40 New Polycondensation Polymers GERHARD
BIER
Dynamit N o b e l AG, 521 Troisdorf Bez. K o l n , Germany
Although Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
great
amorphous
interest
synthesized elements phatic
polyamides
in the and
and the
the glass temperature carbonamide ture of the phatic and
unbranched group
also
cial product
The
The
group;
methyl
The the
glass
methylenediamine
is Trogamid
The
aromatic
high glass
temperature. acid and
and
tempera-
of the
prevent of the
ali-
influence
ali-
crystallization
as compared
position
based on terephthalic
these
branches
in weight
the glass temperature influences
were
structural
ring, the methyl-branched
and crystallinity.
compounds.
ones
characteristic
groups result in a relatively polyamides.
generated
some new
carbonamide
chain with ca. 10%
increase
field,
examined.
were the aromatic
chain,
so far have not
plastics
with
the
carbonamide A
commer-
trimethylhexa-
T.
T p h e properties of a p l a s t i c c a n b e affected b y differences i n structures A
—i.e., m o b i l i t y of the m a i n c h a i n , v o l u m e a n d arrangement ( t a c t i c i t y )
of the l a t e r a l substituents, forces b e t w e e n the chains (e.g., bridges), crystallinity.
M a c r o m o l e c u l a r p r o d u c t s of d i s t i n c t l y
hydrogen different
structures c a n l e a d to t e c h n i c a l substances w i t h s i m i l a r properties a n d a p p l i c a t i o n . N y l o n 6 / 6 a n d P E P T ( p o l y e t h y l e n e t e r e p h t h a l a t e ) are c o m m o n examples. I n the fiber field c r y s t a l l i n i t y a n d i n t e r m o l e c u l a r forces, b o t h a r i s i n g f r o m g e o m e t r i c a l configurations, are essential. T h e i m p o r t a n t factors are the h y d r o g e n b r i d g e s for n y l o n 6 / 6 a n d the forces b e t w e e n the a r o m a t i c groups for P E T P . I n s y n t h e s i z i n g the most i m p o r t a n t polyesters a n d p o l y a m i d e s i n thermoplastics—i.e., polyesters: P E T P , p o l y c a r b o n a t e s (11,16)
and poly
a m i d e s : n y l o n 6, n y l o n 6 / 6 etc.—the emphasis for polyesters is o n p r o d ucts w i t h a h i g h a r o m a t i c content ( p a r t i a l l y a r o m a t i c p r o d u c t s ) , a n d for p o l y a m i d e s the emphasis is o n p u r e l y a l i p h a t i c p r o d u c t s . A m o n g the polyesters there are n e i t h e r p u r e l y a l i p h a t i c n o r
fully
a r o m a t i c p r o d u c t s as c o m m e r c i a l p r o d u c t s w h i c h are a v a i l a b l e o r suitable 612
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
40.
BIER
New
Poly condensation
613
Polymers
as a t h e r m o p l a s t i c m a t e r i a l . A s regards the p o l y a m i d e s , the p a r t i a l l y arom a t i c a n d f u l l y a r o m a t i c p r o d u c t s are not w i t h i n the m a n u f a c t u r e r s ' p r o d u c t i o n range.
T h e f u l l y a r o m a t i c p r o d u c t s d o not l e n d themselves
to
t h e r m o p l a s t i c p r o c e s s i n g ( 7 , 1 3 ) . T h e a n s w e r for t h e r m o p l a s t i c processing possibly could be a polyamide based on terephthalic acid and hexamethylenediamine.
H o w e v e r , such a product w o u l d have a crystalline
m e l t i n g p o i n t of 371 ° C . necessitating a p r o c e s s i n g t e m p e r a t u r e too close to the d e c o m p o s i t i o n
temperature.
A p r o d u c t of s i m i l a r structure b u t
w i t h o u t c r y s t a l l i n i t y m i g h t p e r h a p s f a c i l i t a t e p r o c e s s i n g at l o w e r t e m peratures. T h e f o l l o w i n g deals w i t h a p r o d u c t l i k e l y to fill this obvious Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
gap. T h e s t a r t i n g p o i n t of o u r w o r k has b e e n studies b y R . G a b l e r a n d co-workers i n the f o r m e r Z u r i c h R e s e a r c h I n s t i t u t e of W . R . G r a c e & C o . (8).
D y n a m i t N o b e l l e a r n e d of G a b l e r ' s w o r k at a r e l a t i v e l y e a r l y stage
a n d a c q u i r e d a license o n the patents a n t i c i p a t e d . O n e of the p r o d u c t s d e s c r i b e d b y G a b l e r has b e e n d e v e l o p e d b y F . B l a s c h k e , G . S c h a d e , a n d H . W e m h e u e r via a p i l o t p l a n t to a s e m i c o m m e r c i a l p r o d u c t i o n stage (discussed later).
T h i s p r o d u c t has the t r a d e n a m e T r o g a m i d T .
The
l a b o r a t o r y studies d e s c r i b e d i n the f o l l o w i n g section h a v e b e e n c a r r i e d out b y G . Renckhoff, W . W o l f e s , a n d P . Janssen (synthesis) a n d A . G a r d z i e l l a , R . M i n k e , E . Bessler, a n d W . L e s s m a n n ( p r o d u c t
Amorphous Polyamides Based on Terephthalic
studies).
Acid
A s a d i c a r b o x y l i c a c i d G a b l e r et al. u s e d p r i m a r i l y t e r e p h t h a l i c a c i d a n d i n some cases i s o p h t h a l i c a c i d also. A s d i a m i n e t h e y u s e d a n u m b e r of b r a n c h e d a l i p h a t i c p r o d u c t s , a n d the emphasis w a s o n p r o d u c t s h a v i n g C - 6 c h a i n m e m b e r s s e p a r a t i n g the t w o N H
2
groups.
