Nitration. - Industrial & Engineering Chemistry (ACS Publications)

Ind. Eng. Chem. , 1959, 51 (9), pp 1123–1129. DOI: 10.1021/ie51397a013. Publication Date: September 1959. ACS Legacy Archive. Note: In lieu of an ab...
2 downloads 0 Views 945KB Size
UNIT PROCESSES

Nitration D U R I N G the past year, workers continued to display marked interest in the development of synthetic methods for producing specific materials in high yield. Activity has included study of new nitrants, their physical a n d chemical characteristics, a n d the kinetics a n d mechanistics of their interactions with o t h e r materials. Progress has been m a d e in extending a n d generalizinq synthetic methods a n d introducing next' ones. T h e importance of continuity of operation c a n scarcely be overemphasized. T h e improvements it provides in ease, safety, a n d efficiency of operation, as well as its inherent economy, have provided compelling incentive to the recent developments in this field. Considerable leeivav still exists, however. for further significant advances. Among the broad range of applications of nitro compounds, the activity i n pharmaceutical, biochemical, a n d insecticidal materials continues to be most interesting a n d holds great promise. O l d e r applications involve t h e utility of materials like nitroglycerin a n d pentaerythritol in the treatment of certain h e a r t conditions (via dilation of blood vessels) ; the alleviation of pain in angina pectoris, gall bladder colic, a n d even a s t h m a ; the use of picric acid in the treatment of burns; or the application ofp-nitrophenol as a fungicide for cork. D u r i n g the past several years a group of nitrofuran derivatives has m a d e considerable progress in the pharmaceutical field. For instance, 5-nitro-2-furaldehyde semicarbazone (Furacin) is a n antibacterial agent used o n wounds, burns, in skin grafting a n d surgery; i t is effective in the treatment of eye, e a r

W. R. TOMLINSON, Jr., a staff member of the Johns Hopkins University Operations Research Office, graduated from MIT in 1934. He has been actively interested in and associated with unit processes and nitration for the past 20 years, and i s assistant to the editor-in-chief (P. H. Groggins) for "Unit Processes in Organic Synthesis." During the war he participated in the Army's survey and evaluation of German research and development activities and facilities. Tomlinson i s a member of ORSA, AAAS, AIC, ACS, AOA, AFCA, and the Washington Chemical Engineers Club.

a n d nose disorders; used i n urethral a n d vaginal suppositories; prevents coccidiosis in chickens a n d enteritis in swine; a n d is included in feed supplements. T h i s is the compound so effective in encouraging the growth of skin o n humans-its uses a r e probably still n o t all known. ~iethyl-j-nitro-2-furfLir~-l ether is active against fungus diseases, ring\\rorm in humans. a n d e a r infections a n d skin disorders in animals; -1'-(5nitro - 2 - furfurylidene) - 3 amino - 2oxazolidone is used in the control of chicken a n d turkey diseases; a n d .l'-(5nitro - 2 - furfurylidene) - 1 - aminohydantoin is particularly effective in urinary- tract infections. T h e furan derivatives a r e attractive also because they exhibit few side reactions. a r e effective in lobv concentration, a n d a r e not too expensive. T h i s year noted the antitubercular activity of 5.5'-dinitro-2:2 '-dichlorobenzil, the effectiveness of 3.4-dibromo-

Material Acetanilide Acetophenone, hydroxyXnilides, chloroAnthraquinone, 2,3-dimethylAnthraquinone-I -sulfonic acid Arylboronic acids r\zoxyanisole, p , p ' Benzene

(or ch1oro)-nitrophenol against aquatic parasites, a n d the use of the nitration products of mono-. di-, or tribromo(or ch1oro)-nitrophrnol against aquatic hydrins of prntacrythritol to treat heart a n d vascular ailments.

Aromatics Aromatic-heterocyclic compounds a r c covered in this section (Table I) if t h e nitro group substitution involves t h e aromatic r i n g ; otherwise they a r c covered under Heterocyclics (Table VI. During t h e past year the late Kenneth .S. K o b e continued studics of monoi.3GA) nitration. His contribution illuminated the role of nitrosylsulfuric acid in the mononitration of toluene. .4t low nitrosylsulfuric acid concentrations nitration rate increases with conccntration u p to 4.5 mole %, then decreases a t higher concentrations (up t o 3 mole %) as a consequence of the following competing reactions :

Table I. Aromatic Nitration Medium Product and Yield .AC?O, Cu(SO3)2; 50" o-Iiitro deriv. ( 4 8 7 )

c.

HNOI Mixed acid; Mixed acid ; C. Mixed acid; l05$ "01;

30" C:. below 10

30 "-40 C:. 240" C.

Sfixed acid ; - 40 ' C. HN03-acetic acid

Benzene, chloroBenzene, ethyl-

HNO,; vapor; 150'350' C. NaIiO?, HzS04; 95" C:. Mixed acid : 25 "-40 C.

Benzil, chloroBenzil, dihydroxyBenzoic acid, dichloro-

l f i x e d acid, fuming HNOs-acetic anhydride Mixed acid: room temp.

Benzo-l,2,3-thiadiazole Benzyl alcohol 2-Biphenyl thiocyanate Carbanilides Isoquinoline, 1-benzylPhenol, butylPhenylethane

Xfixed acid; 20' C. HNOa or mixed acid "03; -7'C. Acetic acid-HN03 Mixed acid HNO,, 60' C . Fuming H N 0 3

Phenyl ethers Phenylmercuric chloride, o-nitroPhenyl methyl carbinol Phenyloxazolines Phenylurea Pyrazoles, phenyl Quinoline, hydroxy-

S O ? , inert solvents Conc. " 0 8 , 9 5 " C.

HNOa (d.-1.5), 50" C:. HN03 hlixed acid, 7 " C. hfixed acid, 50 "-60' C:. 25% H N 0 3

Quinoline, 3-phenylTetrahydronaphthol Toluene, p-chloro

Mixed acid, - 9 C . I i Z 0 4 liquid hfixed acid, - 5 '-15 C:.

Phenylalkyl ketones Mononitro drrivs. 1-Nitro deriv. 1,5-Dinitro deriv. 1-Nitroanthraquinone (50%) Dinitro derivs. ( 7 5 % ) Di- and trinitro derivs. ( 60-80yo) Nitrobenzenr (continuous)

2,4-Dinitro drriv. (good) bfononitro deriv. ( 9 8 % ) -45y0 p - , 43% 0 - ) 127, m5 , j '-Dinitro deriv. 3,3 '-Dinitroanid (good) 5-Mononitro dcriv. (main) 4-Nitro drriv. (good) Nitrobenzyl nitrate 4.5-Dinitro deriv. 2:Nitro derivs. (good) 4-Nitro drriv. (66%) Dinitro deriv. (70%) p-Nitrophen\ 1 deriv. (fair) p-Nit1 o deri\s. (sood) o-Dinitrobcnzene (91 70) p-Nitro nitrate hiononitro deriv. Dinitro deriv. (good) p-Nitrophenyl deriv. 5,7-Dinitro derivs. (6590%) p-Nitro deriv. (64%) 3-Nitro deriv. (low) 2,3-lfononitro deriv. ; 73/27

f Continued)

VOL. 51, NO. 9, PART II

SEPTEMBER 1959

1 1 23

+

HZO HNOSOi + HzSOa H>SOa H N O - + NO*-

+

+

+

HSOJ HzO HSOI-

+

. i n interesting stud) (60'1) of the hinetics of nitrating benzene i n acetic a n h y d r i d e a t 25' C. shows it to b e first order in benzene a n d approximatelv second order in nitric acid from 0.4 to 2 M nitric acid. However, in the presence of 0.01.M sulfuric acid the nitration is markedly accelerated a n d becomes proportional t o t h e first power of nitric acid concentration.

