8 Nitrogen Derivatives of L-Ascorbic A c i d EL SAYED H. EL ASHRY
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, E g y p t
The nitrogen derivatives of L-ascorbic acid or its dehydro derivative, and the rationale for interest in these derivatives, are reviewed. In particular, the reactions of dehydro-L -ascorbic acid (DHA) with o-phenylenediamine or its substi tuted derivatives are surveyed as well as the reactions of D H A with hydrazines, which yield monohydrazones or bishydrazones. Further conversion of these initial deriva tives into a variety of nitrogen heterocyclic compounds is evaluated. The reactions of L-ascorbic acid with amino acids are also examined.
The role of L-ascorbic acid as a vitamin probably involves its participation in oxidation-reduction reactions. In those reactions dehydroL-ascorbic acid ( D H A ) is the first stable oxidation product; D H A is often the first product in the degradation of L-ascorbic acid. Because of its three adjacent carbonyl groups, D H A would be expected to undergo nucleophilic reactions with a number of functional groups, including amines. Nitrogen compounds arise in biological systems either from naturally occurring amino acids and proteins or from added chemotherapeutic agents such as sulfa drugs, isoniazide, and hydralazine; therefore, the study of the products of amine reactions with D H A is important. Moreover, L-ascorbic acid in foods is converted to D H A when it acts as an antioxidant. Thus, the survival of vitamin C during food processing depends in part on its involvement, and the involvement of D H A , in reactions with amines in foods, giving products mostly incapable of regenerating the vitamin. Nitrogen derivatives of L-ascorbic acid are important because they have been used extensively for the vitamin's determination (1) in the form of the bis(2,4-dinitrophenylhydrazone) of dehydro-L-ascorbic acid (1). In addition, because of the commercial availability of L-ascorbic acid with a relatively low price as well as the widespread use of hetero0065-2393/82/0200-0179$06.00/0 © 1982 American Chemical Society In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
180
ASCORBIC
ACID
cycles, L - a s c o r b i c a c i d c o u l d b e u s e d as a p r e c u r s o r i n t h e synthesis of a v a r i e t y of h e t e r o c y c l i c c o m p o u n d s w i t h o r w i t h o u t c a r b o h y d r a t e s u b stituents. Reaction
of DHA with o-Phenylene diamine
I n its o x i d i z e d f o r m , L - a s c o r b i c a c i d is m o r e r e a c t i v e t h a n a r e a l d o 2-uloses ( o s o n e s ) ; this greater r e a c i t v i t y is c a u s e d b y t h e c a r b o x y l i c
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
g r o u p adjacent t o t h e d i c a r b o n y l g r o u p s . B e c a u s e of these three a d j a c e n t f u n c t i o n a l g r o u p s , D H A reacts w i t h a m i n e s or o - p h e n y l e n e d i a m i n e t o y i e l d a v a r i e t y of p r o d u c t s ; t h e p r o d u c t is d e t e r m i n e d b y t h e m o l e c u l a r p r o p o r t i o n s of t h e reactant (2-7).
T h e product resulting from the con
d e n s a t i o n of o n e m o l a r e q u i v a l e n t of o - p h e n y l e n e d i a m i n e w i t h t h e C l a n d C 2 carbons reacted ( 5 ) w i t h p h e n y l h y d r a z i n e to give 2,2'-anhydro[ 2-hydroxy-3- (1-phenylhydrazono-L-f /ireo-2,3,4-trihydroxybutyl) quinoxal i n e ] (2) i n its h y d r a t e d f o r m .
T h e s t r u c t u r e of 2 w a s b a s e d o n t h e
f o r m a t i o n of its d i a c e t a t e
upon acetylation.
(3)
s t r u c t u r e of 2 w a s r e v i s e d ( 8 - 1 0 )
M o r e recently, the
to the acyclic form
3
3-[(l-phenyl-
R' = Ac
hydrazono) -L-fTireo-2,3,4-trihydroxybutyl] -2-quinoxalinone
(4,
where
R = P h ) . T h o s e reactions h a v e b e e n e x t e n d e d u s i n g a v a r i e t y of a r y l h y d r a z i n e s a n d a r o y l h y d r a z i n e s (9,11) as w e l l as s e m i c a r b a z i d e a n d t h i o s e m i c a r b a z i d e (12) i n s t e a d of p h e n y l h y d r a z i n e . T h e s t r u c t u r e of 4 w a s b a s e d o n spectroscopic studies (mass a n d I R s p e c t r a ) as w e l l as p e r i o d a t e o x i d a t i o n studies (10,13).
Periodate oxidation afforded the correspond
i n g a l d e h y d e s w h o s e structures w e r e c o n f i r m e d t o b e 3 - ( l - s u b s t i t u t e d hydrazono)glyoxal-l-yl]-2-quinoxalinones
(6) r a t h e r t h a n 5, as w a s ex
p e c t e d f r o m t h e c y c l i c structures. T h e s e a l d e h y d e s p r o v i d e a s i m p l e route
to glyoxalylquinoxalinone derivatives
(6),
w h i c h are potential
p r e c u r s o r s t o other h e t e r o c y c l i c c o m p o u n d s s u c h as 7-12. 7-12
are monosubstituted glyoxal monohydrazones,
Compounds
w h i c h w o u l d be
difficult t o o b t a i n i f w e s t a r t e d w i t h t h e p o s s i b l e , b u t u n k n o w n , p r e -
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8.