T a b l e I lists some
of G a b l e r ' s p r o d u c t s . A m i x t u r e of the last t w o d i a m i n e s i n T a b l e I is a c o m m e r c i a l p r o d u c t of S c h o l v e n C h e m i e i n G e r m a n y . T h e m e l t i n g points g i v e n b y G a b l e r h a v e b e e n d e t e r m i n e d v i s u a l l y . I n v i e w of the fact that the p r o d u c t s are a l l a m o r p h o u s the points are sinter points rather t h a n m e l t i n g points.
More
i n t e r e s t i n g t h a n the sinter temperatures are the glass temperatures s e c o n d - o r d e r t r a n s i t i o n points w h i c h h a v e b e e n d e t e r m i n e d o n
or
some
p r o d u c t s s u b m i t t e d to us b y G a b l e r (last t w o c o l u m n s of T a b l e I ) . Glass temperatures h a v e b e e n d e t e r m i n e d b y the D T A m e t h o d w i t h t w o different i n s t r u m e n t s ( a M e t t l e r d i f f e r e n t i a l t h e r m o a n a l y z e r a n d a P e r k i n - E l m e r d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r D S C 1) ( 9 ) i n t w o d i f ferent laboratories. T h e y are l i s t e d i n the t w o last c o l u m n s of T a b l e I. S m a l l differences of 0 ° - 7 ° C . w e r e observed. T h i s order of agreement was sufficient.
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
614
ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N
Table I.
PROCESSES
Amorphous Polyamides Based on Terephthalic A c i d by Gabler et al. Melting Point,
Diamine
Glass
Temperature/DTA
Gabler
Minke
Gardziella
180
135
130
217
150
143
C
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
:—N
c C
I
c
I
c
I
C— C — C — N N—C—C—C—C
I
c
200
-C—C—N
200
139
139
N—C—C—C—C—C—C—N
—
159
153
N—C
c
c
I
C T h e glass temperatures of a l l p r o d u c t s f a l l w i t h i n the r a n g e
130°-
160 ° C . T h e p a r t i a l l y a r o m a t i c p o l y c a r b o n a t e has a glass t e m p e r a t u r e of 1 5 0 ° C ; t h e p a r t i a l l y a r o m a t i c P E T P has a glass t e m p e r a t u r e of
75°C.
T o d e t e r m i n e t h e r a t i o o f t h e a r o m a t i c to t h e a l i p h a t i c content, w e assume f o u r c h a i n l i n k s for the b e n z e n e r i n g s . T h e n t h e p o l y c a r b o n a t e has the ratio: aromatic/aliphatic links =
4 : 6 , t h e polyester has a r a t i o 4 : 2 , a n d
the polyamides ( T a b l e I ) have a ratio 4:10.
Despite the lower aromatic
c o n t e n t t h e glass t e m p e r a t u r e s of some of the a m o r p h o u s p o l y a m i d e are
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
40.
BIER
New
Poly condensation
615
Polymers
of the same o r d e r as those of the p o l y c a r b o n a t e a n d h i g h e r t h a n those of the c r y s t a l l i n e t e r e p h t h a l i c polyester
(75°C).
W h a t t h e n are the factors w h i c h cause the h i g h glass t e m p e r a t u r e a n d the a m o r p h o u s character?
T o a n s w e r this, w e m u s t a n a l y z e the
structure of the p o l y a m i d e s .
T h e r e are three s t r u c t u r a l c o m p o n e n t s
the p o l y a m i d e s i n q u e s t i o n :
(1)
aromatic group,
(3)
a branched aliphatic group,
t w o c a r b o n a m i d e groups.
T h e influence
(2)
of an
exerted
b y these c o m p o n e n t s is e x a m i n e d m o r e closely i n the f o l l o w i n g discussions. T r i a l s to c a l c u l a t e glass temperatures of p o l y a m i d e s b y s u m m i n g the p a r t i a l c o n t r i b u t i o n s of the components of p o l y a m i d e s are d e s c r i b e d Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
b y B e a m a n (2)
and Askadskii
(I).
Branched and Unbranched Diamines. T o e x a m i n e the influence of branching, polyamides based on adipic acid a n d terephthalic acid have b e e n p r e p a r e d w i t h b r a n c h e d a n d u n b r a n c h e d d i a m i n e s of e q u a l c h a i n length.
T h e i r m e l t i n g points
and
glass
temperatures
are
listed i n
Table II. Table II.
Unbranched and Branched Aliphatic Chains in Polyamides
Acid
Diamine
T
Adipic
N—C—C—C—C—C—C—N
264
Adipic
C C | I N—C—C—C—C—C—C—N
am."
Terephthalic
C (isomer mixture) N—C—C—C—C—C—C—N
371
140
Terephthalic
N—C—C—C—C—C—C—N
am.
148
I
T
m
g
50-57
65
C (isomer mixture) a
Am = amorphous. T h e three m e t h y l groups, w h i c h a c c o u n t for a b o u t 11.5 a n d 1 0 . 5 %
of t h e w e i g h t , e l i m i n a t e c r y s t a l l i n i t y c o m p l e t e l y , b o t h for the a d i p i c a c i d - b a s e d a l i p h a t i c p o l y a m i d e a n d the t e r e p h t h a l i c a c i d - b a s e d a r o m a t i c aliphatic polyamide. A s i m i l a r o b s e r v a t i o n of r e d u c e d c r y s t a l l i n i t y c a u s e d b y m e t h y l side groups w a s n o t e d b y Y u a n d E v a n s ( 1 7 ) , w h o find t h a t the i n t r o d u c t i o n of 2 - m e t h y l substituents i n the 4,4' p o s i t i o n i n the h e p t a n e d i a m i n e y i e l d s an amorphous polyterephthalamide.
