New Sulfur Sources in the United States - ACS Publications

are electric utilities and coal-based synfuels. ... of saleable sulfur values include refineries, sour natural gas pro- ..... The Northern Indiana Pub...
0 downloads 0 Views 2MB Size
New Sulfur Sources in the United States M I C H A E L RIEBER

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

University of Arizona, College of Mines, Tucson, AZ 85721

The production of domestic sulfur values (elemental recovered sulfur and the sulfur content of acid) w i l l total about 18 million long tons per year by the year 2000. By region (Petroleum Administration for Defense d i s t r i c t s ) , except for the east coast (PAD I ) , there w i l l be no deficit areas i n the U. S. Major contributors are sour natural gas and the refining of heavier, sour, crude oil. Proximate, scenario dependent sources, are e l e c t r i c u t i l i t i e s and coal-based synfuels. Shale oil, domestic tar sands and heavy oil, and unconventional sources of natural gas w i l l be small suppliers. Each of the sulfur sources i s examined with respect to scenario, location, and time frame. An estimate range is provided. Energy demand, the implementation of s u l f u r oxide p o l l u t i o n c o n t r o l s , and the f u t u r e c o m m e r c i a l i z a t i o n of c o a l g a s i f i c a t i o n and l i q u e f a c t i o n have i n c r e a s e d the p o t e n t i a l f o r the development o f considerable s u p p l i e s o f s u l f u r and s u l f u r i c a c i d as a r e s u l t o f abatement, d e s u l f u r i z a t i o n and conversion processes. L e s s e r potent i a l sources i n c l u d e shale oil, domestic t a r sands and heavy oil, and unconventional sources o f n a t u r a l gas. Current supply sources of s a l e a b l e s u l f u r values i n c l u d e r e f i n e r i e s , sour n a t u r a l gas proc e s s i n g and s m e l t i n g o p e r a t i o n s . To t h i s , Frasch s u l f u r p r o d u c t i o n must be added. Recovered s u l f u r supply p r e d i c t i o n s depend on e x p l i c i t assumpt i o n s o r s c e n a r i o s concerning the development of s p e c i f i c f u e l s and the p r o d u c t i o n o f s u l f i d e ores. They a l s o depend on a second s e t of assumptions w i t h respect t o s u l f u r p o l l u t i o n c o n t r o l r e g u l a t i o n s , the means by which these w i l l be met, and the r e c u r s i v e impact o f the c o n t r o l s on the p r o d u c t i o n s c e n a r i o s . For example, given uncert a i n t i e s surrounding r e g e n e r a t i v e f l u e gas d e s u l f u r i z a t i o n (FGD) processes, i n c l u d i n g the s a l e of s u l f u r products and concern over process r e l i a b i l i t y , u t i l i t i e s have been emphasizing throw-away techniques. As new c o n t r o l standards are implemented the d i s p o s a l 0097-6156/82/0183-0001 $05.00/0 © 1982 American Chemical Society

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

SULFUR: NEW SOURCES A N D USES

2

problem w i l l grow. The choice between the adoption of a process which produces a s a l e a b l e output and one which produces a waste product w i l l e v e n t u a l l y depend on the r e l a t i v e costs and the expected value o f the products. A d d i t i o n a l l y , w h i l e i t may be t e c h n i c a l l y f e a s i b l e t o meet smelter SO2 r e g u l a t i o n s , i t i s conceivable that smelters and, p o s s i b l y , mines w i l l c l o s e reducing, r a t h e r than i n c r e a s i n g , f o r e c a s t s o f a c i d production as r e g u l a t i o n s are implemented and/or tightened. The present paper i s based on the a u t h o r s study (1) funded by the U. S. Bureau o f Mines which, however, i s not r e s p o n s i b l e f o r the views expressed o r the conclusions reached. The time element has been subdivided i n t o three d i s c r e t e p o i n t s and a p e r i o d . The p o i n t s i n c l u d e current output l e v e l s , f o r use as a base l i n e , 1985 and 1990. The p e r i o d encompasses the decade from 1990. This r e f l e c t s the i n c r e a s i n g u n r e l i a b i l i t y of the estimates as the p r o j e c t i o n i s extended. Because s u l f u r markets tend to be d i s c r e t e and s u l f u r sources tend t o be g e o g r a p h i c a l l y d i f f e r e n t i a t e d r e g i o n a l supply p r o j e c t i o n s are r e q u i r e d . The d e f i n i t i o n chosen here i s the Petroleum A d m i n i s t r a t i o n f o r Defense d i s t r i c t s . [These are defined as: I - Connecticut, Delaware, D i s t r i c t o f Columbia, F l o r i d a , Georgia, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North C a r o l i n a , Pennsylvania, Rhode I s l a n d , South C a r o l i n a , Vermont, V i r g i n i a , and West V i r g i n i a . I I - I l l i n o i s , Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, M i s s o u r i , Nebraska, North Dakota, Ohio, Oklahoma, South Dakota, Tennessee, and Wisconsin. I l l - Alabama, Arkansas, L o u i s i a n a , M i s s i s s i p p i , New Mexico, and Texas. IV - Colorado, Idaho, Montana, Utah, and Wyoming. V A l a s k a , A r i z o n a , C a l i f o r n i a , Hawaii, Nevada, Oregon, and Washington.] The j u s t i f i c a t i o n i s that f o r the next decade a t l e a s t oil and gas are l i k e l y t o continue as the primary sources of domestic recovered s u l f u r . Second, the i n c l u s i o n o f A r i z o n a and Nevada i n PAD d i s t r i c t V roughly corresponds w i t h the present market f o r a c i d production from copper smelters. T h i r d , as the d i s t r i c t s are e s t a b l i s h e d on the b a s i s o f an aggregation o f s t a t e s , data c o m p i l a t i o n i s s i m p l i f i e d . And f o u r t h , as the d i s t r i c t s have been defined a_ p r i o r i they were not based on present e x p o s i t o r y requirements.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1

E x i s t i n g S u l f u r Sources Frasch S u l f u r . Based on an a n a l y s i s by Manderson ( 2 ) , i f a few l i m i t i n g assumptions are made, the U. S. Frasch f u t u r e i s e a s i l y sketched. (1) No a d d i t i o n a l mines are opened. (2) P r e v i o u s l y closed mines prove too c o s t l y t o reopen. (3) I n c r e a s i n g costs due e i t h e r t o f u e l p r i c e s o r t o i n c r e a s i n g water requirements are not s u f f i c i e n t t o f o r c e any more mine c l o s u r e s . (4) E x i s t i n g product i o n r a t e s are maintained t o the end of mine l i f e . Then, i f i t i s assumed that c u r r e n t l y proposed mines are brought i n t o p r o d u c t i o n , output c a p a c i t y i n 1980 i s a t 6.86 m i l l i o n long tons (MMLT), i n c r e a s i n g t o 8.63 MMLT by 1985. By 1990, output c a p a c i t y f a l l s t o 5.55 MMLT and t o 2.25 MMLT by 1995. There i s no output a f t e r 1997.

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1.

RIEBER

New Sulfur Sources in the U.S.