I n the nitration of ethyl benzoate i n nitric-acetic acids with sulfuric acid as catalyst ( J I A ) , the three simultaneous monosubstitution reactions have nearly the same entrap)- of activation: thus. over t h e 100' C. range covered, rate differences reflect differences in activation energies. A Russian investigation of aromatic nitration with dinitrogenpentoxide (.fad) indicates t h a t nitration is initiated by addition of t h e NO3 radical a t a r - b o n d a n d discusses formation of hydrox!- derivatives a n d nitric acid

Material .\niline, nitro-

Subject Crystal structure LS. temperature Hydrogen bonding and properties Hydrogen bonding in tetrachloroethanc .\romaric Nitro and amino group interactions Mechanistic study of N?Os nitrations BF3.N 2 0 4as a nitrating agent P-nitroketones fFom halides and NaNO: Use of BF3 in nltration Reduction of nitro compounds by H,S in pyridine Entropy of activation in HNOa-acetic acid Absorption spectra us. solvent Solubility of nitro derivs. us. hydrogen bonding Kinetics in acetic anhydride Orientation in acetic anhydride Spectra DS. shift angle of NO2 around C - S hond Parachor uz. hydrogen bonding Competitive nitration of benzene and hiphenvl Readily nitrated compounds Hammett's sigma constant Radical reactions Photodimerization of nitrocinnamic acids and nitrochalcones Review through 1956 (178 references I Orientation Steric effects-infrared spectra Effect of alkyl groups on spectra and pK, values of nitro deriv. Study of N O radical via physical data .bylamines Fluoronitro compounds and aryl amines react Benzene, chloroSeparation of 2,6-dinitrochlorobenzenesfrom mixtures Mixed acid; proportion of p-mononitro deriv. Benzene, dinitroEutectic with trinitrobenzene Combining ratio with NaI Benzene, dinitrofluoroDielectric properties Benzenes, 2,4-dinitrofluoro- React more readily with aryl than alkyl amines Benzenes, fluoroNitration with various nitrating agents--orientation Benzoic acid, nitroFrom mononitrotoluene with " 0 3 a t 150 '-160 C . Chalcones Hydroxy nitro ketones by Fries transform vield chalcones Color Bathochromic effect of second nitro group S-(2,4-Dinitrophenyl) Absorption spectra protamines Fluorenone, 2,4,7-trinitro- Stationary phase in gas phase chromatography p-Nitrophenyl acetate Reaction with chloralate ion in aqueous s o h . Phenanthrene, 1-3-dinitro Resistant to nitration Phenols Kinetic study of substituted phenols Acidity in nonaqueous solns. Phenol. dinitroPhenol, nitroT N T and picric acid do not form complex Phenols, nitroSeparation of 2-nitrophenol from mixed isomer? Phenylh ydrazones, Hydrogen bonding study by U. V. spectra 2.4-dinitroPlant substances Containing nitro group in natural state Purification Utilization of activated adsorbent and fine filter Serine, phenylUseful intermediates in preparation of chloramphenicol Resorcinol Purification of mixtures of di- and trinitro derivs. Tetrabutvlammonium Thermodynamics of ion pair dissociation picrate Tetrvl Nitration of dinitro-lV-methylaniline with HNO;, From dimethylaniline with " 0 : . (92-9gm0) From dimethylaniline with " 0 3 TNT Action of hexamethylenediamine on T N T Continuous recrystallization from " 0 3 Continuous manufacture (patent) Toluene Effect of nitrosylsulfuric acid on rate of mononitration Toluene, nitro Eutectic of DNT-TNT system Trinitrobenzoate esters As indicators for temperature and solvents Yanovskii reaction NaMePCO adducts of nitro compounds Y

1 124

INDUSTRIAL AND ENGINEERING CHEMISTRY

esters formed with nitro compounds. Boron trifluoride-nitric acid mixtures a r e slightly better nitrating agents than mixed acids where easy. low temperature nitration is involved. but they are decidedly inferior for more difficult nitrations a t higher temperatures ( 2 6 A ) . T h e boron trifluoride-dinitrogen tetroxide complex is a n excellent nitrant for aromatics a n d somewhat more powerful t h a n concentrated nitric acid (707,) : it yields a different distribution of isomers a n d nitrates satisfactorily some substances which behave anonymous1)with nitric acid (.3.4). Xlost aliphatics a r e oxidized by the complex. Nitration of chloro- or hromobenzene in acetic anhydride with a sulfuric acid catalyst (67.4) produces more paraisomer t h a n aqueous 90L7( nitric a c i d : previous study h a d sho\rn t h a t with anisole a n d other compounds more o r t h o isomer is formed. I n mixed acid the proportion of p a r a isomer depends on both nitration temperature and strength of the final spent sulfuric acid (6'4). Results obtained by nitrating fluorobenzene Lvith a variety of nitrants suggests t h a t ionic reactions yield mainl>p a r a isomers. mixed types a b o u t 75% p a r a a n d 207, ortho isomers. a n d presumably radical types 9OC;; ortho a n d 10% meta isomers (57.4). A method for the production of odinitrobenzene (.56d) involves nitration of t h e corresponding o-nitromercuric chloride with concentrated nitric acid a t 95' C. .4lthough a high yield was obtained (91%), attempts to generalize the reaction were not successful.

Aliphatics T h e R a m a n spectra of both aliphatic a n d aromatic unsaturated compounds suggest conjugation benveen the nitro group a n d residual unsaruration in the molecule ( 2 B ); nucleophilic para substituents aid the effect. especially in the case of dinitro derivatives. while the effect is small for meta isomers. U r b a n ski (44B).in investigating absorption spectra of hydroxy a n d a m i n o derivatives, found strong hydrogen bonding whenever two hydroxyl groups c a n form two six-membered rings with both oxygen atoms of the nitro group, or when t h e a m i n o group c a n form a six-membered ring in such a way t h a t one hydrogen a t o m is attached to a n oxygen a t o m of the nitro group. T h e bonding is sufficient to remove the m a x i m u m at 270 m p d u e to the nitro group. With quinophthalone as a model (49B) a n investigation was m a d e of the principles of introducing the nitro g r o u p in t h e side chain in similar heterocyclic compounds (see also T a b l e 11: last item). A new a r e a in polynitro chemistry has been opened u p a t AeroLjet-General b!-

Improvement, extension, and introduction of new synthetic routes in the nitration technique are the current trend

the discovery of dinitrocrh!-lation (7B). This reaction occurs \\.hen metallic salts of organic a n d inorganic compounds having labile hydrogen atoms react with 3-bromo-2,2-dinitroethyl acetate. O n e mole of the salt releases 1,l-dinitroethylene: which then immediately condenses \\,ith a second mole of the same compound, yielding a product with a dinitro %roup. [Yith potassium iodide. 2.2.4.4retranitrobutyl acetate results. .In interesting synthesis of a nitro derivative from a saturated aliphatic compound involves the use of nitrogen dioxide in the presence of catalytic amounts of free radicals from materials like tetraethyllead, azomethane. and rriethylmethyl (45B). Ethane saturated i\.ith tetraethyllead is converted to nitroethane by passage with half its volume of nitroqen dioxide through a tube a t ZOOo C: .Also, the similar use of photodctive illumination (JliB) has been noted lor higher aliphatics a n d cycloaliphatics. Nitrate Esters Urbanski ('_7/C) contends that srarchlike cellulose is not nitrated by the nitryl ion. but rather by some other nitrant such as nitric or nitrous acid or nitrate i o n .\ further study of starch (7OC) indicates that most of the degradation in the preparation of nitrostarch occurs in the nitration cycle itself, as starch is muck less resistant to degradation than the nitrated product. T h e reaction is not very exothermic, a n d when the nitrant is mixed acid with the starch suspended i n carbon tetrachloride nitric acid activity is linearl>- related to nitration rate. Degradation is very temperarure-dependent. Schwager [ 71C) describes the nitration of fructose by mixed acid. nitric-acetic acid-acetic anhydride: and dinitrogen pentoxide in chloroform to produce Adifructosan hexanitrate. An .-\merican patent lcas issued to Spaeth , I C ) covering production of nitrites from alcohols and nitrogen dioxide in the presence of a diluent like Lvater: nitrogen, or carbon dioxide in the vapor phase a t 100' to 4.20' C.; contact time is 1 to 10 seconds. Isopropyl nitrite was obtained in 89Vcyield. .Andrew ( I C ) studied the gas phase decomposition of nitroglycerin and found it to be first order but not unimolecular; the effects of bvater vapor. nitric. and sulfuric acids were also covered: and nitroglycol and nitrocellulose were inLsestigated. .An interesting a n d useful study of ethylene glycol nitration kinetics ( 7 3 C ) was carried out a t the Hercules Powder Co. Research Center under steady state flmv in a t u b d a r reactor. This is