T h e corresponding
polyamide
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
of
ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N
616
PROCESSES
3 , 3 ' - d i m e t h y l h e x a m e t h y l e n e d i a m i n e a n d t e r e p h t h a l i c a c i d is not m e n t i o n e d i n the l i t e r a t u r e . I n a d u P o n t p a t e n t ( 6 ) h o w e v e r , it is c l a i m e d i n a g e n e r a l i z e d w a y , t h a t p o l y a m i d e s of T P A a n d m o n o m e t h y l - or d i m e t h y l h e x a m e t h y l e n e d i a m i n e s are suitable r a w m a t e r i a l s for
fibers.
Therefore,
these s h o u l d b e e x p e c t e d to b e c r y s t a l l i n e . A
statistical
ethylene—propylene
copolymer
with
the
r a t i o of
4
ethylene u n i t s to 3 p r o p y l e n e units ( E . P . R u b b e r ) has a p p r o x i m a t e l y the same degree of b r a n c h i n g as the t r i m e t h y l n y l o n 6 / 6 of T a b l e I I . T h e three m e t h y l groups h a v e no s u b s t a n t i a l influence o n the glass t e m p e r a t u r e of o u r p o l y a m i d e s , b u t t h e y d o increase it a little e v e n i n Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
t h e last s a m p l e i n T a b l e I I despite the h i g h e r w e i g h t content of a l i p h a t i c segment.
the
I n b o t h cases w e h a v e three m e t h y l side groups o n
14 l i n e a r c h a i n segments.
Table III. Polyamides of T P A and Diamines with Different Structures and Similar Molecular Weights Carbon Skeleton of Diamine —C—C—C—C—C—C—C—C—C— C
T , °C.
T , °C.
371
115
m
g
C
Diamines of E q u a l Molecular Weight and Different Chain Structure. T h e b r a n c h e d d i a m i n e s discussed p r e v i o u s l y h a v e n i n e c a r b o n
atoms.
E n t i r e l y different d i a m i n e structures c a n b e b u i l t u p f r o m n i n e c a r b o n atoms.
T h r e e p r o d u c t s ( d i a m i n e s ) w i t h c h a r a c t e r i s t i c a l l y different c a r -
b o n skeletons w e r e a v a i l a b l e : a n u n b r a n c h e d l i n e a r p r o d u c t ( n o n a m e t h y l enediamine),
a branched
product,
(trimethylhexamethylenediamine),
a n d a c y c l o a l i p h a t i c c o m p o u n d ( I P D ) w i t h 10 c a r b o n atoms. P o l y a m i d e s
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
BIER
40.
New
Poly condensation
617
Polymers
w i t h t e r e p h t h a l i c a c i d h a v e b e e n s y n t h e s i z e d f r o m a l l three d i a m i n e s . T h e glass temperatures are l i s t e d i n T a b l e I I I . T h e p r o d u c t of Y u a n d E v a n s (17)
is also i n c l u d e d .
A s expected, the a r r a n g e m e n t of the c a r b o n atoms i n the d i a m i n e exerts a s u b s t a n t i a l influence o n the c r y s t a l l i n i t y a n d the glass t e m p e r a ture.
T h e u n b r a n c h e d l i n e a r d i a m i n e gives a c r y s t a l l i n e p r o d u c t ; the
other
diamines
give
amorphous
polyamides.
The
diamine with
the
c y c l o a l i p h a t i c structure leads to p r o d u c t s w i t h o b v i o u s l y stiffened chains a n d thus r e l a t i v e l y h i g h glass temperatures. a m i d e of I P D a n d a d i p i c a c i d has a T
g
F o r c o m p a r i s o n the p o l y -
of 160 ° C .
I n this c o n n e c t i o n it
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
w o u l d be i n t e r e s t i n g to s t u d y analogous p o l y a m i d e s h a v i n g m e t h y l s u b s t i t u t i o n at the n i t r o g e n i n s t e a d of the c a r b o n c h a i n . W e h a v e not s y n thesized such products. H o w e v e r , they have been described b y Shashoua a n d E a r e c k s o n (12)
a n d b y Saotome a n d K o m o t o (10).
T h e authors do
not state the glass temperatures i n t h e i r p u b l i c a t i o n s . Influence of Aliphatic and Cyclic Structural Units. T h e influence of c y c l i c s t r u c t u r a l u n i t s is e v i d e n t f r o m T a b l e s I I a n d I I I . T a b l e I I shows that r e p l a c i n g the a d i p i c a c i d b y t e r e p h a t h a l i c a c i d increases the m e l t i n g p o i n t a n d the glass t e m p e r a t u r e b y a b o u t
100°C.
Table III
shows that r e p l a c i n g the a l i p h a t i c chains b y a c y c l o a l i p h a t i c c h a i n of s i m i l a r m o l e c u l a r w e i g h t increases the glass t e m p e r a t u r e b y ca. 100°C.
S i m i l a r results are k n o w n f r o m the polyester.
50°-
W e have listed
some p r o d u c t s i n T a b l e I V . Table IV.
Polyesters of Ethylene Glycol and Dicarboxylic Acids T , °C
T , °C.
50 64 260 170 255
-80 25 70-80 64 113
ni
Adipic acid Jrans-Hexahydroterephthalic acid Terephthalic acid Naphthalene 1,4-dicarboxylic acid Naphthalene 2,6-dicarboxylic acid
g
H e r e the differences i n the m e l t i n g temperatures a n d i n the glass temperatures are e v e n greater t h a n i n T a b l e s I I a n d I I I . L a r g e differences are e n c o u n t e r e d o n c o m p a r i n g a p u r e l y a l i p h a t i c polyester w i t h a h i g h l y a r o m a t i c polyester (cf. Table V . Dicarboxylic
Acid
Adipic acid Adipic acid Terephthalic acid
T a b l e V ) . A polyester of a d i p i c a c i d a n d
Aliphatic and Aromatic Polyesters Diol
T , °C.
