Subscriber access provided by SUNY DOWNSTATE
Article
Ni-Catalyzed Highly Chemo-, Regio-, and Enantioselective Decarboxylative Aldol Reaction of beta, gammaUnsaturated alpha-Ketoesters with beta-Ketoacids Ai-Jia Wei, Jing Nie, Yan Zheng, and Jun-An Ma J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo502741z • Publication Date (Web): 18 Mar 2015 Downloaded from http://pubs.acs.org on March 23, 2015
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Ni-Catalyzed Highly Chemo-, Regio-, and Enantioselective Decarboxylative Aldol Reaction of β, γ-Unsaturated α-Ketoesters with β-Ketoacids Ai-Jia Wei, Jing Nie, Yan Zheng, Jun-An Ma* Department of Chemistry, Key Laboratory of Systems Bioengineering (The Ministry of Education), Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
[email protected] ABSTRACT: A novel Ni-catalyzed decarboxylative aldol reaction of β,γ-unsaturated α-ketoesters with β-ketoacids is reported. The reaction proceeded smoothly with high chemo-, regio-, and enantioselectivity. This protocol provides a convenient approach to access enantioenriched chiral tertiary alcohols.
INTRODUCTION The reactivity and functionality of β,γ-unsaturated α-ketoesters provide many possibilities for the synthetic transformations involving the double bond, the carbonyl group, and the ester moiety. Over the past decade, catalytic asymmetric reactions of β,γ-unsaturated α-ketoesters using chiral metal complexes and organocatalysts have attracted considerable attention, and have evolved into an important tool for the construction of useful multifunctional chiral building blocks (Figure 1).1 Among them, catalytic asymmetric aldol condensations of β,γ-unsaturated α-ketoesters with enolizable ketones provides facile access to enantioenriched chiral tertiary alcohols. However, in-situ or preactivation of ketones is often required. For instance, enamine catalysis and silyl enol
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 30
ethers of ketones have been widely employed in the enantioselective aldol reactions of β,γ-unsaturated α-ketoesters (Scheme 1: top).2,3 Despite these impressive advances, the development and application of new enolate equivalents of ketones is still in high demand.
CC*: Chiral Catalysts
CC* O
Metal catalysis O
R1
Organocatalysis
OR2
Figure 1 Two-point binding catalysis of β,γ-unsaturated α-ketoesters.
Previous works O O
R1
N
+
R
2
O O
R
R1
O HO CO2R2
OTMS
+
*
R
OR Aldol reaction of enamines
1
O HO CO2R2
R
R
2
*
R1
OR Aldol reaction of silyl enol ethers
This work O 1
O
O
+ R OR2 Aldol reaction of -ketoacids R
O HO CO2R2
O OH
R
*
R1
Scheme 1 Aldol reactions of β,γ-unsaturated α-ketoesters.
In recent years, the asymmetric decarboxylative reactions of β-ketoacids with various electrophilic partners have been reported by using chiral metal-complexes and organocatalysts.4–6 Although β-ketoacids are very attractive candidates for the generation of ketone enolate equivalents under very mild reaction conditions, there are no reports on the enantioselective decarboxylative reaction of β-ketoacids with β,γ-unsaturated α-ketoesters. During our ongoing studies in the field of asymmetric decarboxylative transformations,7 we have been able to develop a Ni-catalyzed decarboxylative aldol reaction of β-ketoacids with β,γ-unsaturated α-ketoesters.
ACS Paragon Plus Environment
Page 3 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
This reaction proceeds with excellent chemo-, regio-, and enantioselectivity to afford highly functionalized chiral tertiary alcohols (Scheme 1: bottom). Herein, we report our study on this subject.
RESULTS AND DISCUSSION Optimization of Reaction Conditions. In an initial investigation, we conducted the reaction of 3-oxo-3-phenylpropanoic acid 1a with β,γ-unsaturated α-ketoester 2a by using a series of chiral organo- and metal-catalysts, including cinchona alkaloids, aminothioureas, Cu-, Zn-, Sc-, Pd- and Ni-complexes. It was found that the Ni-complexes were able to catalyze this model reaction to give the desired product in high yield with moderate enantioselectivity,8 whereas the other chiral catalysts tested resulted in relatively low yields and/or poor enantioselectivities (see the Supporting Information). Accordingly, a series of chiral Ni-complex catalysts (I–VI, 10 mol%) were further screened, and the results were shown in Table 1. α-Ketoesters (2a–e) delivered the decarboxylative aldol products 3 in excellent yields with good enantioselectivities (62–80% ee) at ‒20 oC in dichloromethane. The reaction also exhibited excellent regio- and chemoselectivities, in which the 1,4-adducts and/or the Claisen condensation products were not observed (Table 1, entries 1–5). In addition, the substituent of the ligands on the Ni-complexes I–VI influenced the reactivity and enantioselectivity of the reaction (entries 6–10), with the catalyst I giving the best performance (entry 5). Further optimization of the enantioselectivity was achieved with the catalyst I by screening different solvents, lowering the reaction temperature, and changing the catalyst
loading
(entries
11–21).
Thus,
the
decarboxylative
aldol
reaction
of
3-oxo-3-phenylpropanoic acid 1a with β,γ-unsaturated α-ketoester 2e could be performed in dichloromethane at –45 oC providing the product 3a in 99% yield with 90% ee (entry 18). Scope of Decarboxylative Aldol Reaction. With the optimal reaction conditions in our hands, we explored the scope of this catalytic enantioselective decarboxylative aldol reaction with a series of γ-substituted β,γ-unsaturated α-ketoesters, and the results are shown in Table 2. In the presence of 10 mol% catalyst I, the reaction was readily extended to several γ-phenyl-substituted β,γ-unsaturated α-ketoesters, and both electron-withdrawing and electron-releasing substituents on the phenyl ring were well tolerated under the current reaction conditions, thus generating the desired products 3a–g in consistently high yield (92–99%) with good to high enantioselectivity
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 30
Table 1 Optimization of reaction conditions a O
O
O
O
Ph OH +
Ph 1a
2
OR2
Catalyst, solvent temperature, time R'
2
2a: R = Me, 2b: R2= Et, 2c: R2= i-Pr 2d: R2= t-Bu, 2e: R2= CHPh2
Ph
Ph 3
R'
I: R' = PhCH2 II: R' = 4-MeC6H4CH2 III: R' = 4-MeOC6H4CH2 IV: R' = 4-Br-PhCH2 V: R' = 4-CF3C6H4CH2 VI: R' = 1-Naphthyl-CH2
NH Br HN Ni NH Br HN R'
O HO CO2R2
R'
Temp (oC)
Yield
/ Time (d)
(%)
b
DCM
–20 / 0.5
99
62
I (10)
DCM
–20 / 0.5
99
65
2c
I (10)
DCM
–20 / 0.5
99
70
4
2d
I (10)
DCM
–20 / 0.5
99
74
5
2e
I (10)
DCM
–20 / 0.5
99
80
6
2e
II (10)
DCM
–20 / 3
91
45
7
2e
III (10)
DCM
–20 / 3
96
66
8
2e
IV (10)
DCM
–20 / 0.5
99
77
9
2e
V (10)
DCM
–20 / 2.5
90
68
10
2e
VI (10)
DCM
–20 / 1
95
66
11
2e
I (10)
DCE
–20 / 0.5
99
66
12
2e
I (10)
toluene
–20 / 2.5
43
63
13
2e
I (10)
Et2O
–20 / 2.5
40
63
14
2e
I (10)
DME
–20 / 2.5
98
55
15
2e
I (10)
THF
–20 / 1
99
53
16
2e
I (10)
CH3CN
–20 / 1.5
94
50
17
2e
I (10)
DCM
–40 / 5
99
89
18
2e
I (10)
DCM
–45 / 6
99
90
19
2e
I (10)
DCM
–50 / 8
77
90
20
2e
I (5)
DCM
–45 / 11
99
80
21
2e
I (15)
DCM
–45 / 6
99
90
Catalyst
Entry
α-Ketoesters 2
1
2a
I (10)
2
2b
3
a
(mol%)
Solvent
Ee (%)c
Reaction conditions: 1a (0.2 mmol ), 2 (0.1 mmol), and catalyst I–VI (5–15 mol%) in
solvent for the stated time.
b
Isolated yield was obtained from an average of two runs.
c
Determined by HPLC analysis using a chiral stationary phase and the absolute configuration was assigned on the basis of analogy with study of 3d.9
ACS Paragon Plus Environment
Page 5 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(82–92% ee). 2-Thiophenyl- and styrene-substituted β,γ-unsaturated α-ketoesters were also found to be good substrates, delivering the products 3h and 3i, respectively, in high yield and enantioselectivity. In addition, it was found that γ-alkyl substituted β,γ-unsaturated α-ketoesters could also be used as the electrophilic partners, and the decarboxylative aldol products 3j and 3k were obtained in high yields with good enantioselectivities.
