Chapter 18
New Trends in Modification of Lignins Henryk Struszczyk
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Institute of Chemical Fibres, 19 C. Sklodowska Str., 90-570 Lodz, Poland
New trends in the modification of lignins related to the formation of polymeric materials with such special properties as thermal stability, fire resistance and use as carriers for controlled release, bioactive compounds are discussed. Several properties of new polymeric materials, especially their thermal behavior, were studied. The activation energy of the thermal degradation process was found to be in the range of 21-176 k J / m o l for several derivatives. Practical agricultural tests with lignin-based carriers containing chemically bound 2,4-D demonstrated that lignin is capable of providing herbicide release over prolonged time periods. T h e w o r l d w i d e increase i n t h e price o f p e t r o l e u m a n d coal has created a n interest i n a l t e r n a t i v e sources o f r a w m a t e r i a l s . B i o m a s s is a n a t t r a c t i v e renewable r a w m a t e r i a l c o m p r i s i n g a l l types o f a g r i c u l t u r a l a n d s i l v i c u l t u r a l v e g e t a t i o n . T h e s e renewable resources have recently been considered m a j o r a l t e r n a t i v e r a w m a t e r i a l s for the c h e m i c a l i n d u s t r y . L i g n i n s represent t h e second most a b u n d a n t p o l y m e r i c c o m p o n e n t o f b i o m a s s . L i g n i n s i n spent p u l p i n g l i q u o r s o f c h e m i c a l p u l p i n g processes have so far been used as a n energy source, where they d o n o t a l w a y s live up t o their f u l l economic p o t e n t i a l . L i g n i n s , o w i n g t o their reactive sites w h i c h are m a i n l y a r o m a t i c as w e l l as a l i p h a t i c h y d r o x y l groups, have been p o t e n t i a l r a w m a t e r i a l s for the m a n u f a c t u r e o f new p o l y m e r s (1-7). T h i s p a p e r presents t w o different directions o f l i g n i n m o d i f i c a t i o n r e search: • m o d i f i c a t i o n b y at least d i f u n c t i o n a l reactive modifiers t o f o r m s p e c i a l types o f p o l y m e r i c m a t e r i a l s characterized by, a m o n g others, t h e r m a l s t a b i l i t y , fire resistance, a n d c h e m i c a l resistance; a n d 0097-6156/89A)397-0245$06.00A) © 1989 American Chemical Society
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
246
LIGNIN: PROPERTIES AND MATERIALS
• m o d i f i c a t i o n of lignins or of l i g n i n derivatives to f o r m p o l y m e r i c carriers for c o n t r o l l e d release b i o a c t i v e substances.
Special Lignin-Based Polymeric Materials T w o m a i n l i g n i n types were used for these i n v e s t i g a t i o n s : kraft l i g n i n (Ind u l i n A T , W e s t v a c o C o . , U S A ) , a n d (a) l i g n i n sulfonates ( U l t r a B 0 0 2 , R a u m a R e p o l a O y , F i n l a n d ) w i t h a n i n t r i n s i c viscosity of 8.0 m L g , a t o t a l h y d r o x y l content of 1 4 . 5 % a n d a p h e n o l i c h y d r o x y l content of 4.7%; (b) l i g n i n sulfonates (Borresperse Ν A ) w i t h a n i n t r i n s i c v i s c o s i t y of 5.0 m L g , a t o t a l h y d r o x y l group content of 1 4 . 9 % a n d a p h e n y l i c h y d r o x y l c o n tent of 3.7%; a n d (c) l i g n i n sulfonates ( U l t r a z i n e N A S ) w i t h a n i n t r i n s i c v i s c o s i t y of 12.1 m L g " , a t o t a l h y d r o x y l group content of 1 5 . 1 % , a n d a p h e n y l i c h y d r o x y l content of 4 . 2 % ( b o t h p r o d u c e d b y B o r r e g a a r d Inc., Norway). C h l o r o p h o s p h a z e n e s ( N P C I 2 ) , i n the f o r m o f h e x a c h l o r o c y c l o t r i p h o s phazene ( m . p . 112-113°C, Inabate C o . , J a p a n ) as w e l l as cyclic oligomers ( m . p . 