significant as a study of continuous nitration atid contains a comparison of aromatic and alcohol nitrations. N-Nitro Compounds Guanidine came in for considerable study during the period. .A French effort ( 2 0 ) evolved a n interesting and promising method for the continuous formation of guanidine nitrate from ammoniiirn nitrate and cyanoguanidine, while a Russian patent ( 7 5 D ) covers

safety aspects of the ammonium nirratecalcium cyanamide route. Richards (740) found that the symmetrical structural formula for nitroguanidine is favored by the results of his proton magnetic resonance study; Wright in Canada ( 9 D ) is following the same idea which he has championed for many years. T h e latter work shows that mixed acid nitration of sym-tetraethylguanidine provides a 60Yc yield of nitro derivative where none is obtained from a nitricacetic acid nitration.

Table II. Nitration of Aliphatics Medium Product and l-ield AcOH, NaNO?. H 2 0 ; Isonitroso derivs.

%laterial .Acetic acid esters

no c -. HNOs

Kcf.

(4ZBj

~

Acetylene Camphene Carbonyl compounds unsaturated Carboxylic acids Chloronitro compounds Cyclohexane Cyclohexanone Cyclohexanedione Cyclotrimethylenetriamine

5' C . ; 2 hr. :lcOH, MeKO? 5 2 0 4 :

HNOd. about 130' C. Olefin, NOC1, N?OA. ether. -6--8" C HSO 3 Nitromethane (study of reactions) Fum HNOI: 0' C. HzSOg. NHJX03. 0"

c.

5-Fromyl-2-furancarboxylic acid

MeSO!. alkaline

Furfural

MeNOJ. CaO. HyO: 50

Methylimides. nitroNitro form Olefins Olefins Olefins: chloronitro1-Pentene. chloroPlienazine-5-oxide I-chloroPropane Propane. 2-nitroPropene. dibromoQuinophthalonr ~

.A Iiph ar ics

c

. ~ g - ~ in d ,A ~ C N CH2-CHXc. MeOH 3 2 0 s

Nitroform Various ( 3 3 % tri-) Nitro deriv.

( 3 S R) (36Bi (47B)

Mononitroderiv. ( 7 0 % ~ ( I I B ) (,jBj Mononitro deriv. ( 7 3 9 ; )

(40B) ( 2.dB

2-Kitro deric. (9370) (7ZH) .Y..Y'-dinitro-.\-' 'i 34RI nitroso deriv. (9095%) 5-Nitrovinyl-2-furan(278) carboxylic acid (about

5070)

Nitroethylene derivs.

(,3.3B)

From bromo deritr. (good) Addition prod. (yood) C'ar ious Various (good) Fury1 deritrs. (80-~85%l,I Mono- and dinitro 7-Nitro deriv. (eood \

( 7JR)

N?O,. hydrolysis MeNO? or EtNO. HSO Mixed acid; room temp. 67% HXO,; 400' C. Nitropropane Thermal decomposition Mixed acid, 30' C. Dinitroethanes. bromoHKOB-acetic acid : 10 a-ritro-a-phthaloquinmin.: drown aldine (71 YoI Subject Nitration review (55 references 1 Mechanism of gas phase nitration-free radical .Addition of nitroalkanes to double bonds Isomerization of nitro compound to nitrite Reduction of nitro deriv. at droppinq Hg electrode Spectroscopic studies of nitro and nitroso derivs.

(JZR) (.?7B) (7XA) (ZZH) ( .lXB )

(2XB)

Manufacture patents Dinitroalkane ions Dinirrorthylation Lsters. grm-dinitroEsters, 2-nitroEthane Ethanol Methane. nitroOlefins. dinitroOlefins. fluoroPolymethylenetrinitramines

L-. V. absorption spectra-terminal group interactions General method involving 1.l-dinitro~thyleneas reactive intermediate and introducing i t in molecule Chemistry of these compounds From bromo compound with XaNO, (patent) Purif. and properties tetrafluorodinitro deriv. Properties of 2.3-dinitroethanol Recovery from nitration mixtures (patent) Configuration of two compounds Nos-nitration revie\v-radical mechanism Alkaline drgradation

VOL. 51, NO. 9 , PART II

SEPTEMBER 1959

1 1 25

UNIT PROCESSES ....................................................

"

A U. S. patent (720) covers the preparation of nitrosoguanidine from nitroguanidine by electrochemical reduction in a two-compartment cell containing a calomel cathode and a platinum screen anode. Indole with nitric-acetic acid yields 30 to 35% of a n iV-nitro derivative (70). T h e nitrosation of tropeolin in sulfuric acid was carefully studied ( 7 7 0 ) , and the reaction mechanism was discussed. h-itration of secondary amines by dinitrogen pentoxide in carbon tetrachloride a t -30' C:. (80)provides high yields, b u t primary amines produce low yields; dinitrogen pentoxide complexes with pyridine, 2-chloropyridine, or triethylamine would not nitrate secondary ,V,.V':.Y''-trinitrohexahydroamines. qm-triazine reacts with sulfuric acid partly to produce nitryl ion; the remain-

ing nitro group by decomposition produces nitrous oxide (7GD).

Heterocyclics

A mechanistic examination of the nitration of furans, in agreement with the Bronsted theory of general base catalysis, shows a marked salt effect, a high r a t e region between pH 5.75 and 7, and a low rate region below pH 2.75 ( Q E ) ; the main difference betbveen aromatic a n d furan nitration is in the interaction of bases tvith the intermediate formed on introducing the nitro group. .4 Dutch patent citing 60 to 757;, yields of mononitrofurans employs nitric acid in acetic anhl-dride in the presence of a catalyst containing sulfinyl (SO) or sulfonyl (SO?)groups, for instance sulfuric acid, sulfonic acids, or sulfamic acid ( 7 E ) ;

a similar French patent also appeared

@E). h l c K a y has continued the interesting a n d valuable Canadian work on electropositive chlorine catalysis (8E); nitration of a n imino to a nitrimino group was covered using iminoimidazolidine derivatives. I t was found t h a t 2-methyl-5aminopyridol-(2,3-d)-thiazole in mixed acid a t 0" C. yielded the 5-acetamido analog, but a t 25' to 28' C. the 5-nitramino and 5-amino-6-nitro analogs resulted (3E). A Japanese patent covers the nitration of lutidine derivatives in mixed acid (4E). Blatt (7E) found that thiophene is best nitrated with nitric acid in acetic a n hydride; good yields are obtained and routes to the 2-! 3-: and 4-mononitro and the 2,4-a n d 2.5-dinitro derivatives are described.