Table 2 The scope for the Ni-catalyzed asymmetric decarboxylative aldol reaction with various β,γ-unsaturated α-ketoesters 2 a O
O
O OH +
Ph
R
1a
O
1
OR 2
2
O HO CO2CHPh2 Ph
O HO CO2CHPh2
3b: 99%, 92% ee
O HO CO2CHPh2
O HO CO2CHPh2
Br
Cl 3f: 97%, 82% ee
Cl
O HO CO2CHPh2
NO2
S
3h: 95%, 90% ee
O HO CO2Et
O HO CO2CHPh2 Ph 3i: 95%, 90% ee
O HO CO2Et Me
3j: 95%, 72% ee a
3c: 97%, 91% ee O HO CO2CHPh2
3e: 95%, 88% ee
Ph 3g: 92%, 83% ee
OMe
Ph
O HO CO2CHPh2
Ph
Me
Ph
Ph
3
Ph
3a: 99%, 90% ee
3d: 97%, 90% ee
R1
Ph
O HO CO2CHPh2
Ph
Ph
O HO CO 2R 2
I (10 mol%), DCM −45 oC, 6 d
Ph
Me
Me 3k: 95%, 70% ee
Reaction conditions: 1a (0.2 mmol ), 2 (0.1 mmol), and catalyst I (10 mol%) in CH2Cl2 were
stirred for 6 days. The yield was of the isolated product from an average of two runs and the ee value was determined by HPLC analysis using a chiral stationary phase and the absolute configuration of other adducts was assigned on the basis of analogy with study of 3d.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 30
Table 3 The scope for the Ni-catalyzed asymmetric decarboxylative aldol reaction with various β-ketoacids 1 and α-ketoester 2e a
O HO CO2CHPh2
O HO CO2CHPh2 Me
Ph
O HO CO2CHPh2
Ph
Ph
MeO
Me 3m: 99%, 90% ee
3l: 99%, 99% ee
O HO CO2CHPh2
O HO CO2CHPh2 MeO
3n: 95%, 91% ee F
O HO CO2CHPh2
Ph
Ph
Ph
F 3p: 97%, 87% ee
3o: 96%, 90% ee
O HO CO2CHPh2
O HO CO2CHPh2 Ph
3q: 98%, 88% ee
Cl
Ph
Ph
Br
Cl 3s: 99%, 89% ee
3r: 96%, 88% ee
3t: 98%, 86% ee
O HO CO2CHPh2
O HO CO2CHPh2 S
3w: 90%, 73% ee
O HO CO2CHPh2
O HO CO2CHPh2
3y: 97%, 80% ee c
O HO CO2CHPh2 Me
Ph Me 3a': 73%, 80% ee b
O HO CO2CHPh2
Ph
Ph 3x: 70%, 80% ee b
Ph O
3v: 97%, 84% ee
3u: 99%, 91% ee
O HO CO2CHPh2
Ph
Ph
a
O HO CO2CHPh2
Ph 3z: 79%, 78% ee b
O HO CO2CHPh2 Me
Ph
3b': 80%, 66% ee b
O HO CO2CHPh2 Me
Ph
3c': 99%, 65% ee c
Unless otherwise stated, the reaction conditions were shown as: 1 (0.2 mmol ), 2 (0.1 mmol), and
catalyst I (10 mol%) in CH2Cl2 were stirred for 6 days. The isolated yield was obtained from an average of two runs and the ee value was determined by HPLC analysis using a chiral stationary phase and the absolute configuration of other adducts was assigned on the basis of analogy with study of 3d. b Reaction temperature / time: –35 oC/5 d. c Reaction temperature / time: –20 oC/3 d.
ACS Paragon Plus Environment
Page 7 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Having established the scope of β,γ-unsaturated α-ketoesters, we turned our attention to the β-ketoacids. As shown in Scheme 3, the decarboxylative aldol reaction of ortho-, meta-, and para-substituted phenyl β-ketoacids proceeded smoothly to afford the aldol adducts 3l–t in excellent yields (95–99%) with high enantioselectivities (86–99% ee). 2-Naphthyl-, 2-thiophenyl-, and 2-furanyl-substituted β-ketoacids were also found to be good substrates, thus giving the aldol products 3u–w in 90–99% yields with good to high enantioselectivities. To further define the scope of our methodology, the reactions of a series of alkyl-substituted β-ketoacids with β,γ-unsaturated α-ketoester 2e were tested. Under the current reaction conditions, the reactivity of these substrates is lower than that of aryl-substituted β-ketoacid. Subsequently, at the relative higher temperatures, the decarboxylative aldol condensations of these alkyl-substituted β-ketoacids could proceed to give the desired products 3x–c’ in good to high yields with moderate to good enantioselectivities. Further Synthetic Transformation of Aldol Product. When the Ni-catalyzed decarboxylative aldol reaction was scaled up to the gram scale, the condensation product 3d was obtained in high yield with excellent optical purity after single recrystallization from ethyl acetate and petroleum ether (Scheme 2). Direct oximation of 3d with hydroxylamine furnished the intermediate 4 in 61% yield, and subsequent intramolecular etherification afforded the isoxazoline 5 in good yield without any racemization. Also, reduction treatment of 3d with NaBH(OAc)3 gave rise to the corresponding α,γ-dihydroxyester 6 in excellent yield and diastereoselectivity, and then intramolecular transesterification allowed access to the α-hydroxy-γ-butyrolactone 7 in 62% yield. Furthermore, the stereoisomer of 7 proved to be crystalline, allowing the determination of the absolute configuration of two stereogenic centers to be (3S, 5S) by means of X-ray crystallographic analysis.9 Thus, the absolute configuration of the decarboxylative aldol product 3d is assigned as S. 13
C NMR Spectra and Reaction Mechanism. To cast some light on the mechanism, 13C NMR
spectroscopic experiments were conducted in CDCl3 (Figure 2 and 3). When one equivalent of β-ketoacid 1a was added into the Ni-complex I, new signals appeared in the
13
C NMR spectra,
indicating that a coordination exchange of a diamine ligand with β-ketoacid had occurred (spectra b and c in Figure 2). Spectra b and c bear greater similarity to spectrum c (the HCl salt of diamine), than spectrum d (diamine itself). Thus, one of the diamine ligands could be exchanged from the
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 30
Scheme 2 Scaled-up version of the decarboxylative aldol reaction and synthetic transformation.
Ni-complex I by the substrate, and the liberated diamine then deprotonates the metal-bound β-ketoacid. In sharp contrast, the diamine ligand displacement with α-ketoester cannot be observed when one equivalent of α-ketoester 2e was added into the Ni-complex I (Figure 3). In addition, a
control experiment
where acetophenone was
used
as a
surrogate
of
3-oxo-3-phenylpropanoic acid under otherwise identical reaction conditions did not afford the aldol product 3a. This observation suggests that the aldol reaction could occur prior to the decarboxylation step in this asymmetric decarboxylative transformation. On the basis of our experimental results and previous studies,6a the decarboxylative aldol reaction is proposed to begin with the formation of an intermediate Int-1 upon treatment of β-ketoacid 1 with the Ni-complex, followed by a release of the HBr salt of diamine (Figure 4). The α-keto functionality of α-ketoester is coordinated to the metal center in the axial position with concomitant the hydrogen-bond interaction between the diamine ligand and α-ketoester, leading to the square pyramidal transition states. For the binding of the β,γ-unsaturated α-ketoester, the substrate interacts with the metal center most likely in its S-cis form as the S-trans isomer is
ACS Paragon Plus Environment
Page 9 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Figure 2 13C NMR spectra in CDCl3: (a) β-ketoacid 1a; (b) 1:1 mixture of Ni-complex I and β-ketoacid 1a (10 min later); (c) 1:1 mixture of Ni-complex I and β-ketoacid 1a (2 h later); (d) Diamine hydrochloride; (e) Diamine.
Figure 3 13C NMR spectra in CDCl3: (a) α-ketoester 2e; (b) 1:1 mixture of Ni-complex I and α-ketoester 2e (10 min later); (c) 1:1 mixture of Ni-complex I and α-ketoester 2e (1 h later); (d) Diamine hydrochloride; (e) Diamine.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
disfavored for steric reasons. In the favored transition state (TS-1), the N-benzyl group of the ligand is orientated away from the ester moiety of α-ketoester. Protonation of the product with the new reactant constitutes the final step of the catalytic cycle. However, the detailed mechanism of this decarboxylative aldol reaction remains to be elucidated.
Figure 4 Proposed reaction mechanism.
CONCLUSION In conclusion, we have successfully developed a highly chemo-, regio-, and enantioselective decarboxylative aldol reaction of β-ketoacids with β,γ-unsaturated α-ketoesters. In the presence of a Ni (II) complex, the reaction proceeded smoothly for a broad variety of β-ketoacids and β,γ-unsaturated α-ketoesters to afford highly functionalized chiral tertiary alcohols. Moreover, the aldol products obtained can be converted into optically pure isoxazoline and α-hydroxylactone derivatives. Further mechanistic investigation and extension of the reaction scope are underway in our laboratory.
ACS Paragon Plus Environment
Page 10 of 30
Page 11 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
EXPERIMENTAL SECTION General information: 1H and 13C NMR were recorded at 400 or 600 MHz (1H NMR), 100 or 150 MHz (13C NMR), Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl3: δH = 7.26 ppm, δC = 77.16 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets). High resolution mass spectrometry (HRMS) spectra were obtained on a micrOTOF-QII Instrument. Materials: Tetrahydrofuran (THF), ether, and toluene were distilled from sodium/benzophenone; CH2Cl2 (DCM) was distilled from CaH2; CH3CN was distilled from P2O5. All commercially available reagents were used without further purification. Analytical thin layer chromatography was performed on 0.20 mm silica gel plates. Silica gel (200–300 mesh) was used for flash chromatography. The β,γ-unsaturated α-ketoesters were synthesized according to literatures.10 All the β-ketoacids were prepared according to the literature.6a, 7
General procedure for the preparation of catalysts I–VI:6a,11 Nickel (II)–bis[(S, S)-N,
N’-dibenzylcyclohexane-1,2-diamine]Br2 I and IV was prepared following the reported procedures.6a Nickel (II)–bis[(S, S)-N, N’-bis(4-methylbenzyl)-cyclohexane-1,2-diamine]Br2 (II): A mixture of NiBr2 (437 mg, 2 mmol) and (S, S)-N, N- bis(4-methylbenzyl)-cyclohexane-1,2-diamine (1.38 g, 4.3 mmol) in acetonitrile (50 mL) was refluxed for 5 h. Subsequent to solvent removal. The residue was dissolved in dichloromethane and filtered through a fritted glass funnel. The solvent was removed under reduced pressure and the crude product was recrystallized from petroleum ether and ethyl acetate to yield the title compound as a microcrystalline pale green powder (1.38 g) in 80% yield; IR (KBr) ν: 3354, 3286, 3048, 3014, 2932, 2857, 1572, 1515, 1447, 1384, 1159, 1116, 1058, 1033, 950, 895, 847, 753, 623 cm−1; [α]D25 = + 30.1o (c 1.0, CH2Cl2).
Nickel (II)–bis[(S, S)-N, N’-bis(4-methoxybenzyl)-cyclohexane-1,2-diamine]Br2 (III): A mixture of NiBr2 (437 mg, 2 mmol) and (S, S)-N, N- bis(4-methoxybenzyl)-cyclohexane-1,2 -diamine (1.52 g, 4.3 mmol) in acetonitrile (50 mL) was refluxed for 5 h. Subsequent to solvent
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
removal. The residue was dissolved in dichloromethane and filtered through a fritted glass funnel. The solvent was removed under reduced pressure and the crude product was recrystallized from dichloromethane/acetonitrile to yield the title compound as a blue crystal (1.67 g) in 90% yield; IR (KBr) ν: 3226, 3192, 3010, 2962, 2934, 2861, 1613, 1582, 1516, 1455, 1302, 1281, 1179, 1120, 1051, 985, 810, 704, 620 cm−1; [α]D25 = + 34.4o (c 1.0, CH2Cl2).