181
Nitrogen Derivatives of L-Ascorbic Acid
E L ASHRY
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
H
cursor, 3 - ( g l y o x a l - l - y l ) - 2 - q u i n o x a l i n o n e , hydrazines.
a n d a l l o w e d i t t o react
T h e only possible monohydrazone
upon such direct
d e n s a t i o n is the h y d r a z o n e o n the C 2 c a r b o n y l .
R e a c t i o n of
6
with con with
c a r b o e t h o x y m e t h y l i d e n e t r i p h e n y l p h o s p h o r a n e gave 13, w h i c h w a s s u c cessfully c y c l i z e d to 14. T h i s r e a c t i o n ( 6 to 14) monohydrazones
of 1 , 2 - d i c a r b o n y l c o m p o u n d s ,
w a s a p p l i e d to other
i n d i c a t i n g its use as a
g e n e r a l m e t h o d for p y r i d a z i n o n e s synthesis.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
182
T h e f o r m a t i o n of 1-phenylflavazole
ASCORBIC
ACID
f r o m r e d u c i n g sugars n o t
sub
s t i t u t e d o n 0 2 a n d 0 3 is a g e n e r a l r e a c t i o n
(14-18),
t h r o u g h the f o r m a t i o n of
group
moiety
attached
flavazole
to
an arylhydrazono
a quinoxaline.
synthesis c o u l d b e
w h i c h proceeds
o n C 3 of a
This prerequisite
sugar
intermediate
4, w h i c h o n t r e a t m e n t w i t h a l k a l i
3-(L-threo-glycerol- 1-yl)-1-arylflavazole
(15)
(5,9).
The
in
gave
rearrange
ment proceeds i n 1 h i n b o i l i n g , dilute, aqueous sodium hydroxide, but fission
of the p o l y h y d r o x y a l k y l c h a i n o c c u r s i n m o r e c o n c e n t r a t e d
line solution.
O n t h e other h a n d , d i s s o l u t i o n of 4 i n a l k a l i ,
alka
followed
i m m e d i a t e l y b y a c i d i f i c a t i o n , regenerates t h e s t a r t i n g m a t e r i a l . F o r m a t i o n of
flavazoles
f r o m L - a s c o r b i c a c i d is a n i n e x p e n s i v e a n d s i m p l e r o u t e
to flavazoles o t h e r w i s e o b t a i n e d f r o m L - g a l a c t o s e or L - t a l o s e . of these
flavazoles
were studied ( 9 ) ;
Reactions
d e r i v a t i v e s s u c h as 16-18
can be
prepared.
NHR'
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8.
E L ASHRY
183
Nitrogen Derivatives of L-Ascorbic Acid
A f t e r the a c y c l i c s t r u c t u r e of 4 h a d b e e n a s s i g n e d , t h e b e h a v i o r of similar compounds,
w h i c h are p r e s u m a b l y i n c a p a b l e of e x i s t i n g i n a
c y c l i c f o r m [ s u c h as 19, w h i c h w a s p r e p a r e d b y t h e m e t h y l a t i o n of 4], w a s s t u d i e d .
P e r i o d a t e o x i d a t i o n of
19 g a v e the
(19)
corresponding
a l d e h y d e t h a t c o u l d b e c o n v e r t e d i n t o v a r i o u s other d e r i v a t i v e s . D u r i n g a c e t y l a t i o n w i t h b o i l i n g acetic a n h y d r i d e ( 8 , 9 ) , t h e a l d i t o l portions i n the molecules
4 a n d 19 d e h y d r a t e w i t h s i m u l t a n e o u s
c l o s u r e to g i v e p y r a z o l e s 23 a n d 21, r e s p e c t i v e l y .
ring
D e a c e t y l a t i o n of
23
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
a f f o r d e d 20, w h i c h c o u l d also b e o b t a i n e d f r o m 4 u s i n g h y d r o x y l a m i n e hydrochloride.
T h e structures of t h e p r o d u c t s
were confirmed b y
N M R , a n d mass spectra, a n d a m e c h a n i s m f o r t h e f o r m a t i o n of p y r a z o l e s w a s also suggested stituted
o-phenylenediamines
(9).
IR, such
A n extension of this w o r k u s i n g s u b
such
as
those w i t h
d i m e t h y l g r o u p s has also b e e n c o m p l e t e d
chloro,
methyl,
or
(8,20).