87-91°C, P o l a n d ) a n d t e r e p h t h a l o y l chloride ( M e r c k , F R G ) , served as reactive modifiers. T h e m o d i f i c a t i o n of l i g n i n s b y at least d i f u n c t i o n a l reactive modifiers was c a r r i e d out i n three systems: i n s o l u t i o n ( A ) , i n suspension ( B ) , a n d i n s o i l d state ( C ) i n the presence of hydrogen chloride acceptors (8-10). T h e m o d i f i c a t i o n i n s o l u t i o n ( A ) was carried out b y d i s s o l v i n g l i g n i n s (1.0 g) a n d a c o r r e s p o n d i n g a m o u n t of hydrogen chloride acceptor i n a s u i t a b l e s o l vent. D i f u n c t i o n a l reactive modifier (chlorophosphazenes or t e r e p h t h a l o y l chloride) dissolved i n a s u i t a b l e solvent was next a d d e d dropwise d u r i n g c o n t i n u o u s a g i t a t i o n . T h e m i x t u r e was allowed to react at the b o i l i n g p o i n t for 3 h . T h e r e a c t i o n m i x t u r e was p o u r e d i n t o ice w a t e r , a n d the s o l i d p r e c i p i t a t e was centrifuged at 66.6 rps for 15 m i n . It was washed sev eral t i m e s w i t h dioxane a n d water, or w i t h 5 % s o d i u m b i c a r b o n a t e s o l u t i o n a n d w a t e r , to o b t a i n a n e u t r a l reaction p r o d u c t , a n d i t was d r i e d ( 8 , 1 0 - 1 3 ) . T h e l i g n i n m o d i f i c a t i o n s i n suspension ( B ) were c a r r i e d out u s i n g lignins (1.0 g) dispersed i n a s u i t a b l e m e d i u m c o n t a i n i n g also the hydrogen chloride acceptor. D i f u n c t i o n a l reactive modifier dissolved i n a s u i t a b l e s o l vent was next added dropwise d u r i n g continuous a g i t a t i o n . T h e r e a c t i o n m i x t u r e was allowed to react at the b o i l i n g p o i n t for 3 h . T h e p u r i f i c a t i o n process was c a r r i e d out as described before (8,10-12). T h e l i g n i n m o d i f i c a t i o n s i n s o l i d ( C ) were c a r r i e d out u s i n g l i g n i n s (1.0 g) m i x e d w i t h c o r r e s p o n d i n g a m o u n t s of hydrogen chloride acceptor a n d chlorophosphazenes. T h e reaction was carried out b y h e a t i n g at a t e m p e r a t u r e of 100°C, i.e., above the m e l t i n g p o i n t of chlorophosphazene. T h e r e a c t i o n m i x t u r e was p o u r e d i n t o ice water, a n d t h e n the s o l i d p r o d u c t was p u r i f i e d as described before (9). T h e properties of the derivatives o b t a i n e d were d e t e r m i n e d b y the u s u a l a n a l y t i c a l methods (8-17). D i f f e r e n t i a l t h e r m a l a n a l y s i s ( D T A ) was p e r f o r m e d i n a i r w i t h a n O D 102 D e r i v a t o g r a p h ( M O M , H u n g a r y ) u s i n g 100 m g samples at a h e a t i n g rate of 1 0 ° C / m i n . D i f f e r e n t i a l t h e r m o g r a v i m e t r y ( D T G ) a n d t h e r m o g r a v i m e t r y - 1
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
- 1
1
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
18.
STRUSZCZYK
New Trends in Modification of Lignins
247
( T G ) were c a r r i e d o u t w i t h a D u P o n t T h e r m a l A n a l y z e r , T y p e 990, w i t h a 10 m g s a m p l e i n a i r . T h e s a m p l e weight was recorded against t e m p e r a t u r e i n a range o f 20-600°C a t a h e a t i n g rate o f 1 0 ° C / m i n . T h e h y d r o l y t i c resistance o f the p r o d u c t s w a s i n v e s t i g a t e d q u a n t i t a t i v e l y i n 0.4 Ν p o t a s s i u m h y d r o x i d e a n d 0.5 Ν s u l f u r i c a c i d s o l u t i o n s b y m i x i n g powdered m a t e r i a l s (40 m g ) i n a s u i t a b l e solvent (20 m L ) a t 5 0 ± 0 . 1 ° C for 24 h .
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Modification of Lignins with
Chlorophosphazenes
T h e m o d i f i c a t i o n o f lignins w i t h chlorophosphazenes allows t h e m a n u f a c ture o f p r o d u c t s characterized b y flame resistance a n d t h e r m a l s t a b i l i t y . T h i s c a n be a t t r i b u t e d t o the a r o m a t i c s t r u c t u r e o f the l i g n i n - p h o s p h a z e n e p o l y m e r as well as t o the presence o f such flame i n h i b i t i n g elements as phos p h o r o u s , n i t r o g e n a n d s u l f u r . O t h e r useful properties m a y also result f r o m t h i s c o m b i n a t i o n . It has p r e v i o u s l y been r e p o r t e d (8-13) t h a t the m o d i f i c a t i o n provides crosslinked p r o d u c t s w i t h s u i t a b l y l o w c h l o r i n e content. T h i s is a consequence o f i n c o m p l e t e s u b s t i t u t i o n o f the phosphazenes cycles. A d d i t i o n a l m o d i f i c a t i o n o f the r e a c t i o n p r o d u c t s b y c h e m i c a l c o m p o u n d s w i t h reactive h y d r o x y l o r a m i n e groups reduces t h e u n r e a c t e d chlorine content a n d i m p r o v e s p r o d u c t properties (8-13). Some properties o f the derivatives o