Nitrogen Derivatives of L-Ascorbic Acid - Advances in Chemistry (ACS

Jul 22, 2009 - The nitrogen derivatives of L-ascorbic acid or its dehydro derivative, and the ... Determination of Ascorbic Acid and Dehydroascorbic A...
0 downloads 0 Views 1MB Size
8 Nitrogen Derivatives of L-Ascorbic A c i d EL SAYED H. EL ASHRY

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

Chemistry Department, Faculty of Science, Alexandria University, Alexandria, E g y p t

The nitrogen derivatives of L-ascorbic acid or its dehydro derivative, and the rationale for interest in these derivatives, are reviewed. In particular, the reactions of dehydro-L­ -ascorbic acid (DHA) with o-phenylenediamine or its substi­ tuted derivatives are surveyed as well as the reactions of D H A with hydrazines, which yield monohydrazones or bishydrazones. Further conversion of these initial deriva­ tives into a variety of nitrogen heterocyclic compounds is evaluated. The reactions of L-ascorbic acid with amino acids are also examined.

The role of L-ascorbic acid as a vitamin probably involves its participation in oxidation-reduction reactions. In those reactions dehydroL-ascorbic acid ( D H A ) is the first stable oxidation product; D H A is often the first product in the degradation of L-ascorbic acid. Because of its three adjacent carbonyl groups, D H A would be expected to undergo nucleophilic reactions with a number of functional groups, including amines. Nitrogen compounds arise in biological systems either from naturally occurring amino acids and proteins or from added chemotherapeutic agents such as sulfa drugs, isoniazide, and hydralazine; therefore, the study of the products of amine reactions with D H A is important. Moreover, L-ascorbic acid in foods is converted to D H A when it acts as an antioxidant. Thus, the survival of vitamin C during food processing depends in part on its involvement, and the involvement of D H A , in reactions with amines in foods, giving products mostly incapable of regenerating the vitamin. Nitrogen derivatives of L-ascorbic acid are important because they have been used extensively for the vitamin's determination (1) in the form of the bis(2,4-dinitrophenylhydrazone) of dehydro-L-ascorbic acid (1). In addition, because of the commercial availability of L-ascorbic acid with a relatively low price as well as the widespread use of hetero0065-2393/82/0200-0179$06.00/0 © 1982 American Chemical Society In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

180

ASCORBIC

ACID

cycles, L - a s c o r b i c a c i d c o u l d b e u s e d as a p r e c u r s o r i n t h e synthesis of a v a r i e t y of h e t e r o c y c l i c c o m p o u n d s w i t h o r w i t h o u t c a r b o h y d r a t e s u b stituents. Reaction

of DHA with o-Phenylene diamine

I n its o x i d i z e d f o r m , L - a s c o r b i c a c i d is m o r e r e a c t i v e t h a n a r e a l d o 2-uloses ( o s o n e s ) ; this greater r e a c i t v i t y is c a u s e d b y t h e c a r b o x y l i c

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

g r o u p adjacent t o t h e d i c a r b o n y l g r o u p s . B e c a u s e of these three a d j a c e n t f u n c t i o n a l g r o u p s , D H A reacts w i t h a m i n e s or o - p h e n y l e n e d i a m i n e t o y i e l d a v a r i e t y of p r o d u c t s ; t h e p r o d u c t is d e t e r m i n e d b y t h e m o l e c u l a r p r o p o r t i o n s of t h e reactant (2-7).

T h e product resulting from the con­

d e n s a t i o n of o n e m o l a r e q u i v a l e n t of o - p h e n y l e n e d i a m i n e w i t h t h e C l a n d C 2 carbons reacted ( 5 ) w i t h p h e n y l h y d r a z i n e to give 2,2'-anhydro[ 2-hydroxy-3- (1-phenylhydrazono-L-f /ireo-2,3,4-trihydroxybutyl) quinoxal i n e ] (2) i n its h y d r a t e d f o r m .

T h e s t r u c t u r e of 2 w a s b a s e d o n t h e

f o r m a t i o n of its d i a c e t a t e

upon acetylation.

(3)

s t r u c t u r e of 2 w a s r e v i s e d ( 8 - 1 0 )

M o r e recently, the

to the acyclic form

3

3-[(l-phenyl-

R' = Ac

hydrazono) -L-fTireo-2,3,4-trihydroxybutyl] -2-quinoxalinone

(4,

where

R = P h ) . T h o s e reactions h a v e b e e n e x t e n d e d u s i n g a v a r i e t y of a r y l h y d r a z i n e s a n d a r o y l h y d r a z i n e s (9,11) as w e l l as s e m i c a r b a z i d e a n d t h i o s e m i c a r b a z i d e (12) i n s t e a d of p h e n y l h y d r a z i n e . T h e s t r u c t u r e of 4 w a s b a s e d o n spectroscopic studies (mass a n d I R s p e c t r a ) as w e l l as p e r i o d a t e o x i d a t i o n studies (10,13).