T h e r e a c t i o n of 2 m o l of o - p h e n y l e n e d i a m i n e
w i t h D H A was re
p o r t e d ( 2 ) to g i v e 26, w h i c h p r o d u c e d colorless crystals f r o m w a t e r a n d y e l l o w crystals f r o m e t h a n o l . gave the monoquinoxaline
T r e a t m e n t of 26 w i t h c o l d m i n e r a l a c i d
d e r i v a t i v e 24, w h i c h u p o n a c e t y l a t i o n g a v e
t h e d i a c e t a t e 25 a n d u p o n r e a c t i o n w i t h o - p h e n y l e n e d i a m i n e again.
gave
26
T r e a t m e n t of 24 w i t h a l k a l i g a v e the s o d i u m salt 27, w h i c h o n
a c i d i f i c a t i o n g a v e the y- a n d 8-lactones (24 a n d 29),
respectively, i n d i
c a t i n g t h a t the t w o n i t r o g e n atoms are p r e s e n t o n C 2 a n d C 3 . O n t h e o t h e r h a n d , H a s s e l q u i s t (21)
a s s i g n e d t h e structures 28 a n d 30 to t h e
colorless a n d y e l l o w crystals, r e s p e c t i v e l y , one of w h i c h w a s i n t o the d i - N - a c e t y l d e r i v a t i v e (31). p r o d u c t w a s r e p o r t e d to b e 32 (22). a c e t y l d e r i v a t i v e (33) 24.
converted
L a t e r , t h e s t r u c t u r e of t h e r e a c t i o n C o m p o u n d 32 g a v e t h e m o n o - N -
and, u p o n treatment w i t h hydrochloric acid, gave
F u r t h e r studies to c l a r i f y these structures are n o w u n d e r w a y i n o u r
laboratory.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
30 31
R r= H R = Ac
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8.
185
Nitrogen Derivatives of L-Ascorbic Acid
E L ASHRY
DHA Monobydrazones L-£ftreo-2,3-Hexodiulosono-l,4-lactone
2-(phenylhydrazone)
(38,
R = P h ) , w a s first p r e p a r e d ( 2 3 ) b y r e a c t i n g 34 w i t h t h e s o d i u m d e r i v a t i v e of d i e t h y l m a l o n a t e t o g i v e 35. H y d r o l y s i s of t h e a d d u c t 35 g a v e 36, w h i c h u p o n t r e a t m e n t w i t h a l c o h o l i c a l k a l i a f f o r d e d 37. R e a c t i o n of 37 w i t h b e n z e n e d i a z o n i u m c h l o r i d e g a v e 38 ( R = P h ) , w h i c h w a s c o n v e n i e n t l y p r e p a r e d (24) b y r e a c t i o n of D H A w i t h N - a c e t y l - N - p h e n y l -
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
h y d r a z i n e i n t h e p r e s e n c e of i o d i n e .
Controlled reaction
(25,26)
substituted phenylhydrazine w i t h D H A gave the corresponding hydrazones
of
mono-
(38), a l t h o u g h t h e p h e n y l d e r i v a t i v e w a s n o t i s o l a t e d b y
this m e t h o d .
X - r a y c r y s t a l l o g r a p h y c o n f i r m e d t h e s t r u c t u r e (37) o f t h e
corresponding p-bromo derivative. COOEt
COC1
I
—OAc
CH—COOEt
X
C=0 -OAc
34
COOEt 36
35
38 37
39
R' = H R' = COR
A c e t y l a t i o n a n d b e n z o y l a t i o n of 38 c a u s e d a s i m u l t a n e o u s d e h y d r a t i o n w i t h t h e f o r m a t i o n of a n o p t i c a l l y i n a c t i v e olefinic c o m p o u n d
(40),
p r o b a b l y t h r o u g h t h e f o r m a t i o n of t h e d i a c y l a t e d d e r i v a t i v e ( 3 9 ) ; t h e structures w e r e c o n f i r m e d
(24) b y spectroscopic
methods.
40 c a n also b e p r e p a r e d f r o m t h e c o r r e s p o n d i n g D - a n a l o g u e
Compound (28,29).
T h e r e a c t i o n of 38 w i t h v a r i o u s h y d r a z i n e s gave t h e c o r r e s p o n d i n g mixed
bishydrazones
heterocycles
(25,26).
(42),
which
could
T h e bishydrazones
be
rearranged
into
c o u l d not be isolated
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
other with
186
ASCORBIC
ACID
—OH ^ = 0
—OH
R'OH C 2
0
N—NHR R'HN—N
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
40
41 42
N—NHR R = R' R ^ R '
m e t h y l h y d r a z i n e , a n d a p y r a z o l e d e r i v a t i v e (43) w a s d i r e c t l y o b t a i n e d T h e r e a c t i o n of 40 w i t h m e t h y l h y d r a z i n e w a s m o r e c o m p l i
(30,31).
c a t e d , a f f o r d i n g a p r o d u c t w h o s e e l e m e n t a l analysis a n d s p e c t r a l d a t a i n d i c a t e that 2 m o l of m e t h y l h y d r a z i n e w a s c o n s u m e d
i n the reaction
to g i v e 45 ( S c h e m e 1 ) . T h e s t r u c t u r e 45 a n d n o t 44 w a s a s s i g n e d o n the basis of x-ray c r y s t a l l o g r a p h y (32).
Spectroscopic
methods
agreed
w i t h b o t h structures. Me
43 DHA
Bishydrazones T r e a t m e n t of D H A or 38 w i t h t h e c o r r e s p o n d i n g
afforded t h e b i s ( a r y l h y d r a z o n e )
(41)
(33-40).
arylhydrazine
Similarly, aroylhydra-
zines a n d s e m i c a r b a z i d e c o n d e n s e d r e a d i l y w i t h D H A t o g i v e t h e c o r r e sponding
bishydrazone
(41,42)
a n d bis(semicarbazone)
(43,44).