Nickel (II)–bis[(S, S)-N, N’-bis(4-(trifluoromethyl)benzyl)-cyclohexane-1,2-diamine]Br2 (V): A mixture of NiBr2 (218.5 mg, 1 mmol) and (S, S)-N, N- bis(4-(trifluoromethyl)benzyl)-cyclohexane-1,2-diamine (0.93 g, 2.2 mmol) in acetonitrile (25 mL) was refluxed for 5 h. Subsequent to solvent removal. The residue was dissolved in dichloromethane and filtered through a fritted glass funnel. The solvent was removed under reduced pressure and the crude product was recrystallized from petroleum ether and ethyl acetate to yield the title compound as a pale green powder (0.75 g) in 70% yield; IR (KBr) ν: 3413, 3271, 2940, 2864, 1620, 1459, 1328, 1168, 1123, 1018, 985, 841, 756, 645 cm−1; [α]D25 = + 46.6o (c 1.0, CH2Cl2).
Nickel (II)–bis[(S, S)-N, N’-bis(naphthalen-2-ylmethyl)-cyclohexane-1,2-diamine]Br2 (VI): A mixture of NiBr2 (437 mg, 2 mmol) and (S, S)-N, N- bis(naphthalen-2-ylmethyl)-cyclohexane1,2-diamine (1.70 g, 4.3 mmol) in acetonitrile (50 mL) was refluxed for 5 h. Subsequent to solvent removal. The residue was dissolved in dichloromethane and filtered through a fritted glass funnel. The solvent was removed under reduced pressure and the crude product was recrystallized from dichloromethane/acetonitrile to yield the title compound as a pale green powder (1.71 g) in 85% yield; IR (KBr) ν: 3280, 3046, 3008, 2932, 2858, 1599, 1512, 1148, 1398, 1354, 1165, 1095, 974, 934, 895, 788, 769 cm−1; [α]D25 = + 26.3o (c 1.0, CH2Cl2).
General procedure for the Aldol Reaction of β-ketoacids 1 and β,γ-unsaturated α-ketoesters 2: To a 10 mL Schlenk flask equipped with a stirring bar was added β,γ-unsaturated α-ketoesters 2 (0.1 mmol), the Ni-complex I (10 mol%), and CH2Cl2 (2.0 mL). The mixture was stirred at –45 oC for 5 minutes. Then β-ketoacids 1 (0.2 mmol) was added in one portion, and the resulted mixture was stirred at the same temperature. After the completion of the reaction (monitored by TLC), the residue was purified by column chromatography on silica gel (eluting with petroleum ether/ethyl
ACS Paragon Plus Environment
Page 12 of 30
Page 13 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
acetate = 10/1) to give the product 3.
Benzhydryl (S, E)-2-hydroxy-2-(2-oxo-2-phenylethyl)-4-phenylbut-3-enoate (3a): 45.7 mg; 99% yield; 90% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IA, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 53.6 min (major) and tR = 30.5 min (minor) ]; m.p.: 105 − 106 oC; [α]D25 = − 26.8o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf =
0.56; 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.41 − 7.31 (m, 10H), 7.25 (s, 5H), 7.02 (s, 1H), 6.95 (d, J = 15.9 Hz, 1H), 6.34 (d, J = 15.9 Hz, 1H), 4.33 (s, 1H), 3.91 (d, J = 17.6 Hz, 1H), 3.57 (d, J = 17.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 197.9, 172.9, 139.4, 139.3, 136.4, 136.1, 133.7, 131.4, 128.7, 128.6, 128.5, 128.5, 128.40, 128.2, 128.1, 128.1, 128.0, 127.3, 127.3, 126.8, 78.7, 75.7, 47.3; IR (KBr) ν: 3542, 3060, 3029, 2923, 2854, 1730, 1681, 1596, 1494, 1449, 1356, 1208, 1133, 975, 748, 697 cm−1; HRMS (ESI) found: m/z 485.1729 [M+Na]+; calcd. for C31H26O4+Na 485.1729.
Benzhydryl (S, E)- 2-hydroxy-2-(2-oxo-2-phenylethyl)-4-(p-tolyl)but-3-enoate (3b): 47.2 mg; 99% yield; 92% ee ; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 13.0 min (major) and tR = 15.2 min (minor) ]; m.p.: 170 − 171 oC; [α]D25 = − 23.5o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.43; 1H NMR (600 MHz, CDCl3) δ 7.89 (s, 2H), 7.57 (s, 1H), 7.45 (s, 2H), 7.37 − 7.08 (m, 14H), 6.95 (s, 1H), 6.85 (d, J = 15.6 Hz, 1H), 6.23 (d, J = 15.6 Hz, 1H), 4.25 (s, 1H), 3.85 (d, J = 17.4 Hz, 1H), 3.51 (d, J = 17.4 Hz, 1H), 2.34 (s, 3H);
13
C NMR (150 MHz,
CDCl3) δ 198.0 173.0, 139.4, 139.3, 138.0, 136.3, 133.7, 133.3, 131.2, 129.4, 128.7, 128.5, 128.4, 128.2, 128.1, 128.0, 127.3, 127.3, 127.3, 126.7, 78.7, 75.6, 47.3, 21.3; IR (KBr) ν: 3548, 3058, 3030, 2922, 2856, 1729, 1677, 1592, 1494, 1450, 1344, 1256, 1190, 1127, 988, 750, 698 cm−1; HRMS (ESI) found: m/z 499.1885 [M+Na]+; calcd. for C32H28O4+Na 499.1885.
Benzhydryl (S, E)-2-hydroxy-4-(3-methoxyphenyl)-2-(2-oxo-2-phenylethyl)but-3-enoate (3c): 47.7 mg; 97% yield; 91% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 17.0 min (major) and tR = 19.9 min (minor) ]; m.p.: 72 − 73 oC; [α]D25 = − 24.4o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 30
ether = 1/4): Rf = 0.33; 1H NMR (600 MHz, CDCl3) δ 7.90 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.1 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 7.34 − 7.28 (m, 4H), 7.26 – 7.14 (m, 7H), 6.96 (s, 1H), 6.93 (d, J = 7.8 Hz, 1H), 6.88 − 6.83 (m, 2H), 6.82 (d, J = 7.8 Hz, 1H), 6.28 (d, J = 15.9 Hz, 1H), 4.28 (s, 1H), 3.86 (d, J = 17.6 Hz, 1H), 3.79 (s, 3H), 3.51 (d, J = 17.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 197.9, 172.9, 159.8, 139.3, 139.2, 137.5, 136.3, 133.8, 131.3, 129.6, 128.7, 128.6, 128.6, 128.4, 128.3, 128.2, 128.1, 127.3, 127.3, 119.4, 113.9, 111.9, 78.7, 75.6, 55.3, 47.3; IR (KBr) ν: 3538, 3060, 3031, 2920, 2834, 1734, 1682, 1592, 1492, 1453, 1349, 1233, 1201, 1127, 1038, 751, 695 cm−1; HRMS (ESI) found: m/z 515.1834 [M+Na]+; calcd. for C32H28O5+Na 515.1834.
Benzhydryl (S, E)-4-(4-bromophenyl)-2-hydroxy-2-(2-oxo-2-phenylethyl)but-3-enoate (3d): 52.5 mg; 97% yield; 90% ee ; white solid; [determined by HPLC analysis Daicel Chiralpak IA,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 52.1 min (major) and tR = 21.2 min (minor) ]; m.p.: 133 − 134 oC; [α]D25 = − 25.0o (c 1.0, CH2Cl2); TLC (ethyl acetate
/petroleum ether = 1/4): Rf = 0.47; 1H NMR (600 MHz, CDCl3) δ 7.81 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.0 Hz, 1H), 7.35 (m, 4H), 7.26 – 7.17 (m, 5H), 7.15 – 7.05 (m, 7H), 6.88 (s, 1H), 6.73 (d, J = 15.8 Hz, 1H), 6.18 (d, J = 15.8 Hz, 1H), 4.21 (s, 1H), 3.76 (d, J = 17.5 Hz, 1H), 3.42 (d, J = 17.5 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 197.8, 172.7, 139.3, 139.1, 136.2, 135.0, 133.9, 131.8, 130.3, 129.1, 128.8, 128.6, 128.4, 128.3, 128.3, 128.2, 128.1, 127.3, 127.3, 122.0, 78.8, 75.6, 47.2; IR (KBr) ν: 3549, 3060, 3029, 2938, 2908, 1724, 1670, 1591, 1491, 1358, 1212, 1173, 1066, 975, 809, 696 cm−1; HRMS (ESI) found: m/z 563.0836 [M+Na]+; calcd. for C31H25BrO4+Na 563.0834.
Benzhydryl (S, E)-4-(4-chlorophenyl)-2-hydroxy-2-(2-oxo-2-phenylethyl)but-3-enoate (3e): 47.2 mg; 95% yield; 88% ee ; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 12.2 min (major) and tR = 13.5 min (minor) ]; m.p.: 139 − 140 oC; [α]D25 = − 24.0o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.47; 1H NMR (600 MHz, CDCl3) δ 7.82 (d, J = 7.4 Hz, 2H), 7.51 (t, J = 7.0 Hz, 1H), 7.38 (t, J = 7.2 Hz, 2H), 7.26 – 7.09 (m, 14H), 6.88 (s, 1H), 6.76 (d, J = 15.8 Hz, 1H), 6.17 (d,
J = 15.8 Hz, 1H), 4.20 (s, 1H), 3.77 (d, J = 17.5 Hz, 1H), 3.42 (d, J = 17.5 Hz, 1H);
13
C NMR
(150 MHz, CDCl3) δ 196.8, 172.8, 139.3, 139.2, 136.2, 134.6, 133.8, 133.8, 130.2, 128.9, 128.8, 128.7, 128.6, 128.4, 128.2, 128.2, 128.1, 128.0, 127.3, 127.3, 78.8, 75.6, 47.2; IR (KBr) ν: 3551,
ACS Paragon Plus Environment
Page 15 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
3062, 3032, 2956, 2917, 1732, 1673, 1593, 1492, 1340, 1343, 1281, 1220, 1132, 1091, 988, 749, 699 cm−1; HRMS (ESI) found: m/z 519.1338 [M+Na]+; calcd. for C31H25ClO4+Na 519.1339.