Periodate oxidation afforded the correspond­

i n g a l d e h y d e s w h o s e structures w e r e c o n f i r m e d t o b e 3 - ( l - s u b s t i t u t e d hydrazono)glyoxal-l-yl]-2-quinoxalinones

(6) r a t h e r t h a n 5, as w a s ex­

p e c t e d f r o m t h e c y c l i c structures. T h e s e a l d e h y d e s p r o v i d e a s i m p l e route

to glyoxalylquinoxalinone derivatives

(6),

w h i c h are potential

p r e c u r s o r s t o other h e t e r o c y c l i c c o m p o u n d s s u c h as 7-12. 7-12

are monosubstituted glyoxal monohydrazones,

Compounds

w h i c h w o u l d be

difficult t o o b t a i n i f w e s t a r t e d w i t h t h e p o s s i b l e , b u t u n k n o w n , p r e -

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8.

181

Nitrogen Derivatives of L-Ascorbic Acid

E L ASHRY

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

H

cursor, 3 - ( g l y o x a l - l - y l ) - 2 - q u i n o x a l i n o n e , hydrazines.

a n d a l l o w e d i t t o react

T h e only possible monohydrazone

upon such direct

d e n s a t i o n is the h y d r a z o n e o n the C 2 c a r b o n y l .

R e a c t i o n of

6

with con­ with

c a r b o e t h o x y m e t h y l i d e n e t r i p h e n y l p h o s p h o r a n e gave 13, w h i c h w a s s u c ­ cessfully c y c l i z e d to 14. T h i s r e a c t i o n ( 6 to 14) monohydrazones

of 1 , 2 - d i c a r b o n y l c o m p o u n d s ,

w a s a p p l i e d to other

i n d i c a t i n g its use as a

g e n e r a l m e t h o d for p y r i d a z i n o n e s synthesis.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

182

T h e f o r m a t i o n of 1-phenylflavazole

ASCORBIC

ACID

f r o m r e d u c i n g sugars n o t

sub­

s t i t u t e d o n 0 2 a n d 0 3 is a g e n e r a l r e a c t i o n

(14-18),

t h r o u g h the f o r m a t i o n of

group

moiety

attached

flavazole

to

an arylhydrazono

a quinoxaline.

synthesis c o u l d b e

w h i c h proceeds

o n C 3 of a

This prerequisite

sugar

intermediate

4, w h i c h o n t r e a t m e n t w i t h a l k a l i

3-(L-threo-glycerol- 1-yl)-1-arylflavazole

(15)

(5,9).

The

in

gave

rearrange­

ment proceeds i n 1 h i n b o i l i n g , dilute, aqueous sodium hydroxide, but fission

of the p o l y h y d r o x y a l k y l c h a i n o c c u r s i n m o r e c o n c e n t r a t e d

line solution.

O n t h e other h a n d , d i s s o l u t i o n of 4 i n a l k a l i ,

alka­

followed

i m m e d i a t e l y b y a c i d i f i c a t i o n , regenerates t h e s t a r t i n g m a t e r i a l . F o r m a ­ t i o n of

flavazoles

f r o m L - a s c o r b i c a c i d is a n i n e x p e n s i v e a n d s i m p l e r o u t e

to flavazoles o t h e r w i s e o b t a i n e d f r o m L - g a l a c t o s e or L - t a l o s e . of these

flavazoles

were studied ( 9 ) ;

Reactions

d e r i v a t i v e s s u c h as 16-18

can be

prepared.

NHR'

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8.

E L ASHRY

183

Nitrogen Derivatives of L-Ascorbic Acid

A f t e r the a c y c l i c s t r u c t u r e of 4 h a d b e e n a s s i g n e d , t h e b e h a v i o r of similar compounds,

w h i c h are p r e s u m a b l y i n c a p a b l e of e x i s t i n g i n a

c y c l i c f o r m [ s u c h as 19, w h i c h w a s p r e p a r e d b y t h e m e t h y l a t i o n of 4], w a s s t u d i e d .

P e r i o d a t e o x i d a t i o n of

19 g a v e the

(19)

corresponding

a l d e h y d e t h a t c o u l d b e c o n v e r t e d i n t o v a r i o u s other d e r i v a t i v e s . D u r i n g a c e t y l a t i o n w i t h b o i l i n g acetic a n h y d r i d e ( 8 , 9 ) , t h e a l d i t o l portions i n the molecules

4 a n d 19 d e h y d r a t e w i t h s i m u l t a n e o u s

c l o s u r e to g i v e p y r a z o l e s 23 a n d 21, r e s p e c t i v e l y .

ring

D e a c e t y l a t i o n of

23

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

a f f o r d e d 20, w h i c h c o u l d also b e o b t a i n e d f r o m 4 u s i n g h y d r o x y l a m i n e hydrochloride.

T h e structures of t h e p r o d u c t s

were confirmed b y

N M R , a n d mass spectra, a n d a m e c h a n i s m f o r t h e f o r m a t i o n of p y r a z o l e s w a s also suggested stituted

o-phenylenediamines

(9).

IR, such

A n extension of this w o r k u s i n g s u b ­

such

as

those w i t h

d i m e t h y l g r o u p s has also b e e n c o m p l e t e d

chloro,

methyl,

or

(8,20).