A
series of d e r i v a t i v e s r e l a t e d t o s u l f a d r u g s (45) w a s p r e p a r e d b y t h e r e a c t i o n of D H A w i t h h y d r a z i n e s h a v i n g s u c h moieties. T h e bishydrazones
a r e n o w k n o w n t o b e i n t h e 1,4-lactone f o r m ,
s h o w i n g that n o o p e n i n g of t h e lactone r i n g i n D H A o c c u r r e d d u r i n g the reaction.
H o w e v e r , a t o n e t i m e (38) t h e 1,5-lactone w a s t h e p r e
f e r r e d f o r m , since t h e I R s p e c t r a of t h e b i s h y d r a z o n e s b o n y l lactone
b a n d at a f r e q u e n c y
lower
showed
a car
than that expected for a
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8.
E L ASHRY
Nitrogen Derivatives of L-Ascorbic Acid CH OAc 2
n
c= H
187
0 }
^
H
MeHN—N
\ Ar 0
CH OAc 2
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
COOH AcO MeHN—N
N—NHAr
I
N—NHMc
N-NHAr
COOH
C — C
AcO
MeHN—N
I
N—NHAr
Me I
N N—NHAr
Scheme 1.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
188
ASCORBIC
ACID
1,4-lactone. T h e o b s e r v e d l o w f r e q u e n c y is p r o b a b l y c a u s e d b y h y d r o g e n b o n d i n g of t h e l a c t o n e c a r b o n y l w i t h t h e i m i n o p r o t o n of the h y d r a z o n e r e s i d u e o n C 2 , as s h o w n b y N M R s p e c t r o s c o p y . T h e same l o w f r e q u e n c y b a n d also a p p e a r e d i n the s p e c t r a of t h e b i s ( a r y l h y d r a z o n e s ) of analogues
(42,46)
s u c h as t h e p h e n y l a n a l o g u e
of
DHA
other
[4-phenyl-
b u t a n o - l , 4 - l a c t o n e 2 , 3 - b i s ( p h e n y l h y d r a z o n e ) ] , w h i c h c a n n o t f o r m a 1,5l a c t o n e . F i n a l l y , t h e l a c t o n e r i n g size w a s also d e d u c e d f r o m its c h e m i c a l reactions
(24).
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
A n o t h e r c o n t r o v e r s i a l aspect of
the
bishydrazone
structure
con
cerns t h e h y d r a z o n e residues. T h e b i s h y d r a z o n e w a s p r o p o s e d to h a v e the s t r u c t u r e 4 6 , w h i c h m u t a r o t a t e s i n s o l u t i o n to 4 7
(47).
M o r e re
c e n t l y , o n the basis of a c o m p a r a t i v e s t u d y of the s p e c t r o s c o p i c p r o p e r ties of
the b i s ( p h e n y l h y d r a z o n e )
bishydrazone
was
assigned
the
w i t h some related compounds, structure
phenylhydrazino-L-f/ireo-hex-2-enone-l,4-lactone this latter s t r u c t u r e w a s i n c o n s i s t e n t w i t h its
the
2,3-dideoxy-3-phenylazo-21
3
(48)
(48).
However,
C N M R spectra
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
(49).
8.
Nitrogen Derivatives of L-Ascorbic
E L ASHRY
Reactions of the Rearrangement
Bishydrazones into
Pyrazolediones.
1,4-lactone 2 , 3 - b i s ( p h e n y l h y d r a z o n e )
L -threo - 2,3 - H e x o d i u l o s o n o -
rearranged to l-phenyl-4-phenylazo-
3- ( L - f / i r e o - g l y c e r o l - l - y l ) - p y r a z o l i n e - 5 - o n e (49) w a s a c i d i f i e d w i t h acetic a c i d ( 5 0 ) . to other bis ( a r y l h y d r a z o n e s ) (49)
(51).
w h e n its s o l u t i o n i n a l k a l i
T h e reaction was further extended T h e s t r u c t u r e of the p h e n y l a n a l o g u e
w a s e s t a b l i s h e d b y o x i d a t i o n to the k n o w n
phenylazopyrazolin-5-one
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
189
Acid
3-carboxy-l-phenyl-4-
L a t e r , o n t h e basis of N M R d a t a
(50).
(39),
t h e s t r u c t u r e of this g r o u p of c o m p o u n d s w a s f o r m u l a t e d as t h e h y d r a zones (51).
A c y l a t i o n of 51 a f f o r d e d t h e t r i - O - a c y l a t e d d e r i v a t i v e s
w h i l e p e r i o d a t e o x i d a t i o n of 51 gave 4- ( a r y l h y d r a z o n e )
(51),
3-formyl-l-aryl-4,5-pyrazoledione-
w h i c h c o u l d b e t r a n s f o r m e d i n t o a v a r i e t y of
(54),
derivatives ( 2 9 , 5 1 ) u p o n reaction w i t h amines, hydrazines, semicarbazide, or thiosemicarbazide.