T , °C.
decanediol bisphenol A bisphenol A
71 am. 315
—80 63 200
m
g
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
618
ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N
d e c a n e d i o l has a glass t e m p e r a t u r e of ca.
PROCESSES
— 80 ° C . a n d a polyester of
t e r e p h t h a l i c a c i d a n d b i s p h e n o l A of a b o u t 2 0 0 ° C . Comparison of the Structural Units of Ester and Amide. T h e effect of h y d r o g e n b r i d g e s i n p o l y a m i d e s has a l r e a d y b e e n m e n t i o n e d .
For a
m o r e accurate d e m o n s t r a t i o n of the influence of N H b r i d g e s , i t w o u l d be necessary
to c o m p a r e p o l y a m i d e s w i t h analogous
w e i g h t ketones, w h i c h h a v e a — C H (Table VI).
2
S u c h p r o d u c t s are not yet d e s c r i b e d .
chosen the polyesters for c o m p a r i s o n .
h i g h molecular
u n i t i n s t e a d of the N H c h a i n l i n k Therefore, w e have
These have an oxygen chain link
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
i n s t e a d of the N H c h a i n l i n k . Table V I . Paraffin
Structures of Aliphatic Chains
—C—C—C—C—C—C—C—C—C—C—C—C— O
O
Ester T a b l e VII gives the T
g
values of some p o l y c o n d e n s a t i o n p o l y m e r s ,
polyesters, a n d p o l y a m i d e s w h i c h w e h a v e synthesized. F o r these p o l y m e r s i n T a b l e VII the s u b s t i t u t i o n of one
oxygen
l i n k b y one N H l i n k p e r six c h a i n m e m b e r s increases the glass t e m p e r a t u r e b y 100 ° C . or m o r e .
T h e a m i d e effect is m u c h smaller w h e n the
subunits of the chains f o r m v e r y stiff molecules. T h i s is t r u e for p o l y m e r s of h i g h a r o m a t i c content.
T h u s , a p o l y a m i d e of i s o p h t h a l i c a c i d
(m-
x y l y l e n e d i a m i n e ) has a glass t e m p e r a t u r e of 165 ° C , a n d a polyester of i s o p h t h a l i c a c i d ( m - x y l y l e n e g l y c o l ) has a glass t e m p e r a t u r e of 1 4 3 ° C . (15).
H e r e the difference i n glass t e m p e r a t u r e is o n l y s l i g h t l y m o r e
than 20°C. Reverse Polyamides.
W h e n u s i n g d i c a r b o x y l i c acids a n d d i a m i n e s
of different c a r b o n numbers—e.g., C - 6 d i c a r b o x y l i c a c i d a n d C - 1 0 d i a m i n e — p r o d u c t s are o b t a i n e d w i t h m e l t i n g points s i m i l a r to a p o l y a m i d e of C - 6 d i a m i n e a n d C - 1 0 d i c a r b o x y l i c a c i d .
A l t h o u g h n o details are
k n o w n , i t c a n b e a s s u m e d that the glass temperatures of these p o l y a m i d e s are s i m i l a r . W e h a v e e x a m i n e d the p r o b l e m w i t h o u r a m o r p h o u s p a r t i a l l y a r o m a t i c p o l y a m i d e s , a n d w e h a v e s y n t h e s i z e d a n d c o m p a r e d the f o l l o w i n g p r o d u c t s s h o w n i n T a b l e VIII.
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
BIER
40.
Table VII.
Structures of Analogous Polyesters and Polyamides Dicarboxylic Acid
Polyester Polyamide
619
New Polycondensation Polymers
n
^
n
n
n
^
—
n
—
Diole or Diamine n
^
—
^
n
—
n
^
n n — ^
C Polyester Polyamide
C
__
C
__
C
__
C
_
C
_
C
C
T
r r — ^
T
m
^5 ^
g
—70 50-57
C
- C - C - C - C - C
' am.
~™ oo
a m
c Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
C=C Polyester
^
n
Polyamide
r
n
n
n
n
n
r
r
148
/ /
3
45 7
1
1 4 0
C—C
c=c Polyester Polyamide
Q
_ /
sX
c \ _
C - C - C - C - C - C
Q
c—cr Table VIII.
" ^ J ? 148
Reverse Polyamides T , °C. g
c
o
II —c-
' am.
a m
c
Formula
o
c
-N
i—C—N-
148
125
T h e r e are r e a l differences i n T w i t h this p a i r of reverse p o l y a m i d e s . g
W e l o o k e d for f u r t h e r examples i n the l i t e r a t u r e a n d f o u n d another p a i r g i v e n b y T e m i n (15).
I n this e x a m p l e ( T a b l e I X ) the differences
are
e v e n l a r g e r t h a n i n o u r case. T a b l e s V I I I a n d I X s h o w that the p o s i t i o n of the
carbon-amide
g r o u p is i m p o r t a n t . W i t h b o t h p a i r s of c o m p o u n d s , ours a n d the p a i r of T e m i n , h i g h e r glass temperatures of the p o l y a m i d e s are o b t a i n e d if the carboxylic groups
are a t t a c h e d to the r i n g .
T h e products
with
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
the
620
ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N
Table I X .
PROCESSES
Reverse Polyamides
Formula
T
g
Ref.