b t a i n e d are presented i n T a b l e I . A novel m o d i f i c a t i o n m e t h o d , i n s o l i d state, has recently been tested (9). S i m p l i c i t y as w e l l as effectiveness seem t o h o l d promise for t h i s t e c h nique (9). Some e x p e r i m e n t a l results are s u m m a r i z e d i n T a b l e I I . A n a d d i t i o n a l m o d i f i c a t i o n o f l i g n i n s w i t h h y d r o x y l or a m i n e g r o u p c o n t a i n i n g c o m p o u n d s was f o u n d t o further i m p r o v e the p r o d u c t properties (Table III). T h e results reveal t h a t U l t r a z i n e N A S lignosulfonates have the highest r e a c t i v i t y t o w a r d chlorophosphazenes. T h i s m u s t p r o b a b l y be e x p l a i n e d w i t h t h e i r s t r u c t u r e , their higher p u r i t y , their higher m o l e c u l a r weight, a n d their higher d i s p e r s i n g a b i l i t y i n contrast t o other lignosulfonates. T h e m o d i f i c a t i o n o f lignins b y chlorophosphazenes allows the f o r m u l a t i o n o f p o l y m e r i c m a t e r i a l s characterized b y : • H i g h flame resistance: T h e derivatives are d i s t i n g u i s h e d by h i g h flame resistance a n d failure t o glow completely, whereas the u n m o d i f i e d l i g n i n s i g n i t e d easily a n d sustained a flame (kraft) or glowed r a p i d l y (lignosulfonates) ; • H i g h h y d r o l y t i c resistance against aqueous a c i d a n d base: T h e m o d ified l i g n i n s were f o u n d n o t t o consume m o r e a l k a l i t h a n t h e p a r e n t l i g n i n (i.e., 50-80 m g K O H / g of derivative as c o m p a r e d t o 85 m g K O H / g o f parent l i g n i n ) ; • C h e m i c a l resistance t o t h e a c t i o n o f o r g a n i c solvents; • L o w m a n u f a c t u r i n g costs i n c o m p a r i s o n t o other types o f phosphazene polymers; a n d • C o n t i n u o u s i m p r o v e m e n t s o f chlorophosphazene-modified l i g n i n s , a l l o w i n g the e v a l u a t i o n o f a wide range o f a p p l i c a t i o n s .
American Chemical Society Library 1155 St.,Lignin N.W. Glasser and16th Sarkanen; ACS Symposium Series; American Chemical Society: Washington, DC, 1989. Washington. O.C. 20036
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Ultra
Ultra
Borresperse NA
Ultrazine NAS
Ultrazine NAS
3/B
4/B
5/B
6/B
6a/B
2
trimer
olig.
olig.
trimer
olig.
olig. trimer
NPC1 2
6.085
12.160
12.160
2.146
8.584
12.208 3.052
NPC1
13.746
27.492
7.492
4.848
19.392
24.364 6.091
Pyridine
0.038
0.192
0.185
0.035
1.003
1.033 0.600
3
Y i e l d of Product (g)
3.86
8.76
5.90
1.01
2.55
6.76 1.20
Ρ
2.60
3.43
3.90
S
Cl
1.10
1.31
1.46
--
0.44
1.35 --
Chemical Content. %
1250 1200 1200
1210 1030
1260 1210 1212
1260 1210
P=N
1160 1025 1170 1045
1170
1155 1030 1165 1030
1158 1025
POC
Infrared Frequency of Units . cm"
A l l reactions were c a r r i e d out on l i g n i n s (1.0 g) at the b o i l i n g point i n dioxane as a solvent (A) or i n suspension (B).
a
Indulin Indulin
Lignin
Type of
1/A 2/A
Symbol of Sample
Reagents amount, nuno 1
Table I. Properties of the Lignin Modification Products
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989. 2
3 .06 4,.40 5,.61
0,.99
13 .75
6.09
3
Ρ
Ultrazine NAS
10
a
Ρ * pyridine. A l l reactions were c a r r i e d out on l i g n i n s (1.0 g) using oligomers of NPC1 .
4..90 4..10
5,.62 0..15
182,.20
12.16
3
NaOH
Borresperse ΝΑ
9
2.,19 3.,43
6.,83 0.,81
27,.49 *
12.16
6
Ρ
Borresperse ΝΑ
8
2.,64 3.,96 4.,40
0.,79
27,.49
Cl
S
Ρ
3
12.16
Acceptor
Content,
3
2
%
Ρ
NPC1
Reaction Time, h
Acceptor Type
Chemical Y i e l d of Product , g
Borresperse ΝΑ
Type of Lignin
Reagent Amount, mmol
7
Symbol of Sample
Table I I . Modification Parameters and Derivative Properties Using S o l i d State Reaction
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1
5
12
13
Borresperse NA
Indulin AT
Indulin AT
Type of Lignin Used
diethylamine
diethylamine
n-propanol
Type of Modifying Compound
0.142
0.612
1.097
3
Y i e l d of Product , g
4.10
7.42
5.82
Ρ
4.73
S
Chemical Content. %
0.65
1.00
1.22
Cl
Reactions were c a r r i e d out using 0.145 mol of diethylamine or 0.0213 mol of n-propanol.
1
11
a
Symbol of Initial Product
Symbol of Sample
Table I I I . Properties of A d d i t i o n a l l y Modified Products
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
1240,1220
1260,1210
1255,1210
Infrared Frequency of P-N Unit, cm
-1
18.