T h e t h i o s e m i c a r b a z o n e s w e r e c y c l i z e d to t h e
t h i a d i a z o l e s , w h i c h are of c h e m i t h e r a p e u t i c interest
(52).
COOH Ph-N=N< 50
Ph
H
/ Ph—N
51
N
52
54
R=CHO
55
R = CH =N—NHR'
53
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
190
ASCORBIC
ACID
R e d u c t i o n of the p h e n y l a n a l o g u e 51 w i t h z i n c i n acetic a c i d i n e t h a n o l i c s o l u t i o n afforded s u b s t i t u t e d r u b i a z o n i c a c i d (56), was confirmed by I R a n d N M R spectroscopy (53).
whose structure
U p o n r e a c t i o n of 51
w i t h h y d r o g e n b r o m i d e i n acetic a c i d , the m a j o r p r o d u c t w a s a n d its structure w a s c o n f i r m e d (54) deoxy derivative
(52)
to be t h a t of 53.
was prepared
from
the
isolated
The monobromo-
bromodeoxy-L-ascorbic
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
acid.
0
OH
56
Treatment
of L-£hreo-2,3-hexodiulosono-l,4-lactone 2,3-bis ( s e m i c a r -
b a z o n e ) w i t h d i l u t e s o d i u m h y d r o x i d e s o l u t i o n afforded the s o d i u m salt of L-f7ireo-2,3-hexodiulosonic a c i d 2 , 3 - b i s ( s e m i c a r b a z o n e ) (43, 44), u p o n h e a t i n g y i e l d e d 57. (59)
on dissolution i n l i q u i d ammonia
and acidification w i t h
s u l f u r i c a c i d to p H 4, whereas a c i d i f i c a t i o n to p H 2 afforded
57
which
T h e bis ( s e m i c a r b a z o n e ) afforded the p y r a z o l e
58 59
R = R =
dilute
58.
H CONHo
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8.
E L ASHRY
191
Nitrogen Derivatives of L-Ascorbic Acid
Conversion into Pyrazine Derivatives.
Pyrazine derivatives
are
examples of 1,2-diazines i n t h e c a r b o h y d r a t e series (24).
T h e derivative
w a s p r e p a r e d b y p a r t i a l t o s y l a t i o n of 41 to g i v e t h e
mono-p-toluene-
s u l f o n y l d e r i v a t i v e (60),
w h i c h u p o n treatment w i t h sodium iodide i n
acetone gave t h e b i c y c l i c d i a z i n e d e r i v a t i v e (62). t o l u e n e s u l f o n y l d e r i v a t i v e (61)
afforded,
those specified, t h e 6-deoxy-6-iodo 63.
H o w e v e r , the d i - p -
under conditions similar
to
T h e 6 - b r o m o d e o x y 64 w a s p r e
p a r e d (54) b y r e a c t i n g p h e n y l h y d r a z i n e w i t h
6-bromo-6-deoxy-L-ascorbic
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
acid. [-OR
PhHN—N 63
R = I,R' =
64
R = Br, R' =
Oxidation of Bishydrazones. (41)
N—NHPh Ts H
M i l d o x i d a t i o n of t h e b i s h y d r a z o n e s
w i t h cupric chloride yielded yellow bicyclic compounds
not t h e a n t i c i p a t e d triazoles (72). b o t h degradative a n d spectroscopic
(66)
(55-60) m e t h o d s .
m o n o p h e n y l h y d r a z i d e of m e s o x a l i c a c i d (68) 69 u p o n a c e t y l a t i o n ( 5 7 ) .
by
T h u s , u p o n treat
m e n t w i t h a l k a l i a n d a c i d i f i c a t i o n of t h e p h e n y l a n a l o g u e of p o u n d gave
and
T h e structures w e r e c o n f i r m e d 66,
the
was obtained. T h i s c o m
A c e t y l a t i o n of
66
afforded
a
m o n o - O - a c e t y l d e r i v a t i v e w h o s e N M R s p e c t r u m s h o w e d o n l y one i m i n o
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
192
ASCORBIC
ACID
p r o t o n i n s t e a d of t w o i n its p r e c u r s o r . T h e s t r u c t u r e has b e e n c o n f i r m e d b y d e t a i l e d mass spectroscopy, a n d
1 3
C N M R and
1 5
N N M R spectroscopy.
T h e s t r u c t u r e w a s q u e s t i o n e d w h e n e l e c t r o n i m p a c t mass
spectroscopy
d e t e c t e d a m o l e c u l a r i o n p e a k t w o mass u n i t s h i g h e r t h a n
expected.
C a r e f u l experiments at l o w t e m p e r a t u r e r e v e a l e d t h a t t h e m o l e c u l a r i o n
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
d i s p r o p o r t i o n a t e s w h e n h e a t e d , g i v i n g a n i o n of 65
M i x e d b i s h y d r a z o n e s (25,26,61)
(58,59).
of t y p e 42 w e r e s i m i l a r l y t r a n s
f o r m e d i n t o 67 u p o n t r e a t m e n t w i t h c u p r i c c h l o r i d e ( 3 0 ) .