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
O
m e t h y l e n e - a m i n e g r o u p of the x y l y l e n e d i a m i n e s h a v e l o w e r glass t e m peratures. F o r this p h e n o m e n o n w e h a v e t w o e x p l a n a t i o n s : ( 1 ) T h e c a r b o n y l groups i n p o l y a m i d e s are fixed b y h y d r o g e n b o n d s . P o l y a m i d e s w i t h c a r b o n y l groups at the r i n g f o r m a larger c o m p a c t b u l k w i t h six stiff c h a i n l i n k s i n the c h a i n . F o r x y l y l e n e d i a m i n e the N H g r o u p is n o t fixed d i r e c t l y at the r i n g b u t is l o c a t e d at a m e t h y l e n e c a r b o n , w h i c h i n t u r n is a t t a c h e d to the r i n g . T h i s m e t h y l e n e c a r b o n w i l l not b e r e s t r i c t e d i n its flexibility b y a h y d r o g e n b r i d g e ; h e n c e , t h e r e are only four r i g i d c h a i n links. ( 2 ) T h e c a r b o n y l groups of t e r e p h t h a l i c p o l y a m i d e s are i n reson a n c e w i t h t h e r i n g . T h e r e f o r e , t h e y are less flexible t h a n c a r b o n y l g r o u p of a l i p h a t i c d i c a r b o x y l i c acids. X y l y l e n e d i a m i n e adipates don't h a v e this resonance. T a b l e I X lists a n a d d i t i o n a l substance, d e s c r i b e d b y Saotome a n d Komoto
(10).
T h i s p o l y a m i d e is i d e n t i c a l to one of the T e m i n p o l y -
a m i d e s , except for the s u b s t i t u t i o n of the h y d r o g e n at the N H g r o u p b y a m e t h y l group. Unfortunately, softening p o i n t .
H e n c e , this p o l y a m i d e cannot f o r m h y d r o g e n b r i d g e s . the glass
temperature was
S h a s h o u a (12)
not
determined—only
the
described a similar product, a poly-
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
40.
BIER
New
Poly condensation
621
Polymers
acid from terephthalic acid and N,N'-dimethylhexamethylenediamine. T h i s p r o d u c t is c r y s t a l l i n e , a n d its T
g
Table V I I (polyester-polyamide)
is n o t g i v e n . shows t h a t i n o u r series the p o l y -
amides h a v e glass temperatures w h i c h are 1 0 0 ° C . or h i g h e r t h a n those of polyester.
P r o b a b l y the differences of glass temperatures of 100 ° C .
b e t w e e n p o l y a m i d e s a n d analogous polyesters are c a u s e d not o n l y b y the h y d r o g e n b r i d g e s b u t also b y p o l a r i t y . It c a n be a s s u m e d t h a t the p o l y a m i d e w i t h the N - m e t h y l a m i d e structure ( n o
H
bridges)
has
a
h i g h e r glass t e m p e r a t u r e t h a n the analogous polyester. S i m i l a r studies o n reverse structures h a v e b e e n c a r r i e d out b y G o o d Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
m a n (9)
o n polyesters.
H e finds t h a t p r o d u c t s w i t h c a r b o x y l groups i n
the a r o m a t i c r a d i c a l r e s i d u e h a v e h i g h e r c r y s t a l l i n e m e l t i n g points t h a n the p r o d u c t s w i t h a reverse structure. H o w e v e r , he has s t u d i e d o n l y the c r y s t a l l i n e m e l t i n g points a n d not the glass temperatures.
T h u s , his
p a r t i c u l a r i n v e s t i g a t i o n cannot be c o m p a r e d w i t h ours. O n e m u s t assume that the glass t e m p e r a t u r e is a m o r e significant i n d i c a t i o n of m o b i l i t y a n d flexibility
of the m a c r o m o l e c u l e s segments a n d of the forces b e t w e e n the
m a c r o m o l e c u l e s segments t h a n the c r y s t a l l i n e m e l t i n g points. T h e latter is significant m a i n l y for the degree of o r i e n t a t i o n a n d the c r y s t a l l i n e forces. I n n y l o n 6 a n d n y l o n 6 / 6 p r a c t i c a l l y a l l N H groups are b o u n d b y h y d r o g e n b r i d g e s . I n T r o g a m i d T a n d other e x p e r i m e n t a l samples there are m a n y m o r e free N H groups. may be below 5 % Symmetry.
H o w e v e r , the t o t a l free N H groups
(3).
T h e influence w h i c h the g e o m e t r i c a l a n d o p t i c a l s y m -
m e t r y of the b u i l d i n g units of p o l y c o n d e n s a t i o n p o l y m e r s exert o n the structure of the m a c r o m o l e c u l e s a n d the properties of the materials has b e e n e x p l o r e d v e r y l i t t l e , a n d there are no studies a v a i l a b l e i n our case. H o w e v e r , the d i a m i n e ( T M D ) u s e d has a n a s y m m e t r i c structure a n d i n addition an asymmetric carbon atom. T h e 2,2,4- ( o r 2,4,4) - t r i m e t h y l h e x a m e t h y l e n e d i a m i n e has a h e a d a n d a t a i l . F o r m a l l y it c a n be i n c o r p o r a t e d into the c h a i n a c c o r d i n g to p r i n ciples k n o w n f r o m v i n y l polymers—e.g., i n a h e a d - t o - h e a d a r r a n g e m e n t to the d i c a r b o x y l i c a c i d or h e a d - t o - t a i l arrangement. It is q u i t e p r o b a b l e that our m e l t condensates h a v e a statistical d i s t r i b u t i o n of structure. T h e different reactivities of the t w o ends of the d i a m i n e m a y suggest t h a t c e r t a i n c o n d i t i o n s c o u l d be v i s u a l i z e d u n d e r w h i c h i d e n t i c a l m o n o m e r s c a n arrange to m a c r o m o l e c u l e s
of different structures.