3

While the new mines increase mid-term s u p p l i e s , they do not extend i n d u s t r y l i f e . C e t e r i s p a r i b u s , as f u e l p r i c e s r i s e , mines w i t h high water r a t i o s are apt t o c l o s e unless some form o f hydrodynamic mining can be introduced ( 3 ) . I f normal d e p l e t i o n curves are used r a t h e r than constant production r a t e s , Frasch i n d u s t r y l i f e i s extended but a t the cost o f lower short and mid-term production. Based on data s u p p l i e d by producers and the Bureau o f Mines, prod u c t i o n i n 1979 was reported at 6.26 MMLT and estimated a t 7.2 MMLT for 1980 ( 4 ) . Current i n d u s t r y c a p a c i t y , c o r r e c t e d f o r past mine c l o s u r e s , i s estimated a t 8.5 MMLT/Y ( 5 ) . Output o f recovered s u l f u r and a c i d , u n l i k e Frasch s u l f u r , depends almost e n t i r e l y on the demand f o r the primary product. Recovered s u l f u r values t h e r e f o r e provide the b a s i c market supply which serves t o l i m i t the market remaining t o the d i s c r e t i o n a r y prod u c t i o n o f Frasch s u l f u r . The Frasch p o r t i o n o f the i n d u s t r y i s seen as passive and r e a c t i v e . I t s competitive implements are i n v e n t o r i e s , c a p a c i t y u t i l i z a t i o n , and mine openings o r c l o s u r e . I t s market share may d i m i n i s h due t o increased production of domestic abatement and process s u l f u r . I t may a l s o be reduced as the prod u c t i o n o f recovered s u l f u r and/or phosphatic f e r t i l i z e r i n the r e s t o f the world i n c r e a s e s , p o s s i b l y backing out U. S. f e r t i l i z e r exports but almost c e r t a i n l y backing out U. S., Canadian, and Mexican s u l f u r exports due t o t r a n s p o r t c o s t s . The l a t t e r two are l i k e l y t o t u r n toward the U. S. market. S u l f u r imports i n 1979 were 2.5 MM m e t r i c tons; v i r t u a l l y a l l were evenly d i v i d e d between Canada and Mexico ( 6 ) . As the former i s n a t u r a l gas based, i t w i l l be aided by i n c r e a s i n g energy c o s t s ; i t need not be deterred by f a l l i n g s u l f u r p r i c e s . I n the absence o f t a r i f f s o r embargos, Mexican s u l f u r i s h i g h l y c o m p e t i t i v e . Recent developments i n dry s u l f u r forming ( p r i l l s , granules, etc.) might make the Tampa market a v a i l able t o Canadian recovered s u l f u r sources. Ocean c h a r t e r r a t e s plus Vancouver s u l f u r p r i c e s are u n l i k e l y t o equal present s u l f u r p r i c e s i n Tampa. The stakes i n the Tampa market may be described by observing that i n 1977, s u l f u r shipments i n t o the market were at the r a t e of 3.4 MMLT/Y, employing 7 t a n k e r s , and 17 storage tanks w i t h an aggregate c a p a c i t y o f about 270,000 LT ( 7 ) . As l a r g e shipments o f dry bulk s u l f u r are handled elsewhere i n the U. S. (8, 10), the Tampa environmental i s s u e must be regarded as s i t e s p e c i f i c . The a b i l i t y o f the U. S. Frasch i n d u s t r y t o f l y - w h e e l domestic supply and demand i n the short-run depends on i t s current i n v e n t o r i e s and c a p a c i t y u t i l i z a t i o n . I n the mid-term, mines may be opened or c l o s e d based on perceived long-term market e q u i l i b r i a . Longterm, however, i n the absence o f a s i g n i f i c a n t s u c c e s s f u l e x p l o r a t i o n program, Frasch s u l f u r i s a d e p l e t i n g resource. As the peakl o a d , r a t h e r than base-load, producer i t s minimum p r i c e i s that which w i l l cover the costs o f the incremental mine. I t s a c t u a l p r i c e w i l l represent supply-demand e q u i l i b r i u m i n world markets. To the extent that the Tampa market i s p r o t e c t e d , somewhat higher d e l i v e r e d p r i c e s may be l e v i e d . I t may be argued that current

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

4

SULFUR: NEW SOURCES A N D USES

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

p r i c e s represent a conglomerate of short-run s t r u c t u r a l problems r a t h e r than a long-run supply-demand imbalance at current p r i c e s . F i n a l l y , the Frasch i n d u s t r y , both domestic and Mexican, d i s t r i b u t e s i t s U. S. s u l f u r through an extensive system of l i q u i d s u l f u r t e r m i n a l s l o c a t e d i n major consuming regions. For p r a c t i c a l purposes these d e f i n e the Frasch s u l f u r market. With the exception of f a c i l i t i e s i n St. Louis and E l Dorado, Arkansas, no t e r m i n a l s are l o c a t e d west o f the M i s s i s s i p p i . R e f i n e r i e s and Sour N a t u r a l Gas. S u l f u r recovered from r e f i n e r i e s and gas p r o c e s s i n g p l a n t s i s a by-product. I t s production i s mandated by process requirements, product s p e c i f i c a t i o n , and p o l l u t i o n c o n t r o l r e g u l a t i o n s . I t s presence as an input has been a negative f a c t o r i n the i n i t i a l investment d e c i s i o n . Costing t h e s u l f u r p r o d u c t i o n , w h i l e a r b i t r a r y as i s t h e case f o r any j o i n t product, may be u s e f u l f o r t a x , income, and a n t i ^ a i r p o l l u t i o n cont r o l purposes. As there i s no evidence o f l a r g e s c a l e domestic s t o c k p i l i n g , i t need not be assumed that s a l e p r i c e n e c e s s a r i l y covers assigned c o s t s . I f the primary product i s produced, the s u l f u r w i l l be produced i n any event. Costing o f recovered s u l f u r imports may a l s o be u s e f u l f o r T a r i f f Commission proceedings, but the same p r i n c i p l e s should apply. I t may be noted that the a p p l i c a t i o n o f such cost analyses t o the domestic i n d u s t r y i s v i r t u a l l y absent. The competitive i s s u e s , even i f they e x i s t e d , could not be used to counter the domestic competition o f recovered s u l f u r t o Frasch s u l f u r . For p r a c t i c a l purposes recovered s u l f u r c o s t i n g i n c l u d e s t r a n s p o r t a t i o n and handling and/or processing from v a t t e d storage where the l a t t e r i s a p p l i c a b l e . In 1978, U. S. recovered s u l f u r production and shipments were balanced at 4.1 MM metric tons each (11). Year end c a p a c i t y has been estimated a t 6.2 MMLT and 6.4 MMLT f o r 1980 and 1985, respect i v e l y (12^, JL3). Assignable d a i l y c a p a c i t y a t year end 1978 was 9,132 m e t r i c tons f o r r e f i n e r i e s , 5,464 metric tons f o r n a t u r a l gas processing p l a n t s , and 1,682 m e t r i c tons from H 2 S and a c i d gas (14). R e f i n e r y S u l f u r P r o d u c t i o n . By PAD d i s t r i c t , approximate annual r e f i n e r y s u l f u r production i n 1978, assuming a 330 day o p e r a t i n g year, was 310,000 LT i n d i s t r i c t I ; 524,000 LT i n d i s t r i c t I I ; 993,000 LT i n d i s t r i c t I I I ; 59,000 LT i n d i s t r i c t IV; and 856,000 LT i n d i s t r i c t V (15). Increases i n r e f i n e r y s u l f u r output w i l l be occasioned by the worldwide s h i f t towards the t r a d i n g of more h i g h - s u l f u r , h e a v i e r , crudes. I n g e n e r a l , t h i s means that the a d d i t i o n a l s u l f u r w i l l become a v a i l a b l e on the west, east, and Gulf coasts where the imported crudes are a c t u a l l y r e f i n e d . I n 1975, the average crude r e f i n e d i n the U. S. was 35.2° API and contained .73% s u l f u r by weight [ S ( w t ) ] . By 1990, i t i s a n t i c i p a t e d that the averages w i l l be 34.75° API and 1.0% S (wt). This i n c l u d e s some s m a l l s h i f t t o coal-based syncrude (16). The s h i f t t o higher s u l f u r crudes has been worldwide. I n the U. S., about 42 percent of

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1.

RiEBER

New Sulfur Sources in the U.S.