STRUSZCZYK
New Trends in Modification of Lignins
251
T h e m o d i f i c a t i o n of l i g n i n s b y chlorophosphazenes d i s t i n c t l y increases h y d r o g e n b o n d i n g energy of the p r o d u c t s o b t a i n e d , i.e., 17-23 k J / m o l as c o m p a r e d to 14-20 k J / m o l for the parent l i g n i n . T h i s p h e n o m e n o n , w h i c h was a d d i t i o n a l l y confirmed b y X - r a y d a t a ( 1 0 , 1 2 ) , shows the a u g m e n t a t i o n of the p r o b a b l e f o r m a t i o n of regions w i t h increased degree of s u p e r m o l e c u l a r order.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Thermal Behavior of Lignins Modified by
Chlorophosphazenes
T h e t h e r m o g r a v i m e t r i c ( T G ) as w e l l as difference t h e r m o g r a v i m e t r i c ( D T G ) analysis d a t a are s u m m a r i z e d i n T a b l e I V . T h e t h e r m o g r a m s of selected derivatives are presented i n F i g u r e 1. T h e T G as w e l l as D T G d a t a (Table I V ) show a higher t h e r m a l s t a b i l i t y of lignosulfonates. T h e derivatives o b t a i n e d are d i s t i n g u i s h e d by higher t h e r m a l s t a b i l i t y i n c o m p a r i s o n w i t h the parent l i g n i n s , p a r t i c u l a r l y i n the case o f a d d i t i o n a l m o d i f i c a t i o n s b y n - p r o p o n o l or d i e t h y l a m i n e ( T a b l e I V , S a m p l e s 11 a n d 13). T h e increase i n t h e r m a l s t a b i l i t y m u s t be e x p l a i n e d w i t h the cross-linked s t r u c t u r e as w e l l as the s a t u r a t i o n w i t h such a r o m a t i c groups as p h e n y l p r o p a n e a n d phosphazene. T h e increased phosphorous content increases at the same t i m e the flame resistance. I n a l l cases, low a m o u n t s of v o l a t i l e p r o d u c t s f o r m e d i n the e x o t h e r m i c d e g r a d a t i o n process effectively stifled flame development ( T a b l e I V ) . T h e r m a l b e h a v i o r studies of the lignin-phosphazene derivatives show t h a t their d e g r a d a t i o n process results i n v o l a t i l e a n d n o n - v o l a t i l e p r o d u c t s . A s s u m i n g first-order r e a c t i o n k i n e t i c s for the t h e r m a l d e g r a d a t i o n , r e a c t i o n constant (k) a n d a c t i v a t i o n energy ( E ) c a n be c a l c u l a t e d b y d y n a m i c T G A ( 1 8 , 1 9 ) . T h e Ε-value can thus be c a l c u l a t e d f r o m the leastsquare slope of the p l o t of log k versus r e c i p r o c a l absolute t e m p e r a t u r e as s h o w n i n F i g u r e 2. T h e a c t i v a t i o n en ergy values for the t h e r m a l d e g r a d a t i o n of selected derivatives as w e l l as u n m o d i f i e d l i g n i n s are s u m m a r i z e d i n T a b l e V . A s c a n be seen f r o m F i g u r e 2, a d u a l segment a p p r o x i m a t i o n was nec essary i n the case of some l i g n i n s as well as derivatives. T h i s p h e n o m e n o n indicates t h a t p y r o l y s i s takes place b y two m e c h a n i s m s i n the t e m p e r a t u r e range s t u d i e d w h i l e the d e g r a d a t i o n of, for e x a m p l e , U l t r a z i n e N A S c o u l d be e x p l a i n e d b y a single m e c h a n i s m . T h e k r a f t l i g n i n as w e l l as U l t r a B 0 0 2 have a higher value of Ε as c o m p a r e d to other l i g n i n sulfonates. T h i s m a y result f r o m differences i n the l i g n i n s t r u c t u r e . T h e m o d i f i c a t i o n of l i g n i n s w i t h chlorophosphazenes results i n changes of Ε t h a t correspond to the degree of s u b s t i t u t i o n a n d the phosphorous content (Table V ) . L i g n i n m o d i f i c a t i o n w i t h chlorophosphazenes is a n e x a m p l e of h o w t h i s renewable resource m a y be u t i l i z e d i n s p e c i a l p o l y m e r i c m a t e r i a l s .
Lignin Modification with Terephthaloyl Chloride A n o t h e r p o t e n t i a l l i g n i n m o d i f i c a t i o n m e t h o d concerns the r e a c t i o n w i t h d i f u n c t i o n a l a c i d chlorides, especially t e r e p h t h a l o y l chloride, to f o r m crossl i n k e d p o l y m e r i c m a t e r i a l s ( 1 , 1 0 , 1 4 , 2 0 ) . Several studies have dealt w i t h
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
a
325 280,370
--
Borresperse NA Ultrazine NAS
300-398 250-495 472-495 250-350 240-430
250-300
250-300
280 280,289
270-310 270-330
275 300
225-300
— 235-350
— 305 250,570
— 350
—
4 .5 3 .5
1,.8 3 .4
4,.0
11,.0 8,.0 6,.0 12,.0
4.,2
3 .5 6,.7 5,.8 2..0
7..1 5..0
4..1 4..0
8..0
15.,0 14.,0 9.,0 20..0
5.,5
7..0 9,.3 8,.5 3..3
28,.2 12 .1
13,.0 22,.6
29,.0
25..0 20..0 10..0 27..0
16.,2
12,.5 18..0 12..8 11..8
44,.9 26 .1
76,.3 29 .8
35,.0
30,.0 45,.0 13,.0 33,.0
24.,0
22,.2 26,.1 22,.4 22..0
51 .3 31 .5
86 .1 63 .1
46,.0
41,.0 56,.0 16,.0 42,.0
32..8
30,.8 45,.2 32,.4 28,.4
Range of Percentage of Mass Loss at Temp, of Max. Different Temperatures Rate of Mass Loss, °C 100°C 200°C 300°C 400°C 500°C
492
393 292,489
5,.61
4..40 5,.02 5..90 6,.83
2..55
1,.20 6,.76 5..82 7,.42
Ρ Content, %
Temperature of Maximum Rate of Mass Loss, °C
Indulin AT U l t r a B002
Ultrazine NAS
NA NA NA NA
Modified by n-propanol. ^Modified by diethylamine.