T h e r e a c t i o n of 2 m o l of o - p h e n y l e n e d i a m i n e

w i t h D H A was re­

p o r t e d ( 2 ) to g i v e 26, w h i c h p r o d u c e d colorless crystals f r o m w a t e r a n d y e l l o w crystals f r o m e t h a n o l . gave the monoquinoxaline

T r e a t m e n t of 26 w i t h c o l d m i n e r a l a c i d

d e r i v a t i v e 24, w h i c h u p o n a c e t y l a t i o n g a v e

t h e d i a c e t a t e 25 a n d u p o n r e a c t i o n w i t h o - p h e n y l e n e d i a m i n e again.

gave

26

T r e a t m e n t of 24 w i t h a l k a l i g a v e the s o d i u m salt 27, w h i c h o n

a c i d i f i c a t i o n g a v e the y- a n d 8-lactones (24 a n d 29),

respectively, i n d i ­

c a t i n g t h a t the t w o n i t r o g e n atoms are p r e s e n t o n C 2 a n d C 3 . O n t h e o t h e r h a n d , H a s s e l q u i s t (21)

a s s i g n e d t h e structures 28 a n d 30 to t h e

colorless a n d y e l l o w crystals, r e s p e c t i v e l y , one of w h i c h w a s i n t o the d i - N - a c e t y l d e r i v a t i v e (31). p r o d u c t w a s r e p o r t e d to b e 32 (22). a c e t y l d e r i v a t i v e (33) 24.

converted

L a t e r , t h e s t r u c t u r e of t h e r e a c t i o n C o m p o u n d 32 g a v e t h e m o n o - N -

and, u p o n treatment w i t h hydrochloric acid, gave

F u r t h e r studies to c l a r i f y these structures are n o w u n d e r w a y i n o u r

laboratory.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

30 31

R r= H R = Ac

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8.

185

Nitrogen Derivatives of L-Ascorbic Acid

E L ASHRY

DHA Monobydrazones L-£ftreo-2,3-Hexodiulosono-l,4-lactone

2-(phenylhydrazone)

(38,

R = P h ) , w a s first p r e p a r e d ( 2 3 ) b y r e a c t i n g 34 w i t h t h e s o d i u m d e r i v a ­ t i v e of d i e t h y l m a l o n a t e t o g i v e 35. H y d r o l y s i s of t h e a d d u c t 35 g a v e 36, w h i c h u p o n t r e a t m e n t w i t h a l c o h o l i c a l k a l i a f f o r d e d 37. R e a c t i o n of 37 w i t h b e n z e n e d i a z o n i u m c h l o r i d e g a v e 38 ( R = P h ) , w h i c h w a s c o n ­ v e n i e n t l y p r e p a r e d (24) b y r e a c t i o n of D H A w i t h N - a c e t y l - N - p h e n y l -

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

h y d r a z i n e i n t h e p r e s e n c e of i o d i n e .

Controlled reaction

(25,26)

substituted phenylhydrazine w i t h D H A gave the corresponding hydrazones

of

mono-

(38), a l t h o u g h t h e p h e n y l d e r i v a t i v e w a s n o t i s o l a t e d b y

this m e t h o d .

X - r a y c r y s t a l l o g r a p h y c o n f i r m e d t h e s t r u c t u r e (37) o f t h e

corresponding p-bromo derivative. COOEt

COC1

I

—OAc

CH—COOEt

X

C=0 -OAc

34

COOEt 36

35

38 37

39

R' = H R' = COR

A c e t y l a t i o n a n d b e n z o y l a t i o n of 38 c a u s e d a s i m u l t a n e o u s d e h y d r a ­ t i o n w i t h t h e f o r m a t i o n of a n o p t i c a l l y i n a c t i v e olefinic c o m p o u n d

(40),

p r o b a b l y t h r o u g h t h e f o r m a t i o n of t h e d i a c y l a t e d d e r i v a t i v e ( 3 9 ) ; t h e structures w e r e c o n f i r m e d

(24) b y spectroscopic

methods.

40 c a n also b e p r e p a r e d f r o m t h e c o r r e s p o n d i n g D - a n a l o g u e

Compound (28,29).

T h e r e a c t i o n of 38 w i t h v a r i o u s h y d r a z i n e s gave t h e c o r r e s p o n d i n g mixed

bishydrazones

heterocycles

(25,26).

(42),

which

could

T h e bishydrazones

be

rearranged

into

c o u l d not be isolated

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

other with

186

ASCORBIC

ACID

—OH ^ = 0

—OH

R'OH C 2

0

N—NHR R'HN—N

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

40

41 42

N—NHR R = R' R ^ R '

m e t h y l h y d r a z i n e , a n d a p y r a z o l e d e r i v a t i v e (43) w a s d i r e c t l y o b t a i n e d T h e r e a c t i o n of 40 w i t h m e t h y l h y d r a z i n e w a s m o r e c o m p l i ­

(30,31).

c a t e d , a f f o r d i n g a p r o d u c t w h o s e e l e m e n t a l analysis a n d s p e c t r a l d a t a i n d i c a t e that 2 m o l of m e t h y l h y d r a z i n e w a s c o n s u m e d

i n the reaction

to g i v e 45 ( S c h e m e 1 ) . T h e s t r u c t u r e 45 a n d n o t 44 w a s a s s i g n e d o n the basis of x-ray c r y s t a l l o g r a p h y (32).