Nitrating Agents

Table 111.

Material Alcohols Butynediol Fructose Glycol Starch Sugar Triethanolamine Smthines, hydroxyalkvl .\lcohols

Bicycloheptanr alcohols Cklldose, nitro

Glycerine Glycol

Nitration LMedium NO*-NO-diluent ; vapor Mixed acid Various Mixed acid Mixed acid, CC14 HN03-acetic anhydride: 0" C. Mixed acid "0,

of Alcohols Product and Yirld Nitrite (89 yoisopropyl) Dinitrate (70-5y0,) Difructosanhesanitrate Kinetic study Kinetic study Mono and dinitro tlrri\.s. in \,arying yield Trinitrate Nitratrs (Toad)

Subject Theory of nitration Heats of combustion of n i t r a t e esters Hydrolysis of "Or Continuous nitration with 61 %, H N O . "0.1 esterifies OH group of e r o form, oxidizr O H group of endo form Acetone solutions-entropy of dilutiun irans.esterification with Si esters Mol. wt. and other constants in solution Cmtrolled thermal decomFosition-radioactive tracer Interaction parameters-activity, free energy of inis Solubility in 2-1 ether alcohul Gas phase decomposition of nitrate Kinetics of nitrate decomposition

Material :Imides, dialkyl, of drainatic dicarboxylic acids Amines, primary Amines, secondary Choline perchloratr Guanidine, nitrosoGuanidine, qm-trtraethyl Hcxamethvlenrtrtr~iiiiine

Indolc derivs.

Table IV. N-Nitro Compounds Medium Product a n d \.irld "01, NaNO:: .V..V'-Dinitroso drriv. N,Oj in CCla N20j in CC14

HIYO&,aqueous NOy. electrochem. redriction Mixed acid HNO3-acetic acid Nitric acid, heat to 85' C . and chill Sitric-acetic acid

Nitramine (1oXj-j Sitramine (60-100c7,) Sitrate (85707,, Yields around 20% Sitro drriv. 1607,) S o nitration KDX (86%) S i t r o drriv. (30-5%)

Subjrct Acid-catalyzed decomposition Decomposition by conc. H 3 O ; Continuous preparation of nitratc Safety aspects of nitrate preparation Proton magnetic resonance study of structure Guanidine, nitroGuanidine, nitro: subst. alkyl Kinetic and mechanistic study of cyclization Crystallographic data Methylenedinitramine Structure and transformations Triazines, nitroStudy of nitrosation mrchanisrn Tropeolin

Amides and aminrs, nitroAmines, nitroGuanidine

1 126

INDUSTRIAL AND ENGINEERING CHEMISTRY

Nitric oxide reacts irith the dimer of nitrosocyclohexane to produce diazonium nitrate, nitrite, and nitro derivatives of cyclohexane ( 7 8 F ) . Coulson ( 7 6 F ) discussed the structure of dinitrogen tetroxide a n d indicates the JY-,~' bond to be a fractional a bond with n o u character-i.e., "a n-only bond" ( 76F). Bachman ( 9 F ) , using the boron trifluoride complex of dinitrogen pentoxide as a nitrant, found it excellent for aromatics and some aliphatics. T h e complex is a stable, colorless liquid in the presence of polychlorinated alkanes and a xvhite solid in contact with nitroalkanes. Design d a t a for hydrochloric a n d 'or nitric acid gas absorbers (J.3F) and viscosity data for nitrating acids ( 3 7 F ) \yere published. Ozonolysis turns out to be a n interesting route to the purification and stabilization of nitric acid (30Fj. Isopropylethylene in ether a t -10' C . adds nitrosyl chloride to yield chloromethylbutene, dichloromethylbutane, (4OF). and chloromethylnitrobutane Sitromethane adds to 4-acetamidobenzaldehyde to provide 4-(w-nitrovinyl)acetanilide (4QF). T h e decomposition of ethyl nitrate in the presence of strong acids-e.g., tin(1V) chloride-results in the elimination of nitric oxide and nitrogen dioxide ( 5 0 F ) . I n the presence of strong acids a t 78' t o 80' C. it nitrates benzene to the mononitro derivative--for instance. sulfuric acid gives a 127, and tin(I\-) chloride a 3 6 7 , yield.

Bibliography Aromatics (1.41 .\lexander. C. U., Czapck, E. ( t o Olin Mathieson Chemical Corp.), U. S. Patent 2,811,565 (Oct. 29, 1957). (2.4 1 Andemen, L., Finska Kemistsamnfundet., .2fedd. 66, 1-6 11957). (3.4) Bachman, G. B., Vogt, C. hf.; J . .4m. Chem. SOC.80, 7987-91 (1958).

(4X) Baryshnikova, .4. N., Titov, A. I., Doklady Akad. ,Vauk S.S.S.R. 114, 777-80 ii 9571 (5A) Bergmann, E. D., Ikan, R., WeilerFeilchenfeld, Bull. Research Council Israel 7 A . 975 (1057). ,. (6.4y Bieber, H. H., Schurig, W. F., IND. E m . CHEM.49, 832-7 (1957). (7.4). Bottino, F., Boll. sedute accad. Gioenia SCZ. nut. Catania [4] 3,471-6 (1957). (8A) Bradsher, C. K., Beavers, D. J., J . Org. Chem. 22, 1738-40 (1957). (9A) Brauniger, H., Spangenberg, K., Pharmarie 12,335-48 (1957). (10A) Burkardt, L. A., J . Phys. Chem. 61, 1130-1 (1957). (11.4) Ibid., p. 1445. (12.4) Ibid., p. 1447-8. (13.4) Danilova, V. I., Gol’tsev, V. D., Prilezhaeva, N. A., Izvest. Akad. h’auk S.S.S.R., Ser. Fir. 22, 1054-7 (1958). (14A) Dietzler, A. J. (to Dow Chemical C o . ) , U . S. Patent 2,802,883 (Aug. 13, 1957). (15A) Dokunikhin, N. S., Licenkova, G. S.. Khim. Nauka i Prom. 3. 280-1 (1958)’. (16A) Dyall, L. K . , Hambly, A. N., Chem. & Ind. (London) 1958, pp. 262-3. (17.4) Fischback, B. C., others (to Dow Chemical Co.), U. S. Patent 2,826,611 (March 11, 1958). (18A) Flaherty, P. H., Stern, K. H . , J . .4m. Chem. Soc. 80, 1034-8 (1958). (19A) Fusco, R., Rossi, S., Chem. 3 Znd. (London) 1957, p. 1650. (20X) Gawron, O., Draus, F., J . A m . Chem. SOC.80, 5392-4 (1958). (21.4) Gitis, S. S., Glaz, .4. I., Zhur. Obshchei Khim. 27, 1894-1900 (1957). (22.4) Giva, M., Musso, G., Gazz. chim. ital. 84, 1114-6 (1954). (23A) Goldstein, H., Schaaf, E., H e l ~ ’ . Chim. Acta 40,1187-8 (1957). (,24A) Grigorovskii, A. M., others, C . S. S. R., Russ. Patent 108,267 (Oct. 25, 1057) - _ - ,. (25A) Hashimoto, C., Bull. Chem. Soc, Japan 28,385-9 (1955). (26.4) Heertjes, P. M., Janssen, H. J. H., Chem. Weekblad 54, 314-8 (1958). (27.4) Heywood, B. J. (to Parke Davis 8: Co.), U. S. Patents 2,820,041, 2,820,052 (Jan. 14, 1958). (,28A) Hinve, S. N., Merchant, J. R., Cui?ent Scr. (Zndia) 26, 318-9 (1957). (29.4) Horner, L., Huberett, F. (to Farbwerke Hoechst A . G. vorm Meister, Lucius 8: Bruning) Ger. Patent 912,931 (June 3, 1954). (30A) Issoire, J., Burlet, G., .Wtm. poudres 39, 65 (1957). (31A) Itaya, M.: others, .Vagoya Shirit.ru Daiiaku Yakugakubu Kiyo 5 , 54-8 (195’). (32A) Jozkiewcz, S., Trav. SOG. sci. el leltres M’roclaw, Ser. B, No. 7 5 (1956). 1.33.4) Jutz, E. (to Badische Anilin- 8: Soda-Fabrik A,-G.) Ger. Patent 939,208 (Feb. 16, 1956). (34A) Kaslow, C. E., Buchner, B., J . Qi:, Chem. 23,271-6 (1958). (,35h) Kereszty, Wolf (to Chinoin Gyogyszer es Vegyeszeti Termekek Gyara R. T.1, Austr. Patent 196,390 (March 10, 1958). 1.36.4) Kobe, K. .4.,Lakemeyer, J. L.; TND. EKG.CHEM.50, 1691-4 (1958). (~37.4)Kochergin, P. hf., Med. P r o m . S.S.S.R. 10, S O .4, 7-8 (19.56). (38.4) Koike, E., Sugiyama, (to Sumitomo Chemical C o . ) , Japan. Patent 1367’58 (Feb. 27). 39.41 Lantz, R. L., Obellianne, 51. J . (to Compagnie fransaise des matihres coloranted, Fr. Patent 1,094,452 (May 20, 1955). (40h) Lasko\vski, D. E. (to Armour Re\ - - -