I n a d d i t i o n to
the modifications b y the " h e a d - t a i l " p r i n c i p l e , the a s y m m e t r i c c a r b o n a t o m creates o p t i c a l isomers, s u c h as the I a n d the d f o r m or a m i x t u r e of b o t h . F i n a l l y , our m o n o m e r T M D represents a m i x t u r e of t w o
isomers,
a n d the possibilities of the " h e a d - t a i l " p r i n c i p l e a n d of the d,l structure
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
622
ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N
PROCESSES
are true for e a c h m o n o m e r . T r o g a m i d T is i n d e e d a c o p o l y a m i d e . T h e o r e t i c a l l y , m a n y different b l o c k c o p o l y m e r s are a v a i l a b l e f r o m o u r m o n o mers. Preparation
of Amorphous-Aromatic-Aliphatic
Polyamides
T h e a p p r o a c h t h r o u g h a m e l t c o n d e n s a t i o n of the salt f r o m
the
d i c a r b o x y l i c a c i d a n d the d i a m i n e T M D has b e e n s t u d i e d p r i m a r i l y . T h e r e has b e e n n o systematic s t u d y of the approaches t h r o u g h i n t e r f a c i a l polycondensation and solution polycondensation. Condensation via Terephthalic A c i d .
T h e salt f r o m the a c i d a n d
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
the d i a m i n e is f o r m e d e a s i l y i n the aqueous phase ( 8 ) .
Crystallization
is effected b y i s o p r o p y l a l c o h o l a d d i t i o n . R e c r y s t a l l i z a t i o n is unnecessary w h e n p u r e s t a r t i n g c o m p o n e n t s are used.
T h e aqueous s o l u t i o n of the
salt is h e a t e d u n d e r pressure, the s o l u t i o n w a t e r is d i s t i l l e d off, t h e c o n d e n s a t i o n begins, t h e t e m p e r a t u r e is i n c r e a s e d , a n d the pressure is l o w ered. T h e r e a c t i o n is c o m p l e t e w h e n the d e s i r e d v i s c o s i t y is r e a c h e d . Condensation via D M T .
D y n a m i t N o b e l produces
D M T b u t not
t e r e p h t h a l i c a c i d . T h e r e f o r e , a process has b e e n d e v e l o p e d w h i c h starts directly from D M T : D M T + T M D + H 0 -> T P A + T M D + C H O H 2
3
D e p e n d i n g o n the c o n d i t i o n s , m e t h y l a t i o n of the a m i n o g r o u p m a y take p l a c e to a c e r t a i n extent: H R N H * + C H ^ O H -> R N + H 0 2
I
CH I n extreme cases i t w i l l b e a d i m e t h y l a t i o n . It is d e s i r a b l e to operate i n 3
a w a y w h i c h ensures t h a t little i f a n y m e t h y l a t i o n reactions take p l a c e . A d i m e t h y l a t e d p r o d u c t has a c h a i n - t e r m i n a t i n g effect. M o n o m e t h y l a t i o n leads to r e d u c e d r e a c t i v i t y a n d to a m e t h y l a t e d a m i d e g r o u p , w h i c h has n o p r o t o n left for a h y d r o g e n b r i d g e O R || R - N H R + H O O C - R -> R — N — C — R x
2
t
2
Pilot Plant. A s c h e m a t i c of the p i l o t p l a n t is s h o w n i n F i g u r e 1. I n a first reactor the n y l o n salt is d i s s o l v e d i n w a t e r .
T h e h o t s o l u t i o n is
t r a n s f e r r e d to R e a c t o r 2. H e r e the p o l y c o n d e n s a t i o n is p e r f o r m e d to the d e s i r e d degree. T h e final v i s c o s i t y of the m e l t is i n the r a n g e of 100,000 poises at 250 ° C . T h e h o t m e l t is r e m o v e d f r o m the reactor, c h i l l e d , a n d pelletized.
T h e m o l e c u l a r w e i g h t o f the c o m m e r c i a l p r o d u c t is a r o u n d
20,000.
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
40.
BIEB
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
(1)
New Polycondensation
Saponification,
623
Polymers
Polycondensation
Palletization
Nylon Salt (2)
II
Precondensation
Figure 1.
Production
Final
Condensation
and
Pelletization
of Trogamid T by two methods
Semicommercial Plant. I n t h e s e m i c o m m e r c i a l p l a n t o n l y t h e first stage of t h e c o n d e n s a t i o n is c a r r i e d out i n a r e a c t i o n vessel w i t h stirrer. T h e s e c o n d phase of final c o n d e n s a t i o n a n d g r a n u l a t i o n takes p l a c e i n a n extruder.
( T h i s stage of t h e process has b e e n d e v e l o p e d i n o u r c o m -
p a n y b y M . W i e n a n d a n d K . Jensen.) o p e r a t i o n , either t w o precondensors
T o ensure a f u l l y
continuous
o p e r a t i n g a l t e r n a t i v e l y or a p r e -
condensor a n d one i n t e r m e d i a t e vessel are e m p l o y e d . Properties of Trogamid
T
F o l l o w i n g a d i s c u s s i o n of t h e influence exerted b y t h e v a r i o u s struct u r a l elements o n t h e glass t e m p e r a t u r e , a m o r e d e t a i l e d d i s c u s s i o n is n o w g i v e n of the p r o d u c t w h i c h is p r o d u c e d f r o m D M T a n d a m i x t u r e of 2,2,4- a n d 2 , 4 , 4 - t r i m e t h y l h e x a m e t h y l e n e d i a m i n e
(Scholven
Chemie)
a n d has t h e f o r m u l a :
T h i s p r o d u c t w a s first r e p o r t e d i n 1966 ( 4). S i n c e t h e n , k n o w l e d g e has b e e n w i d e n e d t h r o u g h the studies of W . P u n g s a n d J . S c h n e i d e r . H e r e o n l y a g e n e r a l c h a r a c t e r i z a t i o n is g i v e n . C o n t r a r y to t h e c l a s s i c a l n y l o n s , T r o g a m i d is a clear m a t e r i a l , s i m i l a r to p o l y c a r b o n a t e .