Spectroscopic

methods

agreed

w i t h b o t h structures. Me

43 DHA

Bishydrazones T r e a t m e n t of D H A or 38 w i t h t h e c o r r e s p o n d i n g

afforded t h e b i s ( a r y l h y d r a z o n e )

(41)

(33-40).

arylhydrazine

Similarly, aroylhydra-

zines a n d s e m i c a r b a z i d e c o n d e n s e d r e a d i l y w i t h D H A t o g i v e t h e c o r r e ­ sponding

bishydrazone

(41,42)

a n d bis(semicarbazone)

(43,44).

A

series of d e r i v a t i v e s r e l a t e d t o s u l f a d r u g s (45) w a s p r e p a r e d b y t h e r e a c t i o n of D H A w i t h h y d r a z i n e s h a v i n g s u c h moieties. T h e bishydrazones

a r e n o w k n o w n t o b e i n t h e 1,4-lactone f o r m ,

s h o w i n g that n o o p e n i n g of t h e lactone r i n g i n D H A o c c u r r e d d u r i n g the reaction.

H o w e v e r , a t o n e t i m e (38) t h e 1,5-lactone w a s t h e p r e ­

f e r r e d f o r m , since t h e I R s p e c t r a of t h e b i s h y d r a z o n e s b o n y l lactone

b a n d at a f r e q u e n c y

lower

showed

a car­

than that expected for a

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8.

E L ASHRY

Nitrogen Derivatives of L-Ascorbic Acid CH OAc 2

n

c= H

187

0 }

^

H

MeHN—N

\ Ar 0

CH OAc 2

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

COOH AcO MeHN—N

N—NHAr

I

N—NHMc

N-NHAr

COOH

C — C

AcO

MeHN—N

I

N—NHAr

Me I

N N—NHAr

Scheme 1.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

188

ASCORBIC

ACID

1,4-lactone. T h e o b s e r v e d l o w f r e q u e n c y is p r o b a b l y c a u s e d b y h y d r o g e n b o n d i n g of t h e l a c t o n e c a r b o n y l w i t h t h e i m i n o p r o t o n of the h y d r a z o n e r e s i d u e o n C 2 , as s h o w n b y N M R s p e c t r o s c o p y . T h e same l o w f r e q u e n c y b a n d also a p p e a r e d i n the s p e c t r a of t h e b i s ( a r y l h y d r a z o n e s ) of analogues

(42,46)

s u c h as t h e p h e n y l a n a l o g u e

of

DHA

other

[4-phenyl-

b u t a n o - l , 4 - l a c t o n e 2 , 3 - b i s ( p h e n y l h y d r a z o n e ) ] , w h i c h c a n n o t f o r m a 1,5l a c t o n e . F i n a l l y , t h e l a c t o n e r i n g size w a s also d e d u c e d f r o m its c h e m i c a l reactions

(24).

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

A n o t h e r c o n t r o v e r s i a l aspect of

the

bishydrazone

structure

con­

cerns t h e h y d r a z o n e residues. T h e b i s h y d r a z o n e w a s p r o p o s e d to h a v e the s t r u c t u r e 4 6 , w h i c h m u t a r o t a t e s i n s o l u t i o n to 4 7

(47).

M o r e re­

c e n t l y , o n the basis of a c o m p a r a t i v e s t u d y of the s p e c t r o s c o p i c p r o p e r ­ ties of

the b i s ( p h e n y l h y d r a z o n e )

bishydrazone

was

assigned

the

w i t h some related compounds, structure

phenylhydrazino-L-f/ireo-hex-2-enone-l,4-lactone this latter s t r u c t u r e w a s i n c o n s i s t e n t w i t h its

the

2,3-dideoxy-3-phenylazo-21

3

(48)

(48).

However,

C N M R spectra

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

(49).

8.

Nitrogen Derivatives of L-Ascorbic

E L ASHRY

Reactions of the Rearrangement

Bishydrazones into

Pyrazolediones.

1,4-lactone 2 , 3 - b i s ( p h e n y l h y d r a z o n e )

L -threo - 2,3 - H e x o d i u l o s o n o -

rearranged to l-phenyl-4-phenylazo-

3- ( L - f / i r e o - g l y c e r o l - l - y l ) - p y r a z o l i n e - 5 - o n e (49) w a s a c i d i f i e d w i t h acetic a c i d ( 5 0 ) . to other bis ( a r y l h y d r a z o n e s ) (49)

(51).

w h e n its s o l u t i o n i n a l k a l i

T h e reaction was further extended T h e s t r u c t u r e of the p h e n y l a n a l o g u e

w a s e s t a b l i s h e d b y o x i d a t i o n to the k n o w n

phenylazopyrazolin-5-one

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

189

Acid

3-carboxy-l-phenyl-4-

L a t e r , o n t h e basis of N M R d a t a

(50).

(39),

t h e s t r u c t u r e of this g r o u p of c o m p o u n d s w a s f o r m u l a t e d as t h e h y d r a zones (51).

A c y l a t i o n of 51 a f f o r d e d t h e t r i - O - a c y l a t e d d e r i v a t i v e s

w h i l e p e r i o d a t e o x i d a t i o n of 51 gave 4- ( a r y l h y d r a z o n e )

(51),

3-formyl-l-aryl-4,5-pyrazoledione-

w h i c h c o u l d b e t r a n s f o r m e d i n t o a v a r i e t y of

(54),

derivatives ( 2 9 , 5 1 ) u p o n reaction w i t h amines, hydrazines, semicarbazide, or thiosemicarbazide.