5

the reserves are low s u l f u r . As a d d i t i o n a l s u l f u r production i s a concomitant o f both s u l f u r i n the crude oil and the s e v e r i t y of des u l f u r i z a t i o n , estimates of both are r e l e v a n t . One such estimate suggests that U. S. high s u l f u r crude throughput ( > .5% S wt) w i l l be 8.9 m i l l i o n b a r r e l s per day (MMBD) by 1990 o r 53 percent of the t o t a l . I n 1976, i t was 5 MMBD o r 37 percent. On the r e f i n e r y s i d e , d i s t i l l a t e oil d e s u l f u r i z a t i o n w i l l come from vacuum g a s - o i l d e s u l f u r i z a t i o n , c a t a l y t i c cracker feed pretreatment and s t r a i g h t run h y d r o t r e a t i n g . More i m p o r t a n t l y , r e s i d u a l oil d e s u l f u r i z a t i o n i s expected t o be extended t o the e n t i r e f r a c t i o n above 650° F r a t h e r than j u s t the 650° F - 1000° F vacuum g a s - o i l w i t h the r e s t going t o coke o r a s p h a l t . Residual oil d e s u l f u r i z a t i o n c a p a c i t y i n 1978 was 110,000 b a r r e l s per c a l endar day (bbl/CD) w i t h 130,000 bbl/CD under c o n s t r u c t i o n . This was expected t o t o t a l 600,000 bbl/CD by 1985 and 800,000 bbl/CD by 1990, but the l a t t e r could be higher i f the nuclear power program i s f u r t h e r delayed (17). Given i n c r e a s i n g f u e l p r i c e s , however, i t i s p o s s i b l e that a l l o f the p r e d i c t e d outputs w i l l i n f a c t be smaller as t o t a l energy f o r e c a s t s are reduced i n c l u d i n g those o f petroleum products. Much of the s u l f u r contained i n a crude oil remains w i t h the t a r , asphalt o r coke a f t e r r e f i n i n g . As crude p r i c e s r i s e , even t h i s residuum becomes v a l u a b l e as a feedstock f o r c r a c k i n g t o make l i g h t e r products. This i n v o l v e s deep d e s u l f u r i z a t i o n . Whether the coke i s burned as a f u e l o r used f o r anodes, d e s u l f u r i z a t i o n w i l l take place before o r a f t e r combustion o r processing. S u l f u r remova l from coke p l a n t s i s a c u r r e n t l y f e a s i b l e process. Table I presents a r e f i n e r y s u l f u r recovery c a p a c i t y f o r e c a s t made by the N a t i o n a l Petroleum C o u n c i l (NPC). The top p o r t i o n of the t a b l e represents the i n i t i a l c o n d i t i o n s based on current crude input and r e f i n e r y product s l a t e s ; the bottom i n d i c a t e s a d d i t i o n a l c a p a c i t y r e q u i r e d f o r each o f three, n o n - a d d i t i v e , s c e n a r i o s . As the NPC study shows that s u l f u r p r o d u c t i o n , as a percent of capaci t y , i n 1982 i s expected t o be 60% i n d i s t r i c t I , 54% i n d i s t r i c t I I , 71% i n d i s t r i c t I I I , 72% i n d i s t r i c t IV, and 49% i n d i s t r i c t V (18), the 1982 p r o j e c t i o n s may w e l l be extended t o 1985. To 1990, t h i s may be coupled w i t h the l i g h t , high s u l f u r crude input scenario both because t h i s i m p l i e s the minimum r e f i n e r y s h i f t and because i t reduces crude oil production s h i f t s . Subsequently, the heavy, high s u l f u r , crude input scenario appears t o be the more l i k e l y as world reserves o f l i g h t e r crudes are p r e f e r e n t i a l l y depleted. Given current energy programs and domestic d e p l e t i o n , o v e r a l l r e f i n e r y crude oil c a p a c i t y may not r i s e much over the p e r i o d . N a t u r a l Gas Processing. I n 1978, based on a 330 day operati n g year, s u l f u r output from n a t u r a l gas processing p l a n t s was estimated a t : 276,000 LT i n d i s t r i c t I ; 30,000 LT i n d i s t r i c t I I ; 1.0 MMLT i n d i s t r i c t I I I ; and 59,000 LT i n d i s t r i c t IV (15). Proj e c t i o n s , however, must be based on the d e p l e t i o n of current reserves, a n t i c i p a t e d new a d d i t i o n s t o reserves, and the probable

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

6

SULFUR: NEW SOURCES A N D USES

TABLE I ANTICIPATED REFINERY SULFUR RECOVERY CAPACITY PAD DISTRICT I

II

III

IV

Total

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

( 1 )

January 1, 1 9 7 9 Crude O i l Capacity (MBD) R e f i n e r i e s (No.) S u l f u r Recovery (LT/CD)

1457 3163 10 30 1525 2546

5855 32 4812

296 7 186

2212 19 3464

12983 98 12533

January 1, 1 9 8 0 ^ Crude O i l Capacity (MBD) R e f i n e r i e s (No.) S u l f u r Recovery (LT/CD)

1451 10 1621

3333 31 2559

6194 36 5088

303 7 204

2323 22 3524

13604 106 12996

1489 10 1711

3564 33 3095

7052 39 5749

307 7 204

2430 24 3594

14842 113 14353

( 3 )

January 1, 1 9 8 2 Crude O i l Capacity (MBD) R e f i n e r i e s (No.) S u l f u r Recovery (LT/CD)

v _ r /

Additional Sulfur Processing C a p a c i t y Needed, f o r Given Scenarios, Beyond Those Committed P r i o r t o January 1, 1982. (Scenario)

(LT/CD)

L i g h t , High S u l f u r , (5) Crude (6) Heavy, High S u l f u r , Crude Heavy F u e l O i l Source:

MBD: LT/CD: (1) (2) (3) (4) (5) (6) (7)

388

1115

2578

36

410

4527

540

1475

3482

54

726

6277

( 7 )

169 348 581 47 206 1351 N a t i o n a l Petroleum C o u n c i l . " R e f i n e r y F l e x i b i l i t y : An I n t e r i m Report"; N a t i o n a l Petroleum C o u n c i l : Washington, D. C , December 1979; Volume I . thousand b a r r e l s per day l o n g tons per calendar day

Table C.4.1.1, p. C-25 Table C.4.1.2, p. C-30 Table C.4.1.3, p. C-35 S u l f u r p l a n t and t a i l gas cleanup Table 59, p. 131 Table 60, p. 132 Table 94, p. 183

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1.

RiEBER

New

Sulfur Sources in the

1

U.S.

s u l f u r content of the a d d i t i o n s . P r o j e c t i o n s are not made e a s i e r by a r e g u l a t o r y h i s t o r y which has served to both reduce e x p l o r a t i o n and production i n c e n t i v e s and to skew past domestic product i o n away from sour gas. U. S. resources of c o n v e n t i o n a l n a t u r a l gas ( e x c l u d i n g Alaska) have been estimated at 186 t r i l l i o n cubic f e e t (TCF) i n the probable category and 359 TCF i n the p o s s i b l e category (19). As the estimates do not i n c l u d e a p r i c e or time frame, only the probable category should be considered. Of the i n c r e a s e i n d r i l l i n g i n 1979 (over 1978), 90 percent was i n the Overthrust B e l t , the outer c o n t i n e n t a l s h e l f , deep gas areas and the Appalachian B a s i n (20). T h i s r e f l e c t s the p a t t e r n of gas p r i c e d e r e g u l a t i o n r a t h e r than the geographic l o c a t i o n of the l a r g e s t sources of probable reserves. Unconventional sources of n a t u r a l gas i n c l u d i n g western t i g h t sands, eastern Devonian s h a l e s , c o a l seam methane and geopressured methane appear to be 10-15 years away from development. Even the range of the estimates of recoverable resources i s a f a c t o r of 12 at a minimum (21). Table I I presents a d i s t r i b u t e d , s c a l e d , estimate of f u t u r e s u l f u r production from sour n a t u r a l gas based on Manderson (22). TABLE I I FORECAST SULFUR PRODUCTION FROM SOUR NATURAL GAS (000 LT/Y) PAD

District

1984

1990

I II III IV

611 50 1939 760

821 68 2611 3000

Total

3360

6500

R e f l e c t i o n suggests that some of the s u l f u r a l l o c a t e d to d i s t r i c t I might be reapportioned to d i s t r i c t I I I . However, the major i n crease i s found i n d i s t r i c t IV. This i s based on a p r o j e c t i o n of production from the Overthrust B e l t . The evidence f o r t h i s i s c u r r e n t l y very scanty. Proved reserves have been estimated at £ 4 . 5 TCF w i t h u l t i m a t e resources at 100 TCF but d r i l l i n g costs are h i g h (23). The H2S content appears to run from 10 percent to 18 percent (24, 25). One p r o c e s s i n g p l a n t w i t h a s u l f u r c a p a c i t y of 1200 T/d i s already planned (26). E i g h t such p l a n t s would f u l f i l l the 1990 estimate. By 1990, however, development of western t i g h t sands and imports of Alaskan and/or Canadian gas could r e duce the competitive p o s i t i o n of the B e l t . F i n a l l y , i f current expectations of f u t u r e s u l f u r p r i c e s are i n continued excess of $100/long t o n , the development of very sour n a t u r a l gas w e l l s (> 60% H 2 S ) may be a n t i c i p a t e d . The methane cont e n t , even i f gas p r i c e s remain c o n t r o l l e d , becomes secondary. L i k e Frasch s u l f u r , t h i s production i s d i s c r e t i o n a r y . The absence