--
10
Borresperse Borresperse Borresperse Borresperse
7 9 5 8
AT AT AT AT
U l t r a B002
b
a
Indulin Indulin Indulin Indulin
Type of l i g n i n
3
1 2 ll 13
Symbol of Sample
Table IV. TG and DTG Analysis of the Products of Modification by Chlorophosphazenes
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
45 .0
88,.1 64,.4
56,.0
48,.1 75..0 20,.0 51,.0
50.,1
43,.5 61,.3 40..7 34..1
600°C
S
S
Β
£5
STRUSZCZYK
New Trends in Modification of Lignins
253
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
18.
F i g u r e 1. T h e r m o g r a m s o f u n m o d i f i e d (parent) l i g n i n s : k r a f t l i g n i n (a); U l t r a B 0 0 2 (b); Borresperse Ν A (c); a n d U l t r a z i n e N A S (d), as w e l l as t h e i r derivatives: l ( a i ) ; 2 ( a ) ; l l ( a ) ; 1 2 ( a ) ; 3 ( b i ) ; 1 3 ( c i ) ; 1 0 ( d i ) . 2
3
4
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
LIGNIN: PROPERTIES AND MATERIALS
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
254
' 1A
1,5
16
t)
1,8
1,4
2p
1.
1 0
3
(°K'«')
F i g u r e 2. A r r h e n i u s plot for selected l i g n i n s a n d their derivatives f r o m d y n a m i c T G A d a t a : kraft l i g n i n ( 1 , φ ) ; Borresperse Ν A (2, 0 ) ; U l t r a z i n e N A S (3, x ) ; Borresperse N A derivatives of s y m b o l # 7 ( 4 , d ) ; Borresperse Ν A derivatives of s y m b o l # 9 (5, Δ ) ; a n d U l t r a z i n e N A S derivatives of s y m b o l # 1 0 (6, © ) .
Table V. A c t i v a t i o n Energy of the Thermal Degradation Process.
Sample
Type of Lignins
--
Borresperse NA Ultrazine NAS U l t r a B002 Indulin AT
7 9 8
10
Borresperse NA Borresperse NA Borresperse NA Ultrazine NAS
Ρ Content, %
4.40 5.62 6.83 5.61
kJ/mol
Temperature Range, °C
46.0 33.3 162.4 176.7
250-350 250-350 250-350 350-400
70.0 44.0 34.8 41.0
250-350 250-350 250-350 250-350
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
18.
STRUSZCZYK
New Trends in Modification of Lignins
255
t h i s r e a c t i o n a n d r e p o r t e d o n l i m i t e d success. A recent r e i n v e s t i g a t i o n of this r e a c t i o n has p r o d u c e d m e l t a b l e a r o m a t i c ester-like p o l y m e r i c m a t e r i als. T h e m o d i f i c a t i o n of l i g n i n sulfonates w i t h t e r e p h t h a l o y l chloride i n solvent or suspension (10) p e r m i t s the f o r m a t i o n of l i g n i n - b a s e d p o l y m e r s w i t h ester groups. T h e p r o d u c t s are characterized b y several advantages: m e l t i n g p o i n t is observed between 290 a n d 330° C ; h y d r o l y t i c a n d c h e m i c a l resistance is good; t h e r m a l s t a b i l i t y is increased; color is w h i t e to yellow; the p r o d u c t can be m i x e d i n the m e l t w i t h other p o l y m e r s ; the presence of such f u n c t i o n a l groups as sulfonates p e r m i t s the a p p l i c a t i o n as additives to m o d i f y other p o l y m e r properties. S o m e results of the m o d i f i c a t i o n of l i g n i n sulfonate U l t r a B 0 0 2 b y r e a c t i o n w i t h t e r e p h t h a l o y l chloride are s u m m a r i z e d i n T a b l e V I . T h e t o t a l h y d r o x y l content of the lignosulfonates as well as t h e i r derivatives are presented i n T a b l e V I I . T h e h y d r o l y t i c resistance of selected p r o d u c t s is e v a l u a t e d i n T a b l e V I I I . T h e results presented i n Tables V I - V I I I stress sev eral advantages of the derivatives w i t h t e r e p h t h a l o y l chloride. T h e m o d i fied l i g n i n sulfonates were i n s o l u b l e , or o n l y very s l i g h t l y soluble, i n o r g a n i c solvents. T h e y were, however, soluble i n d i m e t h y l sulfoxide. O