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
624
ADDITION A N D CONDENSATION
POLYMERIZATION
PROCESSES
Mechanical Properties. T r o g a m i d T has h i g h tensile s t r e n g t h , h i g h stiffness, a n d m e d i u m n o t c h e d i m p a c t strength. U n d e r n o r m a l test c o n d i t i o n s i n a i r T r o g a m i d T undergoes n o stress corrosion. T h e d i m e n s i o n a l s t a b i l i t y u n d e r l o a d is g o o d . Thermal Properties. T r o g a m i d T has a glass t e m p e r a t u r e s i m i l a r to that of p o l y c a r b o n a t e .
A m o l d e d a n d q u i c k l y q u e n c h e d sample has a
l o w e r glass t e m p e r a t u r e t h a n a n a n n e a l e d one. b r i n g s some o r d e r w i t h o u t c r e a t i n g c r y s t a l l i n i t y .
Obviously, annealing The quenched
and
a n n e a l e d samples m a y differ as to the extent of t h e i r h y d r o g e n b r i d g i n g . T h i s subject has not b e e n s t u d i e d so far. Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
T h e e x p a n s i o n coefficient is also s i m i l a r to t h a t of
polycarbonate,
a n d the same is t r u e for t h e t o r s i o n a l m o d u l u s vs. t e m p e r a t u r e as s h o w n i n F i g u r e 2. T r o g a m i d T has a g o o d tensile strength (ca.
500 k g . )
even
at temperatures as h i g h as 100 ° C .
Figure 2.
Torsional modulus vs. temperature
Electrical Properties. I n its e l e c t r i c a l i n s u l a t i n g properties T r o g a m i d T is s i m i l a r to other p o l y a m i d e s . ticularly striking.
Its d i e l e c t r i c properties are n o t p a r -
T h e electrical properties undergo
slight c h a n g e i n
r e l a t i o n to h u m i d i t y , a n d p r o l o n g e d w a t e r i m m e r s i o n has no a p p r e c i a b l e
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
40.
BIER
influence.
New Polycondensation
625
Polymers
F r e q u e n c y has l i t t l e effect o n t h e d i s s i p a t i o n factor a n d o n
the d i e l e c t r i c constant. T h e t r a c k i n g resistance is g o o d . Behavior in Water and Aqueous Solutions.
L i k e a l l polyamides
T r o g a m i d T absorbs w a t e r w h e n stored i n h u m i d a i r o r i m m e r s e d i n water.
T h i s a b s o r p t i o n , h o w e v e r , is l o w e r t h a n that of n y l o n 6 a n d
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
n y l o n 6/6 ( F i g u r e 3 a n d T a b l e X ) .
Nylon 6
Trogamid T Nylon 11
-h-H-h 2
3
4
Figure 3. Table X .
Water absorption from air, 65% humidity mg./gram
5
10
20
100
50
Water absorption in liquid water H 0 Absorption from A i r 2
Trogamid T
Nylon 6
Polyacetal
40
210
20
Polycarbonate 10
PolyMM Ester 30
M o i s t u r e a b s o r p t i o n affects t h e properties o n l y to a s m a l l extent. H o w e v e r , t h e s w e l l i n g r a t i o f r o m w a t e r r e l a t e d to t h e a b s o r b e d w a t e r is smaller t h a n f o r other p o l y a m i d e s . I n t h e different p o l y a m i d e s t h e a b s o r b e d w a t e r has t h e f o l l o w i n g a p p a r e n t d e n s i t y : n y l o n 6 = 0.86, R i l s a n = 0.72, T r o g a m i d = 0.67. I m m e r s i o n i n w a t e r u p to 80 ° C . has little influence o n t h e properties. I n b o i l i n g w a t e r , h o w e v e r , t u r b i d i t y is o b s e r v e d , a n d this is e s p e c i a l l y e v i d e n t i n a t h i n film. A n a l k a l i n e p H adjustment of the h o t w a t e r reduces this p h e n o m e n o n . T h e t u r b i d i t y is n o t a c c o m p a n i e d b y d e g r a d a t i o n . D r i e d t u r b i d m a t e r i a l c a n b e p r o c e s s e d to clear s p e c i m e n . E l e c t r o n i c
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
626
ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N
PROCESSES
m i c r o s c o p i c p i c t u r e s of a T r o g a m i d T s a m p l e , w h i c h h a d b e e n h e a t e d i n b o i l i n g w a t e r f o r m a n y hours a n d h a d b e c o m e t u r b i d , s h o w s m a l l p u n c t u r e s i n t h e surface. W o r k i n g w i t h t h e c r y s t a l l i n e p o l y t e r e p h t h a l a t e of l i n e a r d i a m i n e s ( a n d N - m e t h y l a t e d d i a m i n e s ) S h a s h o u a a n d E a r e c k son (12) h a v e f o u n d h i g h e r w a t e r a b s o r p t i o n d a t a t h a n w e d i d w i t h o u r a m o r p h o u s p o l y a m i d e f r o m t e r e p h t h a l i c a c i d a n d b r a n c h e d d i a m i n e . It is k n o w n f r o m t h e l i t e r a t u r e of t h e c l a s s i c a l p o l y a m i d e s , that t h e a m o r p h o u s p o r t i o n s a c c o u n t f o r t h e w a t e r a b s o r p t i o n . T h u s , one w o u l d expect higher water absorption b y the amorphous
T r o g a m i d T than b y the
c r y s t a l l i n e p o l y a m i d e s o f S h a s h o u a a n d E a r e c k s o n , b u t i t is just t h e Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
reverse.