7

I .

\ - - -

search Foundation of Ill. Inst. of Technol.), U . S. Patent 2,809,116 (Oct. 8, 1957). (41A) Le Noble, W.J., Wheland. G. W.! J . A m . Chem. Soc. 80, 5397-5402 (1958). (42A) Li, S., Chang, C., Hua Hsueh Hsiieh Pao 23, 99-104 (1957). (43A) Lippert, E., J . phys. radium 15, 627-9 (19 -541. (44A)- Lorenz, \V, (to Farbenfabriken Bayer A.G.), Ger. Patent 857,044 (Nov. 27, 1052)

(45.4) Lutskiy, A. E., J . Gen. Chem. U.S.S.R. 26, 2567-70 (1956). (46.4) Mayurnik, G. I. (to R. S. .4ries), U. S. Patent 2,815,373 (Dec. 3, 1957). (47A) hfolard, L., Vaganay, J., Mdm. poudres 39, 111-21 (1957). (48.4) Moureau, H., Chovin, P. (to SocietC des usines chimiques PhonePoulenc). U. S. Patent 2,824,894 (Feb. . . 25,1958)’. (49A) Moureau, H., Chovin, P., Sabourin, R., Bull. S O L . chim. France 1957,,pp. 1152-5 (50A) Murti. G. S. R. K.. Indian J . Phvs. 31, 353-8 (1957). (51A) Narasimha Rao, D. V. G. L.: Zndzan J . Phys. 30, 91-4 (1956). (52A) Neghata. E. I., Savitskii, A. V., M e d . Prom. S.S.S.R. 10, No. 4, 9-10 (1956). (53A) Norman, R. 0. C., Proc. Chem. Soc. 1958, p. 151. (54A) Ochiai, E., Kuniyoshi, I., Pharm. Bull. ( T o k y o ) 5 , 289-91 (1957). (55A) Oehme, F., Z. ,Vatuiforscli. 126, 660 11957). (56‘4) Ogata; Y.,Tsuchida, h l . ? J . Ori. Chem. 21,1065-6 (1956). (57.4) Olah, G., Pavlath, A . , Kuhn, I., Varsanyi, G., Acta Chim. Acad. Sci. Hunq. .7 ., 411-43- 11955) I-_--_. (58A) Pailer, M., Schleppnik, A , , ,Vonatsh. Chem. 88, 367-87 (1957). (59A) Parrini, V., Ann. chini. (Rome) 4 i , 929-50 (1957). (60.4) Paul, 1 4 . .4., J. -4m. Chem. SOG. 80, 5329-32 (1958). (61A) Ibtd., pp. 5332-3. (62.4) Pearson, R. G., Vogelsong, D. C.. J . A m Chem. SOC. 80, 1038-43 (1958). (63’4) Pesin, V. G., Khaletskii, A. M., Zhur. Obshcher Khim. 27, 2559-604 11937). (641%)Poudreries reunies de Belgique, S. A,, Belg. Patent 528,982 (May 20, 1954).

(65.4‘1 Zbid., 528,983 (May 20, 1954). 166A) Schenck, L. M . (to General .4niline & Film Corp.), U. S. Patent 2,810,000 (Oct. 15, 1957). (67A) Schwarz, .4.,Dossman, P. (to G. Siegle Br Co.), Ger. Patent 863,801 (Jan. 19, 1953). (68A) Semenczuk, A,, Urbanski, T., B d / . acad. polon. sci., Sir. sci., chim. &I. et glograph 6,309-11 (1958). (69A) Shellman, R. N., J . Org. Cheni. 22, 818-20 (1957). (70A) Shorygin, P. P., Il’icheva, Z. F., Izvest. Akad. AVauk S.S.S.R., Ser. Fir. 22, 1058-62 (1958). (71A) Shukla, R. P., Bhandari, S. K., Agra Univ. J . Research 5 , 361-6 (1956). (72A) Simamura, O., Mizuno, Y.,Bull. Chem. Soc. Japan 30, 196-7 (1957). (73.4) Slavinskaya, R. A., Zhur. Obshchci Khim. 27,1160-7 (1957). (74A) Smirnov, E. A., Ibid., 27, 1922~-33 110571 ,-,-.. ,.

(75A) Stewart, R., Walker, L. G., Cart. J . Chem. 35,1561-9 (1957). (76A) Szekeres, L., Magyar Kem. F o l y h a l 60, 33-6 (1954). (77A) Szell, T., Furka, A., Nature 181, 481-2 (1958). (78A) Szell, T., Sandor, B., Magyar Kcni. Folvbirat 60. 5-7 11954). (79Aj Tanaka, J , , Zowa ~ State Coli. J . Sci. 32, 277 (1957). (80A) Tanasescu, I., Hodosan, F., Rev. chim., Acad. r6p. populaire Roumarnc 1, NO. 2, 39-52 (1956). (81A) Titov, .4. I.: Uspekhi Khini. 27, 845-90 (1958). (82A) Truce, W. E,, Eimms, J. A,, J . Org. Chem. 22,762-5 (1957). (83A) Urbanski, T., Semenczuk, A., Bull. acad. polon. sci., Classe ZII 5 , 649-51 (1957 j . (84A) Urbanski, T., Urbanski, J., Bull. acad. polon. sci., Sir. xi., chim. ge‘ol. et glogrph. 6, 299--308 (1958). (85A) Urbanski, T., Rocrniki Chem. 32, 415-7 (1958). (86A) Vaughan, W. R., Kirkwood, G., J. Org. Chem. 21, 1201-10 (1956). (87A) Veen, A. van, Verkade, P. E., Wepster, B. M., Rec.trau. d i m . 76, 801-9 (19571. (88Aj Vulcania, S. P. A,, Ital. Patent 527,805 (June 6, 1955). (89A) Wagenknccht, F., 2. physzk. Ciiem. (Frankfurt) [IY.S.]14, 106-12 (1958).