T h e t h i o s e m i c a r b a z o n e s w e r e c y c l i z e d to t h e

t h i a d i a z o l e s , w h i c h are of c h e m i t h e r a p e u t i c interest

(52).

COOH Ph-N=N< 50

Ph

H

/ Ph—N

51

N

52

54

R=CHO

55

R = CH =N—NHR'

53

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

190

ASCORBIC

ACID

R e d u c t i o n of the p h e n y l a n a l o g u e 51 w i t h z i n c i n acetic a c i d i n e t h a n o l i c s o l u t i o n afforded s u b s t i t u t e d r u b i a z o n i c a c i d (56), was confirmed by I R a n d N M R spectroscopy (53).

whose structure

U p o n r e a c t i o n of 51

w i t h h y d r o g e n b r o m i d e i n acetic a c i d , the m a j o r p r o d u c t w a s a n d its structure w a s c o n f i r m e d (54) deoxy derivative

(52)

to be t h a t of 53.

was prepared

from

the

isolated

The monobromo-

bromodeoxy-L-ascorbic

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

acid.

0

OH

56

Treatment

of L-£hreo-2,3-hexodiulosono-l,4-lactone 2,3-bis ( s e m i c a r -

b a z o n e ) w i t h d i l u t e s o d i u m h y d r o x i d e s o l u t i o n afforded the s o d i u m salt of L-f7ireo-2,3-hexodiulosonic a c i d 2 , 3 - b i s ( s e m i c a r b a z o n e ) (43, 44), u p o n h e a t i n g y i e l d e d 57. (59)

on dissolution i n l i q u i d ammonia

and acidification w i t h

s u l f u r i c a c i d to p H 4, whereas a c i d i f i c a t i o n to p H 2 afforded

57

which

T h e bis ( s e m i c a r b a z o n e ) afforded the p y r a z o l e

58 59

R = R =

dilute

58.

H CONHo

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8.

E L ASHRY

191

Nitrogen Derivatives of L-Ascorbic Acid

Conversion into Pyrazine Derivatives.

Pyrazine derivatives

are

examples of 1,2-diazines i n t h e c a r b o h y d r a t e series (24).

T h e derivative

w a s p r e p a r e d b y p a r t i a l t o s y l a t i o n of 41 to g i v e t h e

mono-p-toluene-

s u l f o n y l d e r i v a t i v e (60),

w h i c h u p o n treatment w i t h sodium iodide i n

acetone gave t h e b i c y c l i c d i a z i n e d e r i v a t i v e (62). t o l u e n e s u l f o n y l d e r i v a t i v e (61)

afforded,

those specified, t h e 6-deoxy-6-iodo 63.

H o w e v e r , the d i - p -

under conditions similar

to

T h e 6 - b r o m o d e o x y 64 w a s p r e ­

p a r e d (54) b y r e a c t i n g p h e n y l h y d r a z i n e w i t h

6-bromo-6-deoxy-L-ascorbic

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

acid. [-OR

PhHN—N 63

R = I,R' =

64

R = Br, R' =

Oxidation of Bishydrazones. (41)

N—NHPh Ts H

M i l d o x i d a t i o n of t h e b i s h y d r a z o n e s

w i t h cupric chloride yielded yellow bicyclic compounds

not t h e a n t i c i p a t e d triazoles (72). b o t h degradative a n d spectroscopic

(66)

(55-60) m e t h o d s .

m o n o p h e n y l h y d r a z i d e of m e s o x a l i c a c i d (68) 69 u p o n a c e t y l a t i o n ( 5 7 ) .

by

T h u s , u p o n treat­

m e n t w i t h a l k a l i a n d a c i d i f i c a t i o n of t h e p h e n y l a n a l o g u e of p o u n d gave

and

T h e structures w e r e c o n f i r m e d 66,

the

was obtained. T h i s c o m ­

A c e t y l a t i o n of

66

afforded

a

m o n o - O - a c e t y l d e r i v a t i v e w h o s e N M R s p e c t r u m s h o w e d o n l y one i m i n o

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

192

ASCORBIC

ACID

p r o t o n i n s t e a d of t w o i n its p r e c u r s o r . T h e s t r u c t u r e has b e e n c o n f i r m e d b y d e t a i l e d mass spectroscopy, a n d

1 3

C N M R and

1 5

N N M R spectroscopy.

T h e s t r u c t u r e w a s q u e s t i o n e d w h e n e l e c t r o n i m p a c t mass

spectroscopy

d e t e c t e d a m o l e c u l a r i o n p e a k t w o mass u n i t s h i g h e r t h a n

expected.

C a r e f u l experiments at l o w t e m p e r a t u r e r e v e a l e d t h a t t h e m o l e c u l a r i o n

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

d i s p r o p o r t i o n a t e s w h e n h e a t e d , g i v i n g a n i o n of 65

M i x e d b i s h y d r a z o n e s (25,26,61)

(58,59).

of t y p e 42 w e r e s i m i l a r l y t r a n s ­

f o r m e d i n t o 67 u p o n t r e a t m e n t w i t h c u p r i c c h l o r i d e ( 3 0 ) .

