New Polycondensation Polymers - Advances in Chemistry (ACS

GERHARD BIER. Dynamit Nobel AG, 521 Troisdorf Bez. Koln, Germany. Addition and Condensation Polymerization Processes. Chapter 40, pp 612–627...
1 downloads 0 Views 21MB Size
40 New Polycondensation Polymers GERHARD

BIER

Dynamit N o b e l AG, 521 Troisdorf Bez. K o l n , Germany

Although Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

great

amorphous

interest

synthesized elements phatic

polyamides

in the and

and the

the glass temperature carbonamide ture of the phatic and

unbranched group

also

cial product

The

The

group;

methyl

The the

glass

methylenediamine

is Trogamid

The

aromatic

high glass

temperature. acid and

and

tempera-

of the

prevent of the

ali-

influence

ali-

crystallization

as compared

position

based on terephthalic

these

branches

in weight

the glass temperature influences

were

structural

ring, the methyl-branched

and crystallinity.

compounds.

ones

characteristic

groups result in a relatively polyamides.

generated

some new

carbonamide

chain with ca. 10%

increase

field,

examined.

were the aromatic

chain,

so far have not

plastics

with

the

carbonamide A

commer-

trimethylhexa-

T.

T p h e properties of a p l a s t i c c a n b e affected b y differences i n structures A

—i.e., m o b i l i t y of the m a i n c h a i n , v o l u m e a n d arrangement ( t a c t i c i t y )

of the l a t e r a l substituents, forces b e t w e e n the chains (e.g., bridges), crystallinity.

M a c r o m o l e c u l a r p r o d u c t s of d i s t i n c t l y

hydrogen different

structures c a n l e a d to t e c h n i c a l substances w i t h s i m i l a r properties a n d a p p l i c a t i o n . N y l o n 6 / 6 a n d P E P T ( p o l y e t h y l e n e t e r e p h t h a l a t e ) are c o m ­ m o n examples. I n the fiber field c r y s t a l l i n i t y a n d i n t e r m o l e c u l a r forces, b o t h a r i s i n g f r o m g e o m e t r i c a l configurations, are essential. T h e i m p o r t a n t factors are the h y d r o g e n b r i d g e s for n y l o n 6 / 6 a n d the forces b e t w e e n the a r o m a t i c groups for P E T P . I n s y n t h e s i z i n g the most i m p o r t a n t polyesters a n d p o l y a m i d e s i n thermoplastics—i.e., polyesters: P E T P , p o l y c a r b o n a t e s (11,16)

and poly­

a m i d e s : n y l o n 6, n y l o n 6 / 6 etc.—the emphasis for polyesters is o n p r o d ­ ucts w i t h a h i g h a r o m a t i c content ( p a r t i a l l y a r o m a t i c p r o d u c t s ) , a n d for p o l y a m i d e s the emphasis is o n p u r e l y a l i p h a t i c p r o d u c t s . A m o n g the polyesters there are n e i t h e r p u r e l y a l i p h a t i c n o r

fully

a r o m a t i c p r o d u c t s as c o m m e r c i a l p r o d u c t s w h i c h are a v a i l a b l e o r suitable 612

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

40.

BIER

New

Poly condensation

613

Polymers

as a t h e r m o p l a s t i c m a t e r i a l . A s regards the p o l y a m i d e s , the p a r t i a l l y arom a t i c a n d f u l l y a r o m a t i c p r o d u c t s are not w i t h i n the m a n u f a c t u r e r s ' p r o d u c t i o n range.

T h e f u l l y a r o m a t i c p r o d u c t s d o not l e n d themselves

to

t h e r m o p l a s t i c p r o c e s s i n g ( 7 , 1 3 ) . T h e a n s w e r for t h e r m o p l a s t i c processing possibly could be a polyamide based on terephthalic acid and hexamethylenediamine.

H o w e v e r , such a product w o u l d have a crystalline

m e l t i n g p o i n t of 371 ° C . necessitating a p r o c e s s i n g t e m p e r a t u r e too close to the d e c o m p o s i t i o n

temperature.

A p r o d u c t of s i m i l a r structure b u t

w i t h o u t c r y s t a l l i n i t y m i g h t p e r h a p s f a c i l i t a t e p r o c e s s i n g at l o w e r t e m peratures. T h e f o l l o w i n g deals w i t h a p r o d u c t l i k e l y to fill this obvious Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

gap. T h e s t a r t i n g p o i n t of o u r w o r k has b e e n studies b y R . G a b l e r a n d co-workers i n the f o r m e r Z u r i c h R e s e a r c h I n s t i t u t e of W . R . G r a c e & C o . (8).

D y n a m i t N o b e l l e a r n e d of G a b l e r ' s w o r k at a r e l a t i v e l y e a r l y stage

a n d a c q u i r e d a license o n the patents a n t i c i p a t e d . O n e of the p r o d u c t s d e s c r i b e d b y G a b l e r has b e e n d e v e l o p e d b y F . B l a s c h k e , G . S c h a d e , a n d H . W e m h e u e r via a p i l o t p l a n t to a s e m i c o m m e r c i a l p r o d u c t i o n stage (discussed later).

T h i s p r o d u c t has the t r a d e n a m e T r o g a m i d T .

The

l a b o r a t o r y studies d e s c r i b e d i n the f o l l o w i n g section h a v e b e e n c a r r i e d out b y G . Renckhoff, W . W o l f e s , a n d P . Janssen (synthesis) a n d A . G a r d z i e l l a , R . M i n k e , E . Bessler, a n d W . L e s s m a n n ( p r o d u c t

Amorphous Polyamides Based on Terephthalic

studies).