Table V. Material Furaldoxime Furancarboxylic acids Furfural diacetate Furfuryl propionate Pvridol-thiazole, aminomethyl-

Nitration of Heterocyclics Medium Product and Yield Mixed acid ; 0’ C. 5-Xitro deriv. (65%) Mononitro deriv. (747,) HNOa-acetic acid, SO or SO? group cat. Acetic acid-HN03; H2SOI 5-Nitro deriv. (70%) catalyst HN0,-acetic acid, SO or 5-Xitro deriv. (60%) SO? group cat. Acetamido deriv. Mixed acid; 0’ C.; 1 hr. Mixed acid; 25’ C.; 1 hr.

Pyridone, dimethyl-

Mixed acid

Quinoline,p-nitro-3phenylThiophene Thiophene, 2-sulfonyl chloride

Mixed acid; -10’

Furans Furans, nitroIminoimidazolidines Piperazines, nitro- and nitroso-

C.

Kcf. ( 10Ej ( iE)

( E)

Nitramine and amino, nitro derivs. 3,s-Dinitro deriv. (quant.) 5-Nitro deriv. (57)

”0s-acetic anhydride 2-Mononitro deriv. Fum. H X 0 3 ; 1 hr.: 40” 4-Nitro deriv. (76%) C. Subject Mechanism and rate of nitration Solubility in water Electropositive chlorine catalysis of nitration Steric studies based on electric mommts, polarizations, and temp. changes

VOL. 51, NO. 9, PART II

SEPTEMBER 1 9 5 9

(YIJ)

(17E) (XE) (iE)

1 1 27

Table VI.

Medium

N oxides N20

NO

NO,.

HNO? HNO;

Nitrate? KOCI

NO2Cl ClNOJ Nitro, nitroso compounds Nitro compounds, nitrites EtONO? Nitrogen MeN02 Nitroparaffins Viscosity

Nitrating Media Subject Absorption by soda and lime solutions -4bsorption in lime; semiplant scale: hydrodynamics Photochemical formation Halogen-catalyzed decomposition Photochemistry in far ultraviolet Decomposition in high frequency discharge Decomposition on metal oxides Stability Excitation by active N Free enthalpy Reaction with nitrosocyclohexane dimer Absorption by lime-kinetics (also NzO, NrOaJ Absorption spectrum in extreme U.V. (also NO. H20) Thermal decomposition-kinetic study Role of NO3 in thermal decomposition Photolysis at 3660 A. Ionization and dissociation by electron impact ( N 2 0 also) Electronic absorption spectra Structural study-bond type for N-N U.V. absorption spectrum; solvent interactions Decomposition at high temperatures Partial molal heats of solution of H ? O in NQ;, solutions BFB. NnOs as nitrant Equilibria in HClOi Decomposition in polarographic analysis Thermal decomposition of liquid NO2 in “03 Kinetics of oxidation with H N O , Purification and stabilization by ozonolysis Vapor pressure-behavior of solutes Density, molar volume, conductivity Vapor liquid equilibria-HCI-HnO Behavior in AI(NO3)a soh. Phase relations with NO?and HyO Parachor Effect of medium on structure-Raman spectra Hydrazine-crystallographic data Double salt systems-Ca, K , Rb. Cs Addn. to unsaturated alcohols Addn. to unsaturated hydrocarbons Molecular complexes Microwave spectra, dipole moment. structure Addition to double bond ; relative chlorination and nitration rates of sat. compounds Prep. and properties of solns. in orqanic solvents Reactions of formation Thermal decomposition Electronic structure and spectra Complexes with Ni, Co. Pt Decomposition in presence of strong acids Recent aspects of inorg. chemistry of nitrogcn Addition to aldehydes Condensation of aromatic aldehydes ivith nitroparaffins Nitrating acids

(SF) (52F) (37F 1 (75F)

(7F) ( 7F) (308’)

(90.4) Woodcock, D., Clifford, D. R., J . Chem. SOC. 1957, pp. 4139-41. (91A) Yoto, .4,, Japan. Patrnt 6319‘56 (July 28).

(7B) Frankel, Xi. B., J . Or,q. Chem. 23, 813-5 (19581. (8B) Frazer. J . b.,Sanborn. R. H.. U. S . Atomic Energy Comm., UCRL 4978

Aliphatics (1B) Badische Anilin & Soda-Fabrik .4. G.! Ger. Patent 864,991 (Jan. 29, 1953). (2Bj Bobovich, Y . S., Perekalin, V. V., Doklady Akad. Nauk S.S.S.R.121, 102830 (1958). (3B) Brown, J . F., Jr. (to General Electric C o . ) , L. S. Patent 2,837,578 (June 3. 1958). (4B) Coldiron, D. C., Albright, I,. F., .4lexander, L. G., IND. ENG. CHEM, 50, 991-2 (1958). (5B), Eckstein, Z., others, BUN. acad. pofon. scz., Sir. rci. chim. giol. et gkograph. 6 , 313-8 (1958). (6B) Findeis, A. F., Jr., De Vries, T., J . A m . Chem. SOC. 80, 797-8 (1958).

(9B) Giber, .J., Szantay, C.: .+fagjar C h m Lapja 11, 147-50 (1956). (10B) Gold, M.H., Hamel. E. E., Klager, K., J . Org. Chem. 22, 1665-7 (19571. (11B) Grimme, tV., Campen, G., Wollner, J . (to Rheinpreussen A. G. fur Bergbau und Chemie). Ger. Patent 847,000 (Aug. 18, 1952). (12B) Gudriniece, E., Kurgan, D. K., Vanags, G., Zhur. Obschchei Khim. 27, 3087-92 (1957). (13B) Kissinger, L. LV., others, J. Org. Chem. 22,1658-62 (1957). (14B) Kissinger, L. W., Ungnade, H. E . , Zbid., 23, 815-8 (19581. (15B) Knunyants, I. L., Fokin, .A, V., Zzvest. Akad. S a u k S.S.S.R. Otdel. Khim.

1 128

,.

/1957). (17B) Luttke, W., 2.Elel;-trochem.61, 976.86 (195?). (18B) McKinnis, A. C. (to Brea Chemicals Inc.), U. S. Patent 2,811,560 (Oct. 29, 1957). (19B) McKinnis, A . C. ( t o Collier Carbon Chemical Corp.), U. S . Patent 2,844,634 (July 22, 1958:i. (20B) Mead, T. E., Clapp. I-. B., J . Org. Chem. 23, 121-2 (1958). (21Bi Moldenhauer, O., Irion, LV., Mastagtio, D . (to Phrix-M’erke A . G.), Ger. Patent 920,128 (Nov. 15, 1954). (22B) Nazarova, 2. N., Pozharskii, F. T.; Zhur. Obshchei Khim. 28, 1503-5 (1958). (23B) Nielson, A . T.! C h ~ m 2 . Znd. (London) 1957, pp. 1358-9. (24B) Nightingale. D. V., Reich, D. -4., Erickson, F. B., J . Ore. C k m . 23, 236-41 (1958). (25B) Nikolaeva, A . D., Red’kina, E. V., Kamai, G., Trudy Kazan. Khim. Teknol. Inst. im S. M . Kirooa 23. 243-6 (1957). (26B) Novikov, S. S., Korsako;,a, I. S.: Babievskii, K . K . , Usfekhi Khim. 26, 1109-124 11957). (27B) Novikov, S. S., Korsakova, 1. S.. Yatskovskaya, M. A;, Doklady Akad. NaukS.S.S.R. 118, 954-6 (1958). (28B) Otomasu, H., Hoshi I’akka UnigaXu Kiyd 6 , 35-8 (19571. (29B) Profft, E., Siviatkowski, J., Jansrn, H . (to Vereinigte Glanzstoff-Fabriken A. G , ) , Ger. Patent 848,804 (Sept. 8: 1957). (30B) Reed, R., Jr., J , .4m. Chern. Soc. 80, 439-44 (1958). (31B) Rolewicz, H. .4..C‘hrm. 3 Znd. (London) 1957, p. 1389. (32B) Schimmelschmidt. K. (to Farbwerke Hoechst A. G . vorm Meister, Lucius & Bruning,, Grr. Patrnt 852,684 (Oct. 16, 19523. (33B) Schumann, K,, Kaltsfrn, R., Ger. (East) Patent 10,935 (,Dee. 7, 1955). (34B) Simecek, .J.. C h m . Iixty 51, 2367-8 (1957). (35B) Smith, J . E., Linic. Mzcro~Ums (.Ann Arbor, Mich.), Zlmrrtation Abstr. (36B) Stevens, T . E.; ChPm. & Znd. (London, 1957, pp. 1546-7. (37B) Stevens, T. E., Emmons, W. D.. J. Am. Chem. Soc. 79, 6008--14 (1957). (38B) Steinmetz, A,: Schimmelschmidt, K. (to Farbwerke Hoechst A. G. vorm Meister, Lucius & Bruning). Ger. Patent 857,947 (Dec. 4, 1952). (39B) Topchiev, .A. V., Khim. .Vauka Prom. 2, 515-20 (19571. (40B) Topchiev, A. V., Mekhtiev, S. D.? Noviwzova, A. S.. Dokladv Akad. N a u k . S.S.S.R. 115, 931-3 11957j. (41B) Tsutsuoka, S., others (.to Takeda Pharmaceutical Industries), Japan. Patent 418’57 (Jan. 25). (42B) Tsutsuoka, S., others (to Takcda Pharmaceutical Indusrrieai. Ibid 509’57 (.Tan -3.8)

