105 New Data on the Mechanism of the PerkowArbuzov Reaction L Á S Z L ÓΤŐΚΕ, IMRE PETNEHÁZY, and GYŐNGYI S Z A K Á L — Department of Organic Chemical Technology, Technical University Budapest, 1521 Budapest, Műegyetem, Hungary
Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105
HARRY R. HUDSON and LUBA POWROZNYK — Department of Chemistry, The Polytechnic of North London, Holloway Road, London, N7 8DB, England CHRISTOPHER J. COOKSEY — Department of Chemistry, University College London, 20 Gordon Street, London WC1H ΟAJ, England
In spite of many previous studies on the mecha nisms by which trialkyl phosphites interact with αhalogenocarbonyl compounds, the reactive intermediates which lead to ketophosphonate (Arbuzov reaction) and to v i n y l phosphate (Perkow reaction) have i n no cases been clearly i d e n t i f i e d . It i s generally believed (1), however, that the Arbuzov product 4 results from initial attack by phosphorus at the α-carbon atom, whereas the Perkow product 7 i s formed by initial attack at the carbonyl carbon atom, followed by migra tion of phosphorus from carbon to oxygen (Scheme 1). Scheme 1
Recent kinetic studies, however, provide strong evidence for the involvement of a common f i r s t i n t e r mediate (2). We have now carried out crossover experiments i n which the reaction of trimethyl phosphite with a mix ture of differently substituted chloro- and bromoacetophenones (e.g. C6H5COCH2Cl and p-MeC6H4COCH2Br) af fords a mixture of products whose composition shows that halogen exchange has occurred. In other words, the ratio of Perkow to Arbuzov products i s that which would be expected if C H COCH Br and p-MeC^H^OCH^l were also present in tne reaction mixture ^5 mol% i n benzene, 8 mol% in chlorobenzene, 23 mol% in acetonitrile). 0097-615 6/81/0171-0513$05.00/0 © 1981 American Chemical Society 6
5
2
In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
514
PHOSPHORUS
CHEMISTRY
As d i r e c t h a l o g e n e x c h a n g e b e t w e e n t h e k e t o n e s was e x c l u d e d b y s e p a r a t e e x p e r i m e n t s t h e r e s u l t s a r e b e s t e x p l a i n e d by a s s u m i n g t h a t an i o n i c exchange r e a c t i o n o c c u r s , i n v o l v i n g h a l i d e i o n from a q u a s i p h o s p h o n i u m i n t e r m e d i a t e (Scheme 2 ) . Scheme C.H C0CH Br c
Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105
Ό
Ο
o
Ζ
+ Cl~
2
C H C0CH Cl + Br" χ
r
c
D
b
o
Ζ
C o n f i r m a t i o n o f t h i s e f f e c t was o b t a i n e d b y c a r r y i n g out experiments i n the presence o f added n u c l e o p h i l e s ( i n the form o f t r i e t h y l b e n z y l a m m o n i u m c h l o r i d e , o r t e t r ab u t y 1 ammonium b r o m i d e ) w h i c h m o d i f i e d b o t h t h e product r a t i o and the o v e r a l l r e a c t i o n r a t e . To o b t a i n more i n f o r m a t i o n on t h e n a t u r e o f t h e quasiphosphonium intermediates i n v o l v e d i n these s y s t e m s we h a v e s t u d i e d t h e r e a c t i o n s o f s t e r i c a l l y h i n d e r e d n e o p e n t y l e s t e r s b y means o f Ρ nmr s p e c t r o s c o p y . T r i n e o p e n t y l p h o s p h i t e and α - b r o m o a c e t o p h e n o n e gave r i s e t o a p e a k a t +41 ppm due t o t h e k e t o p h o s p h o n i u m i n t e r m e d i a t e 3 (R = M e ~ C C H ; R' = P h ; X = B r ) w i t h i n h a l f an.hour o f mixing the r e a c t a n t s i n acetone-d at 27 C ( Ρ nmr s h i f t s a r e r e l a t i v e t o 85% H - P O , d ô w n f i e l d p o s i t i v e ) . P e a k s due t o t h e k e t o p h o s p n o n a t e 4 +19 ppm a n d t h e v i n y l p h o s p h a t e 7 ( - 7 ppm) w e r e a l s o observed (compound 4 and 7 have s a t i s f a c t o r y e l e m e n t a l a n a l y s i s a n d s p e c t r o s c o p i c d a t a ). T h e c o n c e n t r a t i o n o f t h e i n t e r m e d i a t e r e a c h e d a maximum a f t e r a b o u t t w o h o u r s when i t was p r e c i p i t a t e d f r o m a c e t o n e s o l u t i o n by t h e a d d i t i o n o f a n h y d r o u s e t h e r t o g i v e w h i t e c r y s t a l s o f t r i n e o p e n t y l o x y (phenacy1)phosphonium b r o m i d e , i d e n t i f i e d b y e l e m e n t a l a n a l y s i s a n d nmr s p e c t r o s c o p y ( Ρ 6+41, i n C D C 1 ~ ) . When r e d i s s o l v e d i n a c e t o n e - d ^ , deuterochloroform, acetic acid, or acetic acid-acetone m i x t u r e s , the i n t e r m e d i a t e decomposed t o y i e l d k e t o p h o s p h o n a t e 4 b u t none o f t h e v i n y l p h o s p h a t e 6 ( P e r k o w p r o d u c t ) . N o r was t h e c o u r s e o f r e a c t i o n a f f e c t e d by the a d d i t i o n o f c h l o r i d e i o n o r o f α - c h l o r o acetophenone i n a c e t o n i t r i l e . A p r o p o s a l ( _3 ) t h a t v i n y l p h o s p h a t e m i g h t b e f o r med f r o m t h e k e t o p h o s p h o n i u m i n t e r m e d i a t e , a f t e r r e arrangement v i a a four-membered c y c l i c phosphorane 8 i s t h e r e f o r e e x c l u d e d by o u r r e s u l t s under t h e s e r e action conditions. 2
f i
(RO ) Ρ — Ç H ι
?