r d e r e d s t r u c tures were identified b y X - r a y studies ( 1 6 , 1 7 ) . T h e m o d i f i c a t i o n of lignins w i t h t e r e p h t h a l o y l chloride is of interest to the t h e r m a l properties of the derivatives (15). These are presented i n T a b l e I X . T h e results reveal t h a t a n e x o t h e r m i c t e m p e r a t u r e event is shifted to higher t e m p e r a t u r e as a consequence of m o d i f i c a t i o n . T h e e n d o t h e r m i c t e m p e r a t u r e event can be a t t r i b u t e d to the glass t r a n s i t i o n a n d the m e l t i n g process of the derivatives. T h e a c t i v a t i o n energy of the d e g r a d a t i o n process was c a l c u l a t e d for several samples based o n the results of d y n a m i c T G studies ( T a b l e X ) . A d i s t i n c t decrease i n a c t i v a t i o n energy is observed i n the case of U l t r a B 0 0 2 . A t the same t i m e , the Ε values seem t o correspond w i t h the higher t e m p e r a t u r e of the m o d i f i c a t i o n . T h e m o d i f i c a t i o n of l i g n i n sulfonates w i t h t e r e p h t h a l o y l chloride p r o duces new p o l y m e r i c m a t e r i a l s c o n t a i n i n g ester groups. T h i s m o d i f i c a t i o n can be used to u t i l i z e lignins also for i m p r o v e m e n t of c h e m i c a l fiber p r o p erties. T h i s is presently under i n v e s t i g a t i o n .
Modified Lignins as the Carriers for Controlled Release Prepara tions In the hope of finding large m a r k e t s for l i g n i n s , a review of p o t e n t i a l a g r i c u l t u r a l a p p l i c a t i o n s has been c o n d u c t e d ( 1 , 6 , 1 4 ) . M o d i f i c a t i o n of l i g n i n s w i t h bioactive c o m p o u n d s c o n t a i n i n g s u i t a b l e reactive groups p e r m i t s the f o r m a t i o n o f various derivatives characterized b y a w i d e range o f release rate of active c o m p o n e n t . 2 , 4 - d i c h l o r o p h e n o x y a c e t i c a c i d ( 2 , 4 - D ) as a s t a n d a r d herbicide c o n t a i n i n g reactive c a r b o x y l i c f u n c t i o n a l i t y was used i n the present s t u d y . A d d i t i o n a l l y , the l i g n i n sulfonates of " K l u t a n " ( N i e d o m i c e , P o l a n d ) a n d the r e a c t i o n residues f r o m v a n i l l i n p r o d u c t i o n ( L S - W , W l o c l a w e k , P o l a n d ) were also used. T h e carriers c o n t a i n i n g c h e m i c a l b o u n d 2 , 4 - D used the f o l l o w i n g preparations:
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
LIGNIN: PROPERTIES AND MATERIALS
256
Table VI. E f f e c t of Modification with Terephthaloyl Chloride on the Properties of the U l t r a B002 Product.
Reagent Molar Ratio
Color of Product
Dioxane
1:1.10 1:1.65 1:2.20
yellow yellow yellow
Water
1:0.55 1:1.10 1:1.65 1:2.20
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Reaction Medium
It.yellow It.yellow It.yellow It.yellow
Yield of Product
Chemical Content, 3
C
H
M.p. °C
S
0.419 0.359 0.399
53..8 55..3 58..5
3.95 4.17 4.20
0.95 0.84 0.75
310-316 318-321 327-331
0.250 0.475 0.576 1.038
54..0 45..3 51..5 56..8
4.09 3.95 3.87 4.10
0.76 1.36 1.00 0.79
298-311 306-314 311-320 309-322
a
A l l reactions were c a r r i e d out on a l i g n i n (1.0 g) at 30°C f o r 15 min.
Table VII. Total Hydroxyl Content of Lignin Sulfonates and Their Derivatives with Terephthaloyl Chloride.
Symbol of Sample
Tvpe of Lignin
Total Hydroxyl Content. %
.. NA-2-20 NA-2-70
Borresperse NA Borresperse NA Borresperse NA
14.9 1.9 1.5
R-2-10 R-2-70
U l t r a B002 U l t r a B002 U l t r a B002
14.5 0.1 0.1
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
18.