(43B) Ungnade, H . E.. Kissinger, L. W’.. J . Org. Chem. 22, 1088-90 (1957). (44B) Urbanski?, T., Byull. Pol’sk. Akad. ,VTauk., Otdel3, 1, NO.6. 235-9 (1953). (45B) Weghofer, H. (to Krupp Kohlechemie G.m.b.H.), Ger. Patent 841,287 (June 13, 1952). (46B) Weghofer, H. (to Krupp Treibstoffwerke G.m.b.H. i. Ibid.. 831,393 (Feb. 14, 1952). (47B) Wulff, 0. (to Farbwerke Hoechst A. G. vorm Meister, Lucius & Bruning), Zbid., 860,795 (Dec. 22, 1952). (48B) Zakharkin, L. I.. I z w . ~ t ,Akad. .Tad

NITRATION S.S.S.R., O/dci Khirri. .\-auk 1957, pp. 1064-7 1. (49B) Zalukajevs, L., Izr,esi. A k a d . .\huk L a t ~ S. . S . R . 1953, No. 11, 111-18.

Nitrate Esters ( 1 C1 .Andreev, K . K.. Z h u i . Piiklad. Khini. 31, 484-93 (19581. (2C) Anselm, H.. Zipf. K . !to SagittaWerkc G.m.h.H. ). Ger. Patent 924,085 (Feb. -3 4 , l_q,i _i )l. 13C) E)esseigne, G., .%!fern. poirdres 39, 14’-56 (1957!. t4C) Diener, H., hlunster, . A , Z . physiX. L r a n k f u i l ) .TN.S .1 13,. 202-22 Chem. (.~ 119571. (5C) Ennor, K. S., Honeyman, J., J . Cherri. S O C 1958, . pp. 2586-94. (6C) Fairbrother, D. M., Skinner, H. A , , Evans, F. LV., Trans. Faraday .Toe. 53, 779-83 (1957). (7C) Junkmann, K., others (to Schering A. G J , Ger. Patent 830,955 (Feb. 7, 1952). (8C)jKondrikov, B. N., Zhur. Fiz, Rhim. 32, 1175-6 (1958). (9C) Kreshkov, A. P., Guretskii, I. Y . , Andreev, P. A , Zhur. Obshrhei Khim. 28, 187-93 (1958). (10‘2) Kunz, A , Toth, I., .Magjar Ktm. Folybzrat 63. 201-6 (1957). (I ICj Meyerhoff, G.? J . Polyrner Sci. 29, 399-410 (1958). (12C) Ropuazynaki, S.? TliadonioSci Chein. 11,443-55 (19573. (13C1 Roth, J.. Stow, F. S., Jr., Kouba, D. L., I N D . E N G . CHEM. 50, 1283-8 (1958). (14C) Schwager, A,, Leibowitz, Y., Bull. Rrsearch Council Israel 519, 266-7 (1956). (15C) Shafizadeh, F.. Wolfrom, M. L., J . A m . Chem. Soc. 80, 1675-7 (1358). (16C) Spaeth, C. P, (to E. I. d u Pont de Nemours & Co.), U . S. Patent 2,831,882 (April 22, 1958). (17C) Svetlov, B. S., L\-auch. Doklady Vysshef Shkoiy, Khirn. i Khim. Tekhnol. 1958, NO. 3, 422-5 (1958). 118C) Takenaka, H., Kobunshi Kapaku 14, 311-17 (1957). (19Cl Towonen, H., A n n . .icad. Sei. Fmnicae, Ser. -4.II; No. 7 2 (1956). (20Ci Trommell, J., Commun. S. I’. Kont n kl. .!led. SPringstoffenfabrieken 1 958, KO. 14. (21C) Urbanski, T., Hackel, J., Tetrahedron 2, 300-3 (1958). (22Cl Urbanski, T.. Tarantowitz, W., Bull. acad. polori. x i . , Ser. sei. chirn. geol. 2 geograph. 6,289-92 (1 958). ~-

.V-Nitro Compounds ( l D ! Baranchik, N. M . , Grachev, I. V., Zavel‘skii, D. Z., J . Gen. Chem. L’.S.S.R. 27, 133-41 11957). (2D) Bourjol, G., Dumoulin, G., Me‘n~. poudrps 39, 97-104 (1957). (3D) Boyars, C., Cary, H., Stark, V., J . Org. Chem. 22, 716 (1957). (4D) Bradley, H. W., Fuller, M. G.? (to E. I. du Pont de Nemours &r Co.), Ger. Patent 939,027 (Feb. 16, 1956). (5D) Bruck, P., Lamberton, A. A,, J . Cheni. S O C1957, . pp. 4198-206. (6D) Cornacchione, G., Boll. chim. f a r m . 96, 335-6 (1957). (7D) De Fazi, R., Berti, G., Da Settino, A , , Ricerca sci. 28, 1013-4 (1958). (8Di Emmons, W. D., Pogano, A. S., Stevens, T. E., J. Org. Chem. 23, 311-13 (19581. (9Dj Kirkwood, M. W., Wright, G. F.? Can. J . Chem. 35, 527-40 (1957). (10D) Krc, J., Jr., Anal. Chem. 30, 1301-2 (1958). (1 1D) Loshkarev, M . .k, Burmistrov,