Benzhydryl (S, E)-4-(2-chlorophenyl)-2-hydroxy-2-(2-oxo-2-phenylethyl)but-3-enoate (3f): 48.2 mg; 97% yield; 82% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 17.5 min (major) and tR = 14.7 min (minor) ]; m.p.: 85 − 86 oC; [α]D25 = − 22.1o (c 1.0 CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.43; 1H NMR (600 MHz, CDCl3) δ 7.90 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.39 – 7.16 (m, 15H), 6.97 (s, 1H), 6.26 (d, J = 15.8 Hz, 1H), 4.29 (s, 1H), 3.87 (d, J = 17.5 Hz, 1H), 3.55 (d, J = 17.5 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 197.8, 172.7, 139.3, 139.2, 136.2, 134.4, 133.8, 133.5, 131.4, 129.8, 129.1, 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.3, 127.3, 127.2, 126.9, 78.8, 75.8, 47.2; IR (KBr) ν: 3539, 3062, 3031, 2922, 2856, 1738, 1682, 1593, 1447, 1353, 1203, 1134, 1077, 1031, 986, 753, 698 cm−1; HRMS (ESI) found: m/z 519.1343 [M+Na]+; calcd. for C31H25ClO4+Na 519.1339.
Benzhydryl (S, E)-2-hydroxy-4-(4-nitrophenyl)-2-(2-oxo-2-phenylethyl)but-3-enoate (3g): 46.7 mg; 92% yield; 83% ee ; light yellow solid; [determined by HPLC analysis Daicel Chiralpak AS, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 61.2 min (major) and tR = 48.3 min (minor) ]; m.p.: 137 − 138 oC; [α]D25 = − 25.8o (c 1.0, CH2Cl2); TLC (ethyl acetate/
petroleum ether = 1/4): Rf = 0.26; 1H NMR (600 MHz, CDCl3) δ 8.16 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 7.36 – 7.16 (m, 10H), 7.04 – 6.91 (m, 2H), 6.45 (d, J = 15.8 Hz, 1H), 4.36 (s, 1H), 3.89 (d, J = 17.5 Hz, 1H), 3.52 (d, J = 17.5 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 197.6, 172.4, 147.2, 142.5, 139.2, 139.0, 136.1, 134.0, 133.0, 129.5, 128.8, 128.6, 128.5, 128.3, 128.3, 128.2, 127.4, 127.3, 127.3, 124.1, 79.0, 75.7, 47.1; IR (KBr) ν: 3535, 3067, 3031, 2929, 2844, 1740, 1664, 1595, 1514, 1340, 1180, 1144, 1069, 968, 839, 749, 696 cm−1; HRMS (ESI) found: m/z 530.1580 [M+Na]+; calcd. for C31H25NO6+Na 530.1580.
Benzhydryl (S, E)-2-hydroxy-2-(2-oxo-2-phenylethyl)-4-(thiophen-2-yl)but-3-enoate (3h): 44.5 mg; 95% yield; 90% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AD,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
n-hexane/i-PrOH = 50/50, 254 nm UV detector, 0.5 mL/min, tR = 155.9 min (major) and tR = 80.7 min (minor) ]; m.p.: 113 − 114 oC; [α]D25 = − 16.4o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.40; 1H NMR (600 MHz, CDCl3) δ 7.89 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.32 − 7.18 (m, 10H), 7.01 (d, J = 15.6 Hz, 1H), 6.95 (t, J = 5.0 Hz, 3H), 6.14 (d, J = 15.6 Hz, 1H), 4.24 (s, 1H), 3.82 (d, J = 17.6 Hz, 1H), 3.50 (d, J = 17.6 Hz, 1H); 13
C NMR (150 MHz, CDCl3) δ 197.8, 172.8, 141.1, 139.2, 139.2, 136.2, 133.8, 128.7, 128.6,
128.4, 128.2, 128.2, 128.1, 127.6, 127.4, 127.2, 127.0, 125.0, 124.8, 78.8, 75.3, 47.2; IR (KBr) ν: 3542, 3059, 3028, 2947, 2917, 1733, 1677, 1593, 1450, 1349, 1263, 1201, 1121, 974, 750, 700 cm−1; HRMS (ESI) found: m/z 491.1293 [M+Na]+; calcd. for C29H24O4S+Na 491.1293.
Benzhydryl (S, 3E, 5E)-2-hydroxy-2-(2-oxo-2-phenylethyl)-6-phenylhexa-3,5-dienoate (3i): 46.5 mg; 95% yield; 90% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 70/30, 220 nm UV detector, 0.8 mL/min, tR = 14.1 min (major) and tR = 20.3 min (minor) ]; m.p.: 164 − 165 oC; [α]D25 = − 60.8o (c 1.0, CH2Cl2); TLC (ethyl acetate
/petroleum ether = 1/4): Rf = 0.39; 1H NMR (600 MHz, CDCl3) δ 7.88 (d, J = 5.6 Hz, 2H), 7.56 (s, 1H), 7.45 – 7.17 (m, 17H), 6.94 (s, 1H), 6.69 (dt, J = 24.7, 11.2 Hz, 2H), 6.54 (d, J = 15.2 Hz, 1H), 5.89 (d, J = 15.2 Hz, 1H), 4.21 (s, 1H), 3.79 (d, J = 17.3 Hz, 1H), 3.46 (d, J = 17.3 Hz, 1H); 13
C NMR (150 MHz, CDCl3) δ 197.9, 172.8, 139.4, 139.3, 137.0, 136.4, 134.3, 133.7, 132.0,
131.8, 128.7, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.4, 127.4, 127.3, 126.6, 78.7, 75.5, 47.3; IR (KBr) ν: 3558, 3060, 3025, 2913, 2667, 1741, 1671, 1592, 1492, 1450, 1352, 1279, 1223, 1187, 1002, 750, 695 cm−1; HRMS (ESI) found: m/z 511.1882 [M+Na]+; calcd. for C33H28O4+Na 511.1885.
Ethyl (S, E)-2-hydroxy-2-(2-oxo-2-phenylethyl)pent-3-enoate (3j): 24.9 mg; 95% yield; 72%
ee; colorless oil; [determined by HPLC analysis Daicel Chiralpak AS, n-hexane/i-PrOH = 90/10, 254 nm UV detector, 0.8 mL/min, tR = 12.4 min (major) and tR = 21.9 min (minor) ]; [α]D25 =
− 59.6o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf = 0.48; 1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 6.02 (dd, J = 15.2, 6.7 Hz, 1H), 5.60 (d, J = 15.3 Hz, 1H), 4.25 (dd, J = 7.0, 2.5 Hz, 2H), 4.00 (s, 1H), 3.67 (d, J = 17.6 Hz, 1H), 3.40 (d, J = 17.6 Hz, 1H), 1.75 (d, J = 6.5 Hz, 3H), 1.26 (t, J = 7.1 Hz,
ACS Paragon Plus Environment
Page 16 of 30
Page 17 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
3H); 13C NMR (150 MHz, CDCl3) δ 198.2, 174.3, 136.3, 133.6, 130.6, 128.7, 128.2, 127.3, 75.0, 62.0, 47.4, 17.7, 14.1; IR (KBr) ν: 3524, 3032, 2980, 2918, 2853, 1735, 1685, 1597, 1562, 1449, 1388, 1359, 1264, 1206, 1144, 998, 855, 757, 690 cm−1; HRMS (ESI) found: m/z 285.1100 [M+Na]+; calcd. for C15H18O4+Na 285.1103.
Ethyl (S, E)-2-hydroxy-5-methyl-2-(2-oxo-2-phenylethyl)hex-3-enoate (3k): 27.6 mg; 95% yield; 70% ee; colorless oil; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 90/10, 254 nm UV detector, 0.8 mL/min, tR = 9.8 min (major) and tR = 14.5 min (minor) ]; [α]D25 = − 50.9o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf =
0.52; 1H NMR (600 MHz, CDCl3) δ 7.95 (d, J = 7.9 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 5.99 (dd, J = 15.5, 6.6 Hz, 1H), 5.52 (d, J = 15.6 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 4.00 (s, 1H), 3.67 (d, J = 17.5 Hz, 1H), 3.39 (d, J = 17.6 Hz, 1H), 2.37 − 2.31 (m, 1H), 1.26 (t, J = 7.1 Hz, 3H), 1.01 (dd, J = 6.7, 2.4 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ 198.3, 174.4, 139.2, 136.5, 133.6, 128.7, 128.2, 126.7, 75.0, 62.0, 47.5, 30.7, 22.2, 22.1, 14.1; IR (KBr) ν: 3520, 3062, 2961, 2930, 2871, 1733, 1686, 1598, 1451, 1360, 1249, 980, 856, 758, 691, 588 cm−1; HRMS (ESI) found: m/z 313.1412 [M+Na]+; calcd. for C17H22O4+Na 313.1416.
Benzhydryl (S, E)-2-hydroxy-2-(2-oxo-2-(p-tolyl)ethyl)-4-phenylbut-3-enoate (3l): 47.1 mg; 99% yield; 99% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 16.3 min (major) ]; m.p.: 131 − 132 oC; [α]D25 = −32.0o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf = 0.60; 1H NMR (600 MHz, CDCl3) δ 7.80 (d, J = 7.8 Hz, 2H), 7.36 – 7.16 (m, 17H), 6.95 (s, 1H), 6.88 (d, J = 15.9 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.32 (s, 1H), 3.84 (d, J = 17.5 Hz, 1H), 3.48 (d, J = 17.5 Hz, 1H), 2.41 (s, 3H);
13
C NMR (150 MHz, CDCl3) δ 197.6, 172.9, 144.7, 139.4, 139.3, 136.1,
133.9, 131.3, 129.4, 128.6, 128.6, 128.4, 128.4, 128.1, 128.1, 128.0, 127.3, 127.3, 126.8, 78.7, 75.7, 47.2, 21.8; IR (KBr) ν: 3529, 3059, 3029, 2916, 1736, 1677, 1605, 1450, 1351, 1234, 1192, 1130, 980, 809, 748, 697 cm−1; HRMS (ESI) found: m/z 499.1889 [M+Na]+; calcd. for C32H28O4+Na 499.1885.