Acid

A s a d i c a r b o x y l i c a c i d G a b l e r et al. u s e d p r i m a r i l y t e r e p h t h a l i c a c i d a n d i n some cases i s o p h t h a l i c a c i d also. A s d i a m i n e t h e y u s e d a n u m b e r of b r a n c h e d a l i p h a t i c p r o d u c t s , a n d the emphasis w a s o n p r o d u c t s h a v i n g C - 6 c h a i n m e m b e r s s e p a r a t i n g the t w o N H

2

groups.

T a b l e I lists some

of G a b l e r ' s p r o d u c t s . A m i x t u r e of the last t w o d i a m i n e s i n T a b l e I is a c o m m e r c i a l p r o d u c t of S c h o l v e n C h e m i e i n G e r m a n y . T h e m e l t i n g points g i v e n b y G a b l e r h a v e b e e n d e t e r m i n e d v i s u a l l y . I n v i e w of the fact that the p r o d u c t s are a l l a m o r p h o u s the points are sinter points rather t h a n m e l t i n g points.

More

i n t e r e s t i n g t h a n the sinter temperatures are the glass temperatures s e c o n d - o r d e r t r a n s i t i o n points w h i c h h a v e b e e n d e t e r m i n e d o n

or

some

p r o d u c t s s u b m i t t e d to us b y G a b l e r (last t w o c o l u m n s of T a b l e I ) . Glass temperatures h a v e b e e n d e t e r m i n e d b y the D T A m e t h o d w i t h t w o different i n s t r u m e n t s ( a M e t t l e r d i f f e r e n t i a l t h e r m o a n a l y z e r a n d a P e r k i n - E l m e r d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r D S C 1) ( 9 ) i n t w o d i f ferent laboratories. T h e y are l i s t e d i n the t w o last c o l u m n s of T a b l e I. S m a l l differences of 0 ° - 7 ° C . w e r e observed. T h i s order of agreement was sufficient.

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

614

ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N

Table I.

PROCESSES

Amorphous Polyamides Based on Terephthalic A c i d by Gabler et al. Melting Point,

Diamine

Glass

Temperature/DTA

Gabler

Minke

Gardziella

180

135

130

217

150

143

C

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

:—N

c C

I

c

I

c

I

C— C — C — N N—C—C—C—C

I

c

200

-C—C—N

200

139

139

N—C—C—C—C—C—C—N



159

153

N—C

c

c

I

C T h e glass temperatures of a l l p r o d u c t s f a l l w i t h i n the r a n g e

130°-

160 ° C . T h e p a r t i a l l y a r o m a t i c p o l y c a r b o n a t e has a glass t e m p e r a t u r e of 1 5 0 ° C ; t h e p a r t i a l l y a r o m a t i c P E T P has a glass t e m p e r a t u r e of

75°C.

T o d e t e r m i n e t h e r a t i o o f t h e a r o m a t i c to t h e a l i p h a t i c content, w e assume f o u r c h a i n l i n k s for the b e n z e n e r i n g s . T h e n t h e p o l y c a r b o n a t e has the ratio: aromatic/aliphatic links =

4 : 6 , t h e polyester has a r a t i o 4 : 2 , a n d

the polyamides ( T a b l e I ) have a ratio 4:10.

Despite the lower aromatic

c o n t e n t t h e glass t e m p e r a t u r e s of some of the a m o r p h o u s p o l y a m i d e are

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

40.

BIER

New

Poly condensation

615

Polymers

of the same o r d e r as those of the p o l y c a r b o n a t e a n d h i g h e r t h a n those of the c r y s t a l l i n e t e r e p h t h a l i c polyester

(75°C).

W h a t t h e n are the factors w h i c h cause the h i g h glass t e m p e r a t u r e a n d the a m o r p h o u s character?

T o a n s w e r this, w e m u s t a n a l y z e the

structure of the p o l y a m i d e s .

T h e r e are three s t r u c t u r a l c o m p o n e n t s

the p o l y a m i d e s i n q u e s t i o n :

(1)

aromatic group,

(3)

a branched aliphatic group,

t w o c a r b o n a m i d e groups.

T h e influence

(2)

of an

exerted

b y these c o m p o n e n t s is e x a m i n e d m o r e closely i n the f o l l o w i n g discussions. T r i a l s to c a l c u l a t e glass temperatures of p o l y a m i d e s b y s u m m i n g the p a r t i a l c o n t r i b u t i o n s of the components of p o l y a m i d e s are d e s c r i b e d Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

b y B e a m a n (2)

and Askadskii

(I).

Branched and Unbranched Diamines. T o e x a m i n e the influence of branching, polyamides based on adipic acid a n d terephthalic acid have b e e n p r e p a r e d w i t h b r a n c h e d a n d u n b r a n c h e d d i a m i n e s of e q u a l c h a i n length.

T h e i r m e l t i n g points

and

glass

temperatures

are

listed i n

Table II. Table II.

Unbranched and Branched Aliphatic Chains in Polyamides

Acid

Diamine

T

Adipic

N—C—C—C—C—C—C—N

264

Adipic

C C | I N—C—C—C—C—C—C—N

am."

Terephthalic

C (isomer mixture) N—C—C—C—C—C—C—N

371

140

Terephthalic

N—C—C—C—C—C—C—N

am.

148

I

T

m

g

50-57

65

C (isomer mixture) a

Am = amorphous. T h e three m e t h y l groups, w h i c h a c c o u n t for a b o u t 11.5 a n d 1 0 . 5 %

of t h e w e i g h t , e l i m i n a t e c r y s t a l l i n i t y c o m p l e t e l y , b o t h for the a d i p i c a c i d - b a s e d a l i p h a t i c p o l y a m i d e a n d the t e r e p h t h a l i c a c i d - b a s e d a r o m a t i c aliphatic polyamide. A s i m i l a r o b s e r v a t i o n of r e d u c e d c r y s t a l l i n i t y c a u s e d b y m e t h y l side groups w a s n o t e d b y Y u a n d E v a n s ( 1 7 ) , w h o find t h a t the i n t r o d u c t i o n of 2 - m e t h y l substituents i n the 4,4' p o s i t i o n i n the h e p t a n e d i a m i n e y i e l d s an amorphous polyterephthalamide.