I,
ο — (i)—R' c
8
In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
105.
TÔKE E T A L .
Mechanism
of
the
Perkow-Arbuzov
515
Reaction
We a l s o f o u n d t h a t t h e v i n y l p h o s p h a t e w a s t h e major r e a c t i o n product i n t h e i n i t i a l stages o ft h e r e a c t i o n o f t r i n e o p e n t y l p h o s p h i t e w i t h α-bromoacetophenone i n acetone-d , b u t t h a t t h e product ratio changed i n favour o f t h e ketophosphonate as t h e reac t i o n p r o c e e d e d . The r e s u l t s a r e c o n s i s t e n t w i t h ar e a c t i o n scheme i n w h i c h t h e k e t o p h o s p h o n i u m a n d v i n y l oxyphosphonium intermediates a r e formed by p a r a l l e l pathways, e i t h e r d i r e c t l y from t h e r e a c t a n t s , o f from a common f i r s t i n t e r m e d i a t e X a n d i n t h e l i g h t o f o u r p r e v i o u s k i n e t i c s t u d i e s (2) the latter i sindicated (Scheme 3 ) .
Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105
f i
Scheme 1
+ 2
>
3 3
r
4
6
* 7
X
It i sclear also that the vinyloxyphosphonium i n t e r m e d i a t e 6 i s much l e s s s t a b l e t h a n t h e k e t o p h o s p h o n i u m i n t e r m e d i a t e 3, a l t h o u g h t h i s d i f f e r e n c e m a y o n l y b e a p p a r e n t when t h e a l k o x y g r o u p (R ) i s s t e r i c a l l y hindered as i n t h e case o f neopentyl. Intermediates d e r i v e d from dineopentyl phenylphosphonite and from neopentyl diphenylphosphinite were f o u n d t o be c o n s i d e r a b l y more s t a b l e . R e a c t i o n w i t h α-bromoacetophenone gave t h e c o r r e s p o n d i n g A r b u z o v i n t e r m e d i a t e s 9, 1 0 a s c r y s t a l l i n e s o l i d s , t h e d i p h e n y l p h o s p h i n i t e d e r i v a t i v e 10 b e i n g sufficiently Phè ( O R ) C H C O P h 2
B r "
2
P h ^(0R)CH C0Ph B r "
9
10
P h P ( 0 R ) 0 C (:CH ) P h C l " 2
2
2
(R=Me CCH ) 3
2
11 s t a b l e f o r X-ray c r y s t a l s t r u c t u r e determination t o be c a r r i e d o u t . I n d e u t e r o c h l o r o f o r m a t 100 C ( s e a l e d t u b e ), t h e i n t e r m e d i a t e s w e r e a g a i n s h o w n t o d e c o m p o s e to yield..the corresponding Arbuzov products e x c l u s i v e ly, the Ρ n m r s i g n a l s f o r 9 (ô +6 7.1) a n d f o r 1 0 (6+68.3) b e i n g r e p l a c e d b y s i n g l e p e a k s a t +32.1 a n d +28.2 ppm, r e s p e c t i v e l y . T h e p r e s e n c e o f p h o s p h o r u s jbonded C H groups i n t h e p r o d u c t s was c o n f i r m e d b y H nmr s p e c t r o s c o p y ( J f o r P-CLL 1 5 - 2 0 H z ) ; s i g n a l s d u e to v i n y l protons were n o t d e t e c t a b l e . From neopentyl d i p h e n y l p h o s p h i n i t e we w e r e a l s o a b l e t o o b t a i n t h e f i r s t example o f a c r y s t a l l i n e Perkow i n t e r m e d i a t e 11 ( £ +55.9) b y r e a c t i o n w i t h α - c h l o r o a c e t o p h e n o n e i n c h l o r o f o r m . Although r a t h e r u n s t a b l e , i t c o u l d be s t o r e d a t 0°C a n d w a s shown t o decompose t o t h e c o r r e sponding v i n y l e s t e r (6+29.7) when d i s s o l v e d i n deute2
In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
516
PHOSPHORUS CHEMISTRY