The
bis(o-
c h l o r o p h e n y l ) a n a l o g u e of 41 gave the c o r r e s p o n d i n g o - c h l o r o d e r i v a t i v e of 66 w i t h o u t loss of c h l o r i n e atoms (40), ous studies i n the c a r b o h y d r a t e series. h y d r a z o n e ) (41)
as w a s a n t i c i p a t e d f r o m p r e v i B r o m i n a t i o n of the b i s ( p h e n y l -
afforded the p - b r o m o p h e n y l a n a l o g u e (66)
T o synthesize the t r i a z o l e (71),
a n o t h e r a p p r o a c h (63)
w h e r e d e h y d r a t i o n of the m i x e d h y d r a z o n e o x i m e (70) a n h y d r i d e afforded the t r i a z o l e Reduction of Bishydrazones. bis(phenylhydrazone)
(41)
(61)
(62). was used, w i t h acetic
(71). C a t a l y t i c h y d r o g e n a t i o n (64)
gave the d i a m i n o d e r i v a t i v e (73).
of the De
r i v a t i v e s of the latter w e r e p r e p a r e d b y r e a c t i n g it w i t h different a l d e h y d e s to g i v e i m i d a z o l i n e d e r i v a t i v e s (74) l i t h i u m a l u m i n u m h y d r i d e afforded as 75
(65).
R e d u c t i o n of 41 w i t h
a product tentatively formulated
(53).
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
8.
E L ASHRY
193
Nitrogen Derivatives of L-Ascorbic Acid
75 Reaction
of DHA with Amino
Acids
A m i n o acids are q u i c k l y deaminated b y L-ascorbic a c i d , l e a d i n g to b r o w n i n g reactions (66).
I n t h e presence of o x y g e n , i r o n , a n d a s c o r b i c
a c i d o r D H A , t h e a m i n o acids gave a m m o n i a , c a r b o n d i o x i d e , a n d a n aldehyde
w i t h one c a r b o n less t h a n t h e o r i g i n a l a c i d
(67,68). T h e
a l d e h y d e s are i s o l a t e d as d i m e d o n e d e r i v a t i v e s a n d a r e u s e f u l f o r i d e n t i fication
of t h e a m i n o acids. I n t h e presence of c o p p e r a n d U V l i g h t , t h e
d e a m i n a t i o n is i n c r e a s e d . T h e r e d c o l o r (69-73) f o r m e d u p o n r e a c t i o n of D H A w i t h a m i n o acids w a s u s e d f o r t h e i r d e t e c t i o n .
R e c e n t studies
(74-78) of t h e r e a c t i o n of D H A w i t h a m i n o acids l e d t o t h e i s o l a t i o n of a p r o d u c t t h a t changes r e a d i l y t o a n o v e l , stable, free r a d i c a l species
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
194
ASCORBIC
identified
as t r i ( 2 - d e o x y - 2 - L - a s c o r b y l ) a m i n e
(76).
Chemical
ACID
studies
u s i n g acetone d e r i v a t i v e s a n d analogous c o m p o u n d s ( 7 9 ) c o n f i r m e d t h e s t r u c t u r e of 76; t h e s t r u c t u r e of t h e free r a d i c a l , o b t a i n e d u p o n its o x i d a t i o n , r e t a i n e d t h e s y m m e t r i c a l s t r u c t u r e . E l e c t r o c h e m i c a l studies
(80)
s h o w t h a t 76 is o x i d i z e d i n a q u e o u s s o l u t i o n i n t w o r e v e r s i b l e , one-elec t r o n transfer steps o n m e r c u r y or p l a t i n u m electrodes.
T h e first step
occurs t h r o u g h t h e d i a n i o n a n d its p r o d u c t is a n u n u s u a l l y stable b l u e a n i o n r a d i c a l , w h i c h gives a c h a r a c t e r i s t i c e l e c t r o n s p i n resonance s i g n a l .
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
T h e p r o d u c t of t h e s e c o n d step of o x i d a t i o n is l a b i l e a n d is s l o w l y c o n v e r t e d i n t o a r e d p i g m e n t , w h o s e s t r u c t u r e is f o r m u l a t e d as t h e o x i d i z e d f o r m of bis ( 2 - d e o x y - 2 - L - a s c o r b y l ) a m i n e ( 8 1 ) , p r e s u m a b l y b y h y d r o l y s i s w i t h s p l i t t i n g of L - a s c o r b i c a c i d . D H A reacted w i t h p-aminobenzoic chloric acid affording
a c i d i n t h e presence
of h y d r o
6-carboxy-2-hydroxy-4-hydroxymethylquinoline
(77) ( 8 2 ) .
Bound Form of L-Ascorbic
Acid
A f t e r t h e c h a r a c t e r i z a t i o n of v i t a m i n C as a s c o r b i c a c i d , i t w a s o b s e r v e d t h a t t h e content of a s c o r b i c
a c i d i n some vegetables
(83,84)
increases w h e n b o i l e d or c o o k e d . T h e increase is b e l i e v e d t o b e c a u s e d b y l i b e r a t i o n of b o u n d a s c o r b i c a c i d (85,86,87). (87)
T h e name
ascorbigen
w a s g i v e n to t h a t substance t h a t w a s later s e p a r a t e d
(88) a n d
synthesized
(89,90,91).