T h e corresponding

polyamide

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

of

ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N

616

PROCESSES

3 , 3 ' - d i m e t h y l h e x a m e t h y l e n e d i a m i n e a n d t e r e p h t h a l i c a c i d is not m e n t i o n e d i n the l i t e r a t u r e . I n a d u P o n t p a t e n t ( 6 ) h o w e v e r , it is c l a i m e d i n a g e n e r a l i z e d w a y , t h a t p o l y a m i d e s of T P A a n d m o n o m e t h y l - or d i m e t h y l h e x a m e t h y l e n e d i a m i n e s are suitable r a w m a t e r i a l s for

fibers.

Therefore,

these s h o u l d b e e x p e c t e d to b e c r y s t a l l i n e . A

statistical

ethylene—propylene

copolymer

with

the

r a t i o of

4

ethylene u n i t s to 3 p r o p y l e n e units ( E . P . R u b b e r ) has a p p r o x i m a t e l y the same degree of b r a n c h i n g as the t r i m e t h y l n y l o n 6 / 6 of T a b l e I I . T h e three m e t h y l groups h a v e no s u b s t a n t i a l influence o n the glass t e m p e r a t u r e of o u r p o l y a m i d e s , b u t t h e y d o increase it a little e v e n i n Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

t h e last s a m p l e i n T a b l e I I despite the h i g h e r w e i g h t content of a l i p h a t i c segment.

the

I n b o t h cases w e h a v e three m e t h y l side groups o n

14 l i n e a r c h a i n segments.

Table III. Polyamides of T P A and Diamines with Different Structures and Similar Molecular Weights Carbon Skeleton of Diamine —C—C—C—C—C—C—C—C—C— C

T , °C.

T , °C.

371

115

m

g

C

Diamines of E q u a l Molecular Weight and Different Chain Structure. T h e b r a n c h e d d i a m i n e s discussed p r e v i o u s l y h a v e n i n e c a r b o n

atoms.

E n t i r e l y different d i a m i n e structures c a n b e b u i l t u p f r o m n i n e c a r b o n atoms.

T h r e e p r o d u c t s ( d i a m i n e s ) w i t h c h a r a c t e r i s t i c a l l y different c a r -

b o n skeletons w e r e a v a i l a b l e : a n u n b r a n c h e d l i n e a r p r o d u c t ( n o n a m e t h y l enediamine),

a branched

product,

(trimethylhexamethylenediamine),

a n d a c y c l o a l i p h a t i c c o m p o u n d ( I P D ) w i t h 10 c a r b o n atoms. P o l y a m i d e s

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

BIER

40.

New

Poly condensation

617

Polymers

w i t h t e r e p h t h a l i c a c i d h a v e b e e n s y n t h e s i z e d f r o m a l l three d i a m i n e s . T h e glass temperatures are l i s t e d i n T a b l e I I I . T h e p r o d u c t of Y u a n d E v a n s (17)

is also i n c l u d e d .

A s expected, the a r r a n g e m e n t of the c a r b o n atoms i n the d i a m i n e exerts a s u b s t a n t i a l influence o n the c r y s t a l l i n i t y a n d the glass t e m p e r a ture.

T h e u n b r a n c h e d l i n e a r d i a m i n e gives a c r y s t a l l i n e p r o d u c t ; the

other

diamines

give

amorphous

polyamides.

The

diamine with

the

c y c l o a l i p h a t i c structure leads to p r o d u c t s w i t h o b v i o u s l y stiffened chains a n d thus r e l a t i v e l y h i g h glass temperatures. a m i d e of I P D a n d a d i p i c a c i d has a T

g

F o r c o m p a r i s o n the p o l y -

of 160 ° C .

I n this c o n n e c t i o n it

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

w o u l d be i n t e r e s t i n g to s t u d y analogous p o l y a m i d e s h a v i n g m e t h y l s u b s t i t u t i o n at the n i t r o g e n i n s t e a d of the c a r b o n c h a i n . W e h a v e not s y n thesized such products. H o w e v e r , they have been described b y Shashoua a n d E a r e c k s o n (12)

a n d b y Saotome a n d K o m o t o (10).

T h e authors do

not state the glass temperatures i n t h e i r p u b l i c a t i o n s . Influence of Aliphatic and Cyclic Structural Units. T h e influence of c y c l i c s t r u c t u r a l u n i t s is e v i d e n t f r o m T a b l e s I I a n d I I I . T a b l e I I shows that r e p l a c i n g the a d i p i c a c i d b y t e r e p h a t h a l i c a c i d increases the m e l t i n g p o i n t a n d the glass t e m p e r a t u r e b y a b o u t

100°C.

Table III

shows that r e p l a c i n g the a l i p h a t i c chains b y a c y c l o a l i p h a t i c c h a i n of s i m i l a r m o l e c u l a r w e i g h t increases the glass t e m p e r a t u r e b y ca. 100°C.

S i m i l a r results are k n o w n f r o m the polyester.

50°-

W e have listed

some p r o d u c t s i n T a b l e I V . Table IV.

Polyesters of Ethylene Glycol and Dicarboxylic Acids T , °C

T , °C.

50 64 260 170 255

-80 25 70-80 64 113

ni

Adipic acid Jrans-Hexahydroterephthalic acid Terephthalic acid Naphthalene 1,4-dicarboxylic acid Naphthalene 2,6-dicarboxylic acid

g

H e r e the differences i n the m e l t i n g temperatures a n d i n the glass temperatures are e v e n greater t h a n i n T a b l e s I I a n d I I I . L a r g e differences are e n c o u n t e r e d o n c o m p a r i n g a p u r e l y a l i p h a t i c polyester w i t h a h i g h l y a r o m a t i c polyester (cf. Table V . Dicarboxylic

Acid

Adipic acid Adipic acid Terephthalic acid

T a b l e V ) . A polyester of a d i p i c a c i d a n d

Aliphatic and Aromatic Polyesters Diol

T , °C.