S. I., Tsymbal, R. hf., Iziest. Vysshtkn Ucheb. Zacedenii, Khim. i Khim. Tekhnol. 1958, NO. 2, 6-16. (12D) Metcalf, H. F., Whitrack, G. C., U. S. Patent 2,835,631 (May 20, 1958). (13D) Olin Xlethieson Chemical Corp., Brit. Patent 797,982 (July 9, 1958). (14Di Richards, R. E., Yorke, R. W., T r a n s . Faraday Sac. 54, 321-6 (1958). ( l 5 D j Rozina, D. S., others, U.S.S.R. Patent 106,838 (Aug. 25, 1957). (16D) Simecek, J., Chem. listj 51, 1699703 (1957). Heterocyclics (1E) Blatt, A . H., Bach, S., Krrrch, I,. \.IT., J . Org. Chem. 22, 1693--5 (1957). 12E) Brocades-Stheeman to Smith, Kline 8r French Laboratories), Brit. Patent 797,961 July 9, 19583. (3E) Frishman, S. G., Zhur. Obshchei Khini. 27, 970-3 (1957). (4Ei Fuiimoto, G. (to Shionoai Drua Mandacturing Co.), Japan.- Pate; 1727’57 (March 15). (5E) George, M. V., Wright, G . F., J . A m . Chem. Soc. 80, 1200;3 (1958). (6E) Kaslow, C . E., Buchrer: B., J . Org. Chern. 23,271-6 (1958). (7E) N. V. Koninkijke Pharmaceutische Fabriken voorheen Brocades-Stheeman & Pharmacie, Dutch Patent 83,633 (Dec. 15, 1956). (8Ej hlcKay, h. F., Kreling, M. E., J . erg. Chem. 22, 1581-3 (1957). (9E)hlichels? J . C., Hayes, K. J . ? J . A m . Cheni. Soc. 80, 114-6 (1958). (10E) Nenitzescu, C. D., Bucur, C., Rru. chim., Acad. r+. populaiie Roumainr 1, ATo. 1, 155-64 (1956). (11E) Stradinis, J., Hillers, S., Liepina, L., Latviajas P S R Zinatqu Akad. ?‘?stis 1958, NO. 1, pp. 113-20. Nitrating Agents (1F) Abel, I. E., .Monatsh. 89, 74-8 (1958). (2F) Addison, C . C., others, Chem. Soc. (London) Spec. Publ. S o . 10, 1-136 (1957). (3F) Addison, C. C., Sheldon, J. C., J . Chem. Soc. 1958, pp, 3142-8. (4F) Altshullcr, A. P., Stephen, D., Schwab, C. M . . J . Phys. Chem. 62, 607-10 (1958). (5Fj Ashmore? P. G., Levitt, B. P., Research Correspondence 9 , 5-0, 6, 525-6 (1956). (6F) Xston, N., others, “Threshold of Space,“ Proc. Conf. Chem. Aeron., Cambridge, Mass., 1956, pp. 136-42, Pergamon Press, London, 1957. (7F) Atroshchenko, V. I., Elimov, V. T., C’krain. Khim. Zhur. 23, 675-83 (1957). (8F) Axtmann, R . C., Murray, B. B., U. S. Atomic Energy Comm. D P 2 9 7 (1958). (9F) Bachman, G. B,, Dever, J . L., J . A m . Chem. Soc. 80. 5871-3 11958). (10F) Benson, 8. W., Buss, J. H., J . Chem. P h y ~ 27, . 1382-4 (1957). (11F) Collin, J.. Lossing, F. P., Ibid., 28, 900-1 11958)

(19Fl Ford, H . LV.; Endow, S . ! J . Chem. Phys. 27, i156-60 (1957). (20F) Fraser, J. M., Daniels, F . , J . Phys. Chem. 62, 215-20 (1958‘1. (21F) Ganz, I. S. N., Z h z ? . Priklrid. Khtm. 30, 1311-20 (1957). (22F) Ganz, I. S. N., Lokshin, M. A , , Zhur. Piiklad. Khzm. 30, 1525-35 (1957). (23F) Genkina, E. V., Finekshtein, A . I., Artemev. A. A.. Proc. Acad. Sci. LT.LYS.R.3 Sect. Chem. 109,’425-8 (1956). (24F) Groth, W. E., Schierholz, H., Chern. Ber. 90, 987-91 (1957). (25F) Groth, W. E., Schierholz, H., J . Chem. Phis. 27, 973-4 (1957). (26F) Howard, C. S . , Daniels, F.. ,J. Phys. Chem. 62, 360-1 (1958). (27F) Kay, LV, B.. Stern, A., Sanqhvi, 51. D . , Chein. 3 Rng. Data Sei. 2, Ko. 1, 21-8 (1957). (28F) Kecki, Z.; Prace K0n.f. Eirdrochrni. 6lhrsarr; 1955, pp. 687-729. (29F) Kaufman, F., Kelso, J. K.. J . Cherri. Phqs. 27, 1209-10 (1957). (30F) Krawetz, A. >\., Young, T. F., IND.E m . CHEM. 51, 229 (1959). (31F) Krejci, F., Novotny, hl., Ruzicka, J., Chem. 3 Ind. (London) 1957, pp. 1420-1. (32F) Lerner, 0 . M.,U.S.S.R. Patent 108,308 (Oct. 25, 1957). (33F) Lloyd, L., Wyatt, P. .A, H.: J . C h r n ~ . SOC.1957, pp. 4262-7. (34F) Ibid., pp. 4268-74. (35F) Losa? C. G., Castineira, C:. M., Re?). acad. cienc. exact., f f s . - y u i m y nat. Zaragoza [2] 11, No. 1, 9-19 (19561. (36F) Martin, H., iingezc. Chrm. 70, 97--8 (1958). (37F) Masek, J., Coliection Czechosior,. Chew. Communs. 22,721-6 (1957). (38F) hfillen, D. J., Sinnott, K . M.! J . Chem. Soc. 1958, pp. 350-5. (39F) Nakamoto, K., Fujita, J.: hlurata. H., J . A m . C h m . Soc. 80,4817 23 (19581. (40F) Ogloblin, K. A , , Zhur. Ohshcher Khim. 27.2451-5 119571. (41F) Pfleger, R . , Landaucr. F , .Inn. 610, 115-22 (1957). (42F) Potier, .4.,Potier. J., Bull. so[. chtrn. France 1958, pp. 439-41. (43F) Reid, R . C-,; others, IND. E\c. CHEM.49. -~ 1307 10 11957) (44F) Robihson, R . J:, McCronr, W. C:., Ana!. Chem. 30, 1014-5 (1958). (45F) Sarnowski, M., Krawizyk, ,J., Zygadlo, J., Przemys!. Chem. 11, 171---4 (19553. (46F) Schmeisser, M., Fink, \l’., Brandle. K.,Angew. Chem. 69, 780 (1957). (47F) Schott, G., Davidson, N.. ~ J . .’lru. Chem. Soc. 80, 1841-53 (1958) (48F) Skiens, W. E., Cady, G . H.. Ibld.. 80, 5640-5 (19581. (49F! Skulski, L., Urbanski, T., Hull. arad. polon. sei., ser. sci., chim. geol. P/ eeograth. 6 , 293-8 (1958). (56F) Slavinskaya, R. A., %hut-. Obshchri Khim. 27.844-8 (19571. (51F) Tanaka, J . , ~.Yippon ~ ~ a g a k Zu n s j h i 78, 1643-50 (1957). (52F) Turney, T. .A,, Wriqht, G . :I., .I. Chem. Sac. 1958, pp. 2415-18. 153F) Vaidya, V. G , , Narayan, P., Bhagwat, W. V , rigre Unci). J . Rrsrarch 5 , 357-9 11956). (54F) Weinrich, G . H., M b m . poudres 38, (Annexe), 1-84 (1956). (55F) Zabolotskii, T. V., Solnyshkova. S. N., Zhur. .\’ror,q. Khim. 2 , 1733-40 i,

nc7

\“J’I.

1957)

(17F) Davidson, N., Scott, G . L., J . Chem. Phys. 27, 317-8 (1957). (18F) Donaruma, I. G., Carmody, A . J., J . Org. Chem. 22, 635-9 (1957).

\

(56F) Zelikoff, hf., Aschenbrand, L. M.. “Threshold of Space,” Proc. Conf. Chem. Aeron., Cambridge, Mass., 1956, pp. 99-100, Pergamon Press. London, 1957.

VOL. 51, NO. 9 , P A R T II

SEPTEMBER 1959

1 1 29