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

SULFUR: NEW SOURCES A N D USES

8

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

of such a development may i n d i c a t e that the s u l f u r i n d u s t r y expects current p r i c e l e v e l s to be short-run. Smelter A c i d . I f a c i d i s produced i n v o l u n t a r i l y , as i n a smelter o p e r a t i o n , i t i s p o s s i b l e t o estimate the cost of a c i d production i n the same manner as that f o r an elemental s u l f u r a c i d p l a n t . To the smelter, however, a c i d output i s simply a mandated concomitant o f the process required to produce the metal. Dependi n g on the l o c a t i o n of the smelter, the sources of demand, the s i z e of the market, and competition from other producers, the a c i d s a l e p r i c e may or may not be s u f f i c i e n t l y high even to y i e l d a p o s i t i v e net-back, much l e s s a desired r a t e o f r e t u r n on investment f o r the a c i d p o r t i o n o f the operation. T h i s s i t u a t i o n does not n e c e s s a r i l y lead to c l o s u r e . P o s i t i v e or n e g a t i v e , the e f f e c t should be r e g i s tered only i n the o v e r a l l p r o f i t a b i l i t y o f the e n t i r e smelter operation. A c i d can be stored on s i t e , used i n t e r n a l l y , o r s o l d as merchant a c i d . Storage f a c i l i t i e s have l i m i t e d c a p a c i t y . Once the a v a i l a b l e tankage i s f i l l e d , a d d i t i o n a l a c i d must be moved o r d i s posed of i n some manner regardless o f p r i c e . F a i l u r e t o do so leads t o smelter c l o s u r e despite o p p o r t u n i t i e s to p r o f i t a b l y move the metal. This i s sometimes c a l l e d " f a t a l a c i d , " r e f e r r i n g not t o any environmental, hazardous, o r other a c i d c h a r a c t e r i s t i c , but merely t o the f a t a l e f f e c t on the smelter operation. I n the s h o r t run, a combination of the e x i g e n c i e s of a i r p o l l u t i o n c o n t r o l and increased s u l f i d e bearing ore production can lead t o conditions i n which some o r most smelters must s e l l a c i d at a minimal p r o f i t o r an a c t u a l l o s s . As the l o c a l market demand i s s a t u r a t e d , s a l e s a t i n c r e a s i n g l y great distances w i l l be sought. Smelter a c i d capacity measures are not e n t i r e l y c o n s i s t e n t . Among s e v e r a l p o s s i b l e estimates the two f o l l o w i n g are given i n thousands o f short tons o f 100% I^SO^ per annum f o r 1978: PAD

District I II III IV V Total

(

(28)

330 ^ 133 1111 1144 2211

1565 1030 1070 2095

4929

6279

5 1 9

The d i f f e r e n c e i n d i s t r i c t I I i s p r i n c i p a l l y due t o the i n c l u s i o n of C o p p e r h i l l i n column 2. Obviously, not a l l smelter a c i d capacity i s u t i l i z e d and not a l l SO2 produced i s transformed i n t o a c i d . For copper, l e a d , and z i n c alone, i f i t i s assumed that only 93.5 percent of the s u l f u r had been removed, metal production i n 1976 i m p l i e d an a c i d product i o n o f 6 m i l l i o n short tons. A c t u a l a c i d production was 3.2 m i l l i o n short tons. A doubling of a c i d output due t o abatement

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

1.

RiEBER

New

Sulfur Sources in the

U.S.

9

implementation alone may be expected even i f metal production r e mained at the 1976 l e v e l . Table I I I provides estimates of f u t u r e a c i d output on a scenario b a s i s . I t i s i m p l i e d that s u f f i c i e n t complying smelters remain to produce the metal. The r e g i o n a l d i s t r i b u t i o n i s based on current c a p a c i t y . Given the pace of a i r p o l l u t i o n c o n t r o l implementation, both the 1985 and 1990 estimates may w e l l be s h i f t e d f i v e years i n t o the f u t u r e . Furthermore, a downward s h i f t i n metal production as w e l l as smelter c l o s u r e i s a very r e a l p o s s i b i l i t y .

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

Future S u l f u r Sources Electric Utilities. For c o a l f i r e d e l e c t r i c u t i l i t i e s most, but not a l l , of the i n i t i a l c o n d i t i o n s to the year 1986 have a l ready been s e t . V a r i a t i o n s w i l l occur but they are u n l i k e l y to be s i g n i f i c a n t . The extent of the s o l i d i f i c a t i o n i s based on e x i s t ing c o a l supply c o n t r a c t s . The s p e c i f i c a t i o n of a c o a l c o n t r a c t to some extent a l s o i m p l i e s the s p e c i f i c a t i o n of an a i r p o l l u t i o n c o n t r o l s t r a t e g y . Of the 260 u n i t s [111,573 megawatts of e l e c tricity (MWe)] scheduled to go o n - l i n e between 1977 and 1986, 134 (66,210 MWe) are scheduled to enter s e r v i c e between 1977 and 1981. Of these, 72 p l a n t s (37,279 MWe) were reported to be u s i n g low s u l fur c o a l to meet (the then expected) a i r p o l l u t i o n c o n t r o l r e g u l a t i o n s . An a d d i t i o n a l 61 p l a n t s (28,601 MWe) were c o n s i d e r i n g f l u e gas d e s u l f u r i z a t i o n (FGD) w h i l e one (330 MWe) was undecided. U t i l i t y s u l f u r values can be obtained only from regenerative FGD processes. At the end of 1977, t h i r t y FGD systems were i n o p e r a t i o n i n the U. S. Only two u t i l i z e d a regenerative process; both were demonstration u n i t s . The P h i l a d e l p h i a E l e c t r i c u n i t r e covers s u l f u r as a c i d . The Northern Indiana P u b l i c S e r v i c e U n i t recovers elemental s u l f u r . Based on current c o n d i t i o n s , there appears to be l i t t l e l i k e l i h o o d of s u b s t a n t i a l s u l f u r or a c i d prod u c t i o n from u t i l i t i e s i n the near term. A review of a l l c o n t r a c t ed or planned r e t r o f i t FGD systems due to become o p e r a t i o n a l by 1986 i n d i c a t e s that only three u t i l i t i e s w i l l use a regenerable approach. S u l f u r output i s estimated at 31,590 short tons annually. T h i s tonnage, combined w i t h that reported f o r e x i s t i n g p l a n t s , prov i d e s an estimate of t o t a l r e t r o f i t t e d regenerable s u l f u r product i o n of 41,542 short tons per year at a maximum. A l l are i n PAD d i s t r i c t I . Two new u n i t s are being brought on-stream by P u b l i c S e r v i c e of New Mexico ( d i s t r i c t I I I ) . These should produce about 9000 tons of s u l f u r per year. There i s no shortage of SO2 s t a c k gas removal processes. The issues i n v o l v e d , however, range from the economics to the t e c h n i c a l f e a s i b i l i t y . Both are l i k e l y to be more s u i t a b l e by 1990. From a l i s t of 65 processes (29) ranging from on-stream to developmental, 31 have at l e a s t a p o t e n t i a l l y s a l e a b l e product. Of these, 11 y i e l d elemental s u l f u r , 5 produce concentrated a c i d w i t h 5 more producing weak a c i d , 6 y i e l d ammonium s u l f a t e , and 4 produce gypsum. The production of s u l f u r may be the s a f e s t course f o r a

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

10

SULFUR: NEW SOURCES A N D USES

TABLE I I I ESTIMATED SMELTER ACID RECOVERY, 1985 and 1990, FOR SELECTED GROWTH RATES AND 93·5 PERCENT S 0 RECOVERY 2

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1985

1990

Copper Growth r a t e (%/annum) T o t a l output (000 s . t . ) A c i d output (000 s . t . )

1.9 1731 5884

.95 1591 5361

1.9 2089 7101

.95 1748 5942

Lead Growth r a t e (%/annum) Metal output (000 s . t . ) A c i d output (000 s . t . )

2.0 780 332

.00 653 278

2.0 951 405

.00 653 278

Zinc Growth r a t e (%/annum) Metal output (000 s . t . ) A c i d output (000 s.t.)