T , °C.

decanediol bisphenol A bisphenol A

71 am. 315

—80 63 200

m

g

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

618

ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N

d e c a n e d i o l has a glass t e m p e r a t u r e of ca.

PROCESSES

— 80 ° C . a n d a polyester of

t e r e p h t h a l i c a c i d a n d b i s p h e n o l A of a b o u t 2 0 0 ° C . Comparison of the Structural Units of Ester and Amide. T h e effect of h y d r o g e n b r i d g e s i n p o l y a m i d e s has a l r e a d y b e e n m e n t i o n e d .

For a

m o r e accurate d e m o n s t r a t i o n of the influence of N H b r i d g e s , i t w o u l d be necessary

to c o m p a r e p o l y a m i d e s w i t h analogous

w e i g h t ketones, w h i c h h a v e a — C H (Table VI).

2

S u c h p r o d u c t s are not yet d e s c r i b e d .

chosen the polyesters for c o m p a r i s o n .

h i g h molecular

u n i t i n s t e a d of the N H c h a i n l i n k Therefore, w e have

These have an oxygen chain link

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

i n s t e a d of the N H c h a i n l i n k . Table V I . Paraffin

Structures of Aliphatic Chains

—C—C—C—C—C—C—C—C—C—C—C—C— O

O

Ester T a b l e VII gives the T

g

values of some p o l y c o n d e n s a t i o n p o l y m e r s ,

polyesters, a n d p o l y a m i d e s w h i c h w e h a v e synthesized. F o r these p o l y m e r s i n T a b l e VII the s u b s t i t u t i o n of one

oxygen

l i n k b y one N H l i n k p e r six c h a i n m e m b e r s increases the glass t e m p e r a t u r e b y 100 ° C . or m o r e .

T h e a m i d e effect is m u c h smaller w h e n the

subunits of the chains f o r m v e r y stiff molecules. T h i s is t r u e for p o l y m e r s of h i g h a r o m a t i c content.

T h u s , a p o l y a m i d e of i s o p h t h a l i c a c i d

(m-

x y l y l e n e d i a m i n e ) has a glass t e m p e r a t u r e of 165 ° C , a n d a polyester of i s o p h t h a l i c a c i d ( m - x y l y l e n e g l y c o l ) has a glass t e m p e r a t u r e of 1 4 3 ° C . (15).

H e r e the difference i n glass t e m p e r a t u r e is o n l y s l i g h t l y m o r e

than 20°C. Reverse Polyamides.

W h e n u s i n g d i c a r b o x y l i c acids a n d d i a m i n e s

of different c a r b o n numbers—e.g., C - 6 d i c a r b o x y l i c a c i d a n d C - 1 0 d i a m i n e — p r o d u c t s are o b t a i n e d w i t h m e l t i n g points s i m i l a r to a p o l y a m i d e of C - 6 d i a m i n e a n d C - 1 0 d i c a r b o x y l i c a c i d .

A l t h o u g h n o details are

k n o w n , i t c a n b e a s s u m e d that the glass temperatures of these p o l y a m i d e s are s i m i l a r . W e h a v e e x a m i n e d the p r o b l e m w i t h o u r a m o r p h o u s p a r t i a l l y a r o m a t i c p o l y a m i d e s , a n d w e h a v e s y n t h e s i z e d a n d c o m p a r e d the f o l l o w i n g p r o d u c t s s h o w n i n T a b l e VIII.

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

BIER

40.

Table VII.

Structures of Analogous Polyesters and Polyamides Dicarboxylic Acid

Polyester Polyamide

619

New Polycondensation Polymers

n

^

n

n

n

^



n



Diole or Diamine n

^



^

n



n

^

n n — ^

C Polyester Polyamide

C

__

C

__

C

__

C

_

C

_

C

C

T

r r — ^

T

m

^5 ^

g

—70 50-57

C

- C - C - C - C - C

' am.

~™ oo

a m

c Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

C=C Polyester

^

n

Polyamide

r

n

n

n

n

n

r

r

148

/ /

3

45 7

1

1 4 0

C—C

c=c Polyester Polyamide

Q

_ /

sX

c \ _

C - C - C - C - C - C

Q

c—cr Table VIII.

" ^ J ? 148

Reverse Polyamides T , °C. g

c

o

II —c-

' am.

a m

c

Formula

o

c

-N

i—C—N-

148

125

T h e r e are r e a l differences i n T w i t h this p a i r of reverse p o l y a m i d e s . g

W e l o o k e d for f u r t h e r examples i n the l i t e r a t u r e a n d f o u n d another p a i r g i v e n b y T e m i n (15).

I n this e x a m p l e ( T a b l e I X ) the differences

are

e v e n l a r g e r t h a n i n o u r case. T a b l e s V I I I a n d I X s h o w that the p o s i t i o n of the

carbon-amide

g r o u p is i m p o r t a n t . W i t h b o t h p a i r s of c o m p o u n d s , ours a n d the p a i r of T e m i n , h i g h e r glass temperatures of the p o l y a m i d e s are o b t a i n e d if the carboxylic groups

are a t t a c h e d to the r i n g .

T h e products

with

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

the

620

ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N

Table I X .

PROCESSES

Reverse Polyamides

Formula

T

g

Ref.