The

bis(o-

c h l o r o p h e n y l ) a n a l o g u e of 41 gave the c o r r e s p o n d i n g o - c h l o r o d e r i v a t i v e of 66 w i t h o u t loss of c h l o r i n e atoms (40), ous studies i n the c a r b o h y d r a t e series. h y d r a z o n e ) (41)

as w a s a n t i c i p a t e d f r o m p r e v i ­ B r o m i n a t i o n of the b i s ( p h e n y l -

afforded the p - b r o m o p h e n y l a n a l o g u e (66)

T o synthesize the t r i a z o l e (71),

a n o t h e r a p p r o a c h (63)

w h e r e d e h y d r a t i o n of the m i x e d h y d r a z o n e o x i m e (70) a n h y d r i d e afforded the t r i a z o l e Reduction of Bishydrazones. bis(phenylhydrazone)

(41)

(61)

(62). was used, w i t h acetic

(71). C a t a l y t i c h y d r o g e n a t i o n (64)

gave the d i a m i n o d e r i v a t i v e (73).

of the De­

r i v a t i v e s of the latter w e r e p r e p a r e d b y r e a c t i n g it w i t h different a l d e ­ h y d e s to g i v e i m i d a z o l i n e d e r i v a t i v e s (74) l i t h i u m a l u m i n u m h y d r i d e afforded as 75

(65).

R e d u c t i o n of 41 w i t h

a product tentatively formulated

(53).

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

8.

E L ASHRY

193

Nitrogen Derivatives of L-Ascorbic Acid

75 Reaction

of DHA with Amino

Acids

A m i n o acids are q u i c k l y deaminated b y L-ascorbic a c i d , l e a d i n g to b r o w n i n g reactions (66).

I n t h e presence of o x y g e n , i r o n , a n d a s c o r b i c

a c i d o r D H A , t h e a m i n o acids gave a m m o n i a , c a r b o n d i o x i d e , a n d a n aldehyde

w i t h one c a r b o n less t h a n t h e o r i g i n a l a c i d

(67,68). T h e

a l d e h y d e s are i s o l a t e d as d i m e d o n e d e r i v a t i v e s a n d a r e u s e f u l f o r i d e n t i ­ fication

of t h e a m i n o acids. I n t h e presence of c o p p e r a n d U V l i g h t , t h e

d e a m i n a t i o n is i n c r e a s e d . T h e r e d c o l o r (69-73) f o r m e d u p o n r e a c t i o n of D H A w i t h a m i n o acids w a s u s e d f o r t h e i r d e t e c t i o n .

R e c e n t studies

(74-78) of t h e r e a c t i o n of D H A w i t h a m i n o acids l e d t o t h e i s o l a t i o n of a p r o d u c t t h a t changes r e a d i l y t o a n o v e l , stable, free r a d i c a l species

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

194

ASCORBIC

identified

as t r i ( 2 - d e o x y - 2 - L - a s c o r b y l ) a m i n e

(76).

Chemical

ACID

studies

u s i n g acetone d e r i v a t i v e s a n d analogous c o m p o u n d s ( 7 9 ) c o n f i r m e d t h e s t r u c t u r e of 76; t h e s t r u c t u r e of t h e free r a d i c a l , o b t a i n e d u p o n its o x i d a ­ t i o n , r e t a i n e d t h e s y m m e t r i c a l s t r u c t u r e . E l e c t r o c h e m i c a l studies

(80)

s h o w t h a t 76 is o x i d i z e d i n a q u e o u s s o l u t i o n i n t w o r e v e r s i b l e , one-elec­ t r o n transfer steps o n m e r c u r y or p l a t i n u m electrodes.

T h e first step

occurs t h r o u g h t h e d i a n i o n a n d its p r o d u c t is a n u n u s u a l l y stable b l u e a n i o n r a d i c a l , w h i c h gives a c h a r a c t e r i s t i c e l e c t r o n s p i n resonance s i g n a l .

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

T h e p r o d u c t of t h e s e c o n d step of o x i d a t i o n is l a b i l e a n d is s l o w l y c o n ­ v e r t e d i n t o a r e d p i g m e n t , w h o s e s t r u c t u r e is f o r m u l a t e d as t h e o x i d i z e d f o r m of bis ( 2 - d e o x y - 2 - L - a s c o r b y l ) a m i n e ( 8 1 ) , p r e s u m a b l y b y h y d r o l y s i s w i t h s p l i t t i n g of L - a s c o r b i c a c i d . D H A reacted w i t h p-aminobenzoic chloric acid affording

a c i d i n t h e presence

of h y d r o ­

6-carboxy-2-hydroxy-4-hydroxymethylquinoline

(77) ( 8 2 ) .

Bound Form of L-Ascorbic

Acid

A f t e r t h e c h a r a c t e r i z a t i o n of v i t a m i n C as a s c o r b i c a c i d , i t w a s o b ­ s e r v e d t h a t t h e content of a s c o r b i c

a c i d i n some vegetables

(83,84)

increases w h e n b o i l e d or c o o k e d . T h e increase is b e l i e v e d t o b e c a u s e d b y l i b e r a t i o n of b o u n d a s c o r b i c a c i d (85,86,87). (87)

T h e name

ascorbigen

w a s g i v e n to t h a t substance t h a t w a s later s e p a r a t e d

(88) a n d

synthesized

(89,90,91).