Ascorbigen
was synthesized
either f r o m
3-
hydroxy indole a n d ascorbic a c i d or f r o m indole, formaldehyde, a n d ascorbic acid.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8.
Nitrogen Derivatives of L-Ascorbic
E L ASHRY
Acid
195
Acknowledgments I a m indebted to C . Schuerch a n d H . E l K h a d e m for their encourage ment. Y.
I express m y sincere
E l Kilany,
N . Rashed,
t h a n k s t o a l l p a r t i c i p a n t s i n this A . Amer, A . Moussad,
study:
M . Shoukry, a n d
F . Singab.
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
Roe, J. H. Ann. N.Y. Acad. Sci. 1961, 92, 277. Erlbach, H.; Ohle, H. Ber. Dtsch. Chem. Ges. 1934, 67, 555. Ogawa, S. Yakugaku Zasshi 1953, 73, 309. Henseke, G.; Dose, W.; Dittrich, K. Angew. Chem. 1957, 69, 479. Henseke, G.; Dittrich, K. Chem. Ber. 1959, 92, 1550. Henseke, G.; Lehmann, D.; Dittrich, K. Chem. Ber. 1961, 94, 1743. Henseke, G. Z. Chem. 1966, 6, 329. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Int. Symp. Carbohydr. Chem., London, 1978, A19. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 60, 303. Ibid., 67, 495. El Ashry, E. S. H.; Nassr, M. M.; Shoukry, M. Carbohydr. Res. 1980, 83, 79. El Ashry, E. S. H.; El Kilany, Y.; Amer, A.; Zimmer, H., unpublished data. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 60, 396. Ohle, H.; Melkonian, G. Ber. Dtsch. Chem. Ges. 1941, 74, 279. Ibid., 398. Ohle, H.; Liebig, R. Ber. Dtsch. Chem. Ges. 1942, 75, 1536. Ohle, H., Kruyff, J. Ber. Dtsch. Chem. Ges. 1944, 77, 507. French, D.; Wild, G. W.; James, W. J. J. Am. Chem. Soc. 1953, 75, 3664. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 64, 81. El Ashry, E. S. H.; Abdel Rahman, M. M. A.; Nassr, M.; Amer, A. Carbohydr. Res. 1978, 67, 403. Hasselquist, H. Ark. Kemi 1952, 4, 369. Dahn, H.; Moll, H. Helv. Chem. Acta 1964, 47, 1860. Micheel, F.; Mittag, R. Naturwissenschaften 1937, 25, 158. El Khadem, H.; El Ashry, E. S. H. Carbohydr. Res. 1970, 13, 57. El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1977, 59, 417. El Ashry, E. S. H.; El Kilany, Y.; Singab, F. Carbohydr. Res. 1978, 67, 415. Hvoslef, J.; Pedersen, B. Acta Chem. Scand. 1979, 33, 503. Ozawa, T.; Nakamura, Y. Yakugaku Zasshi 1973, 93, 304. El Ashry, E. S. H.; El Kilany, Y.; Singab, F. Carbohydr. Res. 1977, 56, 93. El Ashry, E. S. H.; El Ashry, Y. Chem. Ind. (London) 1976, 372. El Ashry, E. S. H.; Carbohydr. Res. 1976, 52, 69. Stam, C.; El Ashry, E. S. H.; El Kilany, Y.; Van der Plas, H. C. J. Heterocycl. Chem. 1980, 17, 617. Herbert, R. W.; Hirst, E. L.; Percival, E. G. V.; Reynolds, R. J. W.; Smith, J. J. Chem. Soc. 1933, 1270. Antener, I. Helv. Chem. Acta 1947, 20, 742. Drevon, B.; Nofr, C.; Cier, A. Compt. Rend. 1956, 243, 607. Szotyori, K. S. Nahrung 1967, 11, 129.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
196
ASCORBIC ACID
37. El Khadem, H.; El Ashry, E. S. H. Carbohydr. Res. 1968, 7, 501. 38. El Khadem, H.; El Ashry, E. S. H. J. Chem. Soc. 1968, 2248. 39. El Khadem, H.; Meshreki, M. H.; El Ashry, E . S. H.; El Sekeili, M. Carbohydr. Res. 1972, 21, 430. 40. El Ashry, E. S. H.; Labib, G. H.; El Kilany, Y. Carbohydr. Res. 1976, 52, 200. 41. Fischer, R. Pharm. Ztg. 1934, 79, 1207. 42. El Ashry, E. S. H.; Nassr, M.; Singab, F. Carbohydr. Res. 1977, 56, 200. 43. Provost, C.; Fleury, M. Compt. Rend. 1964, 258, 587. 44. Fleury, M. Bull. Soc. Chim. Fr. 1966, 522. 45. Soliman, R.; El Ashry, E. S. H.; El Kholy, I. E.; El Kilany, Y. Carbohydr. Res. 1978, 67, 179. 