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

O

m e t h y l e n e - a m i n e g r o u p of the x y l y l e n e d i a m i n e s h a v e l o w e r glass t e m peratures. F o r this p h e n o m e n o n w e h a v e t w o e x p l a n a t i o n s : ( 1 ) T h e c a r b o n y l groups i n p o l y a m i d e s are fixed b y h y d r o g e n b o n d s . P o l y a m i d e s w i t h c a r b o n y l groups at the r i n g f o r m a larger c o m p a c t b u l k w i t h six stiff c h a i n l i n k s i n the c h a i n . F o r x y l y l e n e d i a m i n e the N H g r o u p is n o t fixed d i r e c t l y at the r i n g b u t is l o c a t e d at a m e t h y l e n e c a r b o n , w h i c h i n t u r n is a t t a c h e d to the r i n g . T h i s m e t h y l e n e c a r b o n w i l l not b e r e s t r i c t e d i n its flexibility b y a h y d r o g e n b r i d g e ; h e n c e , t h e r e are only four r i g i d c h a i n links. ( 2 ) T h e c a r b o n y l groups of t e r e p h t h a l i c p o l y a m i d e s are i n reson a n c e w i t h t h e r i n g . T h e r e f o r e , t h e y are less flexible t h a n c a r b o n y l g r o u p of a l i p h a t i c d i c a r b o x y l i c acids. X y l y l e n e d i a m i n e adipates don't h a v e this resonance. T a b l e I X lists a n a d d i t i o n a l substance, d e s c r i b e d b y Saotome a n d Komoto

(10).

T h i s p o l y a m i d e is i d e n t i c a l to one of the T e m i n p o l y -

a m i d e s , except for the s u b s t i t u t i o n of the h y d r o g e n at the N H g r o u p b y a m e t h y l group. Unfortunately, softening p o i n t .

H e n c e , this p o l y a m i d e cannot f o r m h y d r o g e n b r i d g e s . the glass

temperature was

S h a s h o u a (12)

not

determined—only

the

described a similar product, a poly-

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

40.

BIER

New

Poly condensation

621

Polymers

acid from terephthalic acid and N,N'-dimethylhexamethylenediamine. T h i s p r o d u c t is c r y s t a l l i n e , a n d its T

g

Table V I I (polyester-polyamide)

is n o t g i v e n . shows t h a t i n o u r series the p o l y -

amides h a v e glass temperatures w h i c h are 1 0 0 ° C . or h i g h e r t h a n those of polyester.

P r o b a b l y the differences of glass temperatures of 100 ° C .

b e t w e e n p o l y a m i d e s a n d analogous polyesters are c a u s e d not o n l y b y the h y d r o g e n b r i d g e s b u t also b y p o l a r i t y . It c a n be a s s u m e d t h a t the p o l y a m i d e w i t h the N - m e t h y l a m i d e structure ( n o

H

bridges)

has

a

h i g h e r glass t e m p e r a t u r e t h a n the analogous polyester. S i m i l a r studies o n reverse structures h a v e b e e n c a r r i e d out b y G o o d Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

m a n (9)

o n polyesters.

H e finds t h a t p r o d u c t s w i t h c a r b o x y l groups i n

the a r o m a t i c r a d i c a l r e s i d u e h a v e h i g h e r c r y s t a l l i n e m e l t i n g points t h a n the p r o d u c t s w i t h a reverse structure. H o w e v e r , he has s t u d i e d o n l y the c r y s t a l l i n e m e l t i n g points a n d not the glass temperatures.

T h u s , his

p a r t i c u l a r i n v e s t i g a t i o n cannot be c o m p a r e d w i t h ours. O n e m u s t assume that the glass t e m p e r a t u r e is a m o r e significant i n d i c a t i o n of m o b i l i t y a n d flexibility

of the m a c r o m o l e c u l e s segments a n d of the forces b e t w e e n the

m a c r o m o l e c u l e s segments t h a n the c r y s t a l l i n e m e l t i n g points. T h e latter is significant m a i n l y for the degree of o r i e n t a t i o n a n d the c r y s t a l l i n e forces. I n n y l o n 6 a n d n y l o n 6 / 6 p r a c t i c a l l y a l l N H groups are b o u n d b y h y d r o g e n b r i d g e s . I n T r o g a m i d T a n d other e x p e r i m e n t a l samples there are m a n y m o r e free N H groups. may be below 5 % Symmetry.

H o w e v e r , the t o t a l free N H groups

(3).

T h e influence w h i c h the g e o m e t r i c a l a n d o p t i c a l s y m -

m e t r y of the b u i l d i n g units of p o l y c o n d e n s a t i o n p o l y m e r s exert o n the structure of the m a c r o m o l e c u l e s a n d the properties of the materials has b e e n e x p l o r e d v e r y l i t t l e , a n d there are no studies a v a i l a b l e i n our case. H o w e v e r , the d i a m i n e ( T M D ) u s e d has a n a s y m m e t r i c structure a n d i n addition an asymmetric carbon atom. T h e 2,2,4- ( o r 2,4,4) - t r i m e t h y l h e x a m e t h y l e n e d i a m i n e has a h e a d a n d a t a i l . F o r m a l l y it c a n be i n c o r p o r a t e d into the c h a i n a c c o r d i n g to p r i n ciples k n o w n f r o m v i n y l polymers—e.g., i n a h e a d - t o - h e a d a r r a n g e m e n t to the d i c a r b o x y l i c a c i d or h e a d - t o - t a i l arrangement. It is q u i t e p r o b a b l e that our m e l t condensates h a v e a statistical d i s t r i b u t i o n of structure. T h e different reactivities of the t w o ends of the d i a m i n e m a y suggest t h a t c e r t a i n c o n d i t i o n s c o u l d be v i s u a l i z e d u n d e r w h i c h i d e n t i c a l m o n o m e r s c a n arrange to m a c r o m o l e c u l e s

of different structures.

