ppm d u e t o v i n y l p h o s p h a t e , a n d i s tentatively assigned to the vinyloxyphosphonium bromide.-J. t i s known t h a t t e t r a a l k o x y p h o s p h o n i u m i o n s h a v e Ρ chemi­ c a l s h i f t s which a r e n o t f a r removed from t h o s e o f t h e c o r r e s p o n d i n g p h o s p h a t e e s t e r s ( £ ). The i d e n t i t i e s o f t h e p e a k s a t +40 a n d +92 ppm a r e u n c e r t a i n . One l i k e l y s p e c i e s t o b e p r e s e n t i n a c i d c o n d i t i o n s i s t h e p r o t o n a t e d f o r m o f t h e b e t a i n e 5. Such i n t e r m e d i a t e s a r e assumed t o be formed i n a c i d c o n d i t i o n s and t o give r i s e t o the formation o f a-hydroxyphosphonates, ( RO) P (O) C H X (R') OH (1 ). I t i s a l s o l i k e l y t h a t t h e b e t a i n e 5 i s t h e f i r s t common i n t e r m e ­ d i a t e (scheme 3 ) i n t h e f o r m a t i o n o f A r b u z o v a n d Perkow p r o d u c t s , t h e s e b e i n g formed b y a 1 , 2 - m i g r a t i o n o f t h e p h o s p h i t e m o i e t y t o t h e α - c a r b o n atom o r t o o x y g e n , r e s p e c t i v e l y . We d e t e c t e d n o s i g n a l a t +13 ppm w h i c h would be e x p e c t e d i f t h e b r o m o ( t r i n e o p e n t y l o x y ) phosphonium i n t e r m e d i a t e h a d been formed, a l t h o u g h such i n t e r m e d i a t e s a r e known t o b e v e r y s h o r t - l i v e d N o r was t h e c o r r e s p o n d i n g p h o s p h o r o b r o m i d a t e d e t e c t e d a t -8.5ppm (D ·

Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105

g

2

Literature cited 1. Chopard,P.A.; C l a r k , V . M . ; Hudson,R.F. and K i r b y , A . Tetrahedron 1965, 21, 1961. 2. T o k e , L . ; Petneházy,I. and S z a k á l , G y . J.Chem.Soc.Res. (S) 1978, 155. 3. Marquading,D.; Ramirez,F.; U g i , I . and G i l l e s p i e , P . Angew.Chem.Int.Edn. 1973, 12, 91. 4. F i n l e y , J . H . ; Denney,D.Z. and Denney,D.B. J.Amer. Chem.Soc. 1969, 91, 5826. 5. M i c h a l s k i , J . ; Pakulski,M and Skowronska,A. J . C . S . Perkin I . 1980, 833. RECEIVED July 7, 1981.

In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.