Benzhydryl (S, E)-2-hydroxy-2-(2-oxo-2-(m-tolyl)ethyl)-4-phenylbut-3-enoate (3m): 47.2 mg;
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
99% yield; 90% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 14.0 min (major) and tR = 12.9 min (minor) ]; m.p.: 107 − 108 oC; [α]D25 = − 27.5o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.60; 1H NMR (600 MHz, CDCl3) δ 7.69 (s, 2H), 7.42 – 7.16 (m, 17H), 6.96 (s, 1H), 6.89 (d, J = 15.9 Hz, 1H), 6.28 (d, J = 15.9 Hz, 1H), 4.30 (s, 1H), 3.85 (d, J = 17.6 Hz, 1H), 3.50 (d, J = 17.6 Hz, 1H), 2.39 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 198.2, 172.9, 139.4, 139.3, 138.5, 136.4, 136.1, 134.6, 131.4, 128.8, 128.7, 128.6, 128.6, 128.4, 128.1, 128.1, 128.0, 127.4, 127.3, 126.8, 125.5, 78.7, 75.7, 47.4, 21.4; IR (KBr) ν: 3485, 3059, 3030, 2922, 2859, 1733, 1676, 1600, 1493, 1354, 1245, 1200, 1109, 987, 746, 695 cm−1; HRMS (ESI) found: m/z 499.1885 [M+Na]+; calcd. for C32H28O4+Na 499.1885.
Benzhydryl (S, E)-2-hydroxy-2-(2-(4-methoxyphenyl)-2-oxoethyl)-4-phenylbut-3-enoate (3n): 46.7 mg; 95% yield; 91% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 33.2 min (major) and tR = 45.7 min (minor) ]; m.p.: 104 − 105 oC; [α]D25 = − 31.4o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.37; 1H NMR (600 MHz, CDCl3) δ 7.89 (d, J = 8.7 Hz, 2H), 7.35 − 7.28 (m, 9H), 7.25 – 7.16 (m, 6H), 6.97 – 6.86 (m, 4H), 6.28 (d, J = 15.9 Hz, 1H), 4.39 (s, 1H), 3.88 – 3.81 (m, 4H), 3.44 (d, J = 17.4 Hz, 1H);
13
C NMR (150 MHz, CDCl3) δ 196.5, 173.0 164.0, 139.4,
139.3, 136.1, 131.3, 130.6, 129.3, 128.7, 128.6, 128.4, 128.1, 128.10 128.0, 127.3, 127.3, 126.8 113.9, 78.6, 75.8, 55.6, 46.9; IR (KBr) ν: 3525, 3060, 3029, 2937, 2839, 1739, 1669, 1600, 1453, 1353, 1176, 1025, 976, 747, 697 cm−1; HRMS (ESI) found: m/z 515.1833 [M+Na]+; calcd. for C32H28O5+Na 515.1834.
Benzhydryl (S, E)-2-hydroxy-2-(2-(3-methoxyphenyl)-2-oxoethyl)-4-phenylbut-3-enoate (3o): 47.3 mg; 96% yield; 90% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 16.2 min (major) and tR = 21.7 min (minor) ]; m.p.: 40 − 41 oC; [α]D25 = − 19.6o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.51; 1H NMR (600 MHz, CDCl3) δ 7.40 (d, J = 7.5 Hz, 1H), 7.32 (s, 1H), 7.28 – 7.19 (m, 9H), 7.19 – 7.15 (m, 2H), 7.13 (m, 5H), 7.04 (dd, J = 8.1, 1.9 Hz, 1H), 6.88 (s, 1H), 6.80 (d, J = 15.9 Hz, 1H), 6.19 (d, J = 15.9 Hz, 1H), 4.18 (s, 1H), 3.78 – 3.69 (m, 4H), 3.42 (d, J =
ACS Paragon Plus Environment
Page 18 of 30
Page 19 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
17.6 Hz, 1H);
13
C NMR (150 MHz, CDCl3) δ 197.7, 172.9, 159.9, 139.4, 139.2, 137.6,136.1 ,
131.4, 129.7, 128.7, 128.6, 128.4, 128.3, 128.2, 128.0, 127.3, 127.3, 126.8, 121.0, 120.5,112.2, 78.7, 75.6, 55.5, 47.4; IR (KBr) ν: 3512, 3061, 3030, 2927, 2839, 1740, 1681, 1590, 1453, 1258, 1201, 1131, 967, 750, 696 cm−1; HRMS (ESI) found: m/z 515.1835 [M+Na]+; calcd. for C32H28O5+Na 515.1834.
Benzhydryl (S, E)-2-(2-(4-fluorophenyl)-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3p): 46.6 mg; 97% yield; 87% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 20.5 min (major) and tR = 17.4 min (minor) ]; m.p.: 139 − 140 oC; [α]D25 = − 21.8o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.55; 1H NMR (600 MHz, CDCl3) δ 7.87 − 7.80 (m, 2H), 7.26 – 7.10 (m, 15H), 7.03 (t, J = 8.2 Hz, 2H), 6.88 (s, 1H), 6.80 (d, J = 15.8 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 4.16 (s, 1H), 3.73 (d, J = 17.4 Hz, 1H), 3.39 (d, J = 17.4 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 196.2, 172.9, 166.2 (d, JC-F = 255.0 Hz), 139.3, 139.2, 136.0, 132.8 (d, JC-F = 1.5 Hz), 131.5, 131.0 (d,
JC-F = 9.0 Hz) 128.7, 128.6, 128.4, 128.2, 128.2, 128.1, 127.4, 127.2, 126.8, 115.9 (d, JC-F = 21.0 Hz), 78.8, 75.6, 47.2; IR (KBr) ν: 3538, 3059, 3031, 2956, 2918, 1747, 1663, 1596, 1500, 1373, 1340, 1221, 1168, 1005, 972, 749, 699 cm−1; HRMS (ESI) found: m/z 503.1641 [M+Na]+; calcd. for C31H25FO4+Na 503.1635.
Benzhydryl (S, E)-2-(2-(2-fluorophenyl)-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3q): 49.2 mg; 98% yield; 88% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 11.2 min (major) and tR = 10.3 min (minor) ]; m.p.: 100 − 101 oC; [α]D25 = − 21.3o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.55; 1H NMR (600 MHz, CDCl3) δ 7.69 (t, J = 7.1 Hz, 1H), 7.44 (q, J = 6.0 Hz, 1H), 7.29 – 7.21 (m, 8H), 7.19 (m, 2H), 7.16 – 7.09 (m, 6H), 7.06 – 7.01 (m, 1H), 6.89 (s, 1H), 6.80 (d, J = 15.6 Hz, 1H), 6.18 (d, J = 15.6 Hz, 1H), 4.06 (s, 1H), 3.73 − 3.86 (m, 1H), 3.38 − 3.52 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 195.7, 173.0, 162.3 (d, JC-F = 253.5 Hz), 139.3, 139.2, 136.1, 135.4, 135.4, 131.4, 130.7, 128.6, 128.4, 128.3, 128.2, 128.1, 127.3, 127.2, 126.8, 124.8, 124.7, 124.60 (d, JC-F = 12 Hz ), 116.8 (d, JC-F = 24 Hz ), 78.7, 75.5 (d, JC-F = 1.5 Hz ), 52.2 (d,
JC-F = 9 Hz); IR (KBr) ν: 3474, 3067, 3029, 2928, 2859, 1716, 1609, 1487, 1451, 1349, 1255,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1204, 1130, 1071, 971, 748, 697 cm−1; HRMS (ESI) found: m/z 503.1635 [M+Na]+; calcd. for C31H25FO4+Na 503.1635.
Benzhydryl (S, E)-2-(2-(4-chlorophenyl)-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3r): 47.7 mg; 96% yield; 88% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 23.1 min (major) and tR = 18.4 min (minor) ]; m.p.: 147 − 148 oC; [α]D25 = − 21.6o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.61; 1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 7.26 – 7.08 (m, 15H), 6.88 (s, 1H), 6.80 (d, J = 15.8 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 4.12 (s, 1H), 3.72 (d, J = 17.5 Hz, 1H), 3.39 (d, J = 17.5 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 196.6, 172.8, 140.3, 139.2, 139.2, 136.0, 134.6, 131.5, 129.7, 129.1, 128.7, 128.6, 128.4, 128.2, 128.1, 127.4, 127.2, 126.8, 78.8, 75.6, 47.3; IR (KBr) ν: 3527, 3058, 3029, 2962, 2872, 1747, 1667, 1592, 1492, 1452, 1404, 1250, 1171, 972, 808, 749, 699 cm−1; HRMS (ESI) found: m/z 519.1339 [M+Na]+; calcd. for C31H25ClO4+Na 519.1339.
Benzhydryl (S, E)-2-(2-(3-chlorophenyl)-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3s): 49.2 mg; 99% yield; 89% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IA,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 49.0 min (major) and tR = 27.3 min (minor) ]; m.p.: 96 − 97 oC; [α]D25 = − 15.0o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.62; 1H NMR (600 MHz, CDCl3) δ 7.84 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.35 – 7.31 (m, 8H), 7.30 – 7.27 (m, 2H), 7.18 − 7.25 (m, 5H), 6.97 (s, 1H), 6.89 (d, J = 15.9 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.16 (s, 1H), 3.80 (d, J = 17.6 Hz, 1H), 3.49 (d, J = 17.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 196.6, 172.8, 139.3, 139.2, 137.9, 137.3, 137.2, 136.0, 135.1, 133.9, 133.7, 133.6, 131.6, 130.0, 128.8, 128.7, 128.6, 128.5, 128.5, 128.3, 128.2, 128.2, 128.2, 127.4, 127.2, 126.8, 126.3, 78.9, 75.6, 47.5; IR (KBr) ν: 3482, 3131, 3065, 3030, 2946, 1730, 1681, 1569, 1400, 1353, 1251, 1199, 1106, 967, 746, 695 cm−1; HRMS (ESI) found: m/z 519.1340 [M+Na]+; calcd. for C31H25ClO4+Na 519.1339.
Benzhydryl (S, E)-2-(2-(4-bromophenyl)-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3t): 52.5 mg; 98% yield; 86% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IB,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 33.6 min (major) and tR = 29.3
ACS Paragon Plus Environment
Page 20 of 30
Page 21 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
min (minor) ]; m.p.: 149 − 150 oC; [α]D25 = − 24.0o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.48; 1H NMR (600MHz, CDCl3) δ 7.66 (d, J = 7.6 Hz, 2H), 7.51 (d, J = 7.6 Hz, 2H), 7.28 – 7.09 (m, 15H), 6.88 (s, 1H), 6.80 (d, J = 15.8 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 4.11 (s, 1H), 3.71 (d, J = 17.5 Hz, 1H), 3.39 (d, J = 17.5 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 196.8, 172.8, 139.2, 139.1, 136.0, 135.0, 132.0, 131.5, 129.7, 129.0, 128.7, 128.6, 128.4, 128.2, 128.2, 128.1, 127.4, 127.2, 126.8, 78.8, 75.6, 47.2; IR (KBr) ν: 3439, 3059, 3030, 2921, 2855, 1743, 1671, 1586, 1492, 1451, 1372, 1178, 1071, 997, 911, 748, 700 cm−1; HRMS (ESI) found: m/z 563.0835 [M+Na]+; calcd. for C31H25BrO4+Na 563.0834.