I n a d d i t i o n to

the modifications b y the " h e a d - t a i l " p r i n c i p l e , the a s y m m e t r i c c a r b o n a t o m creates o p t i c a l isomers, s u c h as the I a n d the d f o r m or a m i x t u r e of b o t h . F i n a l l y , our m o n o m e r T M D represents a m i x t u r e of t w o

isomers,

a n d the possibilities of the " h e a d - t a i l " p r i n c i p l e a n d of the d,l structure

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

622

ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N

PROCESSES

are true for e a c h m o n o m e r . T r o g a m i d T is i n d e e d a c o p o l y a m i d e . T h e o r e t i c a l l y , m a n y different b l o c k c o p o l y m e r s are a v a i l a b l e f r o m o u r m o n o mers. Preparation

of Amorphous-Aromatic-Aliphatic

Polyamides

T h e a p p r o a c h t h r o u g h a m e l t c o n d e n s a t i o n of the salt f r o m

the

d i c a r b o x y l i c a c i d a n d the d i a m i n e T M D has b e e n s t u d i e d p r i m a r i l y . T h e r e has b e e n n o systematic s t u d y of the approaches t h r o u g h i n t e r f a c i a l polycondensation and solution polycondensation. Condensation via Terephthalic A c i d .

T h e salt f r o m the a c i d a n d

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

the d i a m i n e is f o r m e d e a s i l y i n the aqueous phase ( 8 ) .

Crystallization

is effected b y i s o p r o p y l a l c o h o l a d d i t i o n . R e c r y s t a l l i z a t i o n is unnecessary w h e n p u r e s t a r t i n g c o m p o n e n t s are used.

T h e aqueous s o l u t i o n of the

salt is h e a t e d u n d e r pressure, the s o l u t i o n w a t e r is d i s t i l l e d off, t h e c o n d e n s a t i o n begins, t h e t e m p e r a t u r e is i n c r e a s e d , a n d the pressure is l o w ered. T h e r e a c t i o n is c o m p l e t e w h e n the d e s i r e d v i s c o s i t y is r e a c h e d . Condensation via D M T .

D y n a m i t N o b e l produces

D M T b u t not

t e r e p h t h a l i c a c i d . T h e r e f o r e , a process has b e e n d e v e l o p e d w h i c h starts directly from D M T : D M T + T M D + H 0 -> T P A + T M D + C H O H 2

3

D e p e n d i n g o n the c o n d i t i o n s , m e t h y l a t i o n of the a m i n o g r o u p m a y take p l a c e to a c e r t a i n extent: H R N H * + C H ^ O H -> R N + H 0 2

I

CH I n extreme cases i t w i l l b e a d i m e t h y l a t i o n . It is d e s i r a b l e to operate i n 3

a w a y w h i c h ensures t h a t little i f a n y m e t h y l a t i o n reactions take p l a c e . A d i m e t h y l a t e d p r o d u c t has a c h a i n - t e r m i n a t i n g effect. M o n o m e t h y l a t i o n leads to r e d u c e d r e a c t i v i t y a n d to a m e t h y l a t e d a m i d e g r o u p , w h i c h has n o p r o t o n left for a h y d r o g e n b r i d g e O R || R - N H R + H O O C - R -> R — N — C — R x

2

t

2

Pilot Plant. A s c h e m a t i c of the p i l o t p l a n t is s h o w n i n F i g u r e 1. I n a first reactor the n y l o n salt is d i s s o l v e d i n w a t e r .

T h e h o t s o l u t i o n is

t r a n s f e r r e d to R e a c t o r 2. H e r e the p o l y c o n d e n s a t i o n is p e r f o r m e d to the d e s i r e d degree. T h e final v i s c o s i t y of the m e l t is i n the r a n g e of 100,000 poises at 250 ° C . T h e h o t m e l t is r e m o v e d f r o m the reactor, c h i l l e d , a n d pelletized.

T h e m o l e c u l a r w e i g h t o f the c o m m e r c i a l p r o d u c t is a r o u n d

20,000.

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

40.

BIEB

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

(1)

New Polycondensation

Saponification,

623

Polymers

Polycondensation

Palletization

Nylon Salt (2)

II

Precondensation

Figure 1.

Production

Final

Condensation

and

Pelletization

of Trogamid T by two methods

Semicommercial Plant. I n t h e s e m i c o m m e r c i a l p l a n t o n l y t h e first stage of t h e c o n d e n s a t i o n is c a r r i e d out i n a r e a c t i o n vessel w i t h stirrer. T h e s e c o n d phase of final c o n d e n s a t i o n a n d g r a n u l a t i o n takes p l a c e i n a n extruder.

( T h i s stage of t h e process has b e e n d e v e l o p e d i n o u r c o m -

p a n y b y M . W i e n a n d a n d K . Jensen.) o p e r a t i o n , either t w o precondensors

T o ensure a f u l l y

continuous

o p e r a t i n g a l t e r n a t i v e l y or a p r e -

condensor a n d one i n t e r m e d i a t e vessel are e m p l o y e d . Properties of Trogamid

T

F o l l o w i n g a d i s c u s s i o n of t h e influence exerted b y t h e v a r i o u s struct u r a l elements o n t h e glass t e m p e r a t u r e , a m o r e d e t a i l e d d i s c u s s i o n is n o w g i v e n of the p r o d u c t w h i c h is p r o d u c e d f r o m D M T a n d a m i x t u r e of 2,2,4- a n d 2 , 4 , 4 - t r i m e t h y l h e x a m e t h y l e n e d i a m i n e

(Scholven

Chemie)

a n d has t h e f o r m u l a :

T h i s p r o d u c t w a s first r e p o r t e d i n 1966 ( 4). S i n c e t h e n , k n o w l e d g e has b e e n w i d e n e d t h r o u g h the studies of W . P u n g s a n d J . S c h n e i d e r . H e r e o n l y a g e n e r a l c h a r a c t e r i z a t i o n is g i v e n . C o n t r a r y to t h e c l a s s i c a l n y l o n s , T r o g a m i d is a clear m a t e r i a l , s i m i l a r to p o l y c a r b o n a t e .