2.0 596 938

.50 522 822

2.0 727 1145

.50 549 864

7154

6461

8651

7084

T o t a l A c i d Output (000 s . t . )

Acid Distribution (000 short tons)

PAD D i s t r i c t I II III IV V Source:

501 1845 1101 1130 2577

439 1664 995 1015 2348

611 2231 1330 1367 3110

461 1823 1093 1105 2602

Rieber, M.; Okech, B.; F u l l e r , R. " S u l f u r P o l l u t i o n C o n t r o l : The D i s p o s a l Problem ; U.S. Bureau o f Mines (Contract No. J0188144): Washington, D.C., J u l y 1980; Volume 8, " S u l f u r i c A c i d , " Table 8.37, p. 8-89. 11

(1) s.t.:

Assumes that 5 percent o f t o t a l copper metal production i s from oxides. short tons

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1.

RIEBER

New

Sulfur Sources in the

U.S.

11

u t i l i t y to f o l l o w i f a ready a c i d market i s not a v a i l a b l e or cannot be e a s i l y developed. Even though most s u l f u r i s converted to a c i d , the elemental s u l f u r markets appear to be s t r u c t u r a l l y l a r g er than the a c i d markets. While t h i s may change over time, u t i l i t i e s are not u s u a l l y i n a p o s i t i o n to undertake the r i s k s of a t r a n s i t i o n i n market s t r u c t u r e . Given the age d i s t r i b u t i o n of e x i s t i n g c o a l f i r e d u t i l i t i e s and the new Environmental P r o t e c t i o n Agency (EPA) r e g u l a t i o n s , FGD w i l l become more important i n the f u t u r e . The choice among systems w i l l depend upon the a v a i l a b i l i t y , c h a r a c t e r i s t i c s and cost of the v a r i o u s coals as w e l l as the r e l a t i v e c o s t s of the candidate FGD processes. While l o w - s u l f u r c o a l s are a v a i l a b l e both east and west of the M i s s i s s i p p i , they may be expected to i n c r e a s e i n p r i c e i n tandem w i t h competing f u e l s ; s p e c i f i c a l l y n a t u r a l gas and r e s i d u a l oil. The proposed Mexican and new Canadian n a t u r a l gas export p r i c e s as w e l l as the f o r e c a s t d e l i v e r e d p r i c e f o r Alaskan gas l e a d to an e x p e c t a t i o n of s i g n i f i c a n t l y h i g h e r f u t u r e p r i c e s . R e s i d u a l oil p r i c e s are t i e d not only t o OPEC p r i c e schedules but to any crude oil p r o d u c t i o n r e s t r a i n t s and r e f i n e r y c o n s t r a i n t s which may d e v e l op. With respect to western low s u l f u r c o a l s , even though the a b i l i t y t o move much l a r g e r volumes i s not questioned, f u t u r e t r a n s p o r t costs may be s i g n i f i c a n t l y h i g h e r . The r e s u l t of such t r e n d s , p a r t i c u l a r l y when assessed against the background of the new EPA r e g u l a t i o n s , may cause a s h i f t to FGD and h i g h e r s u l f u r c o a l s . The l a t t e r , w i t h no market o u t l e t s other than c o a l convers i o n , may be expected to move more c l o s e l y i n tandem w i t h mining costs than w i t h the p r i c e s of f u e l a l t e r n a t i v e s . The p r o d u c t i o n of s u l f u r values by e l e c t r i c u t i l i t i e s a f t e r 1986 i s based on p r o j e c t i o n s of e l e c t r i c output by u t i l i t i e s and assumptions r e l a t e d to regenerable f l u e gas scrubbing. The r e s u l t s should be viewed as speculative. The U. S. Department of Energy (DOE) has modeled f i v e energy s c e n a r i o s f o r the p e r i o d 1977 through 1995; o n l y three appear p l a u s i b l e given the r a p i d r i s e of energy p r i c e s . Based on the DOE h i g h f u e l cost ($37.30/bbl of crude oil i n 1990) m i d - l e v e l supply and demand s c e n a r i o , by assuming a range of c o a l s u l f u r content and a percentage use of regenerable FGD (at 90% scrubbing e f f i c i e n c y ) , an estimate of p o t e n t i a l l y recovered s u l f u r can be made. T h i s i s presented i n the upper p o r t i o n of Table IV. R e g i o n a l i z a t i o n , shown i n the lower p o r t i o n , i s based on a simple t r e n d l i n e - l e a s t squares a n a l y s i s of e l e c t r i c a l gene r a t i n g c a p a c i t y f o r 1960-1977. For p r a c t i c a l purposes only 5% of a l l FGD u n i t s are assumed to be regenerable. Given the mechanistic approach to the s c e n a r i o , the lower end of the output range seems most l i k e l y . Given the amount of c u r r e n t l y burned non-compliance c o a l , i t i s u n l i k e l y that even an average 90 percent scrubbing l e v e l w i l l be reached by 1985. A f i v e year forward time s h i f t i s probable. While implementation of the Power P l a n t and I n d u s t r i a l F u e l Act (1978) may hasten the

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

12

SULFUR: NEW SOURCES A N D USES

s w i t c h t o c o a l , i n c r e a s e d f u e l costs may reduce a l l energy consumpt i o n . Even a 3.5%/annum growth r a t e f o r e l e c t r i c power i s probably h i g h . F l u i d i z e d bed technology could l e a d t o lower s u l f u r ouput f o r any s c e n a r i o . F i n a l l y , co-generation c o u l d , by 1985/1990, lead to a r e d u c t i o n i n u t i l i t y p r o d u c t i o n of 65-82 b i l l i o n k i l o w a t t hours (30).

ELECTRIC UTILITIES:

TABLE IV POTENTIAL SULFUR PRODUCTION T o t a l Output (10 long tons)

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

6

Scenario

1985

1990

1995

5% Regeneration (1.9% S Coal)

0.7

0.9

1.0

5% Regeneration (2.5% S Coal)

1.0

1.2

1.3

10% Regeneration (1.9% S Coal)

1.4

1.7

2.6

10% Regeneration (2.5% S Coal)

1.9

2.2

2.7

5% Regeneration (1.9-2.5% S Coal) PAD D i s t r i c t I II III IV V

Regional Output (10 long tons) 3

438-598 196-268 9-18 36-54

527-714 241-330 nil 9-18 45-62

616-839 286-384 9-18 54-80

S y n f u e l s , I n S i t u Coal G a s i f i c a t i o n , Heavy O i l and Heavy Crude O i l . S u l f u r values may be produced from each o f the f o s s i l based s y n t h e t i c f u e l s . However, f o r e c a s t i n g s u l f u r output from these sources i s s u b j e c t t o a number of i n t a n g i b l e s . At b e s t , the r e s u l t s are p r o j e c t i v e . With the e x c e p t i o n of heavy crude oil, none of the processes o r f u e l sources are commercially developed i n the U. S. Some have been run commercially elsewhere, u s u a l l y under c o n s i d e r a b l y d i f f e r e n t economic c o n d i t i o n s and/or c o n s t r a i n t s . B a s i c t o the e n t i r e e x e r c i s e i s the i s s u e of how much a l t e r n a t i v e f u e l development can be reasonably expected over the next twenty years. Given the previous s y n f u e l program parameters, s u l fur output then depends on both the c h a r a c t e r i s t i c s of the o r i g i n a l f u e l source and the s p e c i f i c method o f p r o c e s s i n g . These a l s o serve t o determine the l o c a t i o n of the s u l f u r output. Assuming that environmental, e c o l o g i c a l and other problems can be met and subsumed under c o s t s , a l l o f the candidate sources,

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

1.