46. El Khadem, H.; El Sahfei, Z. M.; El Ashry, E . S. H.; El Sadek, M. Carbohydr. Res. 1976, 49, 185. 47. Rao, J. M.; Nair, P. M. Tetrahedron 1970, 26, 3833. 48. Roberts, G. A. F. J. Chem. Soc. 1979, 603. 49. Poller, P.; Gelin, S. Tetrahedron 1980, 36, 2955. 50. Ohle, H. Ber. Dtsch. Chem. Ges. 1934, 67, 1750. 51. El Khadem, H.; El Ashry, E. S. H. J. Chem. Soc. 1968, 2248. 52. El Ashry, E. S. H.; Abdel Rahman, M. M.; Hazah, A.; Singab, F. Sci. Pharm. 1980, 48, 13. 53. El Khadem, H.; El Shafei, Z. M.; El Sekeili, M. J. Org. Chem. 1972, 22, 3523. 54. El Ashry, E. S. H.; El Kilany, Y. Carbohydr. Res. 1980, 80, C8. 55. El Khadem, H.; El Ashry, E. S. H. Carbohydr. Res. 1968, 7, 507. 56. El Khadem, H.; El Ashry, E. S. H. J. Chem. Soc. 1968, 2251. 57. El Khadem, H.; El Ashry, E. S. H. J. Heterocycl. Chem. 1973, 10, 1051. 58. El Khadem, H.; El Ashry, E . S. H.; Kreishman, G. P., presented at the 2nd Chem. Congr. North Am. Continent, San Francisco, 1980, Carb-11. 59. El Khadem, H.; El Ashry, E. S. H.; Jaeger, D. L.; Kreishman, G. P.; Foltz, R. L. J. Heterocycl. Chem. 1980, 17, 1181. 60. El Khadem, H.; Coxon, B. Carbohydr. Res., in press. 61. El Ashry, E. S. H.; Abdel Rahman, M. M. A.; Mancy, S.; El Shafei, Z. M. Acta Chim. Acad. Sci. Hung. 1977, 95, 409. 62. El Ashry, E. S. H.; El Kilany, Y.; Singab, F. Carbohydr. Res. 1980, 82, 25. 63. El Sekeili, M.; Mancy, S.; El Kholy, I. E.; El Ashry, E. S. H.; El Khadem, H. S.; Swartz, D. L. Carbohydr. Res. 1977, 59, 141. 64. Micheel, F.; Bode, G.; Siebert, R. Ber. Dtsch. Chem. Ges. 1937, 70, 1862. 65. Gross, B.; El Sekeili, M. A.; Mancy, S.; El Khadem, H. Carbohydr. Res. 1974, 37, 384. 66. Abderhalden, E. Wien. Klin. Wochenschr. 1937, 50, 815. 67. Abderhalden, E. Fermentforschung 1937, 15, 285. 68. Ibid., 1938, 15, 522. 69. Wurtz, B.; North, J. C. Compt. Rend. 1963, 256, 1388. 70. Mori, Y.; Kumano, S.; Nango, I.; Kano, M.; Eiyo To Shokuryo, 1967, 20, 211. 71. Ibid., 216. 72. Shamanna, R.; Lakshiminarayana, S. J. Agric. Food Chem. 1968, 16, 528. 73. Pohloudek-Fabini, R.; Fuerting, W. J. Chromatogr. 1964, 13, 139. 74. Namiki, M.; Yano, M.; Hayashi, T. Chem. Lett. 1974, 125. 75. Yano, M.; Hayashi, T.; Namiki, M. Chem. Lett. 1974, 1973. 76. Yano, M.; Hayashi, T.; Namiki, M. J. Agric. Food Chem. 1976, 24, 815. 77. Yano, M.; Hayashi, T.; Namiki, M. Agric. Biol. Chem. 1978, 42, 2239. 78. Hayashi, T.; Namiki, M. Tetrahedron Lett. 1979, 4476. 79. Hayashi, T.; Manou, F.; Namiki, M.; Tsuji, K., unpublished data. 80. Tsuji, T.; Hayashi, T.; Namiki, M. Electrochim. Acta 1980, 25, 605.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
8. EL ASHRY Nitrogen Derivatives of L-Ascorbic Acid
Kurata, T.; Fujimaki, M.; Sakurai, Y. J. Agric. Food Chem. 1973, 21, 676. Hasselquist, H. Ark. Kemi 1964, 7, 121. Ahmad, B. Biochem. J. 1935, 275. McHenry, E. W.; Graham, M. L. Nature 1935, 135, 871. Guha, B. C.; Pal, J. C. Nature 1936, 137, 946. Ibid., 1937, 139, 844. Sen-Gupta, P. N.; Guha, B.C. Nature 1938, 141, 974. Prochazka, Z.; Sanda, V.; Sorm, F. Collect. Czech. Chem. Commun. 1957, 22, 333, 654. 89. Gimelin, R.; Virtanen, A. I. Ann. Acad. Sci. Fenn., Ser. A2 1961, 107. 90. Piironen, E.; Virtanen, A. I. Acta Chem. Scand. 1962, 16, 1286. 91. Virtanen, A. I.; Piironen, E. Suom. Kemistil. 1962, 35, 104.
Downloaded by UNIV OF MISSOURI COLUMBIA on October 9, 2013 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch008
81. 82. 83. 84. 85. 86. 87. 88.
197
RECEIVED for review January 22, 1981. ACCEPTED June 2, 1981.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.