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

624

ADDITION A N D CONDENSATION

POLYMERIZATION

PROCESSES

Mechanical Properties. T r o g a m i d T has h i g h tensile s t r e n g t h , h i g h stiffness, a n d m e d i u m n o t c h e d i m p a c t strength. U n d e r n o r m a l test c o n d i t i o n s i n a i r T r o g a m i d T undergoes n o stress corrosion. T h e d i m e n s i o n a l s t a b i l i t y u n d e r l o a d is g o o d . Thermal Properties. T r o g a m i d T has a glass t e m p e r a t u r e s i m i l a r to that of p o l y c a r b o n a t e .

A m o l d e d a n d q u i c k l y q u e n c h e d sample has a

l o w e r glass t e m p e r a t u r e t h a n a n a n n e a l e d one. b r i n g s some o r d e r w i t h o u t c r e a t i n g c r y s t a l l i n i t y .

Obviously, annealing The quenched

and

a n n e a l e d samples m a y differ as to the extent of t h e i r h y d r o g e n b r i d g i n g . T h i s subject has not b e e n s t u d i e d so far. Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

T h e e x p a n s i o n coefficient is also s i m i l a r to t h a t of

polycarbonate,

a n d the same is t r u e for t h e t o r s i o n a l m o d u l u s vs. t e m p e r a t u r e as s h o w n i n F i g u r e 2. T r o g a m i d T has a g o o d tensile strength (ca.

500 k g . )

even

at temperatures as h i g h as 100 ° C .

Figure 2.

Torsional modulus vs. temperature

Electrical Properties. I n its e l e c t r i c a l i n s u l a t i n g properties T r o g a m i d T is s i m i l a r to other p o l y a m i d e s . ticularly striking.

Its d i e l e c t r i c properties are n o t p a r -

T h e electrical properties undergo

slight c h a n g e i n

r e l a t i o n to h u m i d i t y , a n d p r o l o n g e d w a t e r i m m e r s i o n has no a p p r e c i a b l e

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

40.

BIER

influence.

New Polycondensation

625

Polymers

F r e q u e n c y has l i t t l e effect o n t h e d i s s i p a t i o n factor a n d o n

the d i e l e c t r i c constant. T h e t r a c k i n g resistance is g o o d . Behavior in Water and Aqueous Solutions.

L i k e a l l polyamides

T r o g a m i d T absorbs w a t e r w h e n stored i n h u m i d a i r o r i m m e r s e d i n water.

T h i s a b s o r p t i o n , h o w e v e r , is l o w e r t h a n that of n y l o n 6 a n d

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

n y l o n 6/6 ( F i g u r e 3 a n d T a b l e X ) .

Nylon 6

Trogamid T Nylon 11

-h-H-h 2

3

4

Figure 3. Table X .

Water absorption from air, 65% humidity mg./gram

5

10

20

100

50

Water absorption in liquid water H 0 Absorption from A i r 2

Trogamid T

Nylon 6

Polyacetal

40

210

20

Polycarbonate 10

PolyMM Ester 30

M o i s t u r e a b s o r p t i o n affects t h e properties o n l y to a s m a l l extent. H o w e v e r , t h e s w e l l i n g r a t i o f r o m w a t e r r e l a t e d to t h e a b s o r b e d w a t e r is smaller t h a n f o r other p o l y a m i d e s . I n t h e different p o l y a m i d e s t h e a b s o r b e d w a t e r has t h e f o l l o w i n g a p p a r e n t d e n s i t y : n y l o n 6 = 0.86, R i l s a n = 0.72, T r o g a m i d = 0.67. I m m e r s i o n i n w a t e r u p to 80 ° C . has little influence o n t h e properties. I n b o i l i n g w a t e r , h o w e v e r , t u r b i d i t y is o b s e r v e d , a n d this is e s p e c i a l l y e v i d e n t i n a t h i n film. A n a l k a l i n e p H adjustment of the h o t w a t e r reduces this p h e n o m e n o n . T h e t u r b i d i t y is n o t a c c o m p a n i e d b y d e g r a d a t i o n . D r i e d t u r b i d m a t e r i a l c a n b e p r o c e s s e d to clear s p e c i m e n . E l e c t r o n i c

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

626

ADDITION A N D CONDENSATION P O L Y M E R I Z A T I O N

PROCESSES

m i c r o s c o p i c p i c t u r e s of a T r o g a m i d T s a m p l e , w h i c h h a d b e e n h e a t e d i n b o i l i n g w a t e r f o r m a n y hours a n d h a d b e c o m e t u r b i d , s h o w s m a l l p u n c t u r e s i n t h e surface. W o r k i n g w i t h t h e c r y s t a l l i n e p o l y t e r e p h t h a l a t e of l i n e a r d i a m i n e s ( a n d N - m e t h y l a t e d d i a m i n e s ) S h a s h o u a a n d E a r e c k son (12) h a v e f o u n d h i g h e r w a t e r a b s o r p t i o n d a t a t h a n w e d i d w i t h o u r a m o r p h o u s p o l y a m i d e f r o m t e r e p h t h a l i c a c i d a n d b r a n c h e d d i a m i n e . It is k n o w n f r o m t h e l i t e r a t u r e of t h e c l a s s i c a l p o l y a m i d e s , that t h e a m o r p h o u s p o r t i o n s a c c o u n t f o r t h e w a t e r a b s o r p t i o n . T h u s , one w o u l d expect higher water absorption b y the amorphous

T r o g a m i d T than b y the

c r y s t a l l i n e p o l y a m i d e s o f S h a s h o u a a n d E a r e c k s o n , b u t i t is just t h e Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

reverse.

H o w e v e r , t h e samples

were

different.