RiEBER

New

Sulfur Sources in the

U.S.

13

except c o a l conversion, are f u e l supply s i t e s p e c i f i c . Numerous l o c a t i o n s f o r c o a l conversion are p o s s i b l e . However, w h i l e water usage i s u n l i k e l y to be other than a s i t e s p e c i f i c f a c t o r f o r i n d i v i d u a l p l a n t s , i t may be a l i m i t i n g f a c t o r on a programmatic b a s i s p a r t i c u l a r l y i n s e m i - a r i d western regions. The problem a r i s e s because c o a l , ranging from 3.5-7 percent H 2 , has a 16:1 c a r bon to hydrogen r a t i o . Transport f u e l s c o n t a i n 12-14 percent H . Fuel o i l s , at 9-11 percent H , have a 6:1 carbon to hydrogen r a t i o w h i l e the r a t i o f o r methane or syngas i s 4:1. The e x t r a hydrogen comes from water. DOE estimates that 5-25 MMgal/day/100,000 b b l / day p l a n t w i l l be r e q u i r e d (31). A l t e r n a t i v e estimates are 20,000 acre feet/year/100,000 bbl/day p l a n t and 15 MM g a l l o n s per 75,000 tons/day of c o a l i n p u t . These are simply orders of magnitude. S p e c i f i c estimates depend not only on the products but on the processes. Western c o a l conversion development appears to be favored because of r e l a t i v e l y low mining c o s t s , process r e a c t i v i t y of the subbituminous coals and l i g n i t e , and the avoidance of r a i l c o a l t r a n s p o r t . Product t r a n s p o r t a t i o n i m p l i e s that the outputs are s y n t h e t i c l i q u i d s and high Btu gas. Both e x t r a c t a high water p e n a l t y . I f a low or medium Btu gas i s produced, mine mouth power generation w i t h e x t r a high v o l t a g e t r a n s m i s s i o n (765 KVAC or ±600 KVDC) i s r e q u i r e d . This a l s o a p p l i e s to the output from i n s i t u c o a l g a s i f i c a t i o n . Water requirements f o r l a r g e s c a l e e l e c t r i c u t i l i t i e s are h i g h . Eastern c o a l conversion development may come to be favored because of market p r o x i m i t y , water a v a i l a b i l i t y , and c o a l sources which, because of t h e i r h i g h s u l f u r content, are c u r r e n t l y unuseable and, hence, l a r g e l y decoupled from other energy p r i c e s . Proxi m i t y reduces t r a n s p o r t costs and allows an increased use of low and medium Btu syngas processes. R e a c t i v i t y and s w e l l i n g problems may be overcome by technology. 2

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

2

Shale O i l . O p t i m i s t i c shale oil production estimates are (32): 75 - 125,000 b b l / d by 1985; 375 - 625,000 b b l / d by 1992-93; and 1,000,000 b b l / d by 2000. The C a r t e r a d m i n i s t r a t i o n energy program r e q u i r e d 400,000 b/d of shale oil by 1990. A conservative estimate i s 500,000 b/d by 2000. I f i t i s assumed that e x i s t i n g p r o j e c t s develop as planned, by 1987 between 182,000 b/d and 282,000 b/d of shale oil w i l l be a v a i l a b l e . By 1990 the estimate ranges between 391,000 and 491,000 b/d. This allows f o r n e i t h e r problems nor development s l i p p a g e . I t a l s o assumes no new e n t r a n t s . F i n a l l y , the estimate excludes those firms which have not f i n a l i z e d t h e i r plans even to the extent of proposing a f a c i l i t y s i z e . Some may come on-stream a f t e r 1990. A l l of the developments and most of the s u l f u r produced w i l l be l o c a t e d i n PAD d i s t r i c t IV. How much s u l f u r w i l l a c t u a l l y be produced depends on the shale oil production assumed, the amount of contained s u l f u r and the method of d i s p o s a l . I t i s assumed here that shale oil output w i l l

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

14

SULFUR: NEW SOURCES A N D USES

be 100,000 b/d by 1985, 350,000 b/d by 1990 and 500,000 b/d by 1995. An e a r l y study (33) assumed, f o r by-product c r e d i t purposes, the production o f 100 tons/day o f s u l f u r f o r each 100,000 b/d of shale oil production. On a calendar day b a s i s t h i s equals 36,500 T/Y by 1985, 127,750 T/Y by 1990 and 182,500 T/Y by 1995. The estimate agrees w i t h the a n a l y s i s o f Green R i v e r shales o f 19.2-20.5° API c o n t a i n i n g .6-.67% S (wt) (34). I t i s p o s s i b l e that not a l l o f the s u l f u r contained i n the shale i s produced. At l e a s t one study i n d i c a t e s that i n a r e t o r t o p e r a t i o n , 82.5 percent of the s u l f u r contained i n the as-mined shale feed i s r e t a i n e d i n the spent shale (35). I t i s concluded t h a t as a producer o f s u l f u r , the shale oil program w i l l have a n e g l i g i b l e impact under any foreseeable conditions. Coal-Based Synfuels. Given the time frame from f e a s i b i l i t y s t u d i e s t o commercial o p e r a t i o n , coal-based s y n t h e t i c s are u n l i k e l y to make a meaningful c o n t r i b u t i o n i n t h i s decade. T h e i r e f f e c t i v e output may be delayed u n t i l the mid-1990's even under a C a r t e r adm i n i s t r a t i o n energy program. With respect to h i g h Btu syngas, e x i s t i n g proposals and plans appear t o support the p o s i t i o n that near-term development w i l l depend on proven technology; e s s e n t i a l l y L u r g i . L i q u e f a c t i o n i s l i k e l y to be d i r e c t (Exxon Donor Solvent and Solvent Refined Coal) r a t h e r than i n d i r e c t ( F i s c h e r - T r o p s c h ) . However, as the l a t t e r can be added to L u r g i g a s i f i c a t i o n , t h i s p o s i t i o n i s not s t r o n g l y h e l d . A search o f the recent l i t e r a t u r e i n d i c a t e s i d e n t i f i a b l e plans f o r 19 h i g h Btu c o a l g a s i f i c a t i o n , 10 medium and low Btu gas, and 15 l i q u e f a c t i o n p r o j e c t s . These range from l a b o r a t o r y s c a l e , through seeking funds f o r f e a s i b i l i t y s t u d i e s , t o the c o n s t r u c t i o n of commercial s c a l e demonstration p l a n t s . The i m p l i e d c o a l input i n Table V i s based on e x t r a p o l a t i o n s t o commercial s i z e o f those p r o j e c t s which are s u f f i c i e n t l y advanced to provide data on input and/or output, s i t e , and time frame. Other p r o j e c t s may be i n c l u d ed l a t e r ; but they could not make a c o n t r i b u t i o n before the mid1990's. S u l f u r production from c o a l conversion processes owes f a r more to the s u l f u r content o f the c o a l than to e i t h e r process o r l o c a t i o n . Based on an examination o f the s u l f u r production p o t e n t i a l of s e v e r a l c o a l conversion processes over a range o f c o a l s , when c o a l s u l f u r content (MF b a s i s ) i s p l o t t e d against s u l f u r produced, of 32 observations a l l but 6 f a l l t i g h t l y along a l i n e a r t r e n d . Fischer-Tropsch produces s l i g h t l y more s u l f u r f o r a given c o a l s u l f u r content w h i l e the S y n t h o i l process apparently produces much more. Of the remaining 4 e x c e p t i o n s , 3 are s l i g h t l y below the trend (COED, H y d r o d e s u l f u r i z a t i o n , and EDS) but COGAS produces f a r l e s s s u l f u r f o r a given s u l f u r content i n the c o a l . I f i t i s assumed that the high s u l f u r coals average 3.5% S (wt) w h i l e the low s u l f u r c o a l s average 0.7% S (wt), the s u l f u r product i o n estimates i n Table V may be d e r i v e d . Process examination

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

1.