Ascorbigen

was synthesized

either f r o m

3-

hydroxy indole a n d ascorbic a c i d or f r o m indole, formaldehyde, a n d ascorbic acid.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8.

Nitrogen Derivatives of L-Ascorbic

E L ASHRY

Acid

195

Acknowledgments I a m indebted to C . Schuerch a n d H . E l K h a d e m for their encourage­ ment. Y.

I express m y sincere

E l Kilany,

N . Rashed,

t h a n k s t o a l l p a r t i c i p a n t s i n this A . Amer, A . Moussad,

study:

M . Shoukry, a n d

F . Singab.

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.

Roe, J. H. Ann. N.Y. Acad. Sci. 1961, 92, 277. Erlbach, H.; Ohle, H. Ber. Dtsch. Chem. Ges. 1934, 67, 555. Ogawa, S. Yakugaku Zasshi 1953, 73, 309. Henseke, G.; Dose, W.; Dittrich, K. Angew. Chem. 1957, 69, 479. Henseke, G.; Dittrich, K. Chem. Ber. 1959, 92, 1550. Henseke, G.; Lehmann, D.; Dittrich, K. Chem. Ber. 1961, 94, 1743. Henseke, G. Z. Chem. 1966, 6, 329. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Int. Symp. Carbohydr. Chem., London, 1978, A19. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 60, 303. Ibid., 67, 495. El Ashry, E. S. H.; Nassr, M. M.; Shoukry, M. Carbohydr. Res. 1980, 83, 79. El Ashry, E. S. H.; El Kilany, Y.; Amer, A.; Zimmer, H., unpublished data. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 60, 396. Ohle, H.; Melkonian, G. Ber. Dtsch. Chem. Ges. 1941, 74, 279. Ibid., 398. Ohle, H.; Liebig, R. Ber. Dtsch. Chem. Ges. 1942, 75, 1536. Ohle, H., Kruyff, J. Ber. Dtsch. Chem. Ges. 1944, 77, 507. French, D.; Wild, G. W.; James, W. J. J. Am. Chem. Soc. 1953, 75, 3664. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 64, 81. El Ashry, E. S. H.; Abdel Rahman, M. M. A.; Nassr, M.; Amer, A. Carbohydr. Res. 1978, 67, 403. Hasselquist, H. Ark. Kemi 1952, 4, 369. Dahn, H.; Moll, H. Helv. Chem. Acta 1964, 47, 1860. Micheel, F.; Mittag, R. Naturwissenschaften 1937, 25, 158. El Khadem, H.; El Ashry, E. S. H. Carbohydr. Res. 1970, 13, 57. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1977, 59, 417. El Ashry, E. S. H.; El Kilany, Y.; Singab, F. Carbohydr. Res. 1978, 67, 415. Hvoslef, J.; Pedersen, B. Acta Chem. Scand. 1979, 33, 503. Ozawa, T.; Nakamura, Y. Yakugaku Zasshi 1973, 93, 304. El Ashry, E. S. H.; El Kilany, Y.; Singab, F. Carbohydr. Res. 1977, 56, 93. El Ashry, E. S. H.; El Ashry, Y. Chem. Ind. (London) 1976, 372. El Ashry, E. S. H.; Carbohydr. Res. 1976, 52, 69. Stam, C.; El Ashry, E. S. H.; El Kilany, Y.; Van der Plas, H. C. J. Heterocycl. Chem. 1980, 17, 617. Herbert, R. W.; Hirst, E. L.; Percival, E. G. V.; Reynolds, R. J. W.; Smith, J. J. Chem. Soc. 1933, 1270. Antener, I. Helv. Chem. Acta 1947, 20, 742. Drevon, B.; Nofr, C.; Cier, A. Compt. Rend. 1956, 243, 607. Szotyori, K. S. Nahrung 1967, 11, 129.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