terochloform (t, c a . 40 m i n u t e s , a t r o o m temperature ) The p r e s e n c e o f v i n y l p r o t o n s i n t h e i n t e r m e d i a t e a n d i n i t s d e c o m p o s i t i o n p r o d u c t was i n d i c a t e d b y c o m p l e x m u l t i p l e t s i n t h e H n m r s p e c t r u m c e n t r e d a t 5.45 a n d 5.1 p p m , r e s p e c t i v e l y . By c a r r y i n g o u t t h e r e a c t i o n o f t r i n e o p e n t y l phosphite w i t h α-bromoacetophenone i n the presence o f a c e t i c a c i d (10% i n a c e t o n e - d ) we h a v e a l s o o b t a i n e d evidence f o r the t r a n s i e n t existence o f the v i n y l o x y p h o s p h o n i u m s p e c i e s . U n d e r t h e s e c o n d i t i o n s , we o b s e r v e d the., r a p i d a p p e a r a n c e o f t h r e e t r a n s i e n t i n t e r m e d i ates ( Ρ α+92, +40, a n d -7.3 p p m ) , a l t h o u g h v i n y l p h o s p h a t e was t h e a l m o s t e x c l u s i v e f i n a l p r o d u c t . T h e p e a k a t - 7 . 3 ppm d i s a p p e a r e d m o s t r a p i d l y , w i t h t h e s i m u l t a n e o u s development o f a c o r r e s p o n d i n g peak a t -7.2 ppm d u e t o v i n y l p h o s p h a t e , a n d i s tentatively assigned to the vinyloxyphosphonium bromide.-J. t i s known t h a t t e t r a a l k o x y p h o s p h o n i u m i o n s h a v e Ρ chemi c a l s h i f t s which a r e n o t f a r removed from t h o s e o f t h e c o r r e s p o n d i n g p h o s p h a t e e s t e r s ( £ ). The i d e n t i t i e s o f t h e p e a k s a t +40 a n d +92 ppm a r e u n c e r t a i n . One l i k e l y s p e c i e s t o b e p r e s e n t i n a c i d c o n d i t i o n s i s t h e p r o t o n a t e d f o r m o f t h e b e t a i n e 5. Such i n t e r m e d i a t e s a r e assumed t o be formed i n a c i d c o n d i t i o n s and t o give r i s e t o the formation o f a-hydroxyphosphonates, ( RO) P (O) C H X (R') OH (1 ). I t i s a l s o l i k e l y t h a t t h e b e t a i n e 5 i s t h e f i r s t common i n t e r m e d i a t e (scheme 3 ) i n t h e f o r m a t i o n o f A r b u z o v a n d Perkow p r o d u c t s , t h e s e b e i n g formed b y a 1 , 2 - m i g r a t i o n o f t h e p h o s p h i t e m o i e t y t o t h e α - c a r b o n atom o r t o o x y g e n , r e s p e c t i v e l y . We d e t e c t e d n o s i g n a l a t +13 ppm w h i c h would be e x p e c t e d i f t h e b r o m o ( t r i n e o p e n t y l o x y ) phosphonium i n t e r m e d i a t e h a d been formed, a l t h o u g h such i n t e r m e d i a t e s a r e known t o b e v e r y s h o r t - l i v e d N o r was t h e c o r r e s p o n d i n g p h o s p h o r o b r o m i d a t e d e t e c t e d a t -8.5ppm (D ·
Downloaded by UCSF LIB CKM RSCS MGMT on November 23, 2014 | http://pubs.acs.org Publication Date: November 11, 1981 | doi: 10.1021/bk-1981-0171.ch105
g
2
Literature cited 1. Chopard,P.A.; C l a r k , V . M . ; Hudson,R.F. and K i r b y , A . Tetrahedron 1965, 21, 1961. 2. T o k e , L . ; Petneházy,I. and S z a k á l , G y . J.Chem.Soc.Res. (S) 1978, 155. 3. Marquading,D.; Ramirez,F.; U g i , I . and G i l l e s p i e , P . Angew.Chem.Int.Edn. 1973, 12, 91. 4. F i n l e y , J . H . ; Denney,D.Z. and Denney,D.B. J.Amer. Chem.Soc. 1969, 91, 5826. 5. M i c h a l s k i , J . ; Pakulski,M and Skowronska,A. J . C . S . Perkin I . 1980, 833. RECEIVED July 7, 1981.
In Phosphorus Chemistry; Quin, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.