RiEBER

New Sulfur Sources in the

15

U.S.

suggests that not a l l of the contained s u l f u r i s produced, some r e mains w i t h unconverted c o a l ; some i s l o s t . F i n a l l y , i t must be acknowledged that the estimates are q u i t e s p e c u l a t i v e . TABLE V POTENTIAL SULFUR FROM COAL-BASED SYNTHETICS 1985

1990 Implied Coal Input (tons/day)

PAD D i s t r i c t Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1990-2000

I

620 H

9,000 H

25,600 H

II

10,600 H 13,600 L

89,850 H 67,600 L

163,800 H 131,600 L

III

250 H

28,000 H 15,000 L

42,700 H 15,000 L

IV



32,600 L

119,200 L

V

1,000 L

10,000 L

37,000 L

Estimated S u l f u r Output ( 1 0 long tons/year) 3

I II III IV V

4 93 2



1

65 730 220 41 12

184 1,342 546 149 46

H = high s u l f u r c o a l L = low s u l f u r c o a l In S i t u Coal G a s i f i c a t i o n . In s i t u c o a l g a s i f i c a t i o n i s a process which DOE b e l i e v e s w i l l be ready commercially by the mid to l a t e 1980's (36). As i n any combustion process, the contained s u l f u r i s changed t o S O 2 . While some w i l l be absorbed i n the char and some i n the eurrounding m a t e r i a l , a p o r t i o n o f the SO2 w i l l be recovered w i t h the low or medium Btu gas. I t i s l i k e l y that the output o f SO2 w i l l be greater w i t h medium than w i t h low Btu i n s i t u g a s i f i c a t i o n because of the use of oxygen r a t h e r than a i r . Given the current stage of development, l i t t l e c o n t r i b u t i o n t o the supply of s u l f u r i s seen from t h i s source before 1990. As most of the p i l o t s t u d i e s are being s e t up i n the West and as most of the coals are low s u l f u r , t o t a l s u l f u r output i s u n l i k e l y to be s i g n i f i c a n t even i n the 1990's. The order of magnitude i s estimated to be about the same as t h a t of shale oil. Heavy O i l and Tar Sands. Heavy oil and the t a r sands i n the U. S. must be c a t e g o r i z e d as a resource r a t h e r than a reserve as

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

16

SULFUR: NEW SOURCES A N D USES

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

the techniques needed f o r development are not yet i n place and c u r rent economics are not f a v o r a b l e . Compared t o the r e s t of the w o r l d , U. S. resources are not great. Given the apparent l a c k of current i n d u s t r i a l i n t e r e s t i n U. S. t a r sands and heavy oil as w e l l as the developmental time h o r i z o n s suggested by the Canadian experience, s u l f u r output from t h i s source appears u n l i k e l y through the year 2000. Heavy Crude O i l s . Heavy crude o i l s are produced i n C a l i f o r n i a . Production problems have been r e l a t e d t o a i r p o l l u t i o n from the generation o f steam used f o r f l o o d i n g and r e f i n i n g the heavy, high s u l f u r , crude. A d d i t i o n a l development may, however, be expected f o l l o w i n g the d e c o n t r o l o f p r i c e s on crudes up t o 20° API and the exemption o f crudes o f 16° API and under from the w i n d f a l l p r o f i t s tax. I t i s expected that output a d d i t i o n s w i l l be 65,000 b/d i n 1981 and 130,000 b/d by 1983. The goal i s t o double output from 250,000 b/d to 500,000 b/d by 1985 and to 750,000 b/d by 1990 (37). Untreated C a l i f o r n i a heavy crude contains 3.56 pounds of s u l f u r per b a r r e l o f crude oil. A f t e r treatment (Gulf HDS) the m a t e r i a l cont a i n s 0.998 pounds of s u l f u r per b a r r e l . Of the 2.56 pound d i f f e r ence, i t i s assumed that 75 percent i s produced. This suggests t h a t , assuming the C a r t e r a d m i n i s t r a t i o n goals were met, 1985 and 1990 s u l f u r output would be 150,000 LT/Y and 225,000 LT/Y, respect i v e l y , f o r a 350-day r e f i n e r y o p e r a t i o n year. Output i n the decade o f the 1990's i s u n l i k e l y to be much h i g h e r . T o t a l reserves would not be able t o support a very much increased output. A port i o n o f t h i s i s subsumed i n the d i s t r i c t V r e f i n e r y e s t i m a t e s , above. Conclusion The simple sum of the preceding e s t i m a t e s , subject t o the time s h i f t s and scenarios suggested i n the t e x t , i s presented i n Table VI. I t i s emphasized t h a t the estimates represent c a p a c i t y r a t h e r than output and t h a t the low end o f each range i s the most probable. I f the estimates are approximately c o r r e c t , only PAD d i s t r i c t I w i l l continue to be a net i n t e r - r e g i o n a l importer o f s u l f u r . In other r e g i o n s , s u l f u r may be v a t t e d o r returned to the ground. P r i c e s are u n l i k e l y t o remain s u f f i c i e n t l y high f o r a s u l fur c r e d i t to be u s e f u l l y a p p l i e d to process c o s t i n g . Smelter a c i d w i l l be p a r t i c u l a r l y v u l n e r a b l e to the i n c r e a s e i n competitive s u p p l i e s . Frasch s u l f u r w i l l h a r d l y be missed. On a q u a l i t a t i v e b a s i s , the estimates o f recovered s u l f u r from r e f i n e r y operations appear to be the most secure. Except f o r d i s t r i c t IV, which depends h e a v i l y on the u l t i m a t e p r o d u c t i v i t y o f the Overthrust B e l t , estimates o f s u l f u r production from sour n a t u r a l gas a l s o seem r e l i a b l e . The heavy crude oil s u l f u r output estimate i s reasonably f i r m . O i l s h a l e , t a r sands, heavy oil and i n s i t u c o a l combustion w i l l produce l i t t l e s u l f u r even under o p t i m i s t i c s c e n a r i o s . The smelter a c i d p r o j e c t i o n i s weak. Metal output may

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

1.

RiEBER

17

New Sulfur Sources in the U.S.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

not increase and smelters may c l o s e r a t h e r than comply w i t h the new r e g u l a t i o n s . I f the Overthrust B e l t production f o r e c a s t i s c o r r e c t , the smelter a c i d p o s i t i o n w i l l be worsened. The e l e c t r i c u t i l i t y f o r e c a s t may be h i g h unless e l e c t r i c demand increases from current l e v e l s . F i n a l l y , s u l f u r from c o a l conversion i s h i g h l y scenario dependent. T o t a l s y n f u e l s f o r e c a s t may be too high i n the absence o f government supported programs. Even w i t h a c o r r e c t l y f o r e c a s t t o t a l , a s h i f t from western t o eastern c o a l s w i l l r e duce western s u l f u r output ( d i s t r i c t IV) somewhat w h i l e i n c r e a s i n g eastern s u l f u r output ( d i s t r i c t s I , I I , I I I ) c o n s i d e r a b l y . TABLE VI PROJECTED SULFUR VALUE CAPACITY ( 1 0 long tons/year) 3

PAD D i s t r i c t

1985

1990

1990-2000

1508-1546 1888-2132 5164-5193 1184-1241 2109-2174

2218-2396 3032-3159 6213-6245 3502-3621 2223-2247

2250-2481 3801-4014 6727-6799 3636-3874 2398-2577

T o t a l Recovered

11853-12286

17188-17668

18812-19745

Frasch S u l f u r (District III)

6330-8630

4550-5550

2250

I II III IV V

In view of the domestic estimates, imports are almost redundant. I t appears l i k e l y , however, that by 1985-1990 Canada w i l l have about one m i l l i o n a d d i t i o n a l short tons of a c i d a v a i l a b l e f o r export. At l e a s t some would be a v a i l a b l e i n PAD d i s t r i c t s I and I I . Furthermore, s u l f u r production from sour n a t u r a l gas and t a r sands i s l i k e l y t o i n c r e a s e . As t r a n s p o r t problems are m i t i g a t e d and formed s u l f u r gains acceptance, Canadian output w i l l become a v a i l a b l e t o d i s t r i c t s I , I I , and IV. E x c l u d i n g the e x i s t i n g s t o c k p i l e , the estimate f o r t a r sands and heavy oil i s 1.3-1.9 MMLT/Y i n the 1990 s. An estimate of 5 MMLT/Y of s u l f u r from Canadian sour n a t u r a l gas processing i n the mid 1980's i s probably low. Mexican Frasch s u l f u r output, l i k e our own, w i l l d e c l i n e over the next 15 years. However, an estimate of Mexican recovered s u l fur from oil and a s s o c i a t e d n a t u r a l gas i s 2-4 MMLT/Y by 1985 and 4-8 MMLT/Y by 1990 (38). The obvious market i s d i s t r i c t I . The product w i l l be molten, w i l l have the cost advantage of any form of recovered s u l f u r , and, given the Jones Act which r e s t r i c t s i n t r a c o a s t a l s h i p p i n g t o U. S. f l a g v e s s e l s , w i l l have a t r a n s p o r t cost advantage over U. S. Gulf Coast shipments. T

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

18

SULFUR: NEW

SOURCES AND

USES

Literature Cited 1.