STRUSZCZYK
New Trends in Modification of Lignins
257
L D : l i g n i n sulfonates m o d i f i e d b y 2 , 4 - D (21) L S D : l i g n i n sulfonates modified by t e r e p h t h a l o y l chloride a n d subse q u e n t l y b y 2 , 4 - D (22) L F : l i g n i n sulfonates m o d i f i e d b y p h e n o l a n d f o r m a l d e h y d e a n d t h e n b y 2 , 4 - D (23). Table VIII. Hydrolytic Resistance of the Lignins Modified with Terephthaloyl Chloride Average Amount of H S 0 (g) Consumed by 1 g of Product (χ 10" )
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
2
Type of Product
4
3
Average Amount of KOH Consumed by 1 g of Product (χ 10" ) 3
Modified Borresperse NA
50-200
10-50
Modified U l t r a B002
50-300
10-50
Borresperse NA
450
85
U l t r a B002
450
85
A p p l i c a t i o n o f several types o f l i g n i n sulfonates as carriers i n connec t i o n w i t h reactive herbicides (21-23) p e r m i t s t h e development o f effective c o n t r o l l e d release ( C R ) p r e p a r a t i o n s . T h e properties o f c h e m i c a l l y b o u n d l i g n i n 2 , 4 - D - b a s e d herbicides are s u m m a r i z e d i n T a b l e X I . Several p r e p a r a t i o n s were subjected t o s t a n d a r d release a n a l y s i s i n a n aqueous m e d i u m (14). T h e release d a t a are s h o w n i n F i g u r e 3. T h e s e d a t a suggest t h a t the l i g n i n sulfonate 2 , 4 - D - b a s e d p r e p a r a t i o n s have the c a p a c i t y for releasing herbicide a c t i v i t y over a prolonged t i m e p e r i o d . T h e most i m p o r t a n t v e r i f i c a t i o n o f C R p r e p a r a t i o n s is t h e i r p r a c t i c a l test u n d e r a g r i c u l t u r a l c o n d i t i o n s . S u c h a performance test was c a r r i e d out at t h e P l a n t P r o t e c t i o n I n s t i t u t e ( P o z n a n , P o l a n d ) u s i n g t w o doses of Pielik, a P o l i s h 2 , 4 - D p r e p a r a t i o n i n 8 5 % p u r i t y : " a " dose o f 1 k g o f Pielik per 1 h a , a n d " b " dose o f 2 k g o f Pielik per 1 h a . E p i p h y f i c p r e p a r a t i o n s were a p p l i e d at three stages: d i r e c t l y after g e r m i n a t i o n o f three types o f test plants (sunflower, wetch a n d w h i t e m u s t a r d ) (I); one week after g e r m i n a t i o n (II); a n d t w o weeks after g e r m i n a t i o n (III). T h e weight loss o f t h e p l a n t s was d e t e r m i n e d u n t i l 30 days following a p p l i c a t i o n . T h e test results are summarized i n Table X I I . T h e s e results reveal t h a t L S D - 6 ( W ) was the most effective p r e p a r a t i o n w h e n a p p l i e d i n the higher dose (b). T h e other p r e p a r a t i o n s were c h a r a c terized b y a lower p r a c t i c a l a c t i o n w i t h i n the test p e r i o d . A t t h e same t i m e these p r e p a r a t i o n s have effectively acted for a longer p e r i o d t h a n t h a t s t u d i e d i n the test o f T a b l e X I I . It c a n be concluded t h a t l i g n i n sulfonates m o d i f i e d b y r e a c t i o n w i t h herbicide f u n c t i o n a l i t y (21-23) c a n be used as p o t e n t i a l carriers for c o n t r o l l e d release herbicides. T h i s a p p l i c a t i o n o f l i g n i n sulfonates offers several advantages b o t h for a g r i c u l t u r e a n d for t h e e n v i r o n m e n t .
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Borresperse NA
Borresperse NA
U l t r a B002
U l t r a B002
Na-2-70
R-2-10
R-2-70
Borresperse NA U l t r a B002
Tvpe of Lienin
NA-2-20
Symbol of Sample
355 410
348 420
355
380 435
200 185
370 450
370 450
375
405 462
322 330
400 470
400 470
400
425 470
425 450
Temperature of exothermic °C Event Start Max. End
100 250
100 250
100 250
100 250
120 342
120 330
122 340
122 358
—
130 355
125 345
130 350
130 367
Temperature of endothermic °C Event Start Max End
Table IX. Thermal Properties of Lignosulfonates Modified by Terephthaloyl Chloride.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
STRUSZCZYK
18.
259
New Trends in Modification of Lignins
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
Table X. A c t i v a t i o n Energy of the Degradation Process of Selected Lignin Sulfonates as well as t h e i r Derivatives with Terephthaloyl Chloride
Type of Lignins
Ε kJ/mol
Temperature Range, °C
Borresperse NA U l t r a B002
46.0 162.4
250-350 250-350
NA-2-10 NA-2-70
Borresperse NA Borresperse NA
49.0 95.0
250-350 250-350
R-2-10 R-2-70
U l t r a B002 U l t r a B002
21.4 48.1
250-350 250-350
Type of Sample
Table XI. Properties of 2,4-D Modified Lignin Sulfonates
Chemical Content. %
Symbol of Sample
Tvpe of Lignin
LD-3 LD-3(W) LD-3(K)
Borresperse NA LS-W Klutan
57..1 46..5 41,.2
LSD-6(W) LSD-6
LS-W Borresperse NA
52..3 57,.1
LF-2
Borresperse NA
-·
a
a
C
S
Cl
2,4-D Content. %
4.38 3.43 3.28
4.14 4.52 5.35
6 .38 7 .97 7 .14
19.,2 24.,8 22.,2
4.11 3.99
2.38 1.43
0 .73 0 .74
Η
4 .53
2.,24 2.,31 14.,1
The reaction conditions were reported previously (21-23).