Shashoua used

p r e c i p i t a t e d f r o m s o l u t i o n , a n d w e tested m o l d e d samples.

fibers

M a y b e the

p r e p a r a t i o n of t h e samples i n f l u e n c e d t h e w a t e r a b s o r p t i o n . Behavior toward Organic Materials. T r o g a m i d T is s o l u b l e i n some phenols, formic

acid, dimethylformamide a n d i n certain

chloroform-

m e t h a n o l m i x t u r e s . T r o g a m i d T undergoes s w e l l i n g i n l o w e r a l i p h a t i c alcohols.

P r o l o n g e d exposure to these alcohols leads to e n v i r o n m e n t a l

stress corrosion. T h e resistance to l o w e r ketones is l i m i t e d . T r o g a m i d T is resistant to ethers, esters, t r i c h l o r o e t h y l e n e , m e t h y l c h l o r o f o r m , c a r b o n t e t r a c h l o r i d e , h y d r o c a r b o n s , oils a n d fats f r o m m i n e r a l , vegetable, a n d a n i m a l sources, a n d P V C plasticizers a n d shows n o stress corrosion. Behavior toward Gases. B e h a v i o r t o w a r d gases is i m p o r t a n t i n p a c k a g i n g a p p l i c a t i o n s . T a b l e X I shows t h e p e r m e a b i l i t y as c o m p a r e d

with

some other m a t e r i a l s u s e d f o r p a c k a g i n g . Table X I .

Gas Permeability

H0 grams/cm. hr. ton 6 X 10~

0 cm. /cm. sec. cm. Hg X 10

cm. /cm. sec. cm. Hg X 10 *

0.6-1 1.4-1.6 7-9 20-40 4-4.5 30-50 6

100-120 80-100 4-5 6^8 1.5 500 4

400-450 320-350 10-12 40-50 8-9 1500 7

2

9

Polyethylene Polypropylene PVC Nylon 6 Polyester Polycarbonate Trogamid T

co

2

3

12

2

3

1

Processing and Uses of Trogamid T T r o g a m i d T c a n b e processed w i t h o u t difficulty b y t h e n o r m a l m e t h ods u s e d f o r t h e r m o p l a s t i c s ( 5 ) . I n this respect i t offers f e w e r t h a n p o l y a c e t a l o r p o l y c a r b o n a t e , for example.

problems

Some T r o g a m i d T prop-

erties c a n b e i m p r o v e d b y b i a x i a l o r i e n t a t i o n . T h e effects, h o w e v e r , are lower than w i t h crystalline polymers.

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.

40.

BIER

627

New Poly condensation Polymers

T r o g a m i d Τ has l o w m o l d s h r i n k a g e a n d g o o d d i m e n s i o n a l s t a b i l i t y . The

weldability

which

is v e r y

good

offers

a n obvious

advantage

o v e r t h e c r y s t a l l i n e polyesters a n d p o l y a m i d e s . M e c h a n i c a l p r o p e r t i e s ( stiffness, i m p a c t , a n d shock resistance ), elec­ t r i c a l p r o p e r t i e s , c l a r i t y , ease o f p r o c e s s i n g , s i o n a l s t a b i l i t y , resistance t o h y d r o c a r b o n s

sealing properties, a n d other o r g a n i c

dimen­ liquids,

resistance t o p l a s t i c i z e r s , greases, a n d oils a r e t h e c h a r a c t e r i s t i c p r o p e r ­ ties d e s i r e d .

I n its m e c h a n i c a l p r o p e r t i e s i t a p p r o a c h e s

most closely.

H o w e v e r , since p o l y c a r b o n a t e is c h e a p e r t h a n T r o g a m i d T ,

polycarbonate

T r o g a m i d Τ w i l l b e preferred only where polycarbonate cannot b e used.

Downloaded by FUDAN UNIV on February 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0091.ch040

T y p i c a l a p p l i c a t i o n s f o r T r o g a m i d Τ a r e flow meters o r flow m e t e r parts f o r gases a n d l i q u i d s , containers, parts i n e l e c t r i c a l e q u i p m e n t a n d a p p l i a n c e s , o p t i c a l e q u i p m e n t , m e a s u r i n g devices, p r i n t i n g m a c h i n e s .

Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

Askadskii, Α. Α., Polymer Sci.. USSR 9, 471 (1967). Beaman, R . G., J. Appl. Polymer Sci. 9, 3949 (1965). Bessler, E., Bier, G., Makromol. Chem. 122, 30 ( 1969). Cramer, F. B., Beaman,R.G.,J.Polymer Sci. 21, 237 (1956). Doffin, H., Pungs, W., Gabler, R., Kunststoffe 56, 542-546 (1966). Du Pont, Magat, E. E., U. S. Patent 2,752,328 (1956). Du Pont, Sweeny, W., U. S. Patent 3,287,324 (1966). Gabler, R., Müller, H., Ashby, G. E., Agouri, E. R . , Meyer, H-R., Kabas, G., Chimia 21, 2, 65 (1967). Goodman, I., Angew. Chem. 74, 606 (1962). Saotome, K., Komoto, H., J. Polymer Sci. Pt. A1, 5, 107 (1967). Schnell, H., Angew. Chem. 68, 633 (1956). Shashoua, V. E., Eareckson, W. M., J. Polymer Sci. 40, 343-358 (1959). Sokolov, L. B. et al., Plastičeskie Massy 9, 21 (1967). Staudinger, H., Ber. 53, 1073 (1920). Temin, C. S., J. Appl. Polymer Sci. 9, 471 (1965). Whinfield, I. R., Dickson, J. T., British Patent 578,079 (1946). Yu, A. J., Evans, R . D., J. Polymer Sci. 42, 249 (1960).

RECEIVED March 18,

1968.

Platzer; Addition and Condensation Polymerization Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.