2.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

3. 4. 5. 6.

7.

8.

9.

10. 11.

12.

13. 14.

15.

16. 17. 18.

Rieber, Michael. "Sulfur Pollution Control: The Disposal Problem"; U.S. Bureau of Mines (Contract No. J0188144): Washington, DC, 1981; Volumes 1-10. Manderson Associates. "Phosphates, Phosphate Rock, Sulfur, Sulfuric Acid, Uranium: Their Emerging Interaction and Outlook During the Coming Decade (1980-1990)"; Manderson Associates, Inc.: Winter Park, Florida, September 1979; Volume II, Table IV-3, p 130. Anonymous. Sulphur. 1978, 136, 68. U.S. Bureau of Mines. "Minerals and Materials"; Washington, DC, February 1980; p 51. Mayhew, L. D. Industrial Minerals. 1978, 134, 41. U.S. Bureau of Mines. "Frasch and Recovered Sulfur in August 1980," Mineral Industry Surveys; Bureau of Mines: Washington, DC, 10 October 1980. Lundgren, D. Α.; Durham, M. D.; and Genoble, A. L. "Analysis of Proposed Dust Control Program and Predicted Ambient Air Impact for Agrico Chemical Company's Big Bend Sulfur Nugget Terminal"; Environmental Engineering Consultants: Gainesville, Florida, February 1978. Freeport Sulphur Company. "Solid Versus Molten Sulphur-Handling, Storage and Processing"; Freeport Minerals, Inc.: New York City, N.Y., 11 March 1977. Staffa, R. I. "Letter" [to Ad Hoc Committee on Latest Reason­ ably Available Control Technology for Dockside Sulfur Unload­ ing F a c i l i t i e s , Department of Environmental Affairs, State of Florida]; Environmental Affairs, U.S. Sulphur Operations, Texasgulf, Inc.: Stamford, Conn., 3 February 1978. Anderson, J. Colin. Sulphur. 1979, 140, 29-31. U.S. Bureau of Mines. "Sulfur in 1979," Mineral Industry Surveys; Bureau of Mines: Washington, DC, 26 March 1980; Table 5, p 8. McCalsin, John C., Ed.; "Worldwide Sulfur Production (Petro­ leum Derived)"; International Petroleum Encyclopedia; Petro­ leum Publishing Co.: Tulsa, Oklahoma, 1978; Vol. 11, p 393-96. Anonymous. O i l and Gas J. 1979, 77 (19), 142-144. McCalsin, John C., Ed.; "Worldwide Sulfur Production (Petro­ leum Derived)"; International Petroleum Encyclopedia; Petro­ leum Publishing Co.: Tulsa, Oklahoma, 1979; Vol. 12, Preprint. McCalsin, John C., Ed.; "Worldwide Sulfur Production (Petro­ leum Derived)"; International Petroleum Encyclopedia; Petro­ leum Publishing Co.: Tulsa, Oklahoma, 1978; Vol. 11, p 393-96. Anonymous. O i l and Gas J. 1980, 78 (17), 66-67. Posey, Lloyd G.; Kelley, Peter E.; Cobb, Calvin B. O i l and Gas J. 1978, 76 (43), 133. National Petroleum Council. "Refinery F l e x i b i l i t y : An Interim Report"; National Petroleum Council: Washington, DC, December 1979; Vol. I I , Tables C.6.1.1-C.6.1.3, pp C-196, C-199, C-202.

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: March 29, 1982 | doi: 10.1021/bk-1982-0183.ch001

1.

RIEBER

New Sulfur Sources in the U.S.

19

19. Anonymous. Oil and Gas J. 1979,77(15), 82-83. 20. Anonymous. Oil and Gas J. 1980, 78 (19), 77. 21. Rosenberg, Robert B.; Sharer, John C. Oil and Gas J. 1980, 78 (17) 145, Table 3. 22. Manderson A s s o c i a t e s . "Phosphates, Phosphate Rock, S u l f u r , Sulfuric A c i d , Uranium: T h e i r Emerging I n t e r a c t i o n and Outlook During the Coming Decade (1980-1990)"; Manderson A s s o c i a t e s , Inc.: Winter Park, Florida, September 1979; Volume II, Table IV-5, p 141. 23. Anonymous. Oil and Gas J. 1980, 78 ( 1 9 ) , 79. 24. Anonymous. Oil and Gas J. 1979, 77 ( 1 2 ) , 62-63. 25. Anonymous. Oil and Gas J. 1980, 78 ( 9 ) , 35. 26. Anonymous. Oil and Gas J. 1980, 78 ( 2 ) , 48. 27. Anonymous. Sulphur. 1979, 144, 30. 28. Manderson A s s o c i a t e s . "Phosphates, Phosphate Rock, S u l f u r , Sulfuric A c i d , Uranium: T h e i r Emerging I n t e r a c t i o n and Outlook During the Coming Decade (1980-1990)"; Manderson A s s o c i a t e s , Inc.: Winter Park, Florida, September 1979; Volume II, Table IV-7, p 148. 29. Goar, R. Gene. Oil and Gas J. 1979, 77 ( 4 ) , 58-61. 30. General Accounting Office. "Report t o the Congress: I n d u s t r i a l Cogeneration--What It Is, How It Works, Its Potential"; General Accounting O f f i c e : Washington, DC, 29 April 1980; EMD-80-7, Table III-7, p 111. 31. B h a t i a , G a u r i . Coal Age. 1979, 84 ( 8 ) , 113. 32. W i l s o n , Howard M. Oil and Gas J. 1979, 77 ( 2 5 ) , 49-52. 33. N a t i o n a l Petroleum C o u n c i l . "U.S. Energy O u t l o o k : 0 i l Shale Availability"; N a t i o n a l Petroleum C o u n c i l : Washington, DC, 1973; p 16-17. 34. F r o s t , C. M.; Cottingham, P. L. "Hydrogenating Shale Oil a t Low Space V e l o c i t y " ; U.S. Bureau o f Mines: Washington, DC, 1973; RI 7738, p 4. 35. Harak, Η. E.; Dockter, L.; Carpenter, H. C. "Some R e s u l t s from the Operation o f a 150-Ton Oil Shale R e t o r t " ; U.S. Bureau of Mines: Washington, DC, January 1971; TPR-30; Table 1, p 10, Table 2, p 13. 36. Sullivan, A l l a n n a M. Coal Age. 1979, 84 ( 4 ) , 84-89. 37. Anonymous. Oil and Gas J. 1979, 77 ( 3 5 ) , 38-39. 38. Rieber, M.; Okech, B. " S u l f u r Pollution C o n t r o l : The D i s p o s a l Problem"; U.S. Bureau o f Mines (Contract No. J0188144): Washington, DC, December 1980; Volume 9, "Secondary Impacts of Rest o f World P r o d u c t i o n o f Sulfur, S u l f u r Values, and Fertilizer," pp 9-80--9-94. RECEIVED

October

5, 1981.

Raymont; Sulfur: New Sources and Uses ACS Symposium Series; American Chemical Society: Washington, DC, 1982.