Benzhydryl (S, E)-2-hydroxy-2-(2-(naphthalen-2-yl)-2-oxoethyl)-4-phenylbut-3-enoate (3u): 50.7 mg; 99% yield; 91% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.7 mL/min, tR = 34.4 min (major) and tR = 46.9 min (minor) ]; m.p.: 137 − 138 oC; [α]D25 = − 25.0o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.61; 1H NMR (600 MHz, CDCl3) δ 8.42 (s, 1H), 8.01 – 7.82 (m, 4H), 7.62 (t, J = 6.8 Hz, 1H), 7.56 (t, J = 6.8 Hz, 1H), 7.39 – 7.12 (m, 15H), 6.98 (s, 1H), 6.93 (d, J = 15.8 Hz, 1H), 6.33 (d, J = 15.8 Hz, 1H), 4.33 (s, 1H), 4.00 (d, J = 17.4 Hz, 1H), 3.66 (d, J = 17.4 Hz, 1H); 13
C NMR (150 MHz, CDCl3) δ 197.8, 173.0, 139.3, 139.2, 136.1, 135.9, 133.7, 132.4, 131.4,
130.3, 129.7, 128.9, 128.7, 128.6, 128.6, 128.4, 128.4, 128.1, 128.0, 127.9, 127.3, 127.3, 127.0, 126.8, 123.6, 78.7, 75.7, 47.4; IR (KBr) ν: 3417, 3061, 3029, 2957, 2924, 2855, 1723, 1678, 1595, 1494, 1453, 1399, 1259, 1186, 1124, 966, 752, 699 cm−1; HRMS (ESI) found: m/z 535.1888 [M+Na]+; calcd. for C35H28O4+Na 535.1885.
Benzhydryl (S, E)-2-hydroxy-2-(2-oxo-2-(thiophen-2-yl)ethyl)-4-phenylbut-3-enoate (3v): 45.4 mg; 97% yield; 84% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 22.1 min (major) and tR = 30.0 min (minor) ]; m.p.: 148 − 149 oC; [α]D25 = −15.2o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.37; 1H NMR (600 MHz, CDCl3) δ 7.71 (d, J = 3.5 Hz, 1H), 7.68 (d, J = 4.8 Hz, 1H), 7.35 – 7.26 (m, 10H), 7.23 (s, 5H), 7.13 (t, J = 4.2 Hz, 1H), 6.95 (s, 1H), 6.87 (d, J = 15.9 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.27 (s, 1H), 3.78 (d, J = 17.0 Hz, 1H), 3.45 (d, J = 17.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 190.5, 172.7, 143.4, 139.3, 139.2, 136.0, 134.8, 132.9,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
131.4, 128.7, 128.6, 128.4, 128.4, 128.2, 128.1, 128.1, 127.4, 127.2, 126.8, 78.9, 75.7, 47.6; IR (KBr) ν: 3551, 3058, 3028, 2921, 1735, 1649, 1453, 1413, 1293, 1189, 1129, 970, 858, 799, 751, 734, 699 cm−1; HRMS (ESI) found: m/z 491.1293 [M+Na]+; calcd. for C29H24O4S +Na 491.1293.
Benzhydryl (S, E)-2-(2-(furan-2-yl)-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3w): 40.7 mg; 90% yield; 73% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 23.6 min (major) and tR = 29.2 min (minor) ]; m.p.: 67 − 68 oC; [α]D25 = − 17.8o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.30; 1H NMR (600 MHz, CDCl3) δ 7.59 (s, 1H), 7.35 – 7.28 (m, 9H), 7.27 – 7.22 (m, 6H), 7.20 (d, J = 3.3 Hz, 1H), 6.95 (s, 1H), 6.86 (d, J = 15.9 Hz, 1H), 6.54 (d, J = 2.0 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 4.23 (s, 1H), 3.69 (d, J = 17.1 Hz, 1H), 3.41 (d, J = 17.1 Hz, 1H); 13
C NMR (150 MHz, CDCl3) δ 186.5, 172.7, 152.2, 147.0, 139.2, 139.2, 136.0, 131.4, 128.6,
128.6, 128.4, 128.2, 128.2, 128.1, 128.1, 127.4, 127.2, 126.8, 118.2, 112.6, 78.9, 75.6, 46.6; IR (KBr) ν: 3444, 3061, 3029, 2922, 2858, 1740, 1666, 1567, 1465, 1397, 1258, 1178, 1138, 974, 911, 752, 698 cm−1; HRMS (ESI) found: m/z 475.1521 [M+Na]+; calcd. for C29H24O5+Na 475.1521.
Benzhydryl (S)-2-hydroxy-4-oxo-6-phenyl-2-(E)-styrylhexanoate (3x): 34.4 mg; 70% yield; 80%
ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.7 mL/min, tR = 20.6 min (major) and tR = 25.4 min (minor) ]; m.p.: 100
− 101 oC; [α]D25 = − 21.6o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf = 0.56; 1
H NMR (600 MHz, CDCl3) δ 7.35 – 7.23 (m, 17H), 7.19 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 7.3 Hz,
2H), 6.94 (s, 1H), 6.79 (d, J = 15.6 Hz, 1H), 6.17 (d, J = 15.6 Hz, 1H), 4.10 (s, 1H), 3.27 (d, J = 17.4 Hz, 1H), 2.91 (d, J = 17.4 Hz, 1H), 2.85 – 2.64 (m, 4H);
13
C NMR (150 MHz, CDCl3) δ
207.8, 172.8, 140.7, 139.3, 139.2, 136.0, 131.3, 128.6, 128.6, 128.6, 128.5, 128.3, 128.3, 128.2, 128.1, 128.1, 127.5, 127.1, 126.8, 126.2, 78.8, 75.5, 50.8, 45.0, 29.2; IR (KBr) ν: 3557, 3061, 3026, 2949, 2895, 1731, 1712, 1560, 1495, 1451, 1405, 1254, 1197, 1090, 1046, 898, 752, 702 cm−1; HRMS (ESI) found: m/z 513.2044 [M+Na]+; calcd. for C33H30O4+Na 513.2042.
Benzhydryl (S, E)-2-(2-cyclohexyl-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3y): 45.4 mg; 97% yield; 80% ee; white solid; [determined by HPLC analysis Daicel Chiralpak OD,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.7 mL/min, tR = 21.5 min (major) and tR = 40.6
ACS Paragon Plus Environment
Page 22 of 30
Page 23 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
min (minor) ]; m.p.: 115 − 116 oC; [α]D25 = − 17.2o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.63; 1H NMR (600 MHz, CDCl3) δ 7.33 – 7.21 (m, 15H), 6.93 (s, 1H), 6.80 (d, J = 15.9 Hz, 1H), 6.17 (d, J = 15.9 Hz, 1H), 4.19 (s, 1H), 3.34 (d, J = 17.7 Hz, 1H), 2.93 (d, J = 17.7 Hz, 1H), 2.26 (dd, J = 14.0, 7.1 Hz, 1H), 1.81 − 1.60 (m, 5H), 1.30 – 1.13 (m, 5H); 13C NMR (150 MHz, CDCl3) δ 212.2, 172.9, 139.3, 139.3, 136.1, 131.1, 128.6, 128.5, 128.5, 128.3, 128.3, 128.2, 128.1, 127.6, 127.1, 126.7, 78.6, 75.5, 50.9, 48.8, 28.1, 28.0, 25.8, 25.5; IR (KBr) ν: 3546, 3060, 3029, 2929, 2853, 1736, 1691, 1596, 1495, 1384, 1287, 1174, 1140, 1026, 977, 750, 699 cm−1; HRMS (ESI) found: m/z 491.2201 [M+Na]+; calcd. for C31H32O4+Na 491.2198.
Benzhydryl (S, E)-2-(2-cyclopropyl-2-oxoethyl)-2-hydroxy-4-phenylbut-3-enoate (3z): 33.7 mg; 79% yield; 78% ee; white solid; [determined by HPLC analysis Daicel Chiralpak AS,
n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 13.8 min (major) and tR = 16.7 min (minor) ]; m.p.: 119 − 120 oC; [α]D25 = − 12.0o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.40; 1H NMR (600 MHz, CDCl3) δ 7.32 − 7.24 (m, 15H), 6.93 (s, 1H), 6.81 (d, J = 15.9 Hz, 1H), 6.18 (d, J = 15.9 Hz, 1H), 4.18 (s, 1H), 3.48 (d, J = 17.6 Hz, 1H), 3.08 (d, J = 17.6 Hz, 1H), 1.92 – 1.85 (m, 1H), 1.08 − 1.02 (m, 1H), 0.94 − 0.82 (m, 3H); 13C NMR (150 MHz, CDCl3) δ 208.8, 172.8, 139.3, 139.3, 136.1, 131.2, 128.6, 128.5, 128.5, 128.2, 128.1, 128.1, 128.1, 127.4, 127.2, 126.7, 78.6, 75.3, 51.4, 21.1, 11.5; IR (KBr) ν: 3553, 3059, 3029, 2921, 2859, 1734, 1682, 1494, 1451, 1253, 1186, 1077, 979, 852, 748, 648 cm−1; HRMS (ESI) found: m/z 449.1729 [M+Na]+; calcd. for C28H26O4+Na 449.1729.