196

ASCORBIC ACID

37. El Khadem, H.; El Ashry, E. S. H. Carbohydr. Res. 1968, 7, 501. 38. El Khadem, H.; El Ashry, E. S. H. J. Chem. Soc. 1968, 2248. 39. El Khadem, H.; Meshreki, M. H.; El Ashry, E . S. H.; El Sekeili, M. Carbohydr. Res. 1972, 21, 430. 40. El Ashry, E. S. H.; Labib, G. H.; El Kilany, Y. Carbohydr. Res. 1976, 52, 200. 41. Fischer, R. Pharm. Ztg. 1934, 79, 1207. 42. El Ashry, E. S. H.; Nassr, M.; Singab, F. Carbohydr. Res. 1977, 56, 200. 43. Provost, C.; Fleury, M. Compt. Rend. 1964, 258, 587. 44. Fleury, M. Bull. Soc. Chim. Fr. 1966, 522. 45. Soliman, R.; El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 67, 179. 46. El Khadem, H.; El Sahfei, Z. M.; El Ashry, E . S. H.; El Sadek, M. Carbohydr. Res. 1976, 49, 185. 47. Rao, J. M.; Nair, P. M. Tetrahedron 1970, 26, 3833. 48. Roberts, G. A. F. J. Chem. Soc. 1979, 603. 49. Poller, P.; Gelin, S. Tetrahedron 1980, 36, 2955. 50. Ohle, H. Ber. Dtsch. Chem. Ges. 1934, 67, 1750. 51. El Khadem, H.; El Ashry, E. S. H. J. Chem. Soc. 1968, 2248. 52. El Ashry, E. S. H.; Abdel Rahman, M. M.; Hazah, A.; Singab, F. Sci. Pharm. 1980, 48, 13. 53. El Khadem, H.; El Shafei, Z. M.; El Sekeili, M. J. Org. Chem. 1972, 22, 3523. 54. El Ashry, E. S. H.; El Kilany, Y. Carbohydr. Res. 1980, 80, C8. 55. El Khadem, H.; El Ashry, E. S. H. Carbohydr. Res. 1968, 7, 507. 56. El Khadem, H.; El Ashry, E. S. H. J. Chem. Soc. 1968, 2251. 57. El Khadem, H.; El Ashry, E. S. H. J. Heterocycl. Chem. 1973, 10, 1051. 58. El Khadem, H.; El Ashry, E . S. H.; Kreishman, G. P., presented at the 2nd Chem. Congr. North Am. Continent, San Francisco, 1980, Carb-11. 59. El Khadem, H.; El Ashry, E. S. H.; Jaeger, D. L.; Kreishman, G. P.; Foltz, R. L. J. Heterocycl. Chem. 1980, 17, 1181. 60. El Khadem, H.; Coxon, B. Carbohydr. Res., in press. 61. El Ashry, E. S. H.; Abdel Rahman, M. M. A.; Mancy, S.; El Shafei, Z. M. Acta Chim. Acad. Sci. Hung. 1977, 95, 409. 62. El Ashry, E. S. H.; El Kilany, Y.; Singab, F. Carbohydr. Res. 1980, 82, 25. 63. El Sekeili, M.; Mancy, S.; El Kholy, I. E.; El Ashry, E. S. H.; El Khadem, H. S.; Swartz, D. L. Carbohydr. Res. 1977, 59, 141. 64. Micheel, F.; Bode, G.; Siebert, R. Ber. Dtsch. Chem. Ges. 1937, 70, 1862. 65. Gross, B.; El Sekeili, M. A.; Mancy, S.; El Khadem, H. Carbohydr. Res. 1974, 37, 384. 66. Abderhalden, E. Wien. Klin. Wochenschr. 1937, 50, 815. 67. Abderhalden, E. Fermentforschung 1937, 15, 285. 68. Ibid., 1938, 15, 522. 69. Wurtz, B.; North, J. C. Compt. Rend. 1963, 256, 1388. 70. Mori, Y.; Kumano, S.; Nango, I.; Kano, M.; Eiyo To Shokuryo, 1967, 20, 211. 71. Ibid., 216. 72. Shamanna, R.; Lakshiminarayana, S. J. Agric. Food Chem. 1968, 16, 528. 73. Pohloudek-Fabini, R.; Fuerting, W. J. Chromatogr. 1964, 13, 139. 74. Namiki, M.; Yano, M.; Hayashi, T. Chem. Lett. 1974, 125. 75. Yano, M.; Hayashi, T.; Namiki, M. Chem. Lett. 1974, 1973. 76. Yano, M.; Hayashi, T.; Namiki, M. J. Agric. Food Chem. 1976, 24, 815. 77. Yano, M.; Hayashi, T.; Namiki, M. Agric. Biol. Chem. 1978, 42, 2239. 78. Hayashi, T.; Namiki, M. Tetrahedron Lett. 1979, 4476. 79. Hayashi, T.; Manou, F.; Namiki, M.; Tsuji, K., unpublished data. 80. Tsuji, T.; Hayashi, T.; Namiki, M. Electrochim. Acta 1980, 25, 605.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

8. EL ASHRY Nitrogen Derivatives of L-Ascorbic Acid

Kurata, T.; Fujimaki, M.; Sakurai, Y. J. Agric. Food Chem. 1973, 21, 676. Hasselquist, H. Ark. Kemi 1964, 7, 121. Ahmad, B. Biochem. J. 1935, 275. McHenry, E. W.; Graham, M. L. Nature 1935, 135, 871. Guha, B. C.; Pal, J. C. Nature 1936, 137, 946. Ibid., 1937, 139, 844. Sen-Gupta, P. N.; Guha, B.C. Nature 1938, 141, 974. Prochazka, Z.; Sanda, V.; Sorm, F. Collect. Czech. Chem. Commun. 1957, 22, 333, 654. 89. Gimelin, R.; Virtanen, A. I. Ann. Acad. Sci. Fenn., Ser. A2 1961, 107. 90. Piironen, E.; Virtanen, A. I. Acta Chem. Scand. 1962, 16, 1286. 91. Virtanen, A. I.; Piironen, E. Suom. Kemistil. 1962, 35, 104.

Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008

81. 82. 83. 84. 85. 86. 87. 88.

197

RECEIVED for review January 22, 1981. ACCEPTED June 2, 1981.

In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.