H o w e v e r , t h e samples
were
different.
Shashoua used
p r e c i p i t a t e d f r o m s o l u t i o n , a n d w e tested m o l d e d samples.
fibers
M a y b e the
p r e p a r a t i o n of t h e samples i n f l u e n c e d t h e w a t e r a b s o r p t i o n . Behavior toward Organic Materials. T r o g a m i d T is s o l u b l e i n some phenols, formic
acid, dimethylformamide a n d i n certain
chloroform-
m e t h a n o l m i x t u r e s . T r o g a m i d T undergoes s w e l l i n g i n l o w e r a l i p h a t i c alcohols.
P r o l o n g e d exposure to these alcohols leads to e n v i r o n m e n t a l
stress corrosion. T h e resistance to l o w e r ketones is l i m i t e d . T r o g a m i d T is resistant to ethers, esters, t r i c h l o r o e t h y l e n e , m e t h y l c h l o r o f o r m , c a r b o n t e t r a c h l o r i d e , h y d r o c a r b o n s , oils a n d fats f r o m m i n e r a l , vegetable, a n d a n i m a l sources, a n d P V C plasticizers a n d shows n o stress corrosion. Behavior toward Gases. B e h a v i o r t o w a r d gases is i m p o r t a n t i n p a c k a g i n g a p p l i c a t i o n s . T a b l e X I shows t h e p e r m e a b i l i t y as c o m p a r e d
with
some other m a t e r i a l s u s e d f o r p a c k a g i n g . Table X I .
Gas Permeability
H0 grams/cm. hr. ton 6 X 10~
0 cm. /cm. sec. cm. Hg X 10
cm. /cm. sec. cm. Hg X 10 *
0.6-1 1.4-1.6 7-9 20-40 4-4.5 30-50 6
100-120 80-100 4-5 6^8 1.5 500 4
400-450 320-350 10-12 40-50 8-9 1500 7
2
9
Polyethylene Polypropylene PVC Nylon 6 Polyester Polycarbonate Trogamid T
co
2
3
12
2
3
1
Processing and Uses of Trogamid T T r o g a m i d T c a n b e processed w i t h o u t difficulty b y t h e n o r m a l m e t h ods u s e d f o r t h e r m o p l a s t i c s ( 5 ) . I n this respect i t offers f e w e r t h a n p o l y a c e t a l o r p o l y c a r b o n a t e , for example.
problems
Some T r o g a m i d T prop-
erties c a n b e i m p r o v e d b y b i a x i a l o r i e n t a t i o n . T h e effects, h o w e v e r , are lower than w i t h crystalline polymers.
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
40.
BIER
627
New Poly condensation Polymers
T r o g a m i d Τ has l o w m o l d s h r i n k a g e a n d g o o d d i m e n s i o n a l s t a b i l i t y . The
weldability
which
is v e r y
good
offers
a n obvious
advantage
o v e r t h e c r y s t a l l i n e polyesters a n d p o l y a m i d e s . M e c h a n i c a l p r o p e r t i e s ( stiffness, i m p a c t , a n d shock resistance ), elec t r i c a l p r o p e r t i e s , c l a r i t y , ease o f p r o c e s s i n g , s i o n a l s t a b i l i t y , resistance t o h y d r o c a r b o n s
sealing properties, a n d other o r g a n i c
dimen liquids,
resistance t o p l a s t i c i z e r s , greases, a n d oils a r e t h e c h a r a c t e r i s t i c p r o p e r ties d e s i r e d .
I n its m e c h a n i c a l p r o p e r t i e s i t a p p r o a c h e s
most closely.
H o w e v e r , since p o l y c a r b o n a t e is c h e a p e r t h a n T r o g a m i d T ,
polycarbonate
T r o g a m i d Τ w i l l b e preferred only where polycarbonate cannot b e used.
Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040
T y p i c a l a p p l i c a t i o n s f o r T r o g a m i d Τ a r e flow meters o r flow m e t e r parts f o r gases a n d l i q u i d s , containers, parts i n e l e c t r i c a l e q u i p m e n t a n d a p p l i a n c e s , o p t i c a l e q u i p m e n t , m e a s u r i n g devices, p r i n t i n g m a c h i n e s .
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
Askadskii, Α. Α., Polymer Sci.. USSR 9, 471 (1967). Beaman, R . G., J. Appl. Polymer Sci. 9, 3949 (1965). Bessler, E., Bier, G., Makromol. Chem. 122, 30 ( 1969). Cramer, F. B., Beaman,R.G.,J.Polymer Sci. 21, 237 (1956). Doffin, H., Pungs, W., Gabler, R., Kunststoffe 56, 542-546 (1966). Du Pont, Magat, E. E., U. S. Patent 2,752,328 (1956). Du Pont, Sweeny, W., U. S. Patent 3,287,324 (1966). Gabler, R., Müller, H., Ashby, G. E., Agouri, E. R . , Meyer, H-R., Kabas, G., Chimia 21, 2, 65 (1967). Goodman, I., Angew. Chem. 74, 606 (1962). Saotome, K., Komoto, H., J. Polymer Sci. Pt. A1, 5, 107 (1967). Schnell, H., Angew. Chem. 68, 633 (1956). Shashoua, V. E., Eareckson, W. M., J. Polymer Sci. 40, 343-358 (1959). Sokolov, L. B. et al., Plastičeskie Massy 9, 21 (1967). Staudinger, H., Ber. 53, 1073 (1920). Temin, C. S., J. Appl. Polymer Sci. 9, 471 (1965). Whinfield, I. R., Dickson, J. T., British Patent 578,079 (1946). Yu, A. J., Evans, R . D., J. Polymer Sci. 42, 249 (1960).
RECEIVED March 18,
1968.
Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.