Benzhydryl (S)-2-hydroxy-5-methyl-4-oxo-2-(E)-styrylhexanoate (3a'): 31.3 mg; 73% yield; 80% ee ; white solid; [determined by HPLC analysis Daicel Chiralpak OD, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.7 mL/min, tR = 15.6 min (major) and tR = 20.8 min (minor) ]; m.p.: 110 − 111 oC; [α]D25 = − 18.9o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf =
0.59; 1H NMR (600 MHz, CDCl3) δ 7.33 – 7.24 (m, 15H), 6.94 (s, 1H), 6.81 (d, J = 15.9 Hz, 1H), 6.18 (d, J = 15.9 Hz, 1H), 4.16 (s, 1H), 3.35 (d, J = 17.7 Hz, 1H), 2.96 (d, J = 17.7 Hz, 1H), 2.53 (heptet, 1H), 1.05 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.9 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 212.7, 172.9, 139.3, 139.2, 136.0, 131.2, 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 128.1, 127.5, 127.1, 126.7, 78.7, 75.4, 48.6, 41.2, 17.8; IR (KBr) ν: 3536, 3062, 3029, 2968, 2929, 2875, 1727,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1495, 1455, 1257, 1213, 1143, 1066, 975, 749, 698 cm−1; HRMS (ESI) found: m/z 451.1885 [M+Na]+; calcd. for C28H28O4+Na 451.1885.
Benzhydryl (S)-2-hydroxy-4-oxo-2-(E)-styrylhexanoate (3b'): 33.1 mg; 80% yield; 66% ee; white solid; [determined by HPLC analysis Daicel Chiralpak OD, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.7 mL/min, tR = 17.9 min (major) and tR = 33.9 min (minor) ]; m.p.: 97 − 98 oC; [α]D25 = − 19.2o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf = 0.43; 1H NMR (600 MHz, CDCl3) δ 7.34 – 7.23 (m, 15H), 6.93 (s, 1H), 6.80 (d, J = 15.9 Hz, 1H), 6.18 (d, J = 15.9 Hz, 1H), 4.15 (s, 1H), 3.29 (d, J = 17.3 Hz, 1H), 2.91 (d, J = 17.3 Hz, 1H), 2.39 (dd, J = 7.0, 2.8 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 209.5, 172.8, 139.3, 139.2, 136.0, 131.2, 128.6, 128.6, 128.5, 128.2, 128.2, 128.1, 128.1, 127.5, 127.1, 126.7, 78.7, 75.5, 50.3, 36.7, 7.4; IR (KBr) ν: 3549, 3060, 3030, 2966, 2929, 1735, 1598, 1495, 1453, 1249, 1209, 1141, 977, 896, 748, 700 cm−1; HRMS (ESI) found: m/z 437.1728 [M+Na]+; calcd. for C27H26O4+Na 437.1729.
Benzhydryl (S)-2-hydroxy-4-oxo-2-(E)-styrylpentanoate (3c'): 39.6 mg; 99% yield; 65% ee; white solid; [determined by HPLC analysis Daicel Chiralpak OD, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 14.9 min (major) and tR = 34.7 min (minor) ]; m.p.: 126 − 127 o
C; [α]D25 = − 16.2o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf = 0.27; 1H
NMR (600 MHz, CDCl3) δ 7.35 – 7.23 (m, 15H), 6.93 (s, 1H), 6.80 (d, J = 15.9 Hz, 1H), 6.17 (d,
J = 15.9 Hz, 1H), 4.09 (s, 1H), 3.32 (d, J = 17.4 Hz, 1H), 2.94 (d, J = 17.4 Hz, 1H), 2.12 (s, 3H); 13
C NMR (150 MHz, CDCl3) δ 206.8, 172.7, 139.2, 139.2, 136.0 131.2, 128.6, 128.5, 128.53,
128.2, 128.2, 128.1, 128.0, 127.4, 127.1, 126.8, 78.8, 75.5, 51.5, 30.7; IR (KBr) ν: 3555, 3059, 3031, 3946, 2918, 1738, 1707, 1595, 1495, 1366, 1256, 1208, 975, 851, 748, 700 cm−1; HRMS (ESI) found: m/z 423.1572 [M+Na]+; calcd. for C26H24O4+Na 423.1572.
The Scaled-up procedure of the decarboxylative aldol reaction: To a 25 mL Schlenk flask equipped with a stirring bar was added β,γ-unsaturated α-ketoester 2-Br (1.26 g, 3 mmol), the Ni-complex I (240 mg, 10 mol%), and CH2Cl2 (15 mL). The mixture was stirred at –45oC for 5 minutes. Then β-ketoacid 1a (0.98 g, 6 mmol) was added in one portion, and the resulted mixture
ACS Paragon Plus Environment
Page 24 of 30
Page 25 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
was stirred at the same temperature. After the completion of the reaction (7 days, monitored by TLC), the residue was purified by column chromatography on silica gel (eluting with petroleum ether/ethyl acetate = 10/1) and recrystallized from dichloromethane/petroleum ether to give the product 3d (m.p.: 133 − 133.5 oC , 1.46 g, 90% yield, 99% ee). Synthetic
Procedure
for
Benzhydryl
(S,
E)-4-(4-bromophenyl)-2-hydroxy-2-((Z)-2-
(hydroxyimino)-2-phenylethyl)but-3-enoate (4): To a 10 mL Schlenk flask equipped with a stirring bar was added 3d (108.2 mg, 0.2 mmol), hydroxylamine hydrochloride (28.0 mg, 0.4 mmol) and pyridine (2.0 mL). The resulting mixture was stirred at room temperature for 48 h. Then pyridine was removed under reduced pressure, The residue was diluted with water (10 mL) and extracted with EtOAc (3 × 10 mL), and the combined organic extracts were washed with brine (10 mL), dried over anhydrous Na2SO4, After removal of the solvent, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 6/1) afforded 4. 67.8 mg; 61% yield; > 99%
ee; white solid; [determined by HPLC analysis Daicel Chiralpak IC, n-hexane/i-PrOH = 90/10, 220 nm UV detector, 0.8 mL/min, tR = 18.4 min (major)]; m.p.: 176 − 177 oC; [α]D25 = − 57.6o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether = 1/4): Rf = 0.27; 1H NMR (600 MHz, CDCl3) δ 8.48 (s, 1H), 7.49 (d, J = 7.6 Hz, 2H), 7.38 – 7.23 (m, 15H), 7.04 (d, J = 8.2 Hz, 2H), 6.79 (s, 1H), 6.70 (d, J = 15.7 Hz, 1H), 6.35 (d, J = 15.7 Hz, 1H), 3.94 (s, 1H), 3.57 (d, J = 13.2 Hz, 1H), 3.48 (d, J = 13.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 173.1, 155.7, 139.4, 139.2, 136.1, 135.3, 131.6, 130.0, 129.4, 129.1, 128.6, 128.6, 128.4, 128.30, 128.3, 128.2, 127.4, 127.0, 126.9, 121.6, 79.3, 76.4, 36.5; IR (KBr) ν: 3500, 3239, 3087, 3063, 2930, 1724, 1551, 1531, 1490, 1256, 1214, 1137, 1072, 989, 813, 757, 697 cm−1; HRMS (ESI) found: m/z 578.0940 [M+Na]+; calcd. for C31H26BrNO4+Na 578.0943.
Synthetic Procedure for Benzhydryl (R, E)-5-(4-bromostyryl)-3-phenyl-4, 5-dihydroisoxazole -5-carboxylate (5): To a 10 mL Schlenk flask equipped with a stirring bar was added 4 (55.6 mg, 0.1 mmol), PPh3 (52.0 mg, 0.2 mmol) and THF (1.0 mL), the mixture was cooled to 0 oC. Then DIAD (diisopropyl azodicarboxylate) (41.0 mg, 0.2 mmol) was added to the solution. The resulting mixture was stirred at room temperature for 4 h, then diluted with water (10 mL), extracted with CH2Cl2 (3 × 10 mL). The combined organic phase was dried over MgSO4. After removal of the solvent, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate =
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
20/1) afforded 5. 45.7 mg; 85% yield; > 99% ee; white solid; [determined by HPLC analysis Daicel Chiralpak IC, n-hexane/i-PrOH = 90/10, 254 nm UV detector, 1.0 mL/min, tR = 16.3 min (major)]; m.p.: 123 − 124 oC; [α]D25 = − 39.7o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum ether
= 1/4): Rf = 0.74; 1H NMR (600 MHz, CDCl3) δ 7.65 (d, J = 6.3 Hz, 2H), 7.43 – 7.25 (m, 15H), 7.16 (d, J = 7.9 Hz, 2H), 6.94 (s, 1H), 6.70 (d, J = 16.0 Hz, 1H), 6.44 (d, J = 16.0 Hz, 1H), 4.01 (d,
J = 16.9 Hz, 1H), 3.47 (d, J = 16.9 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 169.5, 156.3, 139.5, 139.4, 134.6, 131.8, 131.1, 130.6, 128.9, 128.8, 128.8, 128.6, 128.6, 128.4, 128.2, 128.1, 127.2, 126.9, 126.9, 126.6, 126.5, 122.4, 88.7, 78.8, 44.5; IR (KBr) ν: 3060, 3032, 2924, 2853, 1736, 1591, 1451, 1399, 1357, 1246, 1072, 965, 907, 755, 695 cm−1; HRMS (ProMALDI) found: m/z 560.0833 [M+Na]+; calcd. for C31H24BrNO3+Na 560.0837.
Synthetic Procedure for Benzhydryl (S, E)-4-(4-bromophenyl)-2-hydroxy-2-((S)-2-hydroxy -2-phenylethyl)but-3-enoate (6):12 To a 10 mL Schlenk flask equipped with a stirring bar was added 3d (108.2 mg, 0.2 mmol) and anhydrous THF (4.0 mL), the mixture was stirred at 0 oC under nitrogen for 5 min, then NaBH(OAc)3 (84.8 mg, 0.4 mmol) was added to the mixture in one portion. The mixture was then allowed to be stirred at room temperature for 12 h. Upon the completion of the reaction (monitored by TLC), the reaction mixture was cooled to 0 oC and quenched with the successive additions of water (10 mL). Then the reaction mixture was extracted with ethyl acetate (3 × 10 mL), dried over Na2SO4. After removal of the solvent, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 6/1) to afford 6. 107.5 mg; 99% yield; dr > 99:1; white solid; m.p.: 115 − 116
o
C; [α]D25 = − 17.2o (c 1.0, CH2Cl2); TLC (ethyl
acetate/petroleum ether = 1/4): Rf = 0.30; 1H NMR (600 MHz, CDCl3) δ 7.43 (d, J = 8.1 Hz, 2H), 7.36 – 7.26 (m, 15H), 7.18 (d, J = 8.1 Hz, 2H), 6.93 (s, 1H), 6.82 (d, J = 15.8 Hz, 1H), 6.33 (d, J = 15.8 Hz, 1H), 5.06 (d, J = 10.3 Hz, 1H), 4.03 (s, 1H), 2.80 (s, 1H), 2.44 (dd, J = 14.2, 10.7 Hz, 1H), 2.20 (d, J = 14.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 173.9, 144.0, 139.2, 139.1, 135.1, 131.8, 130.0, 129.9, 128.6, 128.6, 128.5, 128.3, 128.3, 128.3, 127.6, 127.5, 127.1, 125.7, 121.9, 79.3, 76.7, 70.4, 46.8; IR (KBr) ν: 3358, 3205, 3060, 3029, 2958, 2926, 1742, 1590, 1490, 1451, 1373, 1216, 1122, 1060, 1005, 974, 744, 699 cm−1; HRMS (ESI) found: m/z 565.0990 [M+Na]+; calcd. for C31H27BrO4+Na 565.0990.