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
LIGNIN: PROPERTIES AND MATERIALS
260
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
RelQase substance amount, in relation to initial amount
0
10
20
30
40 Τ
[days]
Figure 3. Release curves of 2, 4-D from preparations of: L S D - 6 (a); L F - 2 (b); L D - 3 (c); and standard 2, 4-D (d).
Table XII. Test Results of the E f f e c t of 2,4-D Containing Preparations on Plant Growth.
Average Wt. Loss. % Type of Preparation
Dose
I
II
III
Average Weight Loss from 3 Stages, %
LD-3
a b
41.8 53.7
60.8 57.7
43.4 63.7
48.7 58.4
LD-3(W)
a b
36.8 70.0
50.5 51.7
35.7 61.2
41.0 60.9
LD-3(K)
a b
61.5 55.8
49.8 59.8
58.5 79.3
56.6 64.9
LSD-6(W)
a b
54.0 63.7
56.0 82.5
59.2 73.7
56.4 73.3
LSD-6
a b
55.8 59.0
63.2 60.5
49.7 65.3
56.2 61.6
a b
70.3 72.7
81.2 69.3
49.3 72.7
66.9 71.6
Standard 2,4-D (Pielik)
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
18.
STRUSZCZYK
New Trends in Modification of Lignins
261
L i g n i n u t i l i z a t i o n studies have been c o n d u c t e d i n several fields. H o w ever, n o p r a c t i c a l , c o m m e r c i a l process has yet emerged for the m a n u f a c t u r e o f l i g n i n - b a s e d p o l y m e r i c m a t e r i a l s . T h i s is u n d o u b t e d l y related t o such factors as p r o d u c t inhomogeneity, r e a c t i v i t y differences, a n d also w i t h lack of f a m i l i a r i t y w i t h t h i s t y p e o f r a w m a t e r i a l . It s h o u l d be also stressed t h a t l i g n i n s are o n l y b y - p r o d u c t s f r o m p u l p m a n u f a c t u r e . However, t h e u t i l i z a t i o n o f l i g n i n s i n p o l y m e r i c m a t e r i a l s seems t o b e possible. Acknowledgment
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch018
It i s a pleasure t o acknowledge the c o n t r i b u t i o n o f m y assistant, M r s . K . W r z e s n i e w s k a - T o s i k , for her continued c o o p e r a t i o n . Literature C i t e d 1. Sarkanen, Κ. V.; Ludwig, C . H., Eds. Lignins; Wiley-Interscience: New York, 1971. 2. Simonescu, C . I. Cell. Chem. Technol. 1978, 12, 577. 3. Naraian, H . Indian Chem. Manuf. 1981, 19(6), 11. 4. Lindberg, J. J.; Melartin, J. Kem. Kemi 1982, 9(11), 736. 5. Glasser, W . G . ; Hsu, Ο. H . ; Reed, D. L . ; Forte, R. C . 1979 Cana dian Wood Chemistry Symposium Proceedings; Harrison Hot Springs, Canada. 6. Allan, G . G . ; Balaba, W.; Dutkiewicz, J.; Struszczyk, H . Chemicals from Western Hardwoods and Agricultural Residues; Semi-Annual Re port, April 1979, NSE-7708979; Univ. of Washington, Seattle, U S A . 7. Chen, R.; Kokta, Β . V . ; Valade, J. L . J. Appl. Polym. Sci. 1979, 24, 1609. 8. Struszczyk, H.; Laine, J. E . Polish Patent 125877, 1981. 9. Struszczyk, H . Polish Patent Appl. P-265167, 1987. 10. Struszczyk, H.; Krajewski, K . Polish Patent 134256, 1982. 11. Struszczyk, H . ; Laine, J. E . J. Macromol. Sci.-Chem. 1982, A17(8), 1193. 12. Struszczyk, H . Fire and Materials 1982, 6(1), 7. 13. Struszczyk, H . J. Macromol Sci.-Chem. 1986, A23(8), 973. 14. Struszczyk, H . ; Wrześniewska-Tosik, K . Proc. Inter. Symp. on Fibre Sci. and Technol.; Hakone, Japan, 1985, p. 336. 15. Struszczyk, H . ; Allan, G . G . ; Balaba, W . Proc. of Euchem '80 Conf.; Helsinki, Finland, 1980. 16. Struszczyk, H . Proc. Hungarian Symp. on Thermal Analysis; Budapest, Hungary, 1981. 17. Struszczyk, H . Proc. of 31st IUPAC Conf. Macro '87; Merseburg, Ger. Dem. Rep., 1987. 18. Ramian, M . V . J. Appl. Polym. Sci. 1970, 14, 1323. 19. Tang, W . G . U.S. For. Serv. Res. Pap. FPL 71, 1967. 20. Van der Klashort, G . H.; Forbes, C . P.; Psotta, K . Holzforschung 1983, 37(6), 279. 21. Struszczyk, H.; Wrześniewska-Tosik, K . Polish Patent 141253, 1985. 22. Struszczyk, H.; Wrześniewska-Tosik, K . Polish Patent 141254, 1985. 23. Struszczyk, H.; Wrześniewska-Tosik, K . Polish Patent 141255, 1985. RECEIVED April 18,1989
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.