ACS Paragon Plus Environment
Page 26 of 30
Page 27 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Synthetic Procedure for (3S, 5S)-3-((E)-4-bromostyryl)-3-hydroxy-5-phenyldihydrofuran -2(3H)-one (7): To a 25 mL Schlenk flask equipped with a reflux condenser pipe and a stirring bar was added 6 (108.5 mg, 0.2 mmol), THF (2.0 mL), acetic acid (300 µL) and 4 N HCl (6.0 mL). The mixture was stirred at 75 oC for 24 h. Then the mixture cooled down to room temperature, the aqueous layer was extracted with DCM (3 × 15 mL). The combined organic layers were dried over anhydrous Na2SO4. After removal of the solvent, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1) and recrystallized from ethyl acetate/petroleum ether to give 7. 44.5 mg; 62% yield: > 99% ee; [determined by HPLC analysis Daicel Chiralpak IC, n-hexane/i-PrOH = 70/30, 254 nm UV detector, 0.8 mL/min, tR = 9.6 min (major) ]; m.p.: 119 − 120 oC; [α]D25 = + 10.9o (c 1.0, CH2Cl2); TLC (ethyl acetate/petroleum
ether = 1/4): Rf = 0.37; 1H NMR (600 MHz, CDCl3) δ 7.43 − 7.33 (m, 7H), 7.15 (d, J = 8.2 Hz, 2H), 6.75 (d, J = 16.1 Hz, 1H), 6.29 (d, J = 16.1 Hz, 1H), 5.77 (t, J =7.2 1H), 3.28 (s, 1H), 2.87 (dd, J = 13.7, 6.0 Hz, 1H), 2.41 (dd, J = 13.4, 8.9 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 176.2, 138.2, 134.4, 131.8, 131.4, 128.9, 128.8, 128.3, 127.5, 125.5, 122.4, 79.1, 76.5, 44.8; IR (KBr) ν: 3429, 3170, 2925, 2856, 1738, 1634, 1487, 1399, 1208, 1075, 908, 863, 762, 696 cm−1; HRMS (ESI) found: m/z 381.0102 [M+Na]+; calcd. for C18H15BrO3+Na 381.0102.
ASSOCIATED CONTENT Supporting Information Copies of 1H and 13C NMR spectra, as well as HPLC analytic results for the new compounds 3a– 3c’ and 4–7. The screen of chiral catalysts and the X-ray data. This material is available free of charge via the Internet at http://pubs.acs.org.
AUTHOR INFORMATION Corresponding Author *E-mail:
[email protected] Notes The authors declare no competing financial interest.
ACKNOWLEDGMENTS
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
This work was supported financially by the National Natural Science Foundation of China, the National Basic Research Program of China (973 Program, 2014CB745100 and 2015CB856500), and Tianjin Municipal Science & Technology Commission (No.
14JCZDJC33400).
REFERENCES 1 Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev. 2013, 113, 5924. 2 (a) Le, J. C.-D.; Pagenkopf, B. L. Org. Lett. 2004, 6, 4097. (b) Akullian, L. C.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 6532. (c) Le Engers, J.; Pagenkopf, B. L. Eur. J. Org. Chem. 2009, 6109. (d) Yanagisawa, A.; Sugita, Y. K.; Yoshida, K. Adv. Synth. Catal. 2009, 351, 1757. 3 (a) Zheng, C.; Wu, Y.; Wang, X.; Zhao, G. Adv. Synth. Catal. 2008, 350, 2690. (b) Li, P.; Zhao, J.; Li, F.; Chan, A. S. C.; Kwong, F. Y. Org. Lett. 2010, 12, 5616. (c) Li, P.; Chan, S. H.; Chan, A. S. C.; Kwong, F. Y. Adv. Synth. Catal. 2011, 353, 1179. (d) Kan, S.-S.; Li, J.-Z.; Ni, C.-Y.; Liu, Q.-Z.; Kang, T.-R. Molecules 2011, 16, 3778. (e) Dou, C. X.; Lu, Y. Org. Lett. 2011, 13, 5248. (f) Peng, L.; Wang, L.-L.; Bai, J.-F.; Jia, L.-N.; Guo,Y.-L.; Luo, X.-Y.; Wang, F.-Y.; Xu, X.-Y.; Wang, L.-X. Org. Biomol. Chem. 2011, 9, 4774. (g) Moteki, S. A.; Han, J.; Arimitsu, S.; Akakura, M.; Nakayama, K.; Maruoka, K. Angew. Chem., Int. Ed. 2012, 51, 1187. 4 For early examples on the decarboxylative reaction of β-ketoacids, see: (a) Robinson, R. J. Chem. Soc. 1917, 762. (b) Robinson, R. J. Chem. Soc. 1917, 876. (c) Westheimer, F. H.; Jones, W. A. J. Am. Chem. Soc. 1941, 63, 3283. (d) Swain, C. G.; Bader, R. F. W.; Esteve Jr, R. M.; Griffin, R. N. J. Am. Chem. Soc. 1961, 83, 1951. (e) Bigley, D. B.; Thurman, J. C. J. Chem. Soc. B 1968, 436. (f) Logue, M. W.; Pollack, R. M.; Vitullo, V. P. J. Am. Chem. Soc. 1975, 97, 6868. (g) Herbert, R. B.; Jackson, F. B.; Nicolson, I. T. J. Chem. Soc. Chem. Commun. 1976, 450. (h) Herbert, R. B.; Jackson, F. B. J. Chem. Soc. Chem. Commun. 1977, 955. (i) Herbert, R. B. J. Chem. Soc. Chem. Commun. 1978, 794. (j) Mangla, V. K.; Bhakuni, D. S. Tetrahedron 1980, 36, 2489. (k) Bhakuni, D. S.; Mangla, V. K. Tetrahedron 1981, 37, 401. (l) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1993, 115, 3020. (m) Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1996, 118, 1799.
ACS Paragon Plus Environment
Page 28 of 30
Page 29 of 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
5 For recent two reviews, see: (a) Wang, Z.-L. Adv. Synth. Catal. 2013, 355, 2745. (b) Nakamura, S. Org. Biomol. Chem. 2014, 12, 394. 6 For recent examples on asymmetric decarboxylative reactions of β-ketoacids, see: (a) Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583. (b) Rohr, K.; Mahrwald, R. Org. Lett. 2011, 13, 1878. (c) Yang, C.-F.; Shen, C.; Wang, J.-R.; Tian, S.-K. Org. Lett. 2012, 14, 3092. (d) Zhong,F.; Yao, W.; Dou, X.; Lu, Y. Org. Lett. 2012, 14, 4018. (e) Jiang, C.; Zhong, F.; Lu, Y. Beilstein J. Org. Chem. 2012, 8, 1279. (f) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6569. (g) Zuo, J.; Liao, Y.-H.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2012, 77, 11325. (h) Suh, C. W.; Chang, C. W.; Choi, K. W.; Lim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3651. (i) Duan, Z.; Han, J.; Qian, P.; Zhang, Z.; Wang, Y.; Pan, Y. Org. Biomol. Chem. 2013, 11, 6456. (j) Kang, Y. K.; Lee, H. J.; Moon, H. W.; Kim, D. Y. RSC Advances 2013, 3, 1332. (k) Duan, Z.; Han, J.; Qian, P.; Zhang, Z.; Wang Y.; Pan, Y. Beilstein J. Org. Chem. 2014, 10, 969. (l) Zhu, F.-L.; Wang, Y.-H.; Zhang, D.-Y.; Hu, X.-H.; Chen, S.; Hou, C.-J.; Xu, J.; Hua, X.-P. Adv. Synth. Catal. 2014, 356, 3231. 7 (a) Li, X.-J.; Xiong, H.-Y.; Hua, M.-Q.; Nie, J.; Zheng, Y.; Ma, J.-A. Tetrahedron Lett. 2012, 53, 2117. (b) Zheng, Y.; Xiong, H.-Y.; Nie, J.; Hua, M.-Q.; Ma, J.-A. Chem. Commun. 2012, 48, 4308. (c) Yuan, H.-N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J.-A. Angew. Chem., Int. Ed. 2013, 52, 3869. (d) Yuan, H.-N.; Li, S.; Nie, J.; Zheng, Y.; Ma, J.-A. Chem. –Eur. J. 2013, 19, 15856. (e) Zhang, H.-X.; Nie, J.; Cai, H.; Ma, J.-A. Org. Lett. 2014, 16, 2542. 8 For reviews on Ni-catalyzed reactions, see: (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (b) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441. (c) Hu, X. Chem. Sci. 2011, 2, 1867. (d) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org. Chem. 2013, 19. (e) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299. 9 CCDC 1007958 contains the supplementary crystallographic data for the product 7. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. 10 (a) Gremaud, L.; Alexakis, A. Angew. Chem., Int. Ed. 2012, 51, 794. (b) Allais, C.; Muller, F. L.; Constantieux, T.; Rodriguez, J. Adv. Synth. Catal. 2012, 354, 2537. (c) Martin, N. J. A.; Cheng, X.; List, B. J. Am. Chem. Soc. 2008, 130, 13862. (d) Allais, C.; Muller, F. L.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
11 (a) Dvornikovs, V.; Smithrud, D. B. J. Org. Chem. 2002, 67, 2160. (b) Sharma, M.; Joshi, P.; Kumar, N.; Joshi, S.; Rohilla, R. K.; Roy, N.; Rawat, D. S. Eur. J. Med. Chem., 2011, 46, 480. 12 Xu, X.-Y.; Zhou, T.; Wang, Y.-Z.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. J. Org. Chem. 2007, 72, 9905.
ACS Paragon Plus